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Immune cells protect us against infection and cancer cells, as well as functioning during 
healing processes to support tissue repairing and regeneration. These behaviors require 
that upon stimulation from immune activation the appropriate subsets of immune cells 
are generated. In addition to activation-induced signaling cascades, metabolic repro-
gramming (profound changes in metabolic pathways) also provides a novel form of reg-
ulation to control the formation of desirable immune responses. Immune cells encounter 
various nutrient compositions by circulating in bloodstream and infiltrating into peripheral 
tissues; therefore, proper engagement of metabolic pathways is critical to fulfill the 
metabolic demands of immune cells. Metabolic pathways are tightly regulated mainly via 
mitochondrial dynamics and the activities of the tricarboxylic acid cycle and the electron 
transport chain. In this review, we will discuss how metabolic reprogramming influences 
activation, effector functions, and lineage polarization in T cells, with a particular focus 
on mitochondria-regulated metabolic checkpoints. Additionally, we will further explore 
how in various diseases deregulation and manipulation of mitochondrial regulation can 
occur and be exploited. Furthermore, we will discuss how this knowledge can facilitate 
the design of immunotherapies.
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inTRODUCTiOn

Immune cells circulate throughout our bodies and reside in peripheral tissues where they perform 
many vital functions, including providing protection against pathogens, impeding cancer cells, 
and supporting tissue homeostasis. How immune cells respond to the nutrient state of various tis-
sues and whether their nutrient-sensing mechanisms regulate immune responses are fascinating 
questions yet to be resolved. Research accumulated in the past decade has revealed that immune 
cells change their metabolic programs to support activation and differentiation (1, 2). Moreover, 
protective immune responses may be detrimentally affected by metabolic stress caused by nutrient 
deprivation, coinhibitory receptors, and production of certain metabolites. By contrast, targeting the 
metabolic machineries that immune cells exploit during activation can lead to promising outcomes 
with improved antitumor immunity and autoimmunity in preclinical animal models (3, 4). These 
findings expose the importance of metabolic reprogramming in guiding immune responses and 
suggest that the nutrient composition of where the immune cell resides and infiltrates may be a 
critical regulator in orchestrating immune responses.

Mitochondrion is the metabolic hub of the cell that governs energy production through coordina-
tion of the electron transport chain (ETC) and the tricarboxylic acid (TCA) cycle. In addition to 
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energy production, mitochondrion catabolizes nutrients, includ-
ing glucose, amino acids, and fatty acids, to produce building 
blocks for cell growth and expansion (5). In order to meet their 
metabolic demands, cells have to change their mitochondrial 
dynamics, including mitochondrial volume, structure, mem-
brane potential (ΔΨm), and location, in response to nutrient 
availability and growth stimuli. Although research on how mito-
chondrial dynamics impact cellular metabolism have been mainly 
conducted in cancer and stem cells (6–8), several recent studies 
have revealed that this process may play critical roles in immu-
nometabolic regulation in both innate and adaptive immune cells 
(9). In this review, we will summarize how T cells control mito-
chondrial dynamics in order to meet their metabolic demands. 
Furthermore, we will discuss how mitochondria-derived signals 
potentially guide T cell activation and differentiation.

MiTOCHOnDRiOn: THe CenTRAL 
ReGULATOR OF CeLLULAR 
MeTABOLiSM AnD BeYOnD

Mitochondria Are the Power Plant for 
Cellular Bioenergetic Demands
Mitochondria are the major energy producers within a cell that 
couple metabolite oxidation to aerobic respiration (10). Glucose 
and fatty acids, after being catabolized through glycolysis and 
β-oxidation, respectively, fuel the TCA cycle in the form of 
acetyl-CoA. Acetyl-CoA is further oxidized into carbon dioxide 
to generate NADH and FADH2, the main sources of electrons 
for the ETC. The ETC ultimately transfers electrons provided by 
NADH and FADH2 to oxygen, while concurrently generating 
ΔΨm across the mitochondrial inner membrane. This proton 
gradient is further utilized to produce ATP (9). In addition to 
generating ATP, mitochondria also contribute to lipid and amino 
acid synthesis to build macromolecules. Acetyl-CoA can be 
transported out of the mitochondria into the cytosol where it is 
used for protein acetylation as well as de novo fatty acid synthesis 
(11). Citrate can also be exported into the cytosol for de novo 
fatty acid synthesis and into the nucleus to serve as an acetyl-CoA 
donor for histone modification (12). Furthermore, the metabolic 
intermediates of the TCA cycle can also be used for production 
of cholesterol, nucleotides, and amino acids. These processes 
provide building blocks for cell proliferation and growth at a cost 
of TCA cycle metabolite depletion. Altogether, mitochondria 
bridge nutrient metabolism to fulfill the bioenergetic demands of 
cell through the coordination of TCA cycle and ETC.

Mitochondrial Dynamics under Metabolic 
Stress and Reprogramming
Mitochondrial quality and activities are maintained and 
adjusted through mitochondrial dynamics. In response to the 
type, strength, and duration of metabolic or genomic stress, 
mitochondrial dynamics regulate mitochondrial fusion, fission, 
mobility, biogenesis, and degradation. Mitochondrial mobility 
regulates the subcellular localization of mitochondria, whereas 
mitochondrial fusion and fission controls mitochondria mass 
and metabolism by fusing (fusion) or splitting (fission) the inner 

and outer membranes and matrix components (13, 14). Nutrient 
deprivation induces the formation of a tubular network of mito-
chondria by promoting mitochondrial fusion and suppressing 
mitophagy (a mitochondrial clearance process) (15). By contrast, 
severe and prolonged DNA damage leads to mitochondrial fission 
and further facilitates the clearance of damaged mitochondria via 
mitophagy (16). Thus, mitochondrial fusion and fission provide 
a method to efficiently and flexibly adjust mitochondrial qual-
ity and quantity. Importantly, most of the mitochondrial fusion 
and fission machineries are conserved from yeast to mammals, 
further implicating the importance of these processes (17). 
Mechanistically, mitofusin and optic atrophy 1 (OPA1) are two 
dynamin-like GTPases that control fusion of the mitochondrial 
outer and inner membranes, respectively (18). These proteins 
are regulated by ubiquitination and proteolytic cleavage. When 
mitophagy is induced, mitofusin 1 and 2 are ubiquitinated in a 
PTEN-induced putative kinase 1/Parkin-mediated manner (19). 
Moreover, OPA1 is constitutively cleaved by protease Yme1L in the 
intermembrane space in order to shape proper cristae structures 
(20). Furthermore, loss of mitochondrial ΔΨm induces OPA1 
cleavage by protease OMA1, a process that further dampens 
mitochondrial fusion (21, 22). Conversely, mitochondrial fission 
is triggered by phosphorylation of dynamin-related protein 1 
(Drp1) on serine 616 by protein kinase C. This event promotes 
Drp1 translocation to the mitochondrial outer membrane and 
facilitates the association between Drp1 with other adaptor 
proteins, including Fis1 (mitochondrial fission 1 protein), Mff 
(mitochondrial fission factor), and MiD49/51 (23–25). By con-
trast, phosphorylation of Drp1 on serine 637 by protein kinase A 
(PKA) leads to Drp1 inactivation (26). Additionally, mitofusin 2 
is regulated via JNK phosphorylation, which when coordinated 
with Huwe1-regulated ubiquitination promotes stress-induced 
mitochondrial fragmentation and apoptotic cell death (27). These 
regulatory steps tightly control the balance of mitochondrial 
fusion and fission to actively fine-tune the mitochondria’s meta-
bolic activity. Mitochondrial fusion can increase cristae forma-
tion and respiratory complex formation as well as increasing the 
substrate uptake fueling oxidative phosphorylation (OXPHOS). 
Moreover, fusion also promotes fatty acid oxidation (FAO), 
which is important for the formation and survival of memory 
T cells (discussed in Section “Metabolic Reprogramming Fuels 
T Cell Activation and Differentiation”) (28). On the other hand, 
mitochondrial fission not only acts to eliminate dysfunctional 
mitochondria but is also an adaptation that occurs in response to 
increased aerobic glycolysis (29).

MeTABOLiC RePROGRAMMinG FUeLS  
T CeLL ACTivATiOn AnD 
DiFFeRenTiATiOn

During viral infection, T cell activation occurs via several distinct 
phases. Cell growth is the initial phase, with subsequent massive 
clonal expansion and differentiation, followed by an abrupt 
contraction phase, and then persistent long-lived memory 
T cells (30). During the initial growth phase, T cells undergo an 
activation-induced reprogramming of their metabolism. FAO 
in naive T cells is converted to anabolic metabolism in activated 
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T cells, including increased aerobic glycolysis, pentose-phosphate 
pathway, and glutaminolysis (31, 32). Mitochondrial biogenesis 
and proteomic reprogramming are induced upon T cell receptor 
(TCR) activation in T cells. Mitochondrial regulations strongly 
activate one-carbon metabolism fueled by serine and glycine 
metabolism, which is essential for redox homeostasis as well as 
purine and thymidine formation (33, 34). In contrast to cytotoxic 
effector T cells, memory T cells possess elevated mitochondrial 
mass and use fatty acids as the main energy source through FAO 
(35, 36). Interestingly, helper effector T cells (Th1, Th2, or Th17) 
use aerobic glycolysis to support their effector functions and dif-
ferentiation programs similar to cytotoxic CD8+ T cells, whereas 
regulatory T cells utilize FAO to maintain lineage stability and 
immunosuppressive functions (37–39). Several recent reviews 
have summarized how these metabolic pathways intertwine with 
T  cell activation and differentiation (3, 40). Therefore, we will 
focus on how mitochondria-derived regulations are involved in 
these processes.

Mitochondria-Governed Metabolic 
Regulations in Memory T Cells
Unlike the short-lived effector T cells that rely on aerobic glycoly-
sis, memory T cells display increased mitochondrial mass, spare 
respiratory capacity, and utilize FAO to meet their metabolic 
demands (35, 41). Reduced glucose uptake and glycolysis has 
been shown to not only suppress effector T  cell functions but 
also promote T cell differentiation toward memory-like precur-
sor cells that have an elevated dependence on mitochondrial 
metabolism (42). Additionally, it has been shown that IL-15, an 
important cytokine for the survival of memory T cells, increases 
mitochondrial mass and copy numbers in memory T cells (35, 43). 
Furthermore, the elevated oxidative metabolism and mitochon-
drial activity in memory T cells could positively impact survival 
and the rapid transition to glycolysis after re-stimulation (36, 41, 
44). These findings suggest that mitochondrial mass and activity 
play critical roles in guiding the generation of memory T cells. 
Interestingly, mitochondrial dynamics have also been reported 
to modulate the differentiation process in effector and memory 
T cells. Effector T cells primarily possess fragmented mitochon-
dria, which might facilitate aerobic glycolysis. During TCR 
activation by antigen-presenting cells, Drp1-mediated mitochon-
drial fission and translocation of mitochondria to the immune 
synapse could be promoted by suppression of PKA-induced 
Drp1 phosphorylation at serine 637 by mTOR activation and the 
calcium (Ca2+) flux-mediated phosphatase calcineurin (45–48). 
By contrast, Opa1-dependent mitochondrial fusion promotes 
memory T cell formation and oxidative metabolism by maintain-
ing the tightly associated cristae structures and ETC complexes 
(Figure 1). Notably, OXPHOS can stimulate mitochondrial inner 
membrane fusion through Yme1L-mediated cleavage of Opa1 
(49). In addition, oxidative stress-induced glutathione oxidation 
results in elevated mitochondrial fusion by promoting mitofusin 
dimerization (50). Moreover, mitochondrial deacetylase sirtuin-3 
(SIRT3) deacetylates OPA1, which activates OPA1’s GTPase 
activity promoting mitochondrial networking and preventing 
cell death (51). Thus, TCR signaling and metabolites derived 

from oxidative metabolism contribute to the regulation of T cell 
mitochondrial dynamics.

In addition to regulating mitochondrial structure, metabo-
lites derived from mitochondrial metabolic pathways may also 
regulate T  cell differentiation by affecting the epigenetic and 
transcriptomic landscape. One recent study demonstrated that 
S-2-hydroxyglutarate (S-2HG) can act as an immunometabolite 
altering the gene expression profile with changes in the epigenetic 
landscape toward memory-like CD8+ T cells (52). Since S-2HG is 
a chemical analog of α-ketoglutarate and succinate, we postulate 
that production of α-ketoglutarate and succinate could regulate 
T  cell differentiation by modulating Jumonji D3 (Jmjd3)- and 
ten eleven translocation (Tet)-dependent histone and DNA 
methylation, respectively (53, 54). These mitochondria-derived 
metabolites may provide signals that impact differentiation, 
exhaustion, and the secretome of T cells through mitochondria–
nucleus communication. Thus, future investigations to determine 
if mitochondrial dynamics and activity can modulate T  cell 
differentiation through as yet undefined mitochondria–nucleus 
communication will provide exciting new insights for immuno-
metabolic regulation.

T Cell exhaustion during viral infection 
and in the Tumor Microenvironment
T cell exhaustion describes a state when T cells are incapable of 
proliferating or producing effector molecules, which often occurs 
as a result of chronic antigen exposure in diseases such as viral 
infections and tumors (55). Although changes in the transcrip-
tion program of T cells can contribute to T cell exhaustion, recent 
studies have revealed that metabolic insufficiency and deregula-
tion of nutrient-sensing pathways also contribute to T  cell 
exhaustion (56). During chronic lymphocytic choriomeningitis 
virus infection, Bengsch et al. reported that glycolytic and mito-
chondrial metabolism in early effector CD8+ T cells are repressed 
by programmed cell death protein 1 (PD-1) signaling. PD-1 
signals also suppress the expression of peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC1α) that 
inhibits mitochondrial biogenesis in viral-specific CD8+ T cells 
leading to declined effector function in exhausted T  cells (57). 
Intriguingly, PGC1α overexpression in exhausted T cells is able 
to enhance their effector functions and improve mitochondrial 
biogenesis. By contrast, it has been reported that HIV-specific 
CD8+ T cells display increased mitochondrial mass, resulting in 
higher cluster of differentiation 95 (CD95)/CD95-ligand induced 
apoptosis (28, 58, 59). Thus, it is important to further investigate 
the contributions of mitochondrial biogenesis on T cell exhaus-
tion and how we can target mitochondrial metabolism of T cells 
when treating chronic viral infection.

The tumor microenvironment can also cause metabolic insuf-
ficiency in T cells by reducing PGC1α-mediated mitochondrial 
biogenesis (60). Similar to chronic viral infection, overexpressing 
PGC1α in tumor antigen-specific CD8+ T  cells sustains their 
metabolic fitness and improves their antitumor responses in the 
tumor microenvironment. Of note, PD-1 signal is dispensable 
in tumor-induced impairment of mitochondrial biogenesis 
in T  cells. Since hypoxia and nutrient deprivation caused by 
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FiGURe 1 | Mitochondria-governed metabolic regulations upon T cell activation and memory T cell formation. T cell receptor (TCR) activation signaling 
facilitates mitochondrial fission, leading to looser cristae structures, and lower respiratory functions. In this scenario, ATP production is mainly from aerobic 
glycolysis. By contrast, fusion of mitochondria is facilitated by upregulation of optic atrophy 1 (OPA1)-mediated mitochondrial inner membrane fusion in memory 
T cells. Furthermore, the tight cristae structure and compact respiratory complex also support maintenance of higher mitochondrial membrane potential (ΔΨm) and 
the oxidative metabolism in mitochondria.
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elevated tumor metabolism could drastically affect mitochon-
drial metabolism and dynamics (61), it is likely that T cells fail 
to sustain their mitochondrial activity and biogenesis due to a 
metabolic status in the tumor microenvironment that does not 
exist in the chronic viral infection condition. Interestingly, PD-1 
signaling has been shown to increase FAO and mitochondrial 
spare respiratory capacity in effector T cells (62). Therefore, we 
postulate that the impairment in mitochondrial biogenesis while 
receiving PD-1 signaling might result in cell death and senes-
cence in tumor-infiltrating T cell due to metabolic catastrophe 
(Figure  2). Altogether, these recent studies in chronic viral 
infection and tumors suggest that mitochondrial metabolism 
in T  cells could critically regulate T  cell immune responses in 
disease progression. Further investigations are needed to reveal 
how mitochondrial activity is connected with T  cell immune 
responses and whether regulation of mitochondrial dynamics 
also controls T cells behavior. These investigations will provide 
novel insights for immunometabolic regulation and facilitate the 
design of immunotherapies.

T Cell Aging
Accumulation of dysfunctional mitochondria is frequently 
observed in aged cells (63). The mitochondrial free radical 
theory of aging has been recognized for decades (64); oxidation 
of cellular macromolecules and mitochondrial DNA damages are 
thought to be mainly caused by reactive oxygen species (ROS) 
produced from dysfunctional mitochondria (65, 66). Aged T cells 
display a reduction in respiratory metabolism and ETC activity; 
this is accompanied by reduced Ca2+ influx into mitochondria 

and elevated mitochondrial ROS production. These changes 
could lead to decreased ΔΨm and ATP production, as well as 
activation of nuclear factor of activated T-cells (67). Aged T cells 
may also upregulate the expression levels of coinhibitory receptors 
such as PD-1, TIGIT (T-cell immunoreceptor with Ig and ITIM 
domains), Lag-3 (lymphocyte-activation protein 3), and Tim-3 
(T-cell immunoglobulin and mucin-domain containing-3). 
Therefore, two attractive strategies to rejuvenate the immune 
responses of aged T cells are (1) activate mitochondrial biogen-
esis and (2) improve mitophagy-mediated mitochondrial quality 
control. Among the proposed strategies, nicotinamide adenosine 
dinucleotide (NAD)-dependent regulation has delivered prom-
ising outcomes in different aging studies (68). Manipulating 
cellular metabolism or treating with nicotinamide riboside 
increases NAD and may prevent aging by restoring mitochon-
drial activity. The restoration of mitochondrial activity occurs 
mainly because of mitochondrial biogenesis activation induced 
by a sirtuin 1–PGC1α pathway and SIRT3-induced mitophagy 
(69, 70). However, it remains unclear if these strategies can also 
be applied to aged T cells. Detailed analysis of the contributions of 
deregulated mitochondrial dynamics in T cell aging will provide 
a springboard for developing immunometabolic boosters to 
rejuvenate aged T cells.

T Cells in Autoimmunity
A well-functioning immune system is reliant on the selection of 
a lymphocyte repertoire that is adequately diverse in response 
to numerous foreign antigens yet sufficiently self-tolerant to 
avoid the development of autoimmunity. As described above, 
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production of ROS and ATP synthesis, which are tightly associ-
ated with the ΔΨm, regulate the activation, proliferation, and 
selection of the cell death pathway in T  cells. Recent evidence 
has proposed that the regulation of programmed cell death in 
T  cells is impaired in both human and murine systemic lupus 
erythematosus (SLE) contributing to other disease pathogenesis 
(71). Meanwhile, ΔΨm and ROS levels are elevated in patients 
with SLE in comparison with healthy controls (72). When 
mitochondrial ROS was blocked in lupus T cells, mice showed 
reduced interferon pathway signaling and had decreased signs 
of autoimmune disease (73). Furthermore, coordinated mito-
chondrial hyperpolarization and ATP depletion play key roles in 
abnormal T cell death in lupus patients (74). Hence, persistent 
mitochondrial hyperpolarization, which leads to increased ROS 

production and ATP depletion, might be responsible for the 
unusual increase in spontaneous apoptosis in SLE patients and 
other relative autoimmune diseases. However, the relative impact 
and metabolic signaling pathways involved still require further 
investigation. This will likely allow us to identify novel targets 
for pharmacological intervention in patients with autoimmune 
diseases.

COnCLUSiOn ReMARKS

Over the past two decades, studies have revealed that metabolic 
checkpoints couple metabolic demands and activation signaling 
cascades to orchestrate immune cell differentiation, proliferation, 
survival, and function, through multiple layers of regulation. 
These regulations are operated through the most ancient cellular 
machineries to ensure proper immune responses are engaged. In 
this review, we discuss how mitochondrial dynamics can support 
T cell metabolic demands and the contribution of mitochondrial 
dynamics to T cell behavior in different diseases. Nevertheless, the 
detailed regulation and contribution of mitochondrial dynamics 
to immune cells remains to be fully explored. Most importantly, 
deciphering how mitochondrial activity communicates with 
the nuclear landscape, including changes in epigenetics and the 
transcriptome, will provide novel information regarding immu-
nometabolic regulation and cell biology. We also envisage that 
these mitochondria-derived regulations may be utilized in other 
immune cells, including antigen-presenting cells, NK cells, and 
innate lymphocytes. Altogether, understanding these underlying 
immunometabolic controls will provide the foundations for novel 
immunotherapies that can selectively tune the immune responses 
of deregulated immune cells in various diseases, including auto-
immunity and cancer.
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