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Excess fructose intake causes hypertriglyceridemia and hepatic
insulin resistance in sedentary humans. Since exercise improves
insulin sensitivity in insulin-resistant patients, we hypothesized
that it would also prevent fructose-induced hypertriglyceridemia.
This study was therefore designed to evaluate the effects of
exercise on circulating lipids in healthy subjects fed a weight-
maintenance, high-fructose diet. Eight healthy males were stud-
ied on three occasions after 4 days of 1) a diet low in fructose and
no exercise (C), 2) a diet with 30% fructose and no exercise
(HFr), or 3) a diet with 30% fructose and moderate aerobic exer-
cise (HFrEx). On all three occasions, a 9-h oral [13C]-labeled
fructose loading test was performed on the fifth day to measure
[13C]palmitate in triglyceride-rich lipoprotein (TRL)-triglycerides
(TG). Compared with C, HFr significantly increased fasting glu-
cose, total TG, TRL-TG concentrations, and apolipoprotein (apo)
B48 concentrations as well as postfructose glucose, total TG, TRL-
TG, and [13C]palmitate in TRL-TG. HFrEx completely normalized
fasting and postfructose TG, TRL-TG, and [13C]palmitate concen-
tration in TRL-TG and apoB48 concentrations. In addition, it in-
creased lipid oxidation and plasma nonesterified fatty acid
concentrations compared with HFr. These data indicate that exer-
cise prevents the dyslipidemia induced by high fructose intake
independently of energy balance. Diabetes 62:2259–2265, 2013

I
t is currently suspected that overconsumption of
fructose, in the form of either sugar or high-fructose
corn syrup, may promote obesity and favor the de-
velopment of metabolic diseases such as type 2 di-

abetes and dyslipidemia (1,2). This is supported by a large
number of studies in rodents, which demonstrate that
a high-sucrose diet causes obesity, diabetes, dyslipidemia,
and hepatic steatosis (3) and that this effect is mainly due
to the fructose component of sucrose (4,5). Consistent
with this hypothesis, epidemiological studies have shown
that high intakes of sugar, fructose, or sweetened bev-
erages are associated with the development of obesity
(6,7), diabetes (8), hypertriglyceridemia (9), an increase in
small dense atherogenic LDL particles (10), high blood
pressure (11), albuminuria (12), and nonalcoholic fatty
liver diseases (13). Several short-term studies have further

documented that hypercaloric, high-fructose diets can
cause increases in a number of cardiometabolic risk fac-
tors in humans, such as fasting and postprandial hyper-
triglyceridemia (14–18), ectopic lipid deposition in liver
cells (19,20), impaired postprandial glucose homeostasis
(18), and hepatic insulin resistance (21,22). Some of these
effects may be related, at least in part, to the fact that
fructose can be converted into fatty acids, which has been
demonstrated after both acute (23) and chronic (18)
fructose feeding. Exercise is very efficient at reducing the
metabolic dysfunctions associated with obesity (24,25),
and although many of these effects appear to be related to
enhanced energy expenditure and improved energy bal-
ance (26,27), there is growing evidence that such impro-
vements are independent of the changes in energy balance
or body composition (28,29). Exercise has also been
shown to prevent the accumulation of triglyceride-rich li-
poprotein (TRL)-triglycerides (TG) and improve the
plasma atherogenic lipid profile in healthy subjects fed
a high-carbohydrate diet (30). The purpose of this study
was to investigate whether exercise would similarly pre-
vent fructose-induced metabolic effects.

RESEARCH DESIGN AND METHODS

Eight healthy, nonobese, male volunteers aged 21.5 6 2.7 years, with mean 6
SD body weight 68.5 6 7.0 kg, height 1.76 6 0.03 m, and BMI 22.1 6 1.9 kg/m2,
were studied. The subjects were sedentary, defined as undergoing ,60 min
exercise per week, and nonsmokers, who were not taking medication and had
no history of diabetes. The experimental protocol was approved by the ethics
committee of Lausanne University School of Medicine. All participants pro-
vided informed, written consent. The experimental, randomized crossover
design is illustrated in Fig. 1. Each of the eight volunteers was studied on three
different occasions after having followed three different diet and physical
activity programs during 4 days as follows:

c Control (C): Subjects received a low-fructose, weight-maintenance diet con-
taining 1.5 times their basal energy requirements calculated using the
Harris-Benedict equation (31), which was composed of 50% complex car-
bohydrates, 5% sugars (mainly lactose), 30% fat, and 15% protein, and per-
formed minimal physical activity (,30 min walking/day and no other
exercise).

c High-fructose diet (HFr): Subjects received a weight-maintenance, high-
fructose diet containing 1.5 times their basal energy requirements com-
posed of 20% complex carbohydrates, 5% nonfructose sugars, 30% fructose
provided as lemon-flavored drinks, 30% fat, and 15% protein and performed
minimal physical activity.

c High-fructose diet plus exercise (HFrEx): Subjects received a high-fructose
diet containing 1.7 times their basal energy requirements and completed
two 30-min cycling exercise sessions at a power output of 125 W—one at
noon and one at 5:00 P.M. on each day during 4 days. The physical activity
factor of 1.7 was calculated at the time of protocol submission for a 22-year-
old male weighing 75 kg and measuring 175 cm, with a predicted basal
metabolic rate of 1.2845 kcal/min calculated using the Harris-Benedict equa-
tion (31). The predicted 24-h sedentary energy requirement was calculated
assuming a nighttime energy expenditure of 8 h at a physical activity level
of 1.0 and a daytime energy expenditure of 16 h at a physical activity level of
1.75, totaling 1.5 times basal energy requirements over 24 h or 2,775 kcal/day.
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The predicted 24-h energy requirements for HFrEx was estimated to be
3,205 kcal/day by assuming an exercise energy efficiency of 25% and equiv-
alent to an extra 430 kcal/day, which corresponds to 1.7 times basal energy
requirements.

Diets were calculated individually for each subject by a research nutritionist
and were distributed each day as prepacked food items and drinks to be
consumed at home. Subjects were instructed to consume all the food and
beverages that were provided according to detailed instructions and not to
consume anything else except unsweetened tea. All exercise sessions were
performed at the Department of Physiology under supervision of one of the
investigators.
Oral [

13
C]fructose tests.On the fifth day of each condition, subjects reported

to the Clinical Research Centre at 7:00 A.M. after an 11-h fast. Upon their arrival,
subjects were weighed and their body composition was measured using bio-
electrical impedance plethysmography (Imp DF50; ImpediMed, Eight Mile
Plains, Australia). After subjects were lying in a bed, a catheter was inserted
into a vein of the right arm for blood sampling and was maintained patent by
a slow infusion of normosaline. Another catheter was inserted into a vein of
the left arm and was used for the administration of a primed continuous in-
fusion of [6,6-2H2]glucose (bolus, 2 mg/kg body wt, and continuous infusion,
0.02 mg/kg/min; Cambridge Isotope Laboratories, Andover, MA) throughout
the test. Oral loads of fructose (0.2 g/kg fat-free mass, enriched with 0.1%
[U-13C6]fructose; Cambridge Isotope Laboratories) were given every hour for
9 h. No other food was provided, and fructose intake corresponded to 78 6 5%
total energy expenditure during the experimental period. A bolus of 100 mmol/kg
[1,1,2,3,3-2H5]glycerol (Cambridge Isotope Laboratories) was administered,
and TRL-TG kinetics was calculated from the modeling of the decrease in
[2H5]glycerol enrichment in TRL-TG over time. This method provides a single
value over several hours. For this reason, the bolus of [2H5]glycerol was ad-
ministered after the administration of the third dose of fructose (time 120 min)
to allow 2 h for stimulation of hepatic fructose uptake and metabolism. Blood
samples were collected at baseline (t = 0) and after 60, 120, 140, 160, 180, 240,
300, 360, 420, 480, and 540 min. Blood pressure was measured at baseline
using an automatic blood pressure device (Omron 907; Omron, Hoofddorp, the
Netherlands). Energy expenditure and net substrate oxidation rates were
monitored over the last 3 h of the test by open-circuit indirect calorimetry
(Deltatrac II; Datex Instrument, Helsinki, Finland). However, owing to tech-
nical problems with the indirect calorimeter, results could be obtained for only
six of the eight participants. Urine was collected throughout the day to de-
termine urea nitrogen excretion rate.
Analytic procedures. Plasma was immediately separated from blood cells by
centrifugation at 3,600g for 10 min at 4°C, and aliquots were stored at220°C until
assayed. Plasma metabolites (glucose, TG, nonesterified fatty acids [NEFAs],
cholesterol, and lactate) (Randox Laboratories, Crumlin, U.K.), b-hydroxybutyric
acid (BHB) (Roche Diagnostics Hitachi, Rotkreuz, Switzerland), and urinary
urea (Randox Laboratories, Crumlin, U.K.) were measured by enzymatic
methods; insulin and glucagon (Millipore, Billerica, MA) were assessed by

radioimmunoassay. Apolipoprotein (apo)B48 was measured by ELISA using
a kit from Shibayagi, Shibukawa, Japan.

The TRL fraction (Svedberg flotation unit [Sf] .20) was separated by ul-
tracentrifugation (17 h at 45,000 rpm at 4°C) in an Optima L-90 K ultracen-
trifuge (Beckman Coulter, Brea, CA) in a fixed-angle rotor (50.3 Ti; Beckman
Coulter). After plasma deproteinization and partial purification over anion-
and cation-exchange resins, plasma [2H5]glycerol and [6,6-2H2]glucose were
acetylated in the presence of acetic anhydride and pyridine and their enrich-
ments were measured by GC-MS (Agilent Technologies, Santa Clara, CA) in
chemical ionization mode, with selective monitoring of m/z 331 and 333 for
glucose and 159 and 164 for glycerol. For [13C]palmitate enrichment and
concentration, total lipids were extracted from plasma and fatty acid methyl
esters (FAMEs) were prepared from TG fractions. The ratio of 13C to 12C in the
FAME derivatives was ascertained by using D Plus XP GC-combustion isotope
ratio MS (Thermo Electron, Bremen, Germany). Tricosanoic acid methyl ester
was used as an isotopic enrichment standard, and a quality-control sample
(certified standard of eicosanoic acid FAME; Department of Geological Sci-
ences, Indiana University, Bloomington, IN) was run with each set of samples.

LDL size and subclasses were determined in frozen samples from baseline
measurements. For analysis of LDL size and subclasses, nondenaturing PAGE
of plasma was performed and analyzed and LDL subclass distribution (Class
I-IVb) was calculated as previously described (10).
Calculations. TRL-TG production was calculated as follows: the fractional
turnover rate (FTR) of TRL-TG was determined by using compartmental
modeling analysis as previously described (32). The rate of TRL-TG secretion
(in millimoles per hour), which represents the amount of TRL-TG entering the
bloodstream, was calculated by multiplying the FTR of TRL-TG (in pools/hour)
by the pool of TRL-TG in plasma (in millimoles). The clearance rate of TRL-TG
(in millimeters plasma per minute), which is an index of the removal efficiency
of TRL-TG from the systemic circulation, was calculated by dividing the TRL-TG
secretion rate (in millimoles per minute) by the TRL-TG concentration (in
millimoles per milliliter).

Plasma [13C]TRL-palmitate (nmol/L) was calculated as follows: [13C]TRL-
TG-palmitate isotopic enrichment [atom percent excess]3weight % palmitate3
[TRL-TG (nmol/L)]. [13C]TRL-palmitate production (nanomoles per hour) was
calculated by multiplying the FTR of TRL-TG (pools/hour) by the pool of
[13C]TRL-palmitate (nanomoles).

The contribution of gluconeogenesis from fructose to endogenous glucose
production [EGP(F) in grams per kilogram per hour] was calculated as follows:

EGPðFÞ ¼ EGP 3 fð13CG1 1
13CG2Þ=21 pV 3½ðG1 1G2Þ=2 

3  ð13CG2 2
13CG1Þ=ðT2 2T1Þ�

o
=13CF

where EGP is the endogenous glucose production (grams per kilograms per
hour) calculated with [6,6-2H2]glucose (20), 13CG is the isotopic enrichment
of plasma glucose (atom percent excess), G is the glucose concentration
(grams/liter), 13CF is the isotopic enrichment of oral fructose, p is the pool
fraction (set at 0.75), V is the glucose distribution space (set at 0.2 times body
weight), and T is the time (hours).

Glycogen synthesis (GS) was estimated as:

GS  ðg=kg=hÞ ¼ fructose  ingested  ðg=kg=hÞ2 net  CHOoxðg=kg=hÞ
where net CHOox (oxidized carbohydrates) was calculated using standard
indirect calorimetry equations (20).

Statistical analysis. All values are expressed as means 6 SEM. Log or box-
cox transformation was applied to skewed data before statistical analysis.
Values obtained at time 0 were used as fasting values. Changes in body weight,
body fat content, blood pressure, and fasting parameters were assessed by
using ANOVA for repeated measures, followed by Tukey post hoc tests for
multiple comparisons.

Metabolic effects of fructose loading in the C condition were expressed as
the percent change from T = 0 to T = 540 min. The effects of fructose loading
over time, dietary condition with or without exercise, and their interaction
were evaluated by a two-way ANOVA for repeated measures with interaction,
followed by Tukey post hoc tests for multiple comparisons.

TRL-TG production and clearance, [13C]TRL-palmitate production, and
averaged postfructose gluconeogenesis from fructose and GS were compared
using ANOVA for repeated measures, followed by Tukey post hoc tests.

The prespecified primary outcome was postfructose [13C]TRL-palmitate
concentrations. Power analysis was based on our previous study com-
paring the effects of oral fructose in male and females (33) and indicated that
a sample size of six was required to detect an effect size of 0.5 with a power
of 80%.

All statistical calculations were performed with Stata 10 (Stata, College
Station, TX). P , 0.05 was considered statistically significant.

FIG. 1. Experimental design of the study: Ex, exercise; OF, oral fruc-
tose test.
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RESULTS

Anthropometric variables and fasting metabolic
parameters. There was no difference in body weight
(C 68.7 6 2.6 kg, HFr 68.8 6 2.7 kg, and HFrEx 68.9 6
2.7 kg), body fat content (C 17.9 6 2.3%, HFr 17.8 6 2.3%,
and HFrEx 17.7 6 2.2%), or blood pressure (C 118/63 6
3/2 mmHg, HFr 115/65 6 2/2 mmHg, and HFrEx 119/61 6
3/2 mmHg) after the three different dietary conditions.

HFr significantly increased fasting plasma TG, TRL-TG,
apoB48, and glucose concentrations (all P , 0.05 [Fig. 2,
Fig. 3, and Table 1]). However, it did not significantly
change fasting cholesterol, HDL cholesterol, insulin, glu-
cagon, NEFA, glycerol, BHB, or lactate concentrations (NS
[Fig. 2, Fig. 3, and Table 1]). LDL size and LDL subclass
distribution were not different after the HFr diet compared
with the C diet, except for a small increase in LDL IIa (P ,
0.05) (Table 1).

HFrEx significantly blunted the effects of HFr on
plasma TG and normalized fasting total TG, TRL-TG, and
apoB48 concentrations. It also significantly increased
LDL-I particles (P , 0.05 vs. HFr) (Table 1) and decreased
small LDL particles (III + IV) compared with C (P , 0.05
vs. C) (Table 1). Fasting plasma glucose concentrations,
however, remained unchanged compared with HFr. HFrEx
also increased fasting BHB concentrations (P , 0.05 vs.
HFr). All other parameters were unchanged (Fig. 2, Fig. 3,
and Table 1).
Metabolic effects of fructose loading. To further focus
on the postprandial metabolic effects of fructose, we
measured several metabolic parameters relevant to lipid
and glucose metabolism during a 9-h fructose loading test.
In C, fructose ingestion caused a modest increase in total
TG and TRL-TG (P , 0.05) (Fig. 2A and B) and a marked

suppression of NEFA (P , 0.005) (Fig. 2C), glycerol (P ,
0.01, Fig. 2D), and BHB concentrations (P , 0.0005) (Fig.
2E). [13C]TRL-palmitate concentrations increased (P, 0.05),
indicating conversion of fructose into lipids (Fig. 2F). Al-
though a substantial amount of ingested fructose was
converted into glucose and released in the systemic
circulation, plasma glucose (Fig. 3A) and insulin con-
centrations were not increased (Fig. 3B) compared with
baseline. There was also a significant increase in lactate
concentration, most likely from splanchnic fructose me-
tabolism (P , 0.0005) (Fig. 3C).

Compared with C, HFr enhanced postfructose total TG
and TRL-TG concentrations (P , 0.0001) (Fig. 2A and B)
and [13C]TRL-palmitate concentration (P , 0.0001) (Fig.
2F) and decreased postfructose NEFA concentrations
(P , 0.05) (Fig. 2C). TRL-TG secretion was not significantly
increased, but TRL-TG clearance tended to decrease
(Table 2). [13C]TRL-palmitate production was increased
2.9-fold (Table 2) compared with C, but the difference did
not reach statistical significance owing to unexpected,
very high interindividual variations. Gluconeogenesis from
fructose was similar to that with C (Table 3), but glucose
concentrations were significantly increased (P , 0.0001)
(Fig. 3A).

In the HFrEx condition, postfructose total TG, TRL-TG,
and [13C]TRL-palmitate concentrations were completely
normalized (all NS compared with C) (Fig. 2A, B, and F).
TRL-TG clearance was increased by 66% compared with
HFr (P , 0.05 vs. HFr) (Table 2). TRL-TG secretion was
not significantly changed, but [13C]TRL-palmitate pro-
duction was markedly decreased compared with HFr (P =
0.074 vs. HFr) (Table 2). Furthermore, NEFA and glycerol
concentrations were increased compared with both HFr

FIG. 2. Mean 6 SEM total TG (A), TRL-TG (B), NEFA (C), glycerol (D), BHB (E), and [
13
C]TRL-palmitate (F) concentrations over time after oral

loads of fructose taken hourly (n = 8). *HFr significantly different from C at baseline, ‡HFrEx significantly different from HFr at baseline,
a
HFr

significantly different from C (Tukey post hoc test, P < 0.05),
b
HFrEx significantly different from C (Tukey post hoc test, P < 0.05),

c
HFrEx

significantly different from HFr (Tukey post hoc test, P < 0.05).
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and C (both P , 0.0001 vs. HFr) (Fig. 2C and D). Gluco-
neogenesis from fructose and plasma glucose concen-
trations remained increased to the same extent as HFr
(NS) (Table 3 and Fig. 3A), while insulin concentrations
were slightly decreased (P , 0.05 vs. HFr) (Fig. 3B).
Lactate concentrations were significantly decreased com-
pared with those observed with C (P , 0.005) (Fig. 3C).

Net lipid oxidation was increased (P , 0.0005 vs. HFr)
(Table 3) while net carbohydrate oxidation was decreased
(P , 0.001 vs. HFr) (Table 3), and net GS was nearly
doubled compared with HFr and C (P , 0.05 vs. HFr)
(Table 3). Energy expenditure was increased with HFrEx
but only compared with C (P , 0.05) (Table 3). Mean LDL
size was not significantly different from HFr or C, but the
amount of large, less atherogenic LDL subclass I particles
was significantly increased after HFrEx compared with
HFr (P , 0.05) (Table 1), and small dense LDL particles
(III + IV) were significantly decreased compared with C
(P , 0.05) (Table 1).

DISCUSSION

The current study was specifically designed to evaluate
whether fructose, when administered together with
a weight-maintenance diet, causes significant alterations of
blood lipids and whether these effects can be modulated
by exercise. For this purpose, we selected a design in
which fructose was administered to the same subjects on
three occasions, i.e., after having consumed a low-fructose
diet without exercise and after having received a high-
fructose diet with and without exercise. Total energy in-
take was adapted to meet energy expenditure on all three
occasions. Fructose intake corresponded to 30% total en-
ergy intake on both occasions but was higher in absolute
values when subjects exercised.

With low physical activity, an HFr diet over 4 days led to
an increase in total plasma TG and TRL-TG concentrations
both after an overnight fast and after fructose loading.
There was no significant change in TRL-TG kinetics after
fructose loading, most likely due to the small number of
subjects included and to a relatively large interindividual
variability. It appears likely, however, that decreased
TRL-TG clearance contributed to the rise in TRL-TG, since
this parameter was previously reported to decrease after
fructose ingestion (34) and showed a strong trend toward
a 22% reduction. Increased TRL-TG production has also
been reported after high-carbohydrate diets (35) and may
have contributed as well.

During the fructose-loading experiments, oral fructose
was labeled with 13C, and incorporation of 13C into TRL-TG
palmitate could be documented. Furthermore, the in-
crease in [13C]TRL-palmitate concentration was markedly
enhanced when fructose was ingested after consumption
of a high-fructose diet versus a low-fructose diet without
exercise. This suggests that chronic fructose intake upre-
gulated hepatic de novo lipogenesis. However, it is also
possible that an increase in gut fructose absorption,

FIG. 3. Mean 6 SEM glucose (A), insulin (B), and lactate (C) con-
centrations over time after fructose oral loads taken hourly (n = 8).
*HFr significantly different from C at baseline,

a
HFr significantly dif-

ferent from C (Tukey post hoc test, P < 0.05),
b
HFrEx significantly

different from C (Tukey post hoc test, P < 0.05),
c
HFrEx significantly

different from HFr (Tukey post hoc test, P < 0.05).

TABLE 1
Fasting plasma hormone and substrate concentrations at t = 0 (n = 8)

C HFr HFrEx P (C vs. HFr) P (C vs. HFrEx) P (HFr vs. HFrEx)

Glucagon (pg/mL) 50.43 6 3.67 46.20 6 3.26 53.79 6 5.64 NS NS NS
Total cholesterol (mmol/L) 3.58 6 0.15 3.87 6 0.22 3.76 6 0.16 NS NS NS
HDL cholesterol (mmol/L) 1.22 6 0.09 1.17 6 0.10 1.23 6 0.09 NS NS NS
ApoB48 (mg/mL) 4.55 6 0.73 8.13 6 0.94 5.29 6 0.85 ,0.001 NS ,0.01
LDL particle size (Å) 274.63 6 2.88 271.74 6 3.00 276.65 6 2.21 NS NS NS
LDL I particles (%) 29.75 6 3.00 27.50 6 2.10 34.16 6 2.06 NS NS ,0.05
LDL IIa particles (%) 14.81 6 0.99 17.44 6 1.29 15.89 6 1.11 ,0.05 NS NS
LDL IIb particles (%) 16.51 6 1.78 18.38 6 1.38 15.41 6 0.95 NS NS NS
Small LDL particles, III + IV (%) 38.93 6 0.69 36.65 6 1.63 34.53 6 1.37 NS ,0.05 NS

Data are means 6 SEM.
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induced by chronic fructose intake, contributed to in-
crease the total fructose load delivered to the liver (36).

In humans, carbohydrate-induced de novo lipogenesis
occurs essentially in the liver, although massive carbohy-
drate overfeeding may also stimulate this pathway in
adipose tissue (37,38). Hepatic de novo lipogenesis has
further been suggested to make a significant contribu-
tion to fructose- or sucrose-induced hypertriglyceridemia
through enhanced secretion of hepatic VLDL (21,39). In-
terestingly, fasting apoB48 concentrations nearly doubled
with HFr. Since this apolipoprotein is exclusively syn-
thesized in enterocytes, this observation indicates that
a high-fructose diet stimulates the secretion of intestinal,
chylomicron-like particles even after an overnight fast.
Activation of this pathway has indeed been documented in
high fructose–fed hamsters (40). However, the contribu-
tion of intestinal lipogenesis to the fructose-induced in-
crease in TRL-TG cannot be estimated from the mere
increase in apoB48 concentration.

When the high-fructose diet was associated with exer-
cise, all the effects of fructose on lipoprotein metabolism
were totally prevented. There was indeed complete nor-
malization of fasting and postprandial TRL-TG concen-
tration, which was essentially due to a 65% increase in
TRL-TG clearance and suggests that exercise-enhanced li-
poprotein lipase activity facilitates the disposal of lipids in
adipose cells or skeletal muscle fibers. In addition to this
accelerated TRL-TG removal from the circulation, exercise
also very dramatically decreased [13C]TRL-palmitate con-
centrations and secretion. This indicates that exercise
inhibited de novo lipogenesis and that this may also have
contributed to the TG-lowering effects of exercise. Con-
sumption of high-fructose or high-sucrose diets has also
been shown to decrease the concentration of LDL subclass
I particles, which have a lower atherogenic potential than
other LDL subclasses (10,41). In the current study, HFr
failed to significantly alter LDL particle size and the pro-
portion of LDL subclass I, possibly due to the short dura-
tion of diet administration. However, LDL subclass I was
significantly increased with HFrEx. This is consistent with

previous reports showing that exercise has beneficial
effects on lipoprotein profiles in obese dyslipidemic
patients (42) and in healthy subjects fed a high-carbohydrate
diet (30) and adds to the evidence that it can effici-
ently prevent the adverse consequences of a high-fructose
diet.

Unexpectedly, exercise restored normal fasting apoB48
concentrations, indicating that exercise regulated not only
hepatic but also intestinal fructose metabolism. However,
the functional significance of gut fructose metabolism
remains to be more fully evaluated.

All of these effects of exercise were observed even
though the additional energy expended during physical
activity (;430 kcal/day) was compensated for by in-
creased total energy and fructose intakes indicating that
exercise potently impacts on fructose metabolic pathways
independently of changes in overall energy balance.

We can only speculate on the mechanisms leading to
these effects. Exercise may indeed cause multiple meta-
bolic alterations, which converge to reduce plasma TG
concentrations. First, acute exercise enhances fructose
conversion into glucose and lactate and their use as energy
providing substrates by the working muscle (43), which
may have decreased the availability of fructose carbons for
de novo lipogenesis during the days preceding the oral
fructose test. Second, exercise-induced hepatic and mus-
cle glycogen depletion can be expected to result in an
enhanced conversion of fructose into hepatic glycogen
when fructose is subsequently ingested, thus diverting
fructose away from hepatic de novo lipogenesis. Our ob-
servation that exercise increased net GS after fructose
loading is entirely consistent with this hypothesis. Third,
acute exercise increases LPL activity in skeletal muscle
(44,45), resulting in enhanced TRL-TG clearance. Finally,
exercise stimulates lipolysis, and the NEFA, released into
the systemic circulation, may activate the nuclear recep-
tors peroxisome proliferator–activated receptor-a in the
liver and possibly in enterocytes as well to stimulate
fat oxidation and reduce hepatic and intestinal de novo
lipogenesis (46).

TABLE 2
TRL-TG kinetics (n = 8)

C HFr HFrEx
P

(C vs. HFr)
P

(C vs. HFrEx)
P

(HFr vs. HFrEx)

TRL-TG production (mmol/h) 0.72 6 0.06 0.80 6 0.08 0.92 6 0.07 NS ,0.05 NS
TRL-TG clearance (ml/min) 28.19 6 6.09 22.83 6 3.98 37.78 6 6.84 NS NS ,0.05
[13C]TRL-palmitate production
(nmol/h) 1.99 6 0.69 5.82 6 2.48 1.27 6 0.89 NS NS NS (0.074)

Data are means 6 SEM.

TABLE 3
Energy expenditure, net substrate oxidation, and calculated net glycogen synthesis (n = 6)

C HFr HFrEx
P

(C vs. HFr)
P

(C vs. HFrEx)
P

(HFr vs. HFrEx)

Net carbohydrate oxidation (g/kg/h) 0.121 6 0.025 0.106 6 0.021 0.072 6 0.023 NS ,0.0001 ,0.001
Net lipid oxidation (g/kg/h) 0.017 6 0.008 0.024 6 0.007 0.038 6 0.008 NS ,0.0001 ,0.0005
Energy expenditure (kcal/kg/h) 0.815 6 0.040 0.841 6 0.032 0.854 6 0.034 NS ,0.05 NS
Gluconeogenesis (g/kg/h) 0.083 6 0.005 0.082 6 0.006 0.083 6 0.006 NS NS NS
Net glycogen synthesis (g/kg/h) 0.042 6 0.022 0.058 6 0.019 0.093 6 0.020 NS ,0.001 ,0.05

Data are means 6 SEM.
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Besides its effect on plasma TG, HFr also increased
slightly, but significantly, fasting and postfructose plasma
glucose concentrations. Other studies have also docu-
mented that short-term fructose overfeeding increases
basal hepatic glucose output and impairs the ability of low-
dose insulin to suppress hepatic glucose output (21,22).
These alterations of glucose homeostasis can be observed
within a few days of fructose overfeeding and may be due
to fructose increasing hepatic glycogen stores (47). It may
therefore correspond to a physiological adaptation to im-
portant changes in sugar intake rather than to pathological
adverse effects of fructose.

Our study has several limitations that need be addressed.
First, energy intake was calculated to match energy re-
quirements based on calculated energy expenditure. This
was done using a well-accepted, reliable equation to predict
basal energy expenditure (31) and a physical activity level
of 1.5. However, since the 24-h energy expenditure was not
actually measured, it is possible that energy balance was
not reached for every subject. This may have affected our
results to some extent, since the effect of exercise to lower
plasma TG is known to be significantly blunted when en-
ergy expended during exercise is fully replaced compared
with negative energy balance (48). Second, incorporation of
13C administered as [13C6]fructose into TRL-TG-palmitate
was used as an indirect estimate of de novo lipogenesis.
This is a relatively crude method that does not allow
a quantitative estimate of fatty acid synthesis owing to the
fact that the isotopic enrichment of intrahepatic acetyl-CoA,
the actual precursor for fatty acid synthesis, was not mea-
sured. There may also be an underestimation of hepatic
fatty acid synthesis due to the short period of tracer ad-
ministration, which may have been insufficient for equili-
bration of newly synthesized fatty acids and delayed
secretion of TG from the intrahepatic pool into VLDL (49).
Third, this method provides an estimate of the contribution
of de novo lipogenesis to TRL-palmitate secretion but not to
intrahepatic TG storage, and we cannot directly assess the
effect of fructose or exercise on the latter pathway. Fourth,
we cannot discard the hypothesis that exercise may alter
plasma lipoprotein metabolism irrespective of dietary fruc-
tose content. Finally, this study evaluated the effects of
a very high fructose intake (30% total energy, which far
exceeds the average U.S. per capita daily fructose con-
sumption [~10% total energy] [50]) over a 4-day period and,
hence, does not provide information on the effects of
fructose in the general population or over longer periods of
time. It does, however, demonstrate that exercise can effi-
ciently reduce some potentially adverse effects of fructose.

In summary, we observed that substitution of fructose
for starch in a weight-maintenance diet increased plasma
total and TRL-TG. These alterations may increase car-
diometabolic risk but were observed at a very high fruc-
tose intake (;200 g/day), largely exceeding the average
fructose intake observed in the population (50). Even with
such a high intake, exercise completely prevented fruc-
tose-induced alterations of lipid metabolism.
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