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Abstract  

The central vein sign (CVS) is an efficient imaging biomarker for multiple sclerosis (MS) diagnosis, 

but its application in clinical routine is limited by inter-rater variability and the expenditure of 

time associated with manual assessment. We describe a deep-learning-based prototype for au-

tomated assessment of the CVS in white matter MS lesions using data from three different imag-

ing centers.   

 

We retrospectively analyzed data from 3T magnetic resonance images acquired on four scanners 

from two different vendors, including adults with MS (n=42), MS mimics (n=33, encompassing 12 

distinct neurological diseases mimicking MS), and uncertain diagnosis (n=5). Brain white matter 

lesions were manually segmented on FLAIR* images. Perivenular assessment was performed ac-

cording to consensus guidelines and used as ground truth, yielding 539 CVS-positive (CVS+) and 

448 CVS-negative (CVS-) lesions. A 3D convolutional neural network (“CVSnet”) was designed and 

trained on 47 datasets, keeping 33 for testing. FLAIR* lesion patches of CVS+/CVS- lesions were 

used for training and validation (n=375/298) and for testing (n=164/150). Performance was eval-

uated lesion-wise and subject-wise and compared with a state-of-the-art vesselness filtering ap-

proach through McNemar's test.  

 

The proposed CVSnet approached human performance, with lesion-wise median balanced accu-

racy of 81%, and subject-wise balanced accuracy of 89% on the validation set, and 91% on the 

test set. The process of CVS assessment, in previously manually segmented lesions, was approx-

imately 600-fold faster using the proposed CVSnet as compared to human visual assessment (test 

set: four seconds versus forty minutes). On the validation and test sets, the lesion-wise perfor-

mance outperformed the vesselness filter method (P<0.001).  

 

The proposed deep learning prototype shows promising performance in differentiating MS from 

its mimics. Our approach was evaluated using data from different hospitals, enabling larger mul-

ticenter trials to evaluate the benefit of introducing the CVS marker into MS diagnostic criteria.  
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1. Introduction 

Current magnetic resonance imaging (MRI) diagnostic criteria for multiple sclerosis (MS) are 

based on the dissemination in time and space of characteristic imaging features of the disease. 

Although highly useful, the specificity of these criteria is limited, and the risk of misdiagnoses 

based on MRI is still substantial.1,2 Consequently, identification of more specific imaging bi-

omarkers for MS is a high-priority area of research.3 

The presence of a vein at the center of white matter (WM) lesions, the “central vein sign” (CVS), 

has been shown to be an efficient imaging biomarker for MS, able to distinguish MS from other 

conditions exhibiting similar WM abnormalities on MRI.4 In MS, the immunological reaction lead-

ing to the formation of inflammatory WM lesions occurs in the perivascular cuff around small 

parenchymal veins.5-7 Indeed, pathology studies as early as the 19th century described the pres-

ence of a vein at the center of inflammatory lesions as a hallmark of the MS plaque.8 Today, the 

vein at the center of WM lesions can be imaged in vivo using optimized susceptibility-based MRI 

sequences,9,10 and several studies have shown that the CVS can accurately distinguish MS from 

other disorders showing similar T2 hyperintensities on MRI.11-15 Results from a recent multicenter 

study suggest that the diagnostic performance of this CVS biomarker at clinical field strengths is 

highly dependent on the type of susceptibility-based MRI sequence used.16 In this context, recent 

data from our group using an optimized three-dimensional (3D) T2*-weighted segmented echo-

planar imaging (T2*-EPI) sequence at clinical field strengths,9 have shown that the CVS can effi-

ciently discriminate between MS and inflammatory vasculopathies of the CNS and that this im-

aging biomarker can accurately predict an MS diagnosis in patients harboring atypical features 

for the disease.11,17 

However, despite the availability of optimized 3D MRI sequences for CVS detection, there remain 

substantial technical limitations to applying this imaging biomarker in daily clinical practice. 

These limitations are primarily related to the manual, operator-dependent assessment required 

to evaluate the CVS in individual scans. Although previously proposed simplified algorithms con-

siderably reduce the time burden associated with CVS evaluation,18,19 manual assessment 
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generally suffers from inter-rater and intra-rater variability, is time-consuming, and limits the 

generalization of results across different centers and healthcare systems. In order to promote 

the translation of the CVS imaging biomarker into clinical routine, a reliable and reproducible 

method to automatically detect the CVS is needed. 

Recently, Dworkin et al. proposed an automated method to detect the CVS in WM lesions, based 

on a vesselness filter combined with a centrality measure.20 The study showed good subject-wise 

accuracy, but was limited to single-center data collection.11,12 In the present work, we show re-

sults on a broad panel of twelve different MS-mimicking diseases, collected on four different MRI 

scanners. CVSnet, our approach to automatically assess the CVS, is based on a 3D convolutional 

neural network architecture.21,22 Because it uses deep learning, it is an end-to-end learning ap-

proach that does not require handcrafted discriminative features or filters. Instead, it learns the 

most appropriate representations of the data by minimizing the CVS positive/negative classifica-

tion error and has the ability to generalize the data. The training of the network performed using 

data from four different scanners (two different vendors) and three different imaging centers 

ensures robustness of the algorithm with respect to contrast and hardware-related differences. 

To evaluate the potential of our approach excluding the influence of segmentation errors, we use 

manually segmented lesions for validation. 

 

2. Patients and methods 

2.1 Patients 

This is a retrospective analysis of images from 80 patients recruited between September 2016 

and November 2018 at the University Hospital of Lausanne, Switzerland (n=30), at the Erasmus 

University Hospital, Brussels, Belgium (n=36), and at the National Institutes of Neurological Dis-

orders and Stroke, National Institutes of Health, Bethesda, Maryland, USA (n=14). In all centers, 

studies were designed to assess the diagnostic utility of the CVS for differential diagnosis of MS. 

Included patients had either definite MS according to the 2017 McDonald criteria3 (n=42) or a 

variety of diseases giving white matter abnormalities similar to those observed in MS (hereafter 

termed “MS mimics”; n=33). Five patients had uncertain diagnosis at the time of this study (“un-

certain diagnosis”). Included patients with MS-mimic diseases encompassed systemic lupus 
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erythematosus (SLE; n=7), Sjögren syndrome (Sjögren; n=4), primary angiitis of the central nerv-

ous system (PACNS; n=2), antiphospholipid syndrome (APS; n=1), inflammatory amyloid angiop-

athy (iAA; n=1), Behçet disease (n=2), sarcoidosis (n=1), neuromyelitis optica spectrum disorder 

(NMOSD; n=6), Susac syndrome (n=2), HTLV-1-associated myelopathy/tropical spastic parapare-

sis (HAM/TSP; n=1), migraine (n=5), and cerebral small vessel disease (n=1).  

 

2.2 MRI acquisition, postprocessing, and manual CVS assessment  

All patients underwent a single brain MRI acquisition on a 3T Magnetom Skyra or Prisma scanner 

(Siemens Healthcare, Erlangen, Germany) in Lausanne, a 3T Ingenia scanner (Philips, Best, The 

Netherlands) in Brussels, or a 3T Skyra scanner (Siemens Healthcare, Erlangen, Germany) in Be-

thesda. In all centers, 3D T2*-EPI and 3D T2-weighted fluid-attenuated inversion recovery (FLAIR) 

images were acquired during and after intravenous injection of a single dose (0.1mmol/kg) of 

gadolinium-based contrast material, as previously described.11 FLAIR images were obtained with 

1-mm isotropic resolution in all centers, whereas 3D T2*-EPI images were obtained with 0.55-

mm isotropic resolution in Brussels and 0.65-mm isotropic resolution in Lausanne and Bethesda 

(Table 1). DICOM images were processed and analyzed using Medical Image Processing, Analysis, 

and Visualization (MIPAV; NIH; http://mipav.cit.nih.gov). After bias-field correction and co-regis-

tration, FLAIR* images were generated by voxel-wise multiplication of the FLAIR and the T2*-EPI 

images, as previously described.10 For each patient, WM lesions were manually segmented on 

FLAIR* images following the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative 

consensus on lesion inclusion/exclusion criteria for central vein analysis.4,11 Two investigators 

(P.M., M.A.) independently assessed the percentage of CVS+ lesions for inter-rater reliability, 

blinded to clinical diagnosis. Disagreements were adjudicated by consensus between the two 

investigators (see examples in Figure 1). Manual segmentation and classification of CVS+ and CVS- 

lesions were used as ground truth. Patients were dichotomized into MS vs. MS mimics based on 

three previously proposed criteria: i) the “50% rule,”11 i.e. a 50% CVS+ lesion cut-off to distinguish 

MS from MS mimics, ii) the “6-lesion rule”18 and iii) the “3-lesion rule,”19 whereby 10 lesions or 3 

lesions are randomly selected and MS is diagnosed if at least 6 or 2 lesions are CVS+. 
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In addition, fulfillment of MS MRI criteria for dissemination in space (DIS)3 was assessed for each 

patient. Average CVS assessment time for one lesion was estimated and used to compute the 

total evaluation time for each rule used. All the experiments were run on a workstation equipped 

with an nvidia GTX 1080TI graphics processing unit (GPU) and two intel Xeon Gold 6126 central 

processing units with 192 GB RAM. 

 

2.3 Automated CVS assessment with a vesselness filter  

The “centrality-corrected” vesselness filter method proposed by Dworkin et al.20 was re-imple-

mented and used as baseline for comparison. It combines a classical Frangi multi-scale vesselness 

filter23 with a map of the distance to the lesion boundary, thereby down-weighting filter re-

sponses away from the center. Our implementation differs principally from Dworking et al. in 

using a standard Euclidean distance transform (Matlab function bwdist) in-house implementa-

tion of the multi-scale vesselness filter (parameters: α=0.5, β=0.5, c=0.02), and compilation to 

optimize execution speed. 

A threshold is then applied to the output of the filter. The resulting mask is used as a biomarker 

for vessel presence and relies on the sum of the probabilities of voxels within the lesion, esti-

mated by the vesselness filter approach. In order to maximize the performance of the vesselness 

filter, the optimal threshold was computed for each validation fold using the operating point from 

ROC analysis. True positive and false positive rates in the ROC analysis were estimated according 

to the ground truth. 

 

2.4 Automated CVS assessment with CVSnet 

We designed CVSnet as a three layer convolutional neural network, each with a 3D convolution, 

followed by a rectified linear unit (ReLU) and dropout (p=0.5). This architecture is broadly inspired 

by the VGGnet, a classical baseline model for computer vision tasks.24 Our network takes patches 

of size 21x21x21 voxels as input where the center of mass of each lesion was considered the 

center of the respective patch. This was chosen empirically so that samples of lesion tissue would 

fit within the patch, and to limit feature map sizes (especially in the first layers) to preserve GPU 

memory and lower the number of parameters. The convolution kernel sizes were (3x3x3x16), 
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(3x3x3x32), (3x3x3x64). Our choice of small kernel sizes and limited network depth was moti-

vated mainly by the limited amount of data available, as well as the relatively small size of fea-

tures of interest (vessels). This was followed by a fully connected layer of size 32, then a fully 

connected layer of size 2 with sigmoid activation (see Figure 2). The architecture comprised 

71,810 trainable parameters.25  

 

A ten-fold cross-validation was used to train networks, each using 90% of the lesion patches as 

training set and 10% as a validation set. Data augmentation based on three 90-degree rotations 

about one axis was applied to the training and validation sets. After Gaussian initialization, we 

used categorical cross-entropy loss, training with minibatch stochastic gradient descent (Adam 

optimizer) for 200 epochs with a minibatch size of 20, at a fixed learning rate of 0.001 checking 

for approximate class balance for each resampling. In each fold, we saved and used as final model 

the one providing lowest validation loss in that fold. The weights were initialized with Xavier 

Gaussian initialization. In each fold, training took an average of 800 (range 600–900) seconds. 

The classification results for the pure testing set were obtained using an ensemble method by 

feeding each test patch to all 10 trained networks (1 per cross-validation fold) and averaging their 

probability outputs (see Figure 2). Even though dropout is used in each of the ensemble constit-

uent networks, fold-to-fold performance is quite variable (see Figure 3), and ensembling allows 

to lower prediction variance for the test set. 

 

From the multicenter cohort, lesions from 47 (24 MS, 20 MS mimic, 3 uncertain diagnosis) sub-

jects were used to train the network, and lesions from 33 (18 MS, 13 MS mimic, and 2 uncertain 

diagnosis), selected randomly, were used as a pure-testing set. FLAIR* patches of CVS+ and CVS- 

lesions were used for training and validation. In total, 673 (375 CVS+, 298 CVS-) and 314 (164 CVS+, 

150 CVS-) patches were obtained for the training/validation and pure-testing sets, respectively. 

In the training/validation set, 338 (158 CVS+, 180 CVS-) patches came from Brussels and 335 (217 

CVS+,118 CVS-) came from Lausanne. In the pure-testing set 72 (48 CVS+, 24 CVS-) patches came 

from Brussels, 103 (40 CVS+,63 CVS-) from Lausanne and 139 (76 CVS+, 63 CVS-) from Bethesda. 
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CVSnet was implemented in Python 3.6.5 (http://www.python.org), with Keras 2.1.5 

(http://keras.io) and TensorFlow 1.6.0.26  

 

2.5 Evaluation of the CVS assessment and patient differential diagnosis  

The performance was evaluated at two levels: 

a) Lesion-wise: sensitivity, specificity, and balanced accuracy (the average of class-wise accura-

cies) were computed with respect to the assessment of CVS+ and CVS- lesions on the validation 

and pure-testing sets. Receiver operating characteristic (ROC) curve analysis was performed, and 

area under the curve (AUC) values for each of the ten cross-validation folds was computed.  

b) Patient-wise: Intraclass correlation coefficient (ICC(3,1))27 between the percentage of CVS+ le-

sions estimated automatically and manually were estimated for both methods; sensitivity, spec-

ificity, accuracy, and balanced accuracy were computed regarding the differentiation between 

MS and MS mimics based on the “50% rule,”11 using the classification results of the validation 

and pure testing sets. The “uncertain diagnosis” cases were excluded from the patient-wise anal-

ysis. The total CVS assessment time in the pure testing set was estimated for the vesselness filter, 

the CVSnet, and the manual CVS assessment rules.     

 

2.6 Statistical analyses 

Demographic and MRI differences were tested with Kruskal-Wallis test or Mann-Whitney U test, 

as appropriate. Difference in perivenular frequency between MS and MS mimics patients was 

tested using Mann-Whitney U test. Lesion-wise and patient-wise classification results from the 

proposed CVSnet and the vesselness method were compared using McNemar’s test, and perfor-

mance was compared to the no information rate (NIR) corresponding to a zero-rule naive classi-

fier that always vote for the majority class, also using McNemar’s test. Statistical analyses were 

performed using R 3.5.1 (https://www.R-project.org/). 

 

3. Results 

3.1 Patient demographics and manual CVS assessment 
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Clinical and demographic characteristics of MS, MS mimics, and uncertain-diagnosis cases are 

reported in Table 2. We found no age or gender differences between the groups (P=0.6). The 

majority of MS mimics scans fulfilled the 2017 MRI diagnostic criteria for MS dissemination in 

space (20/33 patients, 61%). The median number of brain WM lesions did not differ between 

MS mimics and MS patients (median=9, range=1–32 vs. median=9, range=1–46, respectively; 

Mann-Whitney U test=567, P=0.2), whereas median lesion volume was smaller for MS mimics 

compared to MS patients (median=34mm3, range=14–299 vs. median=52mm3, range=29–217, 

respectively; Mann-Whitney U test=343, P=0.0001). Expert manual CVS assessment following 

the NAIMS guidelines for lesion inclusion/exclusion criteria4 showed that the frequency of 

perivenular lesions was always higher in MS (median=80%, range=52–100%) compared to MS 

mimics (median=7%, range=0–40%; Mann-Whitney U test = 0, P<0.0001, see Figure 1). In line 

with previous results using the same optimized high resolution T2*-EPI sequence adopted in 

this study,11,9 the “50% rule” achieved 100% accuracy in the differentiation between MS and 

MS mimics, whereas the simplified algorithm “6-lesion rule”18 and the "3-lesion rule"19 showed 

sensitivity of 95% and 88%, specificity of 100% and 93%, and accuracy of 97% and 90%, respec-

tively. The inter-rater agreement for the percentage of perivenular lesions was “almost perfect” 

with a Cohen’s k of 0.9 and agreement of 94%. On average, manual CVS assessment of one 

lesion took 15 seconds, resulting in a total evaluation time on the entire pure-testing set of 40 

minutes (“50% rule”), 28 minutes (“6-lesion rule”), and 12 minutes (“3-lesion rule”). 

 

3.2 Automated CVS assessment 

As shown in Figure 3, the CVSnet showed higher performance than the vesselness filter for CVS 

assessment in both validation (McNemar’s x2=28.96, P=7.40E-08) and pure testing (McNemar’s 

x2=11.93, P=5.51E-04) sets. In the validation set, median values for the CVSnet were: sensitivity, 

81% (range: 74–91%); specificity, 80% (range: 72–97%); balanced accuracy, 81% (range: 77–88%); 

and AUC, 90% (range: 84–93%). For the vesselness filter: sensitivity, 79% (range: 70–84%); spec-

ificity, 74% (range: 66–81%); balanced accuracy, 76% (range: 73–80%); AUC, 77% (range: 72–

82%). Similar performance was achieved in the pure testing set, where the CVSnet showed 83%, 

75%, and 79%, and the vesselness filter 67%, 79%, and 73% in sensitivity, specificity and accuracy, 
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respectively (see Figure 3). The total CVS assessment time in the pure testing set was 80 seconds 

for the vesselness filter and 4 seconds for CVSnet on a central processing unit, i.e. not employing 

accelerated GPU-based implementations. Thus, evaluating the CVS for all lesions was about 600-

fold faster using CVSnet as compared to manual assessment (in the test set it was four seconds 

instead of forty minutes).  

Figure 4 shows a scatter plot of the percentage of CVS+ lesions per patient estimated by both 

methods against the manual assessment. ICC(3,1)=0.83 is higher for the CVSnet in comparison to 

the vesselness filter ICC(3,1)=0.60, showing better consistency with manual assessment.  

Results of the patient-wise analysis regarding the differentiation between MS and MS mimics in 

terms of true/false positives and true/false negatives are summarized by the confusion matrices 

in Figure 5.  

Using the 50%-rule, the CVSnet achieved sensitivity of 96%/89%, specificity of 80%/92%, accu-

racy of 89%/90%, and balanced accuracy of 88%/91% for the validation/testing sets. The ves-

selness filter-based approach reached 79%/61% sensitivity, 60%/77% specificity, accuracy of 

70%/68%, and 70%/69% balanced accuracy for the validation/testing sets. The CVSnet per-

formed better than the vesselness filter, but the head-to-head difference was not statistically 

significant (Validation: McNemar’s x2 = 3.50, P>0.05, McNemar’s Test x2 = 3.27, P>0.05). How-

ever, note that the CVSnet accuracy was statistically different from the NIR (Validation: 

McNemar’s x2 = 11.53, P=6.85E-04, Test: McNemar’s x2 = 5.79, P=0.02) while the vesselness 

filter was not (Validation: McNemar’s x2 = 2.12, P=0.15, Test: McNemar’s x2 = 0.24, P=0.63).  

 

4. Discussion 

We propose a deep-learning-based automated detection of the CVS differentiating MS from its 

mimics with high diagnostic sensitivity, specificity, and accuracy. CVSnet performed nearly as well 

as the previously obtained proportion of CVS+/CVS- lesions based on manual rating, often achiev-

ing perfect discrimination between MS and its mimics,11,12,17 and is much faster when compared 
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with manual rating. Importantly, this method showed high performance across different scanner 

types and hospitals, strengthening its potential for clinical applicability.  

Our findings are particularly relevant considering that recent studies using manual CVS classifica-

tion at clinical field strengths have shown potential for application of the CVS imaging biomarker 

in clinical practice.11,13,15-18,28 Importantly, the most recent international panel for MS diagnosis 

called for further research on this topic before considering inclusion of the CVS in future MS di-

agnostic criteria.3 A substantial limitation to investigating the role of the CVS in large multicenter 

trials, and in subsequent clinical practice, is the lack of an automated reproducible and non-op-

erator-dependent technique that can determine the frequency of CVS+ lesions in individual scans.  

The proposed CVSnet uses deep learning and data augmentation strategies and shows the feasi-

bility to achieve accurate results even in the case of a relatively small dataset for this particular 

classification problem compared to classical computer vision problems, where samples sizes are 

in the tens of thousands. While machine learning has already been proposed to predict various 

aspects of MS diagnosis and prognosis,29,30 to our knowledge, this is the first attempt to use ma-

chine learning to automatically assess the CVS as diagnostic biomarker.  

Compared to our implementation of a recently proposed approach for automated CVS assess-

ment based on vesselness filter and centrality,20 the CVSnet showed significantly higher lesion-

wise performance and was 20 times faster; in addition, considering the slight class imbalance, 

CVSnet performed significantly above the NIR, while our vesselness filter-based methodology did 

not.  

For several reasons, our results are not directly comparable to those reported in Dworkin et al.20 

First, sample size is larger in our study. Second, our data comes from four different MRI machines 

while Dworkin et al. used data from only one MRI scanner. Third, exclusion criteria are different: 

Dworkin et al. excluded periventricular lesions, whereas in our study we excluded only lesions 

not fulfilling NAIMS criteria, that is, periventricular lesions were only excluded in our study if 

featuring multiple veins or confluent. Lastly, implementation differences discussed in the meth-

ods section also likely contribute to some differences. This study presents some limitations. 
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Lesion segmentation was done manually, and thus the overall process (automated lesion seg-

mentation and CVS classification) cannot yet be considered fully automated. Of note, the availa-

ble automatic lesion segmentation algorithms are often limited by false-positive and false-nega-

tive “lesions,”31 and it is possible that the difference in CVS assessment performance obtained in 

our study with respect to previous work20 rests upon the manually applied lesion inclusion/ex-

clusion criteria in the current study. In addition to including larger numbers of scans from addi-

tional centers, future work should implement a fully automated method able to automatically 

apply lesion inclusion/exclusion criteria for CVS assessment. Moreover, future work could inves-

tigate other lesion features (such as shape, ovoid vs. spherical29) that, together with the CVS, may 

increase the probability that a given WM lesion results from MS-related inflammatory demye-

lination.  

In conclusion, the CVSnet presented in this study showed high speed and accurate performance 

in differentiating MS from other pathological conditions with similar abnormalities on MRI. Our 

study represents a step forward toward the translation of this promising imaging biomarker into 

daily clinical practice. 
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Table 1. MRI sequence parameters used in the Erasmus University Hospital, Brussels (Philips 

scanner), in the Lausanne University Hospital, Lausanne (Siemens scanner) and in the National 

Institutes of Health, Bethesda, USA (Siemens scanner), imaging centers. 

 

 

 

 

  

Sequence 3D T2*-EPI 3D T2-FLAIR 

Field strength 3T 3T 3T 3T 

Manufacturer Siemens Philips Siemens Philips 

Site Lausanne/Bethesda Brussels Lausanne/Bethesda Brussels 

Receive channels 64/32 16 64/32 16 

Imaging plane Sagittal Sagittal Sagittal Sagittal 

Imaging resolution (mm) 0.65 0.55 1 1 

# slices 288/256  336 176  180 

Repetition time (TR, ms) 64 53 5000/4800 4800 

Echo time (TE, ms) 35 29 391/353 373 

Inversion time (TI, ms) - - 1800 1600 

Flip angle (deg) 10 10 Variable/120 90 

Averages 1 1 1 1 

Acquisition time (min:sec) 6:20/5:44 4:40 4:47/6:53 6:00 
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 MS MS mimics Uncertain  

Demographics 

 # patients 

Brussels 

Lausanne 

Bethesda 

 Median age (IQR) 

 Sex (female/male) 

42 

15 

18 

9 

44 (24) 

33/9 

33 

18 

10 

5 

45 (17) 

23/10 

5 

3 

2 

- 

48 (8) 

4/5 

Disease subtype    

 RRMS 34 

SPMS 6 

PPMS 2 

SADs 15 

migraine 5 

others 13 

- 

- 

- 

DIS MRI criteria 

 # (%) patients fulfilling criteria 42/42 (100%) 20/33 (61%) 5/5 (100%) 

Manual CVS assessment    

 CVS+ lesions, median (range) 80% (52–100%) 7% (0–40%) 62% (20–100%) 

 

Table 2. Demographic, clinical, and radiological characteristics of the patient cohort. 

Abbreviations: IQR: interquartile range; RRMS: relapsing-remitting MS; SPMS: secondary-pro-

gressive MS; PPMS: primary-progressive MS; SADs: systemic autoimmune disorders (systemic lu-

pus erythematosus, antiphospholipid antibody syndrome, primary angiitis of the central nervous 

system, Sjögren syndrome, Behçet disease, sarcoidosis); others: neuromyelitis optica spectrum 

disorder, Susac syndrome, inflammatory amyloid angiopathy, HTLV1 associated myelopa-

thy/tropical spastic paraparesis, small vessel disease); Uncertain: patient having uncertain diag-

nosis at the time of the study; DIS: dissemination in space.  
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Figure 1. 3D FLAIR* images obtained on Siemens (Lausanne University Hospital; (A, B)) and Philips 
(Erasmus University Hospital; (C, D)) MRI scanners showing central vein sign-positive (CVS+) and -negative 
(CVS-) lesions. A central vein running through the lesion (arrows) is visible in the majority of white matter 
lesions in (A) a 28-year-old man and (C) a 27-year-old woman with relapsing–remitting MS. Images from 
(B) a 25-year- old and (D) a 46-year-old women with Sjögren syndrome show how the central vein sign is 
not typical of white matter lesions in MS-mimicking diseases  
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Figure 2. Methods used for central vein sign (CVS) assessment in white matter lesions. Top stream: A 
multiscale vesselness enhancement filter combined with a distance map to estimate centrality-corrected 
vesselness. Bottom stream: CVSnet, the proposed 3D convolutional neural network, consists of a simple, 
repetitive, and relatively shallow architecture. In both methods, we keep one trained version per 
crossvalidation fold in the cross-validation set. On the test set, we use these 10 different versions of the 
same algorithm to yield 10 different predictions for each incoming test patch and average the output 
(“ensembling”) to yield a single, more stable, prediction  
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Figure 3. Lesion-wise classification using the vesselness filter and the proposed CVSnet. Lesion-wise 
classification sensitivity, specificity, accuracy and area-under-the-receiver-operating characteristic curve 
(AUC) for the validation and pure-testing sets, using the vesselness filter (dark gray dots) and the new 
CVSnet (light gray dots). To indicate variability due to data sampling, in the validation set, each dot shows 
the result of one cross-validation fold, the orange crosses represent median, and the orange bars the 
range between the 25th and 75th percentiles  
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Figure 4. Percentage of CVS+ lesions for each patient, comparing the vesselness filter and CVSnet 
approaches with respect to manual assessment (ground truth). Different types of diagnoses: MS (circle), 
MS mimics (triangle), and uncertain diagnosis (square). Colors represent the different scenarios for correct 
and incorrect disease prediction from both algorithms based on the 50% perivenular rule: green – both 
algorithms predicted correctly; yellow – only CVSnet predicted correctly; orange – only vesselness filter 
predicted correctly; red – both algorithms predicted incorrectly; gray – uncertain diagnosis. The red 
dashed line indicates the 50% rule. While the percentages diverge somewhat from those estimated 
manually, the CVSnet approach tends to yield estimates leading to a diagnosis consistent with that derived 
from manual assessment with an ICC(3,1) = 0.83  
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Figure 5. Patient-wise classification confusion matrices. Differentiation between MS and MS mimics using 
confusion matrices for the vesselness filter and the proposed CVSnet, on the validation and test sets. 
Within each confusion matrix, the top left indicates the number of true positives (actual MS patients 
predicted as MS), the bottom right true negatives, the top right false positives (MS mimics predicted as 
MS), and the bottom right false negatives. Note that patients with uncertain diagnoses are not shown  

 


