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Abstract

We show how the introduction of the power divergence family proposed by Cressie and Read (1984) permits to
link various aspects of log likelihood model selection and factorial data description. Our approach, illustrated on
bigram textual frequencies, generalizes Factorial Correspondance Analysis beyond the independence model, as
exemplified by the symmetry model and an “independence-within classes” model, the latter seeming promising
for classification purposes. We introduce a “psi square” measure of inertia, alternative to the usual phi square. The
concept of “sharp contradiction” as well as a presumably new Rényi-like measure of dependence are discussed in
the framework of Information Theory. An “eigenvalues doubling” phenomenon associated to the symmetry model

is elucidated.
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1. Introduction

Markov chain models, Information Theory and Factorial Correspondance Analysis (FCA) share
aremarkable feature, namely to have first emerged as solutions of statistical problems about tex-
tual data: Markov (1913) about the quantification of the consonants/vowels sequences in Rus-
sian; Shannon (1951) about the entropy of written English; Benzécri (cited in Greenacre (1984)
p.9) about the consonants/vowels contingency tables in Chinese modern language manuals.

Hierarchical classification methods aside, French research on textual data mainly relies upon
FCA (as e.g. attested in Lebart and Salem (1994)) while Information Theory is the most popular

tool in Anglo-Saxon research (as e.g. attested in Manning and Schiuitze (1999)). With the hope
of a better understanding of both approachs, we present a framewaork originally aimed at linking

FCA to Information Theory.

Typical information theoretical expressions, such as the relative entropy (or Kullback-Leibler
dissimilarity) do not lend themselves to factorial decomposition. However, the relative entropy
is just one member among the power divergence farily proposed by Cressie and Read
(1984); on the other hand, FCA is nothing but factor analysis on contingency tables for a partic-
ular model (namely the independence model) and a particular “total variance” measure, namely
the phi square, also belonging to the power divergence family.

Those circumstances enable to compare information theoretical expressions (obtained for

0 or s = —1) to factorial, data analytical formulations (obtained tor= 1); we will also

meet another measure (closely related to the Freeman-Tuckey or Escofier (1978) dissimilarity)
obtained fors = —1/2, we shall call “psi square”, which permits another approach to factor
analysis, alternative to the traditional practice based upon the phi square.
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We are of course well aware that the models we are discussing here (such as bigram indepen-
dence or symmetry) are little adapted to texts: they are simply aimed at illustrating methodolog-
ical points on familiar data and familiar models. Also, our choice of units (i.e. letters instead

of words) can be criticized from modellingpoint of view (realistic models for sequences of
words are arguably easier to produce by an human subject than realistic models for sequences
of letters), but not, in our opinion, from the point of view iofformation since entropy-like
guantities can be converted without loss from a categorization system to another. For instance,
theentropy rate(see e.g. Cover and Thomas (1991)) satisfies

entropy rate per wore= entropy rate per lettex average number of letters per word

2. Information theory and model selection

Notations: let n;;, be an(m; x my) contingency table, with relative frequengy, := n;;/n,
row profilesw;, = njx/nje, column profileswy, := ny;/n.; and marginal profileg; :=
Nje/N = fje @Ndpy = nep/n = for, Wheren := n,, is the grand total. By construction,
fit = pjwi, = prwy;; also, the row and column profiles transformwag = pwy;/p; and
wy; = piwjr/ pr, Which simply expresses Bayes’ rule on conditional profilgsanduwy;.

Entropy. H(coum) = —>,prlnp, < Inms is the entropy on columns, anf (on) =
—>;piInps < Inm, is the entropy on rows.H (coumj) = — 3, wjr Inwy, < Inmy is
the conditional entropy on columns given rgvand H (counrfrow) := 3 p} H (coumd|j) IS the con-
ditional entropy on columns given the rows. Similaiy{w|k) := — >, wi; Inwj; < Inmy

is the conditional entropy on rows given columimand H (row|coums) 1= >4 pr H (1ow|7) iS the
conditional entropy on rows given the columns. Al$Dow, coumn) := >~ 1. fjx In f;5 is the total
entropy. Simple algebra yields the well-known relations:

H(column’row) - H(row, column) - H(row) H(row’column) - H(row,column) - H(column) (1)

Kullback-Leibler divergence. The canonical information-theoretical measure of dissimilarity
between two theorieg and g, supposed here defined by discrete distribution probabilities on
modalitiesi as f; > 0 with 3, f; = 1 andg; > 0 with 37, g; = 1 is the Kullback-Leibler
dissimilarity K (f||g) := >, f: In(f:/g:). The functionalK ( f||¢) is non-negative, asymmetric,
with the propertyK (f||g) = 0iff f = g. It can be interpreted as a measure of the information
gained (or the surprise generated) when the distribufiaeplaces the prior distribution.

Its form can be justified from many points of view (see e.g. Cover and Thomas (1991)); for
instance, maximum likelihood estimatigii* obtains from the data (specified by the empirical
distribution f) as well as from the model (specified by a family of distributigié) possessing

dim(©) free parameter8 ¢ ©) as
f' = f(6o) where K(f[[f(00)) = min K(f[[f(0)) (2)

Also, thep-value associated to the test &f : “data follow modelg” asymptotically behaves
asp ~ exp(—n K(g*||g)), whereg* is the true theoretical distribution amdthe sample size.
The p-value thus decays exponentially wheneWer K (g*||g) < oo. WhenK (g*||g) = 0, the
tested theory; turns out to be the true ong andp should not decrease with the sample size,
as expected. Oppositely, gf sharply contradictg;, namely if there exists an outcomgheld

for impossible by the tested theogy(i.e. g;, = 0) but actually possible (i.eg;, > 0), then,



JADT 2000 : 5°Journées Internationales d’Analyse Statistique des Données Textuelles

sooner or later, theory should be eliminated consecutively to the observation of outcgme
(deterministic or Poperian refutation). Satisfactorily enough, one géts||g) = oo in that
case, meaning that thevalue asymptotically decays faster than exponentially.

Model selection. Maximum likelihood model selection consists in computibt( H,) :=
2nK (f]|f™), and comparing its value to the threshaléjdf|, ., wheredf = dim(datg —
dim(©) is the difference between the number of paramedengdatg of the saturated model
fitting perfectly the data and the number of free paramelier§) available in the modef ().
That is, df is the number of constraints expressedHp : “data follow model f(0), where
0 € ©". Model H, survives at level as long as

2nK (f|]f") < x[df];_q (or 2nK (f™|f) < df in the simplified version) (3)

Example 1: independence model.For the independence modély, = H,,, the expected
frequencies (2) argy° = p;px, and the corresponding Kullback-Leibler dissimilarity is thus

K(f| |ftheo) = Z fjk hl J:jk = H(row) + H(column) - H(row, column) (4)
gk Pj Pk

As an illustration, consider the contingency tablg counting the number of bigrams appear-

ing in the firstn = 15’442 characters of the French text “La pensée remonte les fleuves” by
C.F.Ramuz (1937). Suppressing separators with the exception of the blank character “_”, ac-
cents and case, we are left withh, = my, = 26 categories (namely “_" together with 25 letters,

“k” having no occurrences in the text).

Rows and columns formally coincide. Thus bath, andw;,; can be regarded as Markov tran-
sition matrices, describing the first-order generation of symbols given the previous one (resp.
the next one). The text begins and ends with a blank, and thus satisfies marginal homogeneity,
namelyn;, = n,;. Consequently,; = p;, the latter also constituting the stationary distribution

of wj, or wy; (Bavaud 1998). Whil€ (coum|j) and H (| j) do not coincide in general (for in-
stance H (cum“qQ”) = 0 since “q” is always followed by “u”, buf (. “q” ) = 0.69 > 0 since

“g” can follow different symbols), their averagés(counn|row) and H (rou|coumn) do, with value 2.14.

As H (on) = 2.70, one getg<(f||f"°) = 2.70 — 2.14 = 0.56.

The corresponding log likelihood iB%( Hy) = 2nK (f||f"™°) = 17371.2 (df = 625): as we
well know, successive symbols in a text are highly dependent.

Equation (4) can be generalized by introduckényi’s entropy H,, of parametery € (0, 1) :

Ho(f) = vy In X f7 )

The interested reader will find helpful to use the freewiané&opizer 1.1of A.Xanthos (2000),
computing transition tables as well as Rényi’'s and Shannon’s entropies of different orders. From

inequality" ;. 5. < (35, fo) (X for.), the quantity
Ra(f) = Ha(p*> + Ha(p) — Ha<f) = Ha(row) + Ha(column) — .E[Q<row7 column) (6)

is non-negative, with value zero iffy, = p; pr. ThusR,(f) constitutes a suitable measure
of dependence. The limlim, ., H,(f) = H(f) yields Shannon entropy again. The limit
lim, .o H.(f) = InV(f) makes appear theariety V () of the system, i.e. the number of dis-
tinct categories such thatf; > 0. In this case, (6) simply says tHatV'(f) < InV(p*)+In V(p)
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or equivalentlyl (row, coumn) < V' (row) V' (coumn): the number of distinct cross-modalities observed

in the contingency table;, cannot exceed the number of observed rows times the number of
observed columns. Note that, () andR,(f) somewhat interpolate between “qualitative mea-
sures” fora = 0 (taking only into account the presence/absence of a category) and “quantitative
measures” fory > 0 (taking into account the relative frequency of a category).

Example 2: independence-within-classes modelSuppose vowels on one hand and con-
sonants on the other hand are equivalent to the extent to be entirely substitutable by each
other. More generally, consider the setrof = m, =: m categories to be partitioned into

My = My =: M < m classes, and suppose the courfs to be independergonditionallyto

the belonging of symbolg andk in classes/(j) and K (k) respectively {, K = 1,..., M).
Explicitly, this independence-within-classesodel Hy = H\uc assumesiji® = o;Bx7()k (k)-

Using notational conventions such agx := > ;c;. pex njx @Ndne 1= 3y 1 ik, ML-
estimation (2) yields:

n T n.k}
ntheo =n t'heo — J TLJ N (7)
7k ik nJ(j)o noK(k) (5K (k)
Therefore, the Kullback-Leibler expresses as
Nik . Mk Nk Nk nJK K
K f ftheo — J In Jr_ Ik In J — In (8)
( || ) %; ;hzo %; n Tje Thek Jz[; n Nje NeK

or equivalentlyL?( Hyc) = L*(Hp, symoot) — L2 (Hin, cassed- The corresponding degrees of free-
dom are readily found to be @f (m — 1)? — (M — 1),

Considering in our text sample the three grogipknk} (J=1), “vowels"Ha e,i,0,u,y} (J=2)

and “consonants” (J=3) comprising all the other symbols, onelgéi o, qussed = 3'934.8, and

thus L?(Hye) = 17'371.2 — 3/'934.8 = 13'436.4 with df = (26 — 1)? — (3 — 1)? = 621. While

the proposed partitioning is too rough to withstand empirical confrontation, equation (8) can
clearly serve at constructing a well-defined hierarchical classification scheme.

Example 3: symmetry model.ML-estimation of the expected frequencies under the symmetry
modelH, = Hsyy are well known to befji* = fi° = (fjx+ fi;) /2. One findsK (f|] f™) = .21

and L?(Hsyy) = 6'337.9 with df = 26(26 — 1)/2 = 325. Texts being not invariant by time-
reversal, the rejection of the symmetry model hardly comes as a surprise.

3. Factorial data analysis

Linking model selection and factor analysis: the power divergence familyFactor analytic
methods in data analysis consist in spectrally decomposing a sum of squares generally inter-
pretable as a total variance or total inertia. The Kullback-Leibler dissimilafity||g) does not
expresses as a sum of squares; however, it belongs pother divergencéamily

IS(f : g) = S(Sil) > fZ((ﬁ)s - 1) 9)

wheres is a real parameter (Cressie and Read (1984)). Specifi¢glly,: g) = K(f||g) and
I_1(f:g9) = K(g||f) (more generally/s(f : g) = I_s_1(g : f)). Moreover, other well-known
functionals obtain for particular values ef namely (in order) the (ordinary) khi-square, the
Freeman-Tuckey statistic and the Neyman khi-square:

L(f:g) =35 800 Tpn(f:g) =25(VF - VG)? f_2<f:g>=;zi%fi>:)
10
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In particular, those three expressions constitute sum of squares (and the only ones identified
so far in the power divergence family) on which factor analysis can be performed. Power
divergence functionals arely-equivalent” in the sense that, irrespectively of the value,of

2n I,(f : g) asymptotically follows a khi-square distribution wheris the true distribution and

f the empirical distribution. However, if dagasharply contradicy, then/(f : g) = oo holds

for s > 0 only; similarly, I;(f : g) = co whenever modej sharply contradicts datf provided

s < —1: for that range of values, theories predicting unobserved outcomes are rejected.

Factor decomposition of the khi square and the “psi square”. Let f;;, be the observed
distribution, andf};* the associated theoretical distribution under some mégelDefine the
(my X my) matrices

ciw = (fim =I5 e Ein = 20/ Fin — ) (11)

as well as thgm; x m;) matricesB := CC’ and 5 := CC'. By construction,3 and B
are symmetric and positive definite, thus decomposable as UAU’ and B = UAU’. On
vectors with variance-covariance méfkb((resp.B) and zero mean. Factor analysisifand
B consists in spectrally decomposing the total variances, namely

(fik—F50)?

i van(X;) = tracg B) = o Aa = Xk e — = 2 [i(f, /") (phi square = khi squaren)
> var(X;) = tracdB) = Y, Ao = 423-7,6(\/5 — 52 =21 1p5(f, f™) (“psi square”)

Thusany model H, relative to a contingency table can be factor-analyzed by using one of the
two decompositions above (correspondingte 1 ors = —1/2in (9): see Escofier (1978) for

the latter case. The case= —2 is not considered here, since any empty cell associated with

a non-zero expected count would sharply reject the model). The procedure decomposes the
deviations off;; from 7, i.e. the deviations of the data from the mod#), into independent
components.

Usual computations and interpretation rules apply. &kt factor scores column (of variance
Ao) obtains ad", := >°; X uj,, the cross-covariances esv( X, Fi,) = A\, u;, and the satura-
tions (loadings) as

Sjo = cor(X;, F,) = \/sz Ui > Sjasja = cor(X;, X;) (12)
(analogous results hold for the psi square decomposition (12)). The sunﬁyl@g = 1land
>, bjj 53, = Ao permit to define contributions of the factors or dimensions to the variance of

the variables and vice-versa. In particulay/ -5 A3 (resp. o/ >3 )\s) is the proportion of the
total divergencd, (f : f™) (resp./_1/2(f : f™)) explained by dimensioa.

Considering column instead of row profiles would Iea}d to dgﬂ@evariablesYl, ooy Yy, Of
variance-covariancény x ms) matrix By := C'C (or By := C'C). As Bx := B = C(’,
normalized eigenvalues,, of By are related to normalized eigenvalugs of Bx by

Vo = \/f\—aC"ua Uy = ﬁC’va (13)

for the same eigenvalue,. Corresponding saturations obtainsgs = % Vka-
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Figure 1:power divergencd(f : f°) where f™°is the ML-estimate = 0 corresponding to models
Hyp (A), Hye (B) andHgyy (C). The value at = 1 gives the phi square; = —1/2 gives the psi square.

This generalizes to arbitrary modédig the well-known results of FCA, the latter covering the
caseH, = H,, only. Note that/" above is the ML-estimate undéf,, minimizing I,(f :

freo)y = K(f]]f"™). Itis notthe minimizer ofl,(f : f™) for s = —1/2 or s = 1, although such

a specification would have been perfectly possible also, with still another resulting factorial
representation; see Bavaud (2000 b) for an example bearing upon the model of quasi-symmetry.
Besides computational convenience, our choice simply matches the usual practice in khi square
testing or FCA. Figure 1 depicts the near constanci,of : /™) in the range-1/2 < s < 1.

Figure 2 shows the row (or column) saturations associated to the three models, in the phi
square or psi square version. Another representation, generalizing the usual practice in FCA
(see e.g. Saporta (1990) or Lebart et al. (1995)), consists in defining factorial coordinates for
row j by v, 1= /@;j s OF ;o 1= \/&; 5, Wherea; anda; are theatypicitiesdefined as
wg —wineo)2 . . .
aj = (katihe{)’“) (phi square) ;= 43/ — Jwi)?  (psisquare)
jk
andwip° := fi¢°/p;. One can check marginal homogeneity of our data to inm;ire:_ linthe
three models, although(y® # 1 in general.)-coordinates permit to express total divergence as
aninertia, i.e. as a weighted origin-row squared euclidean distance:

D052 WU =20(f ™) DD Ui =2 apa(f 1 ™)

Yo and ;. representesidualswith respect to the model under consideratiafy: = 0 or
Yy = 0iff wy, = wipefor all k. More on inertia (in particular on aggregation invariance, scaling
properties and Huygens’ principle for dissimilarities) can be found in Bavaud (2000 a).

The phi square decomposition of the symmetry mddlgl, produces an noticeable phenomenon,
namely areigenvalues doublingone finds indeed that; = My > A3 = Ay > A5 = Xg > ...
(where the last eigenvalue is zero in case of an odd number of categgrid$e explanation

is the following: in the phi square versioty, = (fjx — fix)/\/2(fix + fix) and thusC” = —C.
Then ifu, is an eigenvalue aBx = C'C’ for the value),, so isCu,, since

BxCu, = —CCCu, = CCC'uy = CAyttyg = ACuy,

On the other hand}'«,, proportional tov,, by (13), is generally distinct from,, whence the
doubling of eigenvalues.
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Figure 2:circles of correlations (saturations) in the factorial plane spanned by the two first dimensions.
) row profiles (coordinates ok ;) under H,y (phi square). Il) column profiles (coordinatesXsf) under

H,\, (phi square). IIl) row profiles undeH, (phi square). 1V) column profiles undéf,,. (phi square).

V) row profiles undei s,y (phi square). VI) row profiles undéfs,y, (psi square).
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Figure 3:left: Rényi-like indexk,(f) (6) (thick line; the thin line represent®, (f) for the same text

where all repetitions of the same letter have been suppressed). The only necessarily coinciding value with
the graph of figure 1A ig(f : f™°) = R1(f) = K(f||f™°) = 0.56. Weref = f"°, thenI,(f : ") =

R.(f) = 0forall s and all . R,(f) (thick line) decreases fromky(f) = 2In26 — In301 = 0.81

(among the262 = 676 possible bigrams, 301 only did actually occur) R (f) = 0.56. Middle:

scree graphs for the phi square (circles) and psi square (squares) decompositidiigfoRight: scree

graphs for the phi square (circles) and psi square (squares) decompositioHgfpMNote the eigenvalue
doubling phenomenon associated to the former.
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ERRATUM (August 2001)

Inequality (6) is referred to as the sub-additivity property by Alfred Rényi. Although verified for
the data considered in this paper, inequality (6) does not hold in general (unte8ra = 1),

as pointed out by Rényi himself (1962). That is to say, inequallfy f5;. < (32, f5) (X fer.)

is not valid in general forr € (0, 1); indeed, with a bit of numerical exploration, a counter-
example can be found. My apologies for this.

Rényi, A. (1962).Wahrscheinlichkeitsrechnung : mit einem Anhang utber Informationstheorie
Deutscher Verlag der Wissenschaften, Berlin.



