
Computers in Biology and Medicine 184 (2025) 109336 

A
0

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

Structural-based uncertainty in deep learning across anatomical scales:
Analysis in white matter lesion segmentation
Nataliia Molchanova a,b,c,∗, Vatsal Raina d,1, Andrey Malinin e,2, Francesco La Rosa f,
Adrien Depeursinge a,b, Mark Gales d, Cristina Granziera g,h,i, Henning Müller b,j, Mara Graziani b,
Meritxell Bach Cuadra a,c

a Radiology Department, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
b MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
c CIBM Center for Biomedical Imaging, Lausanne, Switzerland
d ALTA Institute, University of Cambridge, Cambridge, United Kingdom
e Isomorphic Labs, London, United Kingdom
f Icahn School of Medicine at Mount Sinai, New York City, United States of America
g Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of
Basel, Basel, Switzerland
h Department of Neurology, University Hospital Basel, Basel, Switzerland
i Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
j Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland

A R T I C L E I N F O

Keywords:
Multiple sclerosis
White matter lesion segmentation
Magnetic resonance imaging
Deep learning
Uncertainty quantification
Instancescale uncertainty
Patientscale uncertainty

A B S T R A C T

This paper explores uncertainty quantification (UQ) as an indicator of the trustworthiness of automated deep-
learning (DL) tools in the context of white matter lesion (WML) segmentation from magnetic resonance imaging
(MRI) scans of multiple sclerosis (MS) patients. Our study focuses on two principal aspects of uncertainty in
structured output segmentation tasks. First, we postulate that a reliable uncertainty measure should indicate
predictions likely to be incorrect with high uncertainty values. Second, we investigate the merit of quantifying
uncertainty at different anatomical scales (voxel, lesion, or patient). We hypothesize that uncertainty at each
scale is related to specific types of errors. Our study aims to confirm this relationship by conducting separate
analyses for in-domain and out-of-domain settings. Our primary methodological contributions are (i) the
development of novel measures for quantifying uncertainty at lesion and patient scales, derived from structural
prediction discrepancies, and (ii) the extension of an error retention curve analysis framework to facilitate the
evaluation of UQ performance at both lesion and patient scales. The results from a multi-centric MRI dataset of
444 patients demonstrate that our proposed measures more effectively capture model errors at the lesion and
patient scales compared to measures that average voxel-scale uncertainty values. We provide the UQ protocols
code at https://github.com/Medical-Image-Analysis-Laboratory/MS_WML_uncs.
1. Introduction

Multiple sclerosis (MS) is a chronic, progressive autoimmune disor-
der of the central nervous system affecting approximately 2.8 million
people worldwide [1]. The primary characteristics of MS are demyeli-
nation, axonal damage, and inflammation due to the breakdown of the
blood–brain barrier [2,3]. The diagnostic criteria for MS include both
neurological symptoms observation and magnetic resonance imaging
(MRI) examination for the presence of lesions disseminated in time
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and space [3–5]. White matter lesions (WMLs) are a hallmark of MS,
indicating the regions of inflammation in the brain, typically assessed
through FLAIR or T1-weighted modalities [4,6]. On FLAIR scans, WMLs
are visible as hyperintense regions with periventricular area, brainstem,
and spinal cord being prevalent lesion sites. The size, shape, and count
of WMLs vary markedly across patients. While crucial for diagnosis and
monitoring, the manual annotation of new and enlarged lesions is a
time-consuming and skill-demanding process.
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The task of automated WML segmentation has propelled the devel-
pment of novel image processing techniques for many years [7,8].

More recently, algorithms have been boosted by the success of deep
learning (DL) in computer vision. DL methods quickly became state-of-
the-art for WML segmentation, providing better performance at faster
processing times [9,10]. Various DL models were explored in appli-
ation to WML segmentation, with U-Net architecture being the most
ommon model at faster processing times [10].

The potential clinical application of DL methods raises safety con-
cerns. These include the black-box nature of such approaches and their
susceptibility to variations in test data, known as domain shifts [11].
Additionally, common factors such as limited data availability, im-
perfect annotations, and ground-truth ambiguity due to inter-rater
variability further challenge the reliability of DL model predictions, po-
entially hindering their seamless integration into clinical practice [12].

The field of uncertainty quantification (UQ) offers a possibility to tackle
this issue by estimating the ‘‘degree of untrustworthiness’’ of model
predictions [12], focusing on two main uncertainty sources [13]: (i)
ata noise, captured by data uncertainty, and (ii) training data scarcity
r domain shifts, captured by model uncertainty. In the context of high-
isk AI applications, the information about the trustworthiness of model
redictions is important not only from an engineering perspective, but
lso for the end-users, e.g. clinicians [14].

Consequently, UQ is gaining popularity within the field of medical
mage analysis not only as a way to assess prediction trustworthiness.

However, the usage of uncertainty extends beyond quality control
to accommodate such applications as improving prediction quality,
domain adaptation, active learning, and other applications [13,15–17].
In medical image segmentation tasks, uncertainty is usually assessed
by treating semantic segmentation as pixel or voxel classification,
computing uncertainty for each pixel or voxel prediction. Given the
structure of a segmentation model output, it is also possible to explore
uncertainty values associated with some region of prediction. Several

orks explore uncertainty associated with a segmented region of inter-
est, e.g. structure- or lesion-wise [18–22], or for a whole prediction on
 patient [23,24].

1.1. Related works on uncertainty quantification in multiple sclerosis

Prior research on UQ for WML segmentation explored different
techniques, including single-network deterministic methods [22,25],
Monte Carlo Dropout (MCDP) [21], batch ensembles [22]. Our previous
tudy [26] investigated the deep ensembles [27] and compared them
ith the MCDP method [28], showing the advantage of the first one.
he utility of a specific UQ method depends on a particular application
nd available resources [13,15–17]. Deep ensembles were subsequently

shown to have a higher quality of uncertainty estimates compared to
other methods, while being computationally less effective compared to
single-shot models or batch ensembles [13,15–17]. The deep ensemble
is a deterministic method as the inference of each member is; thus, the
reliability of this UQ method can be studied without a concern about
he repeatability of the results.

Using ensemble methods or sampling UQ methods, based on ob-
aining samples from the posterior distribution, allows for the explo-
ation of various uncertainty measures. Several measures of voxel-scale
ncertainty have been explored, including variance, entropy, mutual
nformation [21,29]. Our previous study expanded this list by exploring

a common negated confidence and more advanced measures of model
uncertainty, such as reverse mutual information and expected pairwise
Kullback–Leibler divergence [26,30]. Several studies with different
UQ methods and measures used, observe that voxel scale uncertainty
tends to be the highest at the borders of WMLs, especially larger
ones [21,25,26,29,30], resembling partial-volume [31,32] or inter-rater
isagreement maps.
 T

2 
In MS, some works explored uncertainty associated with a seg-
mented region of interest, i.e. at the lesion scale [21,29,30]. The
pioneering study [21] suggested computing a log-sum of voxel-scale un-
certainties across a predicted lesion region, using different voxel-scale
uncertainty maps. Analogously, mean average voxel uncertainty values
across the lesion region were explored [29]. Lambert et al. [29] showed
he advantages of structural UQ based on graph neural networks over
oxel aggregation methods. Our prior research [29] demonstrated that
esion-scale uncertainty, computed through disagreement in structural
redictions, is more effective at identifying false-positive lesions than
ggregating voxel-scale uncertainties. Although we explored advanced
easures such as expected KL divergence and reverse mutual informa-

ion [33], they did not exhibit any significant advantage over the more
ommonly employed entropy and mutual information in medical image
nalysis. In the context of MS lesion segmentation, the patient-scale
ncertainty remains less explored.

Besides these various measures, prior works proposed different ways
o compare uncertainty measures. Ideally, a high uncertainty score
hould highlight the predictions that are most likely to be wrong.
ence, we expect a reliable uncertainty measure to reflect the increased

ikelihood of an erroneous prediction and thus correlate with model
istakes. For classification tasks, a calibration of uncertainty is mea-

ured to assess its quality, similarly the uncertainty quality can be
ompared at the voxel scale. At the lesion-/ patient- scales the calibra-
ion metrics are not explicitly defined. When investigating lesion-scale
easures, Nair et al. [21] looked into uncertainty-based prediction

iltering as a means to correlate uncertainty and false positive er-
ors, and Lambert et al. [29] used accuracy-confidence curves. Our

previous work redefines an error retention curve analysis to quantify
he relationship between uncertainty and lesion detection errors [30].

Prior to that the error retention curve analysis has been explored to
compare classification or segmentation pixel-/voxel-scale uncertainty
measures for various tasks as a way to quantify its relationship with an
error/quality metric of a choice [33–35]. This is a necessary analysis
for various practical clinical implementations, including a signaling
uncertainty-based system to warn medical specialists about the po-
tential errors in automatic predictions, automatic uncertainty-based
filtering of errors, or active learning where the hardest, i.e. most likely
erroneous examples need to be selected.

Various studies on UQ for WML segmentation use similar U-net-like
eep learning models [21,26,29,36,37], which have been widely ex-

plored in application to the MS lesion segmentation task [7,10,38,39].
While there is an agreement about the DL model, studies were con-
ducted on various datasets, predominantly private ones. There had not
been a public benchmark dataset for the UQ methods evaluation within
the context of WML segmentation before the Shifts 2.0 Challenge [26].

1.2. Our contributions

This study extends our previous work [30] and introduces ad-
vancements in uncertainty quantification (UQ) methods, focusing on
MRI segmentation across voxel, lesion, and patient scales. We intro-
uce a novel patient-scale uncertainty measure that leverages ensemble
ember disagreement to more accurately identify segmentation errors.
o compare patient-scale measures, we redefine the error retention
urve analysis, enabling a better understanding of their performance
n detecting poor segmentation quality. Our quantitative evaluation is
onducted in both in-domain and out-of-domain settings using a total
f 404 scans to mirror the diversity of MRI data coming from several
tudies, medical centers, and scanners. Additionally, this research pro-
ides a comparison of uncertainty measures across different anatomical
cales, highlighting their capacity to detect voxel misclassification,
esion false discovery, and general segmentation inaccuracies, con-
idering clinically relevant applications. The proposed UQ framework
s specifically tailored for WML segmentation on FLAIR MRI scans.

hrough additional evaluation, we confirm the generalizability of a
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similar task of white matter hyperintensity segmentation on 2D FLAIR
RI scans.

Our contributions include:

• Proposing the error retention curves analysis for instance-
detection tasks, enabling an evaluation of lesion-scale UQ meth-
ods in their ability to capture lesion false detection errors.

• Proposing a patient-scale uncertainty measure, a novel approach
for WML segmentation evaluation, enhancing the understanding
of overall segmentation failure.

• Proposing the extension of the error retention curves analysis
for patient-scale to compare the ability of different uncertainty
measures to capture overall segmentation quality.

2. Materials and methods

2.1. Data

The initial study creating the data was designed as a part of the
Shifts 2.0 Challenge [26] specifically for the exploration of uncertainty
uantification across shifted domains. This configuration comprises
hree publicly available datasets and a single private one. Data is sep-
rated into in-domain (Train, Val, Test𝑖𝑛) and out-of-domain (Test𝑜𝑢𝑡)
ubsets. This enables UQ evaluation both with and without the domain
hift. Data split into in- and out-of-domain sets is designed to maximize
he drop of model performance in lesion segmentation in the out-of-

domain test. From a clinical perspective, the domain shift is provided
by the difference in medical center, scanner, annotators, and MS stages
(Table 1). The Test𝑖𝑛 and Test𝑜𝑢𝑡 show a prominent difference in lesion
distributions likely brought by the differences of MS stages distributions
(see Fig. 1).

We extend this existing public benchmark by including a large in-
house dataset (Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒, 162 patients) collected in the Basel University
Hospital, Switzerland [40]. While Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒 should be treated as an out-
of-domain, the lesion profiles overlap with both Test𝑖𝑛 and Test𝑜𝑢𝑡 (see
Fig. 1).

For the additional assessment of generalizability and repeatability,
we add an evaluation on a similar task of white matter hyperintensity
WMH) segmentation. We use a publicly available test set from the
MH Segmentation Challenge [41] comprising 110 subjects. On MRI

LAIR scans, WMH has a similar WML MS visual representation, but
ot localization [6]. WMHs come from a different pathology related to
ascular abnormalities rather than MS [42]. The WMH Segmentation

Challenge dataset contains 2D FLAIR scans with 3 mm thickness,
compared to 0.8–2.2 mm slice thickness in the rest of the datasets.
The lack of information in the 𝑧-axis contributes to the domain shift in
addition to differences in study, medical center, underlying pathology,
annotation protocol, among others. Additionally, this cohort exhibits
higher lesion loads and larger lesion sizes (see Fig. 1).

For WML and WMH segmentation, this study uses FLAIR MRI scans
nd their manual WML annotations. FLAIR scans from Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒 and
est𝑊 𝑀 𝐻 underwent a common pre-processing pipeline similar to the

Shifts 2.0 Challenge pre-processing, including skull stripping [43],
bias field correction [44], and interpolation to 1 mm isovoxel space.
Information about data sources, metadata, and data splits is provided
in Table 1. Fig. 1 illustrates some differences between domains brought
y variations in MS stage distributions and scanner changes, affecting
he lesion characterization and intensity features, respectively. Other
actors, such as changes in study design, lesion annotators, scanner
perators, may also contribute to the domain shift.
3 
2.2. Uncertainty quantification

This work implements deep ensembles [27] for UQ by training
ultiple networks with identical architecture but different random seed

initializations. The random seed controls several factors, for instance,
weights initialization, training sample selection, random augmenta-
ions, and stochastic optimization algorithms. Although each ensemble
ember has distinct model weights, they all stem from the same
osterior distribution. This causes varied predictions among ensemble
embers for the same input example. The spread or variation in these
redictions serves as an uncertainty estimate.

2.2.1. Uncertainty quantification at different anatomical scales
In an image segmentation task, a class prediction is not a single

value but an image-size map. Thus, the disagreement between the
nsemble members can be quantified not only for each voxel of the
rediction but also for a subset of its elements. For WML segmentation,

the model prediction is a 3D probability map. We can quantify the
ncertainty associated with the decision taken in each voxel, thus

obtaining another 3D map with voxel-scale uncertainty values. We can
lso quantify uncertainty associated with a set of predictions within
 region of a particular lesion, thus obtaining an uncertainty score
or each predicted lesion. Similarly, we can quantify uncertainty for

the whole patient. We implement several uncertainty measures at each
anatomical scale (voxel, lesion, or patient). The exact mathematical
formulation for the previous existing and proposed UQ measures are
summarized in Table 2 and described hereafter.

Voxel-scale uncertainty measures. Perceiving segmentation as a classifi-
cation of each voxel of an image, one could use uncertainty measures
available for classification tasks to quantify uncertainty for per-voxel
redictions. The common uncertainty measures in this case will be
egated confidence and information theory measures such as entropy of
xpected, expected entropy, or mutual information which respectively
epict different total, data, and model uncertainty.

Lesion-scale uncertainty measures. Given a WML segmentation task,
we can compute a single uncertainty score for each predicted con-
nected component, i.e. lesion. Differently from previous measures that
ggregate voxel-scale uncertainties [21,22]. Our previous work [30]

proposes a novel lesion-scale uncertainty defined directly through the
isagreement between the lesion structural predictions of ensemble
embers. We hypothesize that looking at the disagreement in structural
redictions, i.e. predicted lesion regions, might be more beneficial for
he discovery of false positive lesions.

To define our proposed measure, we consider the ensemble of 𝑀
models, where each member model is parametrized by weights 𝜽𝑚,
𝑚 ∈ {0, 1,… , 𝑀 − 1}. The ensemble probability prediction is obtained
y computing a mean average across members. Then, the binary lesion
egmentation mask is obtained by applying a threshold 𝛼 to the softmax
nsemble prediction, where 𝛼 is chosen based on the Dice similarity
oefficient maximized on the validation dataset. Analogously, by apply-
ng the threshold 𝛼 to the softmax predictions of each of the ensemble
odels, we can obtain the binary lesion segmentation masks predicted

y each model 𝑚 in the ensemble. Let 𝐿 be a predicted lesion that is
 connected component from the binary segmentation map obtained
rom the ensemble model; and 𝐿𝑚 is the corresponding lesion predicted
y the model 𝑚, determined as the connected component on the binary
egmentation map predicted by the 𝑚-th member with maximum inter-
ection over union (IoU) with 𝐿. If the softmax probability threshold
s optimized for each member model separately based on the highest
ice score, the resulting thresholds will be different from 𝛼 and will
e member-specific: 𝛼𝑚, 𝑚 ∈ {0, 1,… , 𝑀 − 1}, instead of 𝛼. Then,
he binary segmentation maps obtained with 𝛼𝑚 will lead to different
orresponding lesion regions, called 𝐿𝑚,+. Then, the proposed measure,
esion structural uncertainty (LSU), is defined as follows:

𝐿𝑆 𝑈 = 1 − 1
𝑀−1
∑

𝐼 𝑜𝑈 (𝐿, 𝐿𝑚), (1)

𝑀 𝑚=0
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Table 1
Data splits and meta information. MS stages are clinically isolated syndrome (CIS), relapsing remitting (RR), primary progressive (PP), and secondary progressive (SP). Computed
statistics are median (Q2) and interquartile range (IQR). Computed statistics are median (Q2) and interquartile range (IQR).

Domain In-domain Out-of-domain MS Out-of-domain WMH

Source Carass et al. [45],
Commowick et al. [46]

Lesjak et al. [47],
Bonnier et al. [48]

Granziera [40] Kuijf et al. [41]

Medical center
location

Rennes, Bordeaux and Lyon
(France), Best (Netherlands)

Ljubljana (Slovenia),
Lausanne
(Switzerland)

Basel (Switzerland) Utrecht and
Amsterdam
(Netherlands),
Singapore

Scanners Siemens (Aera 1.5T, Verio
3.0T), GE Disc 3.0T, Philips
(Ingenia 3.0T, Medical 3.0T)

Siemens Magnetom
Trio 3.0T

Siemens Magnetom
Prisma 3.0T

3T Philips Achieva,
Siemens TrioTim
3.0T, Philips Achieva
3.0T, Ingenuity 3.0T,
GE Signa (1.5T, 3.0T)

M:F ratio range 0.21–0.4 0.23-0.70 0.68 –
MS stages RR, PP, SP CIS, RR, SP, PP RR, PP, SP –
# raters 2/7 consensus/3 consensus consensus
Inter-rater agreement
(Dice score)

0.63 and 0.71 0.78 and - - –

Set name Train Val Test𝑖𝑛 Test𝑜𝑢𝑡 Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒 Test𝑊 𝑀 𝐻
# scans 33 7 33 99 162 110
# lesions per scan, Q2
(IQR)

34 (20–50) 26 (19–61) 30 (15–47) 39 (20-77) 63 (25-88) 60 (37-83)

Total lesion volume
per scan, Q2 (IQR)
[mL]

12.5 (3.1-27.8) 15.5 (4.0–24.7) 7.2 (3.7–11.3) 2.7 (1.3–7.3) 7.4 (2.4–14.3) 9.4 (3.3–20.3)
Fig. 1. Illustration of the domain shift between the in-domain datasets (Train, Val, Test𝑖𝑛) and the out-of-domain dataset (Test𝑜𝑢𝑡, Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒, and Test𝑊 𝑀 𝐻 ) brought by the differences
in the MS stages and medical centers. On the left, the plot of the total lesion volume in milliliters versus the number of lesions per scan for in-domain (orange) and out-of-domain
(gray and black) sets reveals the difference in the lesion load (as a proxy to an MS stage) between different domains. On the right, typical examples from the Test𝑖𝑛 and Test𝑜𝑢𝑡
sets illustrate the difference in the lesion load, as well as the intensity differences brought by the change of the medical center (i.e. scanner, technicians, annotators, and other
parameters contributing to the domain shift) and MS stages (i.e. smaller lesion load and size).
and

𝐿𝑆 𝑈+ = 1 − 1
𝑀

𝑀−1
∑

𝑚=0
𝐼 𝑜𝑈 (𝐿, 𝐿𝑚,+). (2)

Patient-scale uncertainty measures. Patient-scale uncertainty offers the
most compact way of uncertainty representation considering the clin-
ical practice, that is presenting a single uncertainty score per patient.
Analogously to the lesion scale, the patient-scale uncertainty can be
computed by averaging voxel or lesion uncertainties. Using similar
reasoning as for the lesion scale, we propose a patient-scale measure
analogous to 𝐿𝑆 𝑈 (Eq. (1)), where instead of the lesion region 𝐿 the
total segmented lesion region is used. To define these measures, let S
be a set of voxels predicted as lesion class by the ensemble model, 𝑆𝑚

- set of voxels predicted as lesion class by the 𝑚-th member model in
the ensemble, and 𝑆𝑚,+ is the same, but obtained with the member-
specific threshold 𝛼𝑚. Then, the proposed patient structural uncertainty
measures are defined as:

𝑃 𝑆 𝑈 = 1 − 1
𝑀−1
∑

𝐼 𝑜𝑈 (𝑆 , 𝑆𝑚), (3)

𝑀 𝑚=0

4 
and

𝑃 𝑆 𝑈+ = 1 − 1
𝑀

𝑀−1
∑

𝑚=0
𝐼 𝑜𝑈 (𝑆 , 𝑆𝑚,+). (4)

2.3. Quantitative evaluation of uncertainty measures

Uncertainty has a relation to errors made by a model: ideally,
a higher uncertainty expresses an increased likelihood of erroneous
prediction. For each of the anatomical scales: voxel, lesion, and patient,
the ‘‘error’’ definition can vary. For example, a voxel-scale error can
be simply defined as a voxel misclassification, a lesion-scale error can
be defined as a lesion misdetection, and a patient-scale error can be
a summary of voxel errors. In this work, we want to compare voxel-,
lesion-, and patient-scale uncertainty measures in terms of their ability
to capture errors of different kinds. For this, we use an error retention
curve analysis [26,34,35], previously introduced only for voxel-scale
uncertainty, and extended for lesion and patient scales in this work.
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Table 2
Definitions of uncertainty measures at three anatomical scales: voxel, lesion, and patient.

(a) Voxel-scale uncertainty measures computed for each pixel 𝑖 ∈ 𝐵 of an input scan 𝐱 (𝐵 is a set of voxels defining the brain region), 𝐲 - targets, 𝑐 ∈ {0, 1,… , 𝐶 − 1} is the
class (𝐶 = 2 for binary WML segmentation), 𝑃 (𝑦𝑖 = 𝑐|𝐱,𝜽𝑚) is a softmax probability predicted by the 𝑚-th member in the ensemble of 𝑀 models, and

𝑃 (𝑦𝑖 = 𝑐|𝑥)𝑖 =
1
𝑀

𝑀−1
∑

𝑚=0
𝑃 (𝑦𝑖 = 𝑐|𝐱,𝜽𝑚) is the probability predicted by ensemble.

Negated confidence 𝑁 𝐶𝑖 = − ar gmax
𝑐∈{0,1,…,𝐶−1}

1
𝑀

𝑀−1
∑

𝑚=0
𝑃 (𝑦𝑖 = 𝑐|𝐱,𝜽𝑚)

Entropy of expected 𝐸 𝑜𝐸𝑖 = −
𝐶−1
∑

𝑐=0
𝑃 (𝑦𝑖 = 𝑐|𝑥) log𝑃 (𝑦𝑖 = 𝑐|𝑥)

Expected entropy 𝐸 𝑥𝐸𝑖 = − 1
𝑀

𝑀−1
∑

𝑚=0

𝐶−1
∑

𝑐=0
𝑃 (𝑦𝑖 = 𝑐|𝐱,𝜽𝑚) log𝑃 (𝑦𝑖 = 𝑐|𝐱,𝜽𝑚)

Mutual information 𝑀 𝐼𝑖 = 𝐸 𝑜𝐸𝑖 − 𝐸 𝑥𝐸𝑖

(b) Lesion-scale uncertainty measures computed for each predicted lesion 𝐿, that is a connected component on the predicted binary segmentation map. The last is obtained by

applying a threshold 𝛼 to the softmax ensemble prediction 𝑃 (𝐲 = 𝟏|𝑥) = 1
𝑀

𝑀−1
∑

𝑚=0
𝑃 (𝐲 = 𝟏|𝐱,𝜽𝑚), where 𝛼 is chosen based on the Dice similarity coefficient maximized on the

validation dataset. 𝐿𝑚 is the corresponding lesion predicted by the 𝑚-th member model, determined as the connected component on the binary segmentation map predicted by
the 𝑚-th member (threshold 𝛼 applied to 𝑃 (𝐲 = 𝟏|𝐱,𝜽𝑚), 𝑚 ∈ {0, 1,… , 𝑀 − 1}) with maximum intersection over union (IoU) with 𝐿. If the softmax probability threshold is
optimized based on the highest Dice score for each member model separately, the resulting thresholds will be different from 𝛼 and will be member-specific:
𝛼𝑚 , 𝑚 ∈ {0, 1,… , 𝑀 − 1} instead of 𝛼. Then, the binary segmentation maps obtained by applying 𝛼𝑚 to 𝑃 (𝐲 = 𝟏|𝐱,𝜽𝑚), 𝑚 ∈ {0, 1,… , 𝑀 − 1} will lead to different corresponding
lesion regions, called 𝐿𝑚,+.

Voxel uncertainties aggregation via mean average 𝐸 𝑜𝐸𝐿 = 1
|𝐿|

∑

𝑖∈𝐿
𝐸 𝑜𝐸𝑖 . Analogously, 𝐸 𝑥𝐸𝐿 , 𝑁 𝐶𝐿 ,𝑀 𝐼𝐿 are defined.

Proposed lesion structural uncertainty (𝐿𝑆 𝑈) 𝐿𝑆 𝑈 = 1 − 1
𝑀

𝑀−1
∑

𝑚=0
𝐼 𝑜𝑈 (𝐿, 𝐿𝑚) and 𝐿𝑆 𝑈+ = 1 − 1

𝑀

𝑀−1
∑

𝑚=0
𝐼 𝑜𝑈 (𝐿, 𝐿𝑚,+)

(c) Patient-scale uncertainty measures computed for patient. 𝑆 is a set of voxels in a scan predicted as lesions by the ensemble model, 𝑆𝑚 is a set of voxels predicted as
lesions by the model 𝑚, and 𝑆𝑚,+ is the same, but obtained with the member-specific threshold 𝛼𝑚 , 𝑚 ∈ {0, 1,… , 𝑀 − 1}. 𝑊 - set of lesions predicted by the ensemble model.

Voxel uncertainties aggregation via mean average 𝐸 𝑜𝐸𝐵 = 1
|𝐵|

∑

𝑖∈𝐵
𝐸 𝑜𝐸𝑖 . Analogously, 𝐸 𝑥𝐸𝐵 , 𝑁 𝐶𝐵 ,𝑀 𝐼𝐵 are defined.

Proposed lesion uncertainties aggregation via mean average 𝐿𝑆 𝑈 = 1
|𝑊 |

∑

𝑙∈𝑊
𝐿𝑆 𝑈𝑙 . Analogously, 𝐿𝑆 𝑈+ is defined.

Proposed patient structural uncertainty (PSU) 𝑃 𝑆 𝑈 = 1 − 1
𝑀

𝑀−1
∑

𝑚=0
𝐼 𝑜𝑈 (𝑆 , 𝑆𝑚) and 𝑃 𝑆 𝑈+ = 1 − 1

𝑀

𝑀−1
∑

𝑚=0
𝐼 𝑜𝑈 (𝑆 , 𝑆𝑚,+)
2.3.1. Error and quality metrics
We start by defining errors on the voxel and lesion scale as well as

quality metrics used in this work for model performance characteriza-
tion and error retention curve analysis.

Voxel-scale errors. Similarly to a classification task, the errors at the
voxel scale will include false positives and negatives (FP and FN, respec-
tively). Based on FP, FN, true positives (TP), and true negatives (TN),
one derives metrics like true positive rate (TPR) and positive predictive
value (PPV), which measure correctly classified voxels against ground
truth or predicted lesions, respectively. To evaluate both error types,
we use the F1 score, also known as the Dice similarity score (DSC) in
image processing. However, it is well known that the DSC metric suffers
from a bias to the occurrence rate of the positive class, i.e. lesion load,
jeopardizing the comparison of results. We thus additionally utilize the
normalized DSC (nDSC) [49] for the model evaluation. In a nutshell,
nDSC scales the precision at a fixed recall rate to tackle the lesion load
bias.

Lesion-scale errors. Analogously, true positive, false positive, and false
negative lesions (TPL, FPL, FNL) can be defined if the criteria for lesion
(mis)detection are given. While some studies accept minimal overlap
for detection [21,39,45], we apply a 25% intersection over the union
threshold for a predicted lesion to be considered a TPL. For the FNL
definition, we consider a zero overlap with the prediction. A FNL is
a ground truth lesion that has no overlap with predictions. Metrics
derived from TPL, FPL, and FNL include Lesion TPR, PPV, and F1,
further referred to as LTPR, LPPV, LF1. The differences at the voxel
scale include: (i) uncertainty cannot be quantified for FNLs, as they are
not predicted lesions; (ii) it is not possible to define a true negative
lesion. The metrics definitions can be found in Appendix A.

2.3.2. Error retention curve analysis
The error retention curve (RCs) [26,34,35] assess the correspon-

dence between a chosen uncertainty measure and an error or a quality
metric. By quantifying this correspondence for various uncertainty
5 
Fig. 2. An illustration of a Dice score retention curve (DSC-RC) for assessing the corre-
spondence between voxel uncertainty (MEASURE1 and MEASURE2) and segmentation
quality measured by DSC. DSC0 - quality of the predicted segmentation before voxel
replacement. IDEAL and RANDOM RCs are built for the ideal and random uncertainty
and are the upper and lower bounds of the uncertainty-robustness performance.

measures we can choose a measure that is better at pointing out errors
in model predictions. This is relevant for clinical applications, where
uncertainty constitutes a signaling system requiring human verification.

Compared to the uncertainty calibration analysis [13], error RCs
only consider the ranking of uncertainty values within a particular scan,
thus, avoiding uncertainty values scaling present in the calibration
metrics. Additionally, they allow for the choice of a quality metric
w.r.t. to which the uncertainty measure is compared. Thus, allowing
for extending their definition to different scales, e.g. lesion or patient.
Moreover, compared to calibration metrics, the RC analysis allows us
to estimate the upper and lower bounds of the uncertainty-robustness
performance.
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Voxel-scale DSC-RC. Similarly to our previous investigation [30], we
use voxel-scale RCs to quantify the average across patients correspon-
dence between per-voxel uncertainty and DSC, i.e. per-voxel misclas-
sification errors of different kinds: either FP or FN. For one patient, a
oxel-scale DSC-RC is built by sequentially replacing a fraction 𝜏 of the

most uncertain voxel predictions within the brain mask with the ground
truth and re-computing the DSC. If one measure has a better ability to
capture model errors than another measure, then the most uncertain
voxels will be faster replaced with the ground truth and the DSC-RC
will grow faster. Thus, the area under the DSC retention curve (DSC-
RC), further referred to as DSC-AUC can be used to compare different
uncertainty measures in their ability to capture model segmentation
errors. It is possible to estimate lower and upper bounds of performance
by building random and ideal RCs. For a random RC, we assign random
uncertainty values to each voxel of predictions. For the ideal one, a
zero uncertainty is assigned to true positive and negative (TP and TN)
voxels while false positive and negative (FP and FN) voxels have an
uncertainty of 1. To build the RCs, we use 𝜏 = 2.5 ⋅ 10−3. An illustrative
explanation of a voxel-scale RC can be found in Fig. 2.

Lesion-scale LPPV-RC (proposed). In our previous investigation [30] we
proposed an extension of the error RC analysis to the lesion scale
through LF1-RC. LF1-RC assesses the correspondence between lesion-
scale uncertainty and errors in lesion detection within a patient. As
defined in Section 2.3.1, the LF1 is reflective of both FNL and FPL.

owever, uncertainty cannot be defined for FNLs as they are not
predicted, but ground-truth lesions. Thus, LF1-RCs are more suitable
for the comparison of different models or uncertainty quantification
methods, for which the number of FNL can vary. However, for the
comparison of lesion-scale uncertainty measures, where the number
of FNLs does not change, the LPPV-RC analysis is sufficient. Thus, we
propose the LPPV-RC assesses the correspondence between lesion-scale
uncertainty and lesion false positive errors within a patient. Intuitively,
this analysis helps to understand which uncertainty measure is the best
at pointing to false positive lesions.

Building a LPPV-RC for a patient starts with computing the number
of TPL and FPL, i.e. #𝑇 𝑃 𝐿 and #𝐹 𝑃 𝐿, and uncertainty values for each
of these lesions. Further, the most uncertain lesions are sequentially
replaced with TPL, and LPPV is recomputed. Analogously to the voxel
scale, if a lesion-scale uncertainty measure has a better ability to
capture FPL than another measure, then FPL will be replaced faster,
and the curve will grow faster. Thus, the area under the LPPV-RC, that
is LPPV-AUC, can be used to compare different measures in their ability
o capture FPL detection errors. As each patient has a different number
f predicted lesions, to obtain an average across the dataset LPPV-AUC,

we first need to interpolate all LPPV-RCs to a similar set of retention
ractions. For this, we use a piecewise linear interpolation and a set of

retention fractions similar to the voxel scale. Additionally, similarly to
the voxel scale, the ideal and random RCs are built. The ideal curve is
built by considering all TPLs having an uncertainty of 0 and all FPLs
aving an uncertainty of 1. The random curve is built by using random
ncertainties for each of the lesions.

Patient-scale DSC-RC (proposed). In this work, we propose a way to
extend an error RCs analysis to the patient scale to assess the cor-
respondence between patient-scale uncertainty measures and overall
rediction quality in a patient. We use DSC as a measure of overall
egmentation quality. Then, a patient-scale DSC-RC is built by sequen-
ially excluding the most uncertain patients, that is replacing their
SC with 1.0, and recomputing the average across the dataset DSC.
imilarly to the voxel and lesion scales, the area under the patient-
cale DSC-RC is used to compare the ability of different patient-scale
ncertainty measures to capture patients with a greater number of
rroneous predictions. In analogy to the voxel and lesion scales, we
ant to assess the upper and lower bounds of the performance with

deal and random patient-scale DSC-RCs. To build a random curve we
assign random uncertainties to each of the patients. To build the ideal
6 
curve, we use a negated DSC score as an uncertainty measure, as we
want ideal uncertainty to point to the most erroneous examples in terms
of DSC.

Statistical testing. For the voxel and lesion scales, the error retention
urves analysis, namely DSC-RC and LPPV-RC, are computed per pa-
ient. Therefore, when comparing different uncertainty measures across
ach other, one can assess the differences in AUC distributions across
easures, e.g. statistics. For the patient scale, DSC-RC is computed per
ataset (by iterative replacement of the most uncertain patients). Nev-
rtheless, it is possible to estimate the bootstrap confidence intervals by
reating the patient-scale DSC-RC as a statistic itself. Thus, to conduct
he measures ranking for the patient-scale uncertainty measures, we
ompare the mean patient-scale DSC-AUC, paying attention to the
orresponding confidence intervals.

2.3.3. Patient-scale uncertainty as a proxy for segmentation quality
In addition to the information brought by the error RC, we would

like to study if a patient-scale uncertainty can serve as a proxy to the
odel segmentation quality, measured by DSC. For this, we compute

pearman’s correlation coefficient 𝜌 between the DSC and uncertainty
values. The Spearman’s correlation is computed for different test sets
separately, and then jointly. The joint correlation coefficient should
how if the uncertainty measure can be used as a proxy for the segmen-
ation quality regardless of the domain shift. This might be particularly
seful for the scenario where the domain shift is unknown.

2.4. WML segmentation model

For this study, we consider two models based on a 3D U-Net
architecture. Similar 3D-U-net-based models have been previously used
for WML segmentation and compared to other approaches [7,9,10,39].
Furthermore, our choice is supported by the fact that the same model
as been extensively used previously for UQ exploration within the
ame WML segmentation task in MS [21,22,25,26,29]. The first model
s the baseline model from the Shifts 2.0 Challenge [26] dedicated to

UQ for WML segmentation. The second model is a self-configuring nnU-
et architecture [43]. Both models are ensembles with 5 members,
here each member is a 3D U-Net model [36,37]. There are several

rucial differences between the Shifts Baseline (SB) U-Net and the nnU-
et models: (i) architecture, i.e SB has the depth reduced by one and,

hus, less trainable parameters; (ii) loss function, i.e. Focal-Dice loss for
SB and cross-entropy and Dice loss for nnU-Net; (iii) deep supervision is
utilized by nnU-Net, compared to SB; (iv) input, SB’s input are patches
of the size 96 × 96 × 96 cropped from the brain using a sequence
of transforms, while nnU-Net uses patches 112 × 160 × 128 cropped
around the whole brain. Both models represent public benchmarks, and
their training and inference code is available online.3 For the SB model,
he only difference, compared to the original model, is an addition

of 2 more ensemble members, obtained using the original training
code. For the nnU-Net model, we used a ‘‘3d_fullres’’ configuration,
we ensured the consistency of training and validation examples across
folds (for the model to be comparable to SB) and limited the number of
training epochs to 200 (due to the validation loss stagnation, to prevent
overfitting). Since the Shifts dataset does not contain lesions less than
10 voxels, we process the outputs of each of the models to remove all
the connected components with less than 10 voxels.

3 The original code including model implementation and weights, training
nd inference code can be found at the Shifts Challenge GitGub: https:

//github.com/Shifts-Project/shifts/tree/main/mswml. nnU-Net model code is
publicly available at https://github.com/MIC-DKFZ/nnUNet. Model weights
an be found on our GitHub: https://github.com/Medical-Image-Analysis-

Laboratory/MS_WML_uncs.

https://github.com/Shifts-Project/shifts/tree/main/mswml
https://github.com/Shifts-Project/shifts/tree/main/mswml
https://github.com/MIC-DKFZ/nnUNet
https://github.com/Medical-Image-Analysis-Laboratory/MS_WML_uncs
https://github.com/Medical-Image-Analysis-Laboratory/MS_WML_uncs
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Table 3
Mean average model performance in segmentation (DSC and nDSC) and lesion detection (LF1 and LPPV). 90% confidence intervals were computed using bootstrapping. SB - Shifts
.0 Challenge baseline model.

Set DSC nDSC LF1 LPPV

SB nnU-Net SB nnU-Net SB nnU-Net SB nnU-Net

Train
0.756
[0.737,
0.774]

0.906
[0.892,
0.917]

0.725
[0.699,
0.749]

0.856
[0.826,
0.883]

0.547
[0.493,
0.596]

0.845
[0.787,
0.876]

0.689
[0.627,
0.735]

0.971
[0.957,
0.981]

Val
0.720
[0.602,
0.783]

0.776
[0.701,
0.821]

0.684
[0.625,
0.740]

0.736
[0.669,
0.783]

0.444
[0.345,
0.547]

0.643
[0.555,
0.707]

0.533
[0.425,
0.608]

0.762
[0.624,
0.871]

Test𝑖𝑛
0.633
[0.582,
0.673]

0.707
[0.671,
0.739]

0.689
[0.662,
0.717]

0.741
[0.715,
0.768]

0.487
[0.439,
0.528]

0.701
[0.666,
0.733]

0.610
[0.552,
0.660]

0.762
[0.721,
0.797]

Test𝑜𝑢𝑡
0.488
[0.457,
0.515]

0.571
[0.538,
0.600]

0.533
[0.501,
0.560]

0.603
[0.570,
0.630]

0.333
[0.308,
0.361]

0.502
[0.477,
0.525]

0.623
[0.586,
0.659]

0.828
[0.799,
0.852]

Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒
0.601
[0.578,
0.621]

0.646
[0.626,
0.665]

0.628
[0.608,
0.645]

0.653
[0.635,
0.670]

0.416
[0.396,
0.437]

0.562
[0.543,
0.581]

0.581
[0.556,
0.605]

0.799
[0.779,
0.817]

Test𝑊 𝑀 𝐻
0.591
[0.564,
0.616]

0.648
[0.623,
0.671]

0.599
[0.580,
0.617]

0.651
[0.632,
0.668]

0.373
[0.353,
0.391]

0.555
[0.534,
0.574]

0.488
[0.456,
0.518]

0.696
[0.665,
0.724]
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3. Results

3.1. Model performance

The evaluation of the ensemble model performance in terms of av-
erage segmentation and lesion detection quality is presented in Table 3
for training, validation, and testing sets. Regardless of the model, SB
r nnU-Net, the in-domain performance reaches its upper bound deter-
ined by the inter-rater agreement reported in. There is a considerable
rop in performance (around 10% depending on the metric) between

in- and out-of-domain sets both in terms of segmentation (DSC and
nDSC) and lesion detection (LF1). The performance on Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒 and
Test𝑊 𝑀 𝐻 datasets lies in between Test𝑖𝑛 and Test𝑜𝑢𝑡 with regards to
segmentation and lesion detection quality. Between the two models,
nU-Net shows higher performance in terms of segmentation and lesion

detection.

3.2. Quantitative evaluation of uncertainty measures

3.2.1. Error retention curve analysis
The RCs for the assessment of uncertainty measures on each of the

anatomical scales (voxel, lesion, and patient) are presented in Fig. 3.
The voxel-scale DSC-RCs and lesion-scale LPPV-RCs were obtained by
averaging across the respective datasets. The mean areas under the
error retention curves and the results of the statistical testing are
presented in Table 4.

Regardless of the test set, all voxel-scale uncertainty measures
outperform random uncertainty and are closer to the ideal uncertainty
n terms of mean DSC-AUC, indicating their ability to capture errors
n segmentation. However, the marginal difference between DSC-AUCs
f different measures is relatively small. On the in-domain Test𝑖𝑛,
here is no agreement between two models in terms of the measures
ith the highest mean DSC-AUC: while total and data uncertainty
𝑁 𝐶𝑖, 𝐸 𝑜𝐸𝑖, 𝐸 𝑥𝐸𝑖) have higher DSC-AUC for the SB model, model
ncertainty (𝑀 𝐼𝑖) has a higher DSC-AUC for the nnU-Net model. On
he out-of-domain Test𝑜𝑢𝑡 and Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒 datasets, the entropy-based
otal and data uncertainty measures (𝐸 𝑜𝐸𝑖 and 𝐸 𝑥𝐸𝑖) tend to have an
dvantage compared to other measures, contributing to their overall

advantage in the whole evaluation. Nevertheless, the aggregation of
data uncertainty 𝐸 𝑥𝐸𝑖 for the lesion-/ patient- uncertainty computa-
tion usually yields the worst results in terms of lesion-scale LPPV-
AUC/patient-scale DSC-AUC. This means that a good performance of
an uncertainty measure in capturing voxel misclassifications, when ag-
gregated, does not necessarily lead to an optimal uncertainty measure

for detecting lesion false positive or overall segmentation failure.

7 
Regardless of the test set, at the lesion scale, there is a greater
marginal difference between different measures, particularly for the
SB model. For the SB model, the proposed measure 𝐿𝑆 𝑈+ has an
advantage in the mean LPPV-AUC over other measures, indicating a
better ability to capture lesion false positive errors. While 𝐿𝑆 𝑈 and
𝐿𝑆 𝑈+ have similar LPPV-AUCs, there is usually some difference in
their performances, benefiting the 𝐿𝑆 𝑈+ measure. Among the mea-
sures based on the aggregation of voxel uncertainties, aggregated total
uncertainty 𝐸 𝑜𝐸𝐿, generally provides slightly higher mean LPPV-AUC.

espite the differences between the mean LPPV-AUCs among lesion-
cale measures, the 90% confidence interval overlap suggests that these
ifferences are limited.

At the patient scale, the marginal differences between various mea-
sures are prominent compared to the voxel and lesion scales, especially
on the out-of-domain sets. The results are aligned for both in- and out-
of-domain test sets and for both models, SB and nnU-Net. The proposed
𝑃 𝑆 𝑈 and 𝑃 𝑆 𝑈+ measures have comparable and the highest patient-
scale DSC-AUCs, suggesting their superior ability to capture overall
segmentation failure. The aggregation of the best in terms of LPPV-AUC
lesion scale uncertainty (i.e. 𝐿𝑆 𝑈 and 𝐿𝑆 𝑈+) yields lower patient DSC-
AUC. Averaging voxel uncertainties across the brain generally provides
worse-than-random performance in the error retention curve analysis.
The last means that an average across-subject voxel-scale uncertainty is
not informative of an overall segmentation performance on a particular
subject measured by DSC or has an inverse relationship with errors.

3.2.2. Patient-scale uncertainty as a proxy to the segmentation quality
Extending the analysis of the relationship between the patient-scale

uncertainty measures and the segmentation quality measures by DSC,
Table 5 presents corresponding Spearman’s correlation coefficients.
Fig. 4 contains plots DSC and patient uncertainty for the measures
with the highest (proposed 𝑃 𝑆 𝑈 (+)), median (proposed 𝐿𝑆 𝑈 (+)), and

orse-than-random (𝑁 𝐶𝐵 and 𝐸 𝑜𝐸𝐵) patient-scale DSC-AUC values.
For the SB model and the rest of the measures, the same analysis and
trends can be found in Appendix B.2. The results show the highest
orrelation between the patient uncertainty and DSC is provided by the
roposed 𝑃 𝑆 𝑈 (+) measures, with 𝜌 around 0.8 across different test sets.
or the aggregation of the lesion-scale uncertainty, the correlation with
he segmentation quality drops at least twice. For the measures based
n the voxel-scale uncertainty aggregation, the correlation is either

weak, e.g. 𝑁 𝐶𝐵 , or positive. There is a positive correlation between
𝐸 𝑜𝐸𝐵 , 𝐸 𝑥𝐸𝐵 , and 𝑀 𝐼𝐵 , suggesting that high uncertainty can point
to examples with high DSC. The absolute value of this correlation is
around 0.5, which is higher than for 𝐿𝑆 𝑈 (+), yet lower than for the
proposed 𝑃 𝑆 𝑈 (+).
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Fig. 3. Error retention curves for the assessment of uncertainty measures at the voxel, lesion, and patient anatomical scales across the in-domain Test𝑖𝑛 (left column) and the
out-of-domain Test𝑜𝑢𝑡 (center column) and Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒 (left column) sets for the nnU-Net model. Different rows correspond to different anatomical scales indicated with icons on the
left. The voxel-scale DSC-RCs and lesion-scale LPPV-RCs were obtained by averaging across the respective datasets. At each of the scales, the ideal (black dashed) line indicates
the upper bound of an uncertainty measure performance in its ability to capture model errors; the random (gray dashed) indicates no relationship between an uncertainty measure
and error; a worse-than-random performance indicates an inverse relationship. Analogous results for the SB model are shown in Appendix B.1.
Fig. 4. The relationship between DSC and patient-scale uncertainty is assessed for Test𝑖𝑛 (orange), Test𝑜𝑢𝑡 (gray), Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒 (light gray), and Test𝑊 𝑀 𝐻 (black) separately and jointly
for the nnU-Net model. The presented uncertainty measures were chosen based on the results of the error RC analysis (Fig. 3 and Table 4) to illustrate the relationship between
DSC and uncertainty brought by measures with the highest (proposed 𝑃 𝑆 𝑈 (+)), median (proposed 𝐿𝑆 𝑈 (+)), and worse-than-random (𝑁 𝐶𝐵 and 𝐸 𝑜𝐸𝐵) DSC-AUC values. Results for
other measures and for the SB model can be found in Appendix B.2.
3.2.3. Generalizability of the analysis on white matter hyperintensity
Beyond MS patients, the multi-scale error retention curve and DSC-

uncertainty correlation analyses were replicated on a large publicly
available cohort of subjects with WMH (Test𝑊 𝑀 𝐻 ). The full analysis
is available in Appendix B.3.

The observed performance of the proposed patient-scale measures
discussed in the previous sections is replicated for this new task of
WMH segmentation. The results in Fig. 4 and Table 5 confirm that the
8 
proposed measures 𝑃 𝑆 𝑈 (+) have a stronger relationship segmentation
quality compared to the aggregation measures.

3.3. Qualitative evaluation of the uncertainty maps

Our results show that uncertainty quantification mainly at the lesion
and patient scales can well depict model error predictions, however,
various anatomical scales provide information about different types of
errors. In Fig. 5 the uncertainty maps and values are shown for four
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Table 4
Mean average areas under error retention curves and 90% bootstrap confidence intervals for the assessment of the uncertainty measures at the voxel, lesion, and patient anatomical
cales across the in-domain Test𝑖𝑛 (left column) and the out-of-domain Test𝑜𝑢𝑡 (center column) and Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒 (right column) sets. Results are presented for the Shifts Challenge
aseline (SB) and nnU-Net models. Highest AUC values for each dataset, model, and anatomical scale are highlighted in bold, lowest - in italic; ideal and random values are in
ray color and indicate the upper and lower bounds of performance, respectively.

Measure Test𝑖𝑛 Test𝑜𝑢𝑡 Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒

SB nnU-Net SB nnU-Net SB nnU-Net

Voxel-scale DSC-AUC (↑)

Ideal 99.93 [99.91, 99.94] 99.94 [99.92, 99.95] 99.90 [99.88, 99.91] 99.93 [99.92, 99.92] 99.93 [99.91, 99.94] 99.93 [99.91, 99.94]

𝑁 𝐶𝑖 99.17 [98.99, 99.31] 99.17 [98.29, 99.49] 96.74 [96.23, 97.12] 97.59 [97.02, 0.9797] 98.56 [98.36, 98.70] 99.02 [98.82, 99.16]

𝐸 𝑜𝐸𝑖 99.16 [98.99, 99.31] 99.11 [98.10, 99.46] 97.02 [96.56, 97.37] 97.72 [97.22, 98.05] 98.65 [98.46, 98.79] 99.02 [98.82, 99.17]

𝐸 𝑥𝐸𝑖 99.16 [98.99, 99.31] 99.11 [98.09, 99.46] 97.02 [96.56, 97.38] 99.71 [97.21, 98.05] 98.65 [98.46, 98.80] 99.02 [98.82, 99.16]

𝑀 𝐼𝑖 99.05 [98.85, 99.21] 99.27 [98.74, 99.50] 96.69 [96.19, 97.08] 97.28 [96.70, 97.68] 98.46 [98.25, 98.62] 98.86 [98.63, 99.01]

Random 80.91 [76.77, 83.36] 84.87 [82.79, 86.69] 76.20 [74.88, 77.36] 80.00 [78.72, 81.21] 80.18 [78.99, 81.19] 82.79 [81.85, 83.62]

Lesion-scale LPPV-AUC (↑)

Ideal 87.88 [82.60, 90.91] 95.72 [93.89, 96.88] 87.07 [83.40, 89.46] 96.47 [93.13, 97.66] 86.41 [84.54, 87.93] 96.36 [95.51, 96.96]

𝐿𝑆 𝑈 83.54 [75.80, 87.04] 91.54 [89.57, 93.15] 83.28 [79.63, 85.91] 94.06 [90.87, 95.41] 82.63 [80.74, 84.28] 93.29 [92.15, 94.21]

𝐿𝑆 𝑈+ 83.90 [78.83, 87.31] 91.51 [89.53, 93.12] 83.89 [80.27, 86.45] 93.97 [90.80, 95.33] 82.70 [80.83, 84.37] 93.29 [92.15, 94.20]

𝑁 𝐶𝐿 83.33 [78.34, 86.77] 91.71 [89.46, 93.92] 83.24 [79.60, 85.86] 94.06 [90.84, 95.39] 82.34 [80.38, 84.04] 93.14 [92.05, 94.05]

𝐸 𝑜𝐸𝐿 83.38 [78.41, 86.83] 91.81 [89.61, 93.93] 83.26 [79.63, 85.88] 94.07 [90.86, 95.40] 82.28 [80.30, 83.99] 93.22 [92.11, 94.11]

𝐸 𝑥𝐸𝐿 81.73 [76.70, 85.24] 91.70 [89.50, 93.27] 81.55 [77.88, 84.17] 93.41 [90.32, 94.77] 78.74 [76.80, 80.56] 91.99 [90.77, 93.00]

𝑀 𝐼𝐿 82.63 [77.70, 86.03] 91.37 [89.22, 92.98] 82.31 [78.64, 85.00] 94.06 [90.86, 95.40] 81.62 [79.69, 83.34] 93.05 [91.89, 93.96]

Random 76.69 [71.57, 80.48] 86.65 [83.96, 88.94] 76.35 [72.71, 79.19] 90.59 [87.65, 92.10] 73.97 [71.91, 75.81] 88.61 [87.18, 89.88]

Patient-scale DSC-AUC (↑)

Ideal 85.74 [84.16, 87.52] 88.72 [87.22, 90.36] 79.21 [77.96, 80.52] 83.55 [82.30, 84.95] 84.48 [83.72, 85.26] 86.23 [85.56, 86.91]

𝑃 𝑆 𝑈 84.99 [83.16, 86.81] 87.90 [86.25, 89.73] 78.40 [77.11, 79.73] 82.68 [81.26, 84.18] 83.63 [82.79, 84.47] 85.73 [85.02, 86.46]

𝑃 𝑆 𝑈+ 84.82 [82.97, 86.68] 87.84 [86.17, 89.70] 78.39 [77.10, 79.70] 82.70 [81.28, 84.20] 83.60 [82.75, 84.44] 85.75 [85.04, 86.47]

𝐿𝑆 𝑈 83.77 [81.99, 85.42] 86.80 [84.69, 88.64] 75.48 [74.55, 77.26] 79.90 [77.66, 81.22] 79.91 [80.02, 82.28] 83.55 [82.54, 84.44]

𝐿𝑆 𝑈+ 83.13 [81.04, 84.88] 86.87 [84.80, 88.97] 75.28 [74.36, 77.08] 79.76 [75.73, 81.16] 79.91 [80.02, 82.28] 83.52 [82.51, 84.42]

𝑁 𝐶𝐵 80.70 [78.27, 82.42] 84.13 [82.40, 85.57] 74.82 [72.96, 76.57] 79.90 [77.85, 81.73] 79.79 [75.81, 78.79] 82.00 [80.84, 82.97]

𝐸 𝑜𝐸𝐵 80.19 [76.20, 82.86] 84.71 [82.40, 86.80] 71.60 [69.62, 73.32] 75.04 [72.69, 76.72] 77.43 [75.81, 78.79] 79.98 [78.49, 81.19]

𝐸 𝑥𝐸𝐵 80.19 [76.20, 82.87] 84.64 [82.34, 86.72] 71.57 [69.53, 73.31] 75.44 [72.69, 76.72] 77.37 [75.74, 78.73] 79.83 [78.33, 81.04]

𝑀 𝐼𝐵 80.28 [76.25, 83.02] 85.07 [82.69, 87.20] 71.70 [69.76, 73.39] 75.18 [72.93, 77.00] 77.60 [75.97, 78.97] 80.20 [78.72, 81.42]

Random 81.87 [79.09, 83.84] 85.73 [83.58, 87.62] 74.10 [72.53, 75.53] 78.03 [76.20, 79.60] 80.08 [78.85, 81.14] 82.26 [81.14, 83.23]
Table 5
Spearman’s correlation coefficients quantifying the relationship between different patient-scale uncertainty values and segmentation
quality measured by DSC for different test sets and their combinations. The highest negative correlation values are highlighted in bold.

Measures Test𝑖𝑛 Test𝑜𝑢𝑡 Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒 Test𝑊 𝑀 𝐻
SB nnU-Net SB nnU-Net SB nnU-Net SB nnU-Net

𝑃 𝑆 𝑈 −0.81 −0.74 −0.81 −0.84 −0.86 −0.87 −0.83 −0.46
𝑃 𝑆 𝑈+ −0.72 −0.72 −0.80 −0.84 −0.86 −0.86 −0.83 −0.43
𝐿𝑆 𝑈 −0.41 −0.41 −0.22 −0.37 −0.25 −0.36 −0.49 −0.11
𝐿𝑆 𝑈+

−0.29 −0.43 −0.22 −0.34 −0.42 −0.49 −0.11 −0.11
𝑁 𝐶𝐵 0.36 0.42 0.11 0.30 0.30 0.14 −0.09 0.07
𝐸 𝑜𝐸𝐵 0.23 0.18 0.55 0.56 0.54 0.54 0.53 0.31
𝐸 𝑥𝐸𝐵 0.23 0.21 0.55 0.68 0.56 0.57 0.57 0.31
𝑀 𝐼𝐵 0.20 0.07 0.53 0.63 0.49 0.47 0.33 0.24
r

different subjects, corresponding to different scenarios with respect to
the quality of lesion segmentation.

Voxel-scale maps provide refined information about the misclassifi-
cations in each voxel. Moreover, voxel-scale uncertainty is always high
at the borders of lesions. Hypothetically, this is a reflection of the inter-
rater variability or the noise in the ground truth, which are also known
 c

9 
to be higher at the borders of lesions. The noise in the data-generation
process increases the likelihood of mistakes at the borders of lesions.
Nevertheless, the voxel-scale uncertainty can be high in the center of
the lesion, signaling that the model is uncertain in the whole lesion
egion, not only at the borders. Sometimes high uncertainty regions
an be related to the FNLs.
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Fig. 5. Examples of uncertainty maps at the voxel and lesion scales and patient uncertainty values. The two left columns illustrate axial slices of a FLAIR scan with the ground truth
(in yellow) and predicted (in pink) WML masks; the middle column - voxel-scale uncertainty maps computed with the 𝐸 𝑜𝐸𝑖 measure; the fourth column - lesion-scale uncertainty
maps computed with the proposed 𝐿𝑆 𝑈+; the fifth column - the patient-scale uncertainty value computed with the proposed 𝑃 𝑆 𝑈+. The choice of measures is based on the results
of the error retention curves analysis. (A), (B), (C), and (D) represent different scenarios with gradually decreasing DSC. Cases (A) and (B) represent good and mediocre model
performance, respectively. Patient (C) has an atypical large lesion, which the algorithm fails as expected. Patient (D) was not correctly preprocessed (the skull is not removed)
which led to the algorithm’s low performance and high patient uncertainty.
Lesion-scale maps provide a visually more intuitive way to assess
the correctness of the predicted lesion regions compared to the voxel-
scale maps. Particularly, lesion-scale maps can be used to highlight
FPLs. Nonetheless, high lesion uncertainty may be an indicator of
wrong delineation rather than detection. Let us note that, compared
to the voxel-scale, the lesion-scale maps lose all the information about
the FNLs.

Patient-scale values inform about the overall quality of the segmen-
tation without indicating the particular reasons for the segmentation
failure. As for the chosen examples (C) and (D), high patient un-
certainty reveals the fact of the algorithm failure, however for (C)
the problem is in the atypical large lesion and for (D) it is a wrong
preprocessing, i.e. the absence of skull-stripping.

4. Discussion

Our research offers a detailed framework for the assessment of
uncertainty quantification for a clinically relevant task of white matter
lesion segmentation in multiple sclerosis. The specificity of the segmen-
tation task allowed for the exploration of UQ at different anatomical
10 
scales: voxel, lesion, and patient. We introduced novel structure-based
UQ measures at the lesion and patient scales. For each of these scales,
we performed a comparative study between different uncertainty mea-
sures (among the state-of-the-art and the proposed) to determine the
measures that can point to specific model errors: voxel misclassifica-
tion, lesion false discovery, or overall low quality of segmentation. For
this, we use the error retention curves analysis previously introduced
for the pixel or voxel scales [26,34,35] and extended it to the structural
scales in this and our previous work [30]. Our proposed uncertainty
measures (𝐿𝑆 𝑈 (+) on the lesion scale and 𝑃 𝑆 𝑈 (+) on the patient scale
from the Eqs. (1)–(4)) quantify the disagreement in the structural
predictions between the ensemble model and its members, demonstrat-
ing enhanced error detection over state-of-the-art aggregation-based
metrics on both in- and out-of-domain datasets. Furthermore, 𝑃 𝑆 𝑈 (+)

is shown to be a reliable indicator of overall segmentation quality both
in- and out-of-domain.

This study compares a variety of voxel-scale measurements adopted
from classification tasks, noting their similar capabilities in capturing
voxel misclassification errors. A more pronounced difference between
these measures is observed after aggregation at other anatomical scales.
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Particularly, at the lesion scale, higher areas under the respective RCs
re observed for the total uncertainty measures, compared to the mea-
ure of model uncertainty, and even more data uncertainty. However,
oxel uncertainty aggregation at the patient scale yielded results akin
o random uncertainty judging by the error RC analysis. Closer exam-
nation of the correlation between patient scale uncertainty measures
nd the DSC revealed a positive relationship, suggesting that a higher
verage voxel uncertainty correlates with improved DSC. A high posi-
ive correlation of the aggregation-based measures (𝐸 𝑜𝐸𝐵 , 𝐸 𝑥𝐸𝐵 , and
𝑀 𝐼𝐵) and the total lesion volume in a subject (see Appendix B.4) also
goes against common knowledge about the bias in better segmenting
ubjects with higher lesion loads [49]. Similar behavior of the measures
ased on an aggregation of voxel uncertainties has been previously
bserved for the task of brain tumor segmentation [23], but not for
he task of brain structures segmentation [18], where the segmented

objects are the same and of similar sizes in each of the images. This
upports our hypothesis that voxel-scale uncertainty aggregation is
nsuitable for tasks affected by this bias. In such cases, structural

disagreement metrics present a viable alternative to aggregation-based
methods, showing a strong connection to different error types.

Limitations and future work. The fact that lesion and patient uncertainty
easures depend on the choice of the threshold at the model’s output,
ecessary for the instances or segmented region definition, remains
 matter of ongoing debate. We proposed to address the issue by
ntroducing two analogs of the same measure corresponding to different
trategies of the threshold choice, i.e. 𝐿𝑆 𝑈 versus 𝐿𝑆 𝑈+ and 𝑃 𝑆 𝑈
ersus 𝑃 𝑆 𝑈+. Nevertheless, a more detailed investigation of this aspect
ight be needed. For instance, exploring model calibration as a way to

ircumvent threshold tuning or investigating measures of uncertainty
here this dependence is mitigated.

This paper is focused on the WML segmentation task. While this
is a relevant task in clinical practice, there are several medical image
segmentation tasks that could adopt the proposed multi-scale approach
for UQ. This includes, for instance, nuclei segmentation on histopathol-
ogy images [50], bone metastases segmentation on the full-body MRI
r CT [51,52], vascularized lymph nodes on CT or MRI [53], or white
atter lesions in MRI from non-MS patients [54]. However, finding the

multi-center data and benchmarks needed for UQ methods validation
nder the domain shift in these new tasks remains challenging.
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Appendix A. Definitions of quality metrics

Let #𝑇 𝑃 , #𝐹 𝑃 , #𝐹 𝑁 be the number of true positive (TP), false positive
FP), and false negative (FN) voxels, respectively.
True positive rate:

𝑇 𝑃 𝑅 =
#𝑇 𝑃

#𝑇 𝑃 + #𝐹 𝑁
.

Positive predictive value:
𝑃 𝑃 𝑉 =

#𝑇 𝑃
#𝑇 𝑃 + #𝐹 𝑃

.

Dice similarity score or F1-score:
𝐷 𝑆 𝐶 = 𝐹1 =

𝑇 𝑃 𝑅 ⋅ 𝑃 𝑃 𝑉
𝑇 𝑃 𝑅 + 𝑃 𝑃 𝑉 =

2 ⋅ #𝑇 𝑃
2 ⋅ #𝑇 𝑃 + #𝐹 𝑃 + #𝐹 𝑁

.

Normalized Dice similarity score [49]:
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Fig. B.6. Error retention curves for the assessment of uncertainty measures at the voxel, lesion, and patient (rows one, two, and three, respectively) anatomical scales across the
in-domain Test𝑖𝑛 (left column) and the out-of-domain Test𝑜𝑢𝑡 (center column) and Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒 (left column) sets for the SB model. Different rows correspond to different anatomical
scales indicated with icons on the left. The voxel-scale DSC-RCs and lesion-scale LPPV-RCs were obtained by averaging across the respective datasets. At each of the scales, the ideal
(black dashed) line indicates the upper bound of an uncertainty measure performance in its ability to capture model errors; the random (gray dashed) indicates no relationship
between an uncertainty measure and error; a worse-than-random performance indicates an inverse relationship.
𝑛𝐷 𝑆 𝐶 =
2 ⋅ #𝑇 𝑃

2 ⋅ #𝑇 𝑃 + 𝜅 ⋅ #𝐹 𝑃 + #𝐹 𝑁
, 𝜅 = ℎ(𝑟−1 − 1).

where ℎ represents the ratio between the positive and the negative
classes while 0 < 𝑟 < 1 denotes a reference value that is set to the mean
fraction of the positive class, i.e. a lesion class in our case, across a large
number of subjects.

Analogous, lesion-scale metrics can be defined by replacing #𝑇 𝑃 ,
#𝐹 𝑃 , #𝐹 𝑁 with a number of TP, FP, and FN lesion (TPL, FPL, FNL). As
mentioned before, the definition of lesion types can vary. This work
uses 25% overlap to distinguish TPL and FPL among the predicted
lesions. FNL is defined as the ground truth lesions that have no overlap
with predictions.

Appendix B. Additional results

B.1. Error retention curve analysis for the Shifts 2.0 baseline (SB) model

Error retention curves for the SB model are shown in Fig. B.6.

B.2. Patient-scale uncertainty as a proxy for segmentation quality

Fig. B.7 extend the error retention curves analysis of the patient-
scale uncertainty measures revealing more information about the
relationship between the uncertainty measures and the segmentation
quality measures by DSC.
12 
B.3. Generalizability analysis for white matter hyperintensity (WMH)

Areas under error retention curves for different anatomical scales
are shown in Table B.6.

B.4. Uncertainty relationship with lesion size and load

Lesion-scale analysis of the relationship between the predicted le-
sion volumes and uncertainty are shown in violin plots in Fig. B.8(a)
and (b) for SB and nnU-Net models, respectively. For all the lesion-scale
uncertainty measures, lesions with smaller sizes tend to be more un-
certain. For the nnU-Net model, the difference in medians of proposed
𝐿𝑆 𝑈 (+) uncertainty across different lesion volumes is less prominent
compared to other measures.

Patient-scale analysis of the relationship between the ground-truth
total lesion volume and patient-scale uncertainty measure is given in
Fig. B.9(a) and (b) for SB and nnU-Net models, respectively. Different
measures have a different degree of associations with the ground-truth
total lesion volume (TLV):

• 𝑃 𝑆 𝑈 (+) values are negatively associated with the TLV: a patient
with low uncertainty is more likely to have a high TLV;

• 𝐿𝑆 𝑈 (+) and 𝑁 𝐶𝐵 show a mild negative association with TLV;
• The rest of the aggregated voxel-scale measures (𝐸 𝑜𝐸𝐵 , 𝐸 𝑥𝐸𝐵

and 𝑀 𝐼𝐵) have a strong positive association with the TLV: higher
uncertainty for subjects with the higher TLV. This should explain
a poor relationship with the overall segmentation quality.
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Fig. B.7. The relationship between the total ground truth lesion volume in milliliters (logarithmic y-axis) and various patient uncertainty measures (x-axis). 𝜌 (in the legend) is
a Spearman’s correlation coefficient.
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Fig. B.8. The distributions of lesion uncertainty across 3 groups of predicted lesions in all the test sets jointly (Test𝑖𝑛, Test𝑜𝑢𝑡, Test𝑝𝑟𝑖𝑣𝑎𝑡𝑒, Test𝑊 𝑀 𝐻 ) defined through their volume
percentiles: Low (0%–33%), Medium (33%–67%), High (67%–100%).
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Fig. B.9. The relationship between the total ground truth lesion volume in milliliters (logarithmic y-axis) and various patient uncertainty measures (x-axis). 𝜌 (in the legend) is
a Spearman’s correlation coefficient.
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Table B.6
Mean average areas under error retention curves and 90% bootstrap confidence intervals for the assessment of the
uncertainty measures at the voxel, lesion, and patient anatomical scales across the WMH Challenge dataset (Test𝑊 𝑀 𝐻 ).
Results are presented for the Shifts Challenge Baseline (SB) and nnU-Net models. Highest AUC values for each dataset,
model, and anatomical scale are highlighted in bold, lowest - in italic; ideal and random values are in gray color
and indicate the upper and lower bounds of performance, respectively.
Measure SB nnU-Net

Voxel-scale DSC-AUC (↑)

Ideal 99.81 [99.76, 99.83] 99.85 [99.80, 99.88]
𝑁 𝐶𝑖 98.41 [98.11, 98.62] 99.40 [99.23, 99.50]
𝐸 𝑜𝐸𝑖 98.35 [98.05, 98.59] 99.40 [99.23, 99.51]
𝐸 𝑥𝐸𝑖 98.35 [98.05, 98.59] 99.39 [99.22, 99.50]
𝑀 𝐼𝑖 98.16 [97.84, 98.41] 99.10 [98.97, 99.46]
Random 76.11 [74.06, 77.85] 80.15 [78.28, 81.70]

Lesion-scale LPPV-AUC (↑)

Ideal 79.17 [75.94, 81.82] 91.98 [89.95, 93.48]
𝐿𝑆 𝑈 73.32 [70.13, 76.12] 86.64 [84.37, 88.43]
𝐿𝑆 𝑈+ 73.03 [69.87, 75.83] 86.64 [84.35, 88.44]
𝑁 𝐶𝐿 72.90 [69.76, 75.67] 86.81 [84.51, 88.61]
𝐸 𝑜𝐸𝐿 72.94 [69.80, 75.71] 86.80 [84.52, 88.59]
𝐸 𝑥𝐸𝐿 68.77 [65.72, 71.59] 85.27 [82.89, 87.17]
𝑀 𝐼𝐿 72.98 [69.79, 75.70] 86.70 [84.44, 88.50]

Random 66.38 [63.38, 69.08] 82.00 [79.72, 83.91]

Patient-scale DSC-AUC (↑)

Ideal 84.17 [82.99, 85.32] 86.69 [85.62, 87.69]
𝑃 𝑆 𝑈 83.51 [82.18, 84.75] 85.92 [84.62, 87.05]
𝑃 𝑆 𝑈+ 83.47 [82.14, 84.72] 85.86 [84.56, 86.98]
𝐿𝑆 𝑈 81.09 [79.82, 82.29] 84.60 [83.49, 85.70]
𝐿𝑆 𝑈+

80.59 [79.29, 81.80] 84.69 [83.59, 85.77]
𝑁 𝐶𝐵 80.06 [78.34, 81.53] 82.88 [81.19, 84.25]
𝐸 𝑜𝐸𝐵 77.16 [75.83, 78.44] 80.66 [79.41, 81.84]
𝐸 𝑥𝐸𝐵 76.93 [75.59, 78.22] 80.28 [79.00, 81.47]
𝑀 𝐼𝐵 78.27 [76.90, 79.56] 81.76 [80.49, 82.93]
Random 78.82 [77.10, 80.39] 81.76 [80.06, 83.20]
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