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Abstract

In this short paper, uncertainties on resource stock and on technical progress are introduced into an
intertemporal equilibrium model of optimal extraction of a non-renewable resource. The represen-
tative consumer maximizes a recursive utility function which disentangles between intertemporal
elasticity of substitution and risk aversion. A closed-form solution is derived for both the optimal
extraction and price paths. The value of the intertemporal elasticity of substitution relative to unity
is then crucial in understanding extraction. Moreover, this model leads to a non-renewable resource
price following a geometric Brownian motion.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

How much of a non-renewable resource should we consume today if there exists a lack of
precise knowledge about its available stock? Since 1970s, this general problem of optimal
use has received considerable attention in the literature (seeGilbert, 1978; Kemp, 1976;
Loury, 1978). Only recently have models been developed that explore the effects of un-
certainty by allowing information to arrive over time: in 1980, Pindyck proposed a partial
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equilibrium model in which firms continuously receive information and adapt their decisions
while in previous works there was uncertainty about current reserves not future demand or
reserves. In a model such as Pindyck’s one, firms are supposed to be risk-neutral and finally,
uncertainty has only a second-order effect on the optimal utilization of the resource.

Since then, very few models have considered the optimal extraction of a non-renewable
resource under uncertainty in a general equilibrium framework: actually, onlyGaudet and
Khadr (1991)andBeltratti (1996)study such a problem. They stress the role of preference
parameters in determining how uncertainty affects the optimal extraction of a non-renewable
resource. They use standard, additive utility functions, however, so that they cannot dis-
entangle effects of risk aversion from intertemporal substitution. It is intuitively obvious
that risk aversion and intertemporal substitution should play important, but possibly distinct
roles in optimal resource extraction. Such an intuition is confirmed by numerical simulations
performed byKnapp and Olson (1996)who study the effect of each preference parameter
in the case of a renewable resource.

This paper therefore analyzes the optimal extraction of a non-renewable resource in a
stochastic general equilibrium framework using a recursive (generalized isoelastic: GIE)
utility functional that permits us to distinguish between the coefficient of risk aversion and
the elasticity of intertemporal substitution. The model is simple and allows a closed-form
solution. We then show that the value of the intertemporal elasticity of substitution relative
to unity is crucial in understanding the optimal extraction path. In particular, the direction of
the effect of uncertainty on the optimal use of the resource depends crucially upon whether
the intertemporal elasticity of substitution is greater or less than one. The coefficient of
relative risk aversion helps determines the magnitude, but not the direction, of this effect.

Another result of our simple model is that the price of the resource (in terms of the price
of the consumption good) follows a geometric Brownian motion. Even though this comes
out from a model based on strong assumptions, this is an interesting result since it provides
some rationale for a common assumption in the literature (see for instancePindyck, 1981).

Since this paper focuses on how risk aversion and intertemporal substitution affect the
response of resource extraction to uncertainty, we search for an analytical solution. This
is why, except uncertainty modelling and the utility function, the model remains very sim-
ple. In particular, we allow for neither extraction costs (uncertainty might then also affect
extraction through an irreversibility effect) nor capital accumulation.Section 2describes
first the representative consumer’s recursive preferences, then the sources of uncertainty
impinging upon him. A closed-form solution is derived in the third section. Results for the
optimal extraction and price paths are analyzed in the fourth one. The specific role of the
intertemporal elasticity of substitution is then precisely explained.Section 5concludes.

2. The setup of the model

2.1. The recursive utility function

The model is set in continuous time. The representative agent maximizes a recursive utility
function which disentangles between the risk aversion and the intertemporal elasticity of
substitution.Kreps and Porteus (1978)define a recursive utility function for which utility
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at periodt depends on current consumption as well as on the certainty equivalent of future
utility. Epstein (1988), andEpstein and Zin (1989, 1991)propose some specifications in
discrete time, while Duffie and Epstein (1992), and Svensson (1989) focus on specifications
in continuous time. In this model, we use the same formulation of preferences2 as Svensson
(1989):

U(t) =
[

ε

ε−1
c(t)(ε−1)/ε+e−δdt [E(U(t+dt)(ε(1−γ ))/(ε−1))]((ε−1)/ε)(1/(1−γ ))

]
(2.1)

whereε is the intertemporal elasticity of substitution,γ the relative risk aversion coefficient
andδ is the time preference rate. Note that 1/ε may also be understood as the aversion
to fluctuations. Moreover, in the special case in which the risk aversion is the inverse of
the intertemporal elasticity of substitution (γ = 1/ε), this utility function reduces to the
standard time-separable specification.

Recursive utility functions have now largely been used to reconsider asset pricing (Duffie
and Epstein, 1992), risk sharing(Obstfeld, 1994a), growth (Smith, 1996, 1999)precau-
tionnary savings(Weil, 1993)welfare cost of volatility(Obstfeld, 1994b; Epaulard and
Pommeret, 2001a)or the equity premium puzzle(Weil, 1990; Epaulard and Pommeret,
2001b).

2.2. Technology and volatility

The consumption good is made of a non-renewable resource using a linear technology
(no capital is needed);3 per capita consumption at each time is given by (there is neither
storage nor saving):

c(t) = A(t)R(t)

L(t)
(2.2)

L(t) is the population size at the initial date, which we keep constant and normalized in size
to unity in the rest of the paper.R(t) is the level of the non-renewable resource extracted
andA(t) is the productivity att . Productivity is random. We assume it follows a geometric
Brownian motion:

dA(t) = θA(t)dt + σAA(t)dzAt (2.3)

Thus,θ is the deterministic rate of technical progress associated with the process technology
converting the resource into consumption good. Random shocks perturb the productivity
growth rate. dzAt is the increment of a standard Wiener process,zAt (dzAt = εA(t)

√
dt ,

whereεA(t) is a white noise).σA is the instantaneous standard deviation of the growth rate.

2 After a transformation of the type(U(t)/a)a as proposed by Duffie and Epstein (1992), witha = ε/(ε − 1).
3 A more realistic model would include capital in the production process and capital accumulation in the

economy;Dasgupta and Heal (1974)have chosen such a framework, but as soon as uncertainty is introduced they
have to impose drastic restrictions on the production function to achieve the analytical resolution of their model.
As our main concern is to study analytically the effect of uncertainty on the optimal extraction of non-renewable
resources, we cannot consider a more realistic production function.
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S(t) is the resource stock, the fluctuations of which are due to extraction (R(t)) and to
exogenous shocks. Uncertainty is assumed to be multiplicative;4 thus the stock of resource
follows a Brownian process:

dS(t) = −R(t)dt + S(t)σS dzSt (2.4)

wherezSt is a Wiener process.E(dzAt dzSt ) = ΩAS dt , whereΩAS is the correlation coef-
ficient between the processeszAt andzSt ; it is the covariance per unit time between the two
processes.

3. Deriving the optimal extraction path

In this section the program is solved in order to get the optimal use of the resource in terms
of preferences and certainty equivalents. In the next section we will explore the comparative
statics of the optimal extraction policy.

Using a recursive utility function such as(2.1), the program may be written:


Max U(t)

=
[

ε

ε−1
c(t)(ε−1)/εdt + e−δdt [E(U(t + dt)(ε/(ε−1))(1−γ ))]((ε−1)/ε)(1/(1−γ ))

]
s.c.

dS(t) = −R(t)dt + σSS(t)dzSt

dA(t) = θAdt + σAA(t)dzAt

R(t) ≥ 0, S(t) ≥ 0

A(0), S(0) given

(3.1)

The Bellman equation associated with the program is:

V (t)= max{Rt}
[

ε

ε − 1
[A(t)R(t)](ε−1)/εdt

+ e−δdt (EtV (t + dt)(ε/(ε−1))(1−γ ))((ε−1)/ε)(1/(1−γ ))
]

(3.2)

By analogy with the standard VNM program, an educated guess for the current value
function is:

V (t) = D−(1/ε) ε

ε − 1
[A(t)S(t)](ε−1)/ε (3.3)

4 It is not clear whether uncertainty on the stock of resource is multiplicative or additive.Pindyck (1980)considers
an additive shock, whileBeltratti (1996)uses a multiplicative one, which may be interpreted as a random rate of
depreciation.
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The first-order condition allows the determination of the optimal extraction of the resource
R̂(t) and the identification ofD (seeAppendix Afor the resolution):

R̂(t) = DS(t) (3.4)

D = ε


δ − ε − 1

ε

(
θ − 1

2
γ σ 2

A − 1

2
γ σ 2

S + (1 − γ )σAσSΩAS

)
︸ ︷︷ ︸

CEq


 (3.5)

where CEq is the certainty equivalent of the resource “rate of return”;5it encompasses the
certainty equivalent of the rate of technical progress (CEq1= θ−γ σ 2

A/2) and the certainty
equivalent of the resource natural growth rate (CEq2= −γ σ 2

S /2) adjusted for the correla-
tion between the two uncertainties (this last component will be neglected in comments be-
low). One may notice that forγ = 1/ε,Eq. (3.5)reduces to the solution obtained byBeltratti
(1996).

Variations in the use of the resource during time are given by:

dR̂(t) = −DR̂(t)dt + R̂σS dzSt (3.6)

Thus, the resource use follows a geometric Brownian motion. The expected rate of extraction
growth is:

E

[
dR̂(t)/dt

R̂(t)

]
= −D (3.7)

The transversality condition is

lim
t→∞V (t)e−δt = 0 (3.8)

a sufficient condition for it to be satisfied is (seeAppendix B):

δ−ε − 1

ε

[
θ − 1

2

(
γ
ε−1

ε
+ 1

ε2

)
(σ 2
A + σ 2

S )+ ε − 1

ε

(
(1 − γ )+ 1

ε

)
σAσSΩAS

]
> 0

(3.9)

The feasibility condition (D > 0) is verified if:

δ − ε − 1

ε

[
θ − 1

2
γ (σ 2

A + σ 2
S )+ (1 − γ )σAσSΩAS

]
> 0 (3.10)

One may notice that in the case where preferences are time separable and isoelastic (here
γ = 1/ε), then the transversality condition is necessary and sufficient for the feasibility
condition to be satisfied (seeMerton, 1990; Smith, 1996).

5 The certainty equivalent̂X ofX is defined aŝX = V −1[EtV (X(t+1))], whereV (X) takes the agents attitude
towards risk into account; hereV (X) = X1−γ .



134 A. Epaulard, A. Pommeret / Resource and Energy Economics 25 (2003) 129–139

4. Analyzing the extraction and price paths

4.1. The optimal extraction path

We analyze the effect on the optimal extraction path of variations in the exogenous vari-
ables (rate of technical progress and its uncertainty, resource uncertainty), and of exogenous
shocks. To get some ideas about the effect of uncertainty on the optimal extraction, we as-
sume that the correlation between the two Wiener processes is small enough compared
to the uncertainty on the technical progress and on the stock of resource to be neglected.
Effects are summarized inTable 1.

As the following propositions reveal, the value of the intertemporal elasticity of substi-
tution (ε) is crucial in understanding the extraction path.

Proposition 4.1. An increase in the expected rate of technological change (θ ) will decrease
extraction of the resource if ε > 1, but it will increase extraction of the resource if ε < 1:

∂D

∂θ
= 1 − ε

ε

If the intertemporal elasticity of substitution is high (ε > 1) agents are not very averse
to fluctuations in their consumption stream over time. In this an increase in the expected
growth rate of productivity induces them to reduce their consumption today in order to
benefit from the technological progress in the future: the substitution effect is stronger than
the income effect.

Proposition 4.2. An increase in uncertainty about either productivity (σ 2
A) or the rate

of extraction (σ 2
S ) will increase extraction of the resource if ε > 1, but it will decrease

extraction of the resource if ε < 1:

∂D

∂(σ 2
S + σ 2

A)
= (ε − 1)

γ

2
(4.1)

Table 1
Extraction analysis

ε > 1 ε < 1

Exogenous variables
�θ > 0 �D > 0 �D < 0

No effect ofγ No effect ofγ
�σ 2

S > 0 �D < 0 �D > 0
γ strengthens the effect γ strengthens the effect

�σ 2
A > 0 �D < 0 �D > 0

γ strengthens the effect γ strengthens the effect

Structural parameters
�γ > 0 �D < 0 �D > 0
�ε > 0 �D > 0

if δ − θ + (1/2)γ σ 2
A + (1/2)γ σ 2

S − (1 − γ )σAσSΩAS > 0
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As explained byWeil (1990), the higher the uncertainty, the smaller the certainty equiv-
alent of the resource “rate of return” (noted CEq); the effect of this reduction then depends
on the relative size of substitution and income effects. For a high intertemporal elasticity
of substitution (ε > 1), the substitution effect prevails and the agent increases its current
consumption. Thus, more uncertainty reduces the deterministic trend in extraction. On the
opposite, less uncertainty increases the deterministic trend. Note that in the case of log
intertemporal preferences, risk has no effect on resource extraction.

Using a time-separable specification for the utility function, it is not possible to distinguish
the effects due to the risk aversion from those due to the intertemporal substitution: one
does not know whether it is a small risk aversion or a large intertemporal elasticity of
substitution that leads to an increase in the current propensity to consume when uncertainty
rises.

Another way of understanding our model is to consider how positive shocks on technical
progress and on the stock of resource modify the time path of extraction. As suggested by
intuition, a positive shock on reserve leads to more extraction at each date. On the opposite,
a positive shock on technical progress does not change the time path of extraction (as the
positive shock benefits to all future generations there no reason for the extraction path to be
modified).

4.2. The resource price path

The current price of the resource in terms of the consumption good priceP is the ratio
between the marginal utilities of these two goods:

P(A(t), S(t)) = PS(A(t), S(t))

Pc(A(t), S(t))
= ∂V (A(t), S(t))/∂S(t)

∂V (A(t), S(t))/∂c(A(t), S(t))
(4.2)

The current price of the resource in terms of the consumption good does not depend on the
stock of the resource, but only on the level of technical progress:

P(A(t)) = DA(t) (4.3)

For a given level of the productivityA(t), the current relative price of the resource and the
current extraction both react in the same direction throughD when exogenous variables
or parameters vary. Moreover the current price being a linear function of a variable (the
productivity) which follows a geometric Brownian motion, it follows itself a geometric
Brownian motion:

dP(A(t))

P (A(t))
= αP dt + σP dzPt (4.4)

with 

αP = θ

σP = σA

dzPt = σA dzAt

(4.5)
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If the distinction between the relative risk aversion parameter and the intertemporal elas-
ticity of substitution is especially relevant when studying the optimal extraction of the
resource, one notices here that it is of no more interest as far as the resource price path
is concerned since this path does not depend on the preferences parameters at all. Neither
the size of the uncertainty nor the shocks on the resource stock affect the resource price
which evolves according to the same process as the productivity. Such a result may be
compared with that ofYoung and Ryan (1996)who consider a two period model with a
capital-consumption good, a risk-free bond and a resource; as is our model, technology
is uncertain and the utility function is recursive. They obtain an expected return for the
resource which depends on technological uncertainty. This is consistent with our findings.
Nevertheless, unlike our model, the expected rate of return in their model does depend upon
preferences.

It is nevertheless interesting that the model proposed in this paper leads to a non-renewable
resource price following a geometric Brownian motion since this result is often assumed
in the literature without theoretical foundations being suggested (see for instanceSlade,
1988; Pindyck, 1981; Ekern, 1988; Brennan and Schwartz, 1985; Olsen and et Stensland,
1988; Bjerksund and Ekern, 1990; Gibson and Schwartz, 1990; Lund, 1992). Note however
that such an assumption has been criticized byLund (1993)on the basis of the existence of
irreversibilities in the extraction process.

5. Conclusion

In this short paper, we have solved a model for the optimal use of a non-renewable
resource under technical progress and stock uncertainties. We show that uncertainty only
leads to a more conservative use of the resource if the intertemporal elasticity of substitution
is less than unity, and the higher the risk aversion, the larger this effect. This confirms in
a theoretical way the numerical results obtained byKnapp and Olson (1996): as far as the
optimal extraction of a natural resource is concerned, each preference parameter affects the
optimal extraction of a resource in a different way.

Moreover, we show that, in this simple model, the stochastic process followed by the
resource price reproduces that of the technical progress. This gives a theoretical foundation
to the widely used assumption of a resource price following a geometric Brownian motion.
As suggested by the works ofYoung and Ryan (1996)and ofLund (1993), more subtle
expressions for the price path may probably be obtained by introducing capital accumulation
and extraction costs in our model. In such a framework, this could be done at the cost of
giving up the analytical resolution.
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Appendix A

Replacing the value function by its expression in the Bellman equation, we get:

D−(1/ε)(A(t)S(t))(ε−1)/ε

= MaxR(t)[(A(t)R(t))
(ε−1)/εdt + e−δdt (Et (D(1−γ )/(ε−1)

× (A(t + dt)S(t + dt))1−γ ))((ε−1)/ε)(1/(1−γ ))] (A.1)

We defineF(t) = Et(A(t)S(t))
1−γ . Thus:

Et(dF) = Et [(A(t + dt)S(t + dt))1−γ ] − (A(t)S(t))1−γ (A.2)

Itô’s lemma gives:

Et(dF)= ∂F

∂A
Et(dA)+ 1

2

∂2F

∂A2
Et(dA)

2 + ∂F

∂S
Et (dS)+ 1

2

∂2F

∂S2
Et(dS)

2

+ ∂2F

∂S∂A
Et(dS dA)

= (1 − γ )(A(t)S(t))1−γ

×
[
−R(t)

S(t)
+

(
θ − 1

2
γ σ 2

A − 1

2
γ σ 2

S

)
+ (1 − γ )σAσSΩAS

]
dt (A.3)

This permits us to get:

Et(A(t + dt)S(t + dt))1−γ

= (1−γ )(A(t)S(t))1−γ
[
−R(t)

S(t)
+

(
θ−1

2
γ σ 2

A − 1

2
γ σ 2

S

)
+ (1 − γ )σAσSΩAS

]
dt

+ (A(t)S(t))1−γ (A.4)

Setting CEq= (θ − (1/2)γ σ 2
A) − (1/2)γ σ 2

S + (1 − γ )σAσSΩAS, the Bellman equation
becomes:

D−(1/ε)(A(t)S(t))(ε−1)/ε

= MaxR(t)

[
(A(t)R(t))(ε−1)/εdt + e−δdtD−(1/ε)(A(t)S(t))(ε−1)/ε

×
(

1 − γ

(
−R(t)

S(t)
+ CEq

)
dt + 1

)(ε−1)/(ε(1−γ ))]
(A.5)

Using a limited expansion one gets:

D−(1/ε)(A(t)S(t))(ε−1)/ε

= MaxR(t)

[
(A(t)R(t))(ε−1)/εdt + 1 − δ dtD−(1/ε)(A(t)S(t))(ε−1)/ε

×
(

1 + ε − 1

ε

(
−R(t)

S(t)
+ CEq

)
dt

)]
(A.6)
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Invoking the rules of It̂o calculus, powers of dt greater than one disappear:

D−(1/ε)(A(t)S(t))(ε−1)/ε

= MaxR(t)

[
(A(t)R(t))(ε−1)/εdt +D−(1/ε)(A(t)S(t))(ε−1)/ε

×
(

1 + ε − 1

ε

(
−R(t)

S(t)
+ CEq

)
dt

)
− δD−(1/ε)(A(t)S(t))(ε−1)/εdt

]
(A.7)

The maximization with respect toR(t) givesEq. (3.4). ReplacingR(t) by its optimal value,
the Bellman equation may be rewritten:

D−(1/ε)(A(t)S(t))(ε−1)/ε

= (A(t)S(t))(ε−1)/εD(ε−1)/εdt +D−(1/ε)(A(t)S(t))(ε−1)/ε

×
(

1 + ε − 1

ε
(−D + CEq)dt − δ dt

)
(A.8)

After some simplifications, this reduces toEq. (3.5).

Appendix B

A sufficient condition for the transversality condition to be satisfied is:

Et

[
dV (S,A)

V
e−δt

]
< 0 (B.1)

Using Itô’s lemma, this condition may rewritten:

ε − 1

ε
A(ε−1)/εS−(1/ε)Et (dS)+ ε − 1

ε
S(ε−1)/εA−(1/ε)Et (dA)

−ε − 1

2
A(ε−1)/εS−(1/(ε−1))Et (dS

2)− ε − 1

2
A−(1/(ε−1))S(ε−1)/εEt (dA

2)

+
(
ε − 1

ε

)2

A−(1/ε)S−(1/ε)Et (dAdS)− δA(ε−1)/εS(ε−1)/εdt < 0 (B.2)

Replacing dA and dS by their expressions when extraction is optimal, givesEq. (3.9).
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