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Introduction

Macroeconomics of climate change seeks to provide economic insights into how we can

address the challenges posed by climate change while promoting sustainable economic

growth and equity. It involves studying the complex interactions between the environment,

the economy, and public policies to inform decision-making at the global, national, and

local levels. To engage with these issues one may want to rely on a modeling setup that

represents an interaction of the economy and climate in some form. This brings two

aspects to consideration. First, to be able to explore the macroeconomic subtleties of

climate change it is desirable to have a reliable and simple model of climate to work with.

Second, macroeconomic models of climate change are usually high-dimensional non-linear

optimization problems. To deal with these optimization problems one needs a flexible

solution method that can fathom these complexities in a computationally efficient way.

Having these necessary ingredients in place one can tackle a broad range of macroeconomic

questions related to the climate change issues. The present thesis aims to alleviate the

aforementioned difficulties as well as provide new insights into the role of the climate

emulator in the economy-climate model, shed light on the uncertainty quantification in

the integrated assessment models, and evaluate the role of technological spillovers in the

decarbonization of developing countries.

All three chapters of the thesis employ the computational approach that is based

on deep neural net algorithms to tackle non-linear dynamic-stochastic optimization prob-

lems. The impact of deep learning in many fields of life and science has been revolutionary.

Global solution methods for optimization problems can also benefit from deep neural net

advancements. With deep neural net-based algorithms, even previously unsolvable opti-

mization problems with large state space and complex structures can be solved globally,

creating new research opportunities in economics fields that rely on structural modeling.



2 Introduction

Three chapters of the thesis provide various angles of the application of deep neural nets

to economy-climate modeling.

The first chapter, "The Climate in Climate Economics", co-authored with Doris Folini,

Felix Kübler, and Simon Scheidegger, proposes a transparent calibration and evaluation

strategy for a climate emulator, demonstrating its importance by recalibrating the widely

used DICE-2016 model. We found the functional form of the DICE-2016 emulator fit

for purpose. However, we discovered miscalibration in its carbon cycle and temperature

equations. We show that the recalibrated DICE-2016 model demonstrates a strongly

reduced sensitivity to the discount rate and about one degree less long-term warming. We

also examined the importance of the emulator calibration for the social cost of carbon.

The results show a potential four-fold change in the social cost of carbon value due to

model uncertainty resulting from different consistent climate calibrations.

In the second chapter, "Deep Uncertainty Quantification for Stochastic Integrated As-

sessment Models", co-authored with Felix Kübler, Simon Scheidegger, and Takafumi Usui,

we quantify uncertainty in dynamic stochastic economy-climate models. We formulate a

state-of-the-art stochastic integrated assessment model with Bayesian learning over the

equilibrium climate sensitivity, a key climate uncertain value. We consider several un-

certain model parameters, with the discount rate and risk aversion among them. The

project utilizes deep learning algorithms to give the solution of the model for any possi-

ble combination of the uncertain parameters and measure the non-linear impact of each

parameter on the social cost of carbon, among other quantities of interest. This method

of uncertainty quantification can be considered generic for any type of problem, not only

limited to the climate-economy models. Results specific to the model at hand indicate

that the distribution of the impacts of uncertain parameters on the social cost of carbon

changes depending on the uncertainty structure in the model. The uncertainty around

equilibrium climate sensitivity on the social cost of carbon seems to be resolved with the

Bayesian learning process over time.

In the third chapter, "Green energy transition: decarbonization of developing countries

and the role of technological spillovers", I explore the role of technological spillovers and

their interaction with carbon pricing in achieving decarbonization, with a particular focus

on the challenges faced by developing countries. To do this, I develop a two-region in-

tegrated assessment model of the global economy and climate, which includes both fossil
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fuel and renewable energy inputs and features technological spillovers in the developing

economy. I solve the model using deep learning algorithms. The findings indicate that

technological spillovers in developing countries contribute positively to the replacement

of fossil fuels with renewable energy inputs. The study suggests that implementing car-

bon taxation in both advanced and developing regions, along with technological spillovers,

yields the most favorable outcomes for the climate. However, the absence of carbon tax in

developing countries with spillovers delivers slightly better environmental results compared

to taxing both regions without taking spillovers into account. The results emphasize the

importance of considering spillovers and carbon taxation when designing effective strate-

gies to achieve environmental goals.



4 Introduction



Chapter 1

The climate in climate economics †

Abstract

To analyze climate change mitigation strategies, economists rely on simplified climate

models – so-called climate emulators – that provide a realistic quantitative link between

CO2 emissions and global warming at low computational costs. In this paper, we propose

a generic and transparent calibration and evaluation strategy for these climate emulators

that is based on freely and easily accessible state-of-the-art benchmark data from climate

sciences. We demonstrate that the appropriate choice of the free model parameters can

be of key relevance for the predicted social cost of carbon. The key idea we put forward is

to calibrate the simplified climate models to benchmark data from comprehensive global

climate models that took part in the Coupled Model Intercomparison Project, Phase 5

(CMIP5). In particular, we propose to use four different test cases that are considered

pivotal in the climate science literature: two highly idealized tests to separately calibrate

and evaluate the carbon cycle and temperature response, an idealized test to quantify the

transient climate response, and a final test to evaluate the performance for scenarios close

to those arising from economic models, and that include exogenous forcing. As a concrete

example, we re-calibrate the climate part of the widely used DICE-2016, fathoming the

CMIP5 uncertainty range of model responses: the multi-model mean as well as extreme,

but still permissible climate sensitivities and carbon cycle responses. We demonstrate that

the functional form of the climate emulator of the DICE-2016 model is fit for purpose,

†This chapter is co-authored with Doris Folini from the ETH Zürich, Felix Kübler from the University
of Zürich, and Simon Scheidegger from the University of Lausanne.
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despite its simplicity, but its carbon cycle and temperature equations are miscalibrated,

leading to the conclusion that one may want to be skeptical about predictions derived

from DICE-2016. We examine the importance of the calibration for the social cost of

carbon in the context of a partial equilibrium setting where interest rates are exogenous,

as well as the simple general equilibrium setting from DICE-2016. We find that the model

uncertainty from different consistent calibrations of the climate system can change the

social cost of carbon by a factor of four if one assumes a quadratic damage function.

When calibrated to the multi-model mean, our model predicts similar values for the social

cost of carbon as the original DICE-2016, but with a strongly reduced sensitivity to the

discount rate and about one degree less long-term warming. The social cost of carbon in

DICE-2016 is oversensitive to the discount rate, leading to extreme comparative statics

responses to changes in preferences.

Keywords: climate change, social cost of carbon, carbon taxes, environmental policy,

deep learning, integrated assessment models, DICE-2016

JEL classification: C61, E27, Q5, Q51, Q54, Q58

1.1 Introduction

Anthropogenic climate change and the associated economic damages constitute a sub-

stantial negative externality from CO2 emissions. Economic policy can mitigate this ex-

ternality and potentially lead to significant welfare gains across all economic agents (see,

e.g.,(L. Kotlikoff, Kubler, Polbin, & Scheidegger, 2021a, 2021b; L. J. Kotlikoff, Kubler,

Polbin, & Scheidegger, 2021; W. Nordhaus, 2018)). In order to determine the optimal

mitigation strategies, economists need to develop quantitative models that produce a real-

istic link between CO2 emissions and global warming and that are informed by research in

climate science as presented in the Intergovernmental Panel on Climate Change (IPCC)1

reports, that is, the “state-of-the-art” in climate science.

The backbone of the IPCC reports are the Coupled Model Intercomparison Projects

(CMIP5 and CMIP6; see Eyring et al. (2016); Taylor, Stouffer, and Meehl (2012)), which

bundle the output from a collection of global climate models (GCMs) that run on pre-

defined future scenarios, notably future greenhouse gas (GHG) concentrations. The GCMs

1For more details on IPCC, see, e.g., https://www.ipcc.ch.

https://www.ipcc.ch
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come essentially in two flavors: Earth System Models (ESMs), which cover biogeochem-

ical processes like the carbon cycle and can take carbon emissions as input, and coupled

Atmosphere-Ocean Global Climate Models (AOGCMs), which lack biogeochemical pro-

cesses and can take only GHG concentrations as input. One fundamental challenge is

that the computational costs for ESMs (and for AOGCMs) are so significant that they

are not suitable for studying the two-way feedback between the Earth system and human

behavior.2 Therefore, economic models focusing on this feedback have to rely on a much-

simplified representation of the Earth system component. Simplified and computationally

cheap-to-evaluate climate models come at different levels of complexity (and computa-

tional costs) and under different names: Climate emulators (CEs), energy balance models

(EBMs), simple climate models (SCMs), or ESMs of intermediate complexity (EMICs).

We avoid using this differentiation throughout this paper and, somewhat loosely, just use

CE or the climate model.

There is a proliferation of different CEs used in the climate-change economics literature.

The most popular emulators can be found in the Dynamic Integrated Model of Climate

and the Economy (DICE) (W. Nordhaus, 2018), in PAGE (Hope, 2013), as well as that

in Golosov, Hassler, Krusell, and Tsyvinski (2014). Unfortunately, as Calel and Stainforth

(2017) point out, “in failing to maintain clear links to the physical science literature,

the climate components of these models have become opaque to the scientific community.”

Even worse, there is no consensus in the (economics) literature about what makes a “good”

climate model, that is, which data the model is supposed to be matched to when choosing

the model’s functional forms and parameters.

We close this gap by developing a comprehensive and transparent suite of tests that

aims to answer the following key questions: i) When is a particular CE used in economics

fit for purpose?, and ii) Which calibration strategy should generally be applied so that

the CE is in line with state-of-the-art climate science? We advocate the use of four test

cases that are standard in climate science, notably in the context of CMIP (Eyring et

al., 2016; Keller et al., 2018). Two of the said tests will be used for the calibration of

the CE, whereas another two tests are used for evaluating the CE. For CEs as used by

economists, these four tests can be regarded as comprehensive. However, the said test

2See, e.g., Danabasoglu et al. (2020), who state that the Community Earth System Model Version 2
(CESM2), one of the most popular ESMs, needs more than 3000 CPU hours to simulate one year of the
global climate.
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cases are typically not employed by economists to evaluate their emulators. We showcase

our proposed strategy, including economic effects at an example from the seminal DICE

model family: we re-calibrate one specific version – DICE-2016 (W. Nordhaus, 2018)3 –

according to our battery of tests to match the output of climate science models and obtain

CDICE, short for “Calibrated DICE”. In addition, we illustrate the economic importance

of a proper calibration of the CE.

A key functionality of any CE is to translate anthropogenic emissions, as computed

by the economic model, into a global mean temperature change. The task is typically

split into two parts (see, e.g., DICE (W. Nordhaus, 2018)): a “carbon cycle” which trans-

lates anthropogenic emissions in the wake of human economic activity into changes in the

atmospheric CO2 concentration, and a temperature model which translates changes in

atmospheric CO2 concentrations into global mean temperature changes. We propose first

to calibrate both parts of the CE independently, using one test case for each calibration.

Each of the two test cases comes, from a climate science perspective, with a plausible

range of outcomes. To capture this range, we suggest for each test case one intermediate

and two extreme calibration targets, to be detailed below. This leaves us with a total

of nine differently calibrated CEs, three calibrations for the carbon cycle times three cal-

ibrations for the temperature part. Finally, we advocate evaluating the performance of

these differently calibrated CEs against two additional climate science benchmarks, also

detailed below, that are closer to real-world applications. The four tests and the associated

CMIP5-based benchmark data are well consolidated and explored in the literature.4

The first test we use targets the calibration of the carbon cycle. It uses a highly

idealized setup; an instantaneous emission of 100 GtC to the present-day atmosphere is

followed in time. The CE is calibrated such that the (steadily decreasing) fraction of

emitted carbon remaining in the atmosphere aligns with benchmark data adopted from

Joos et al. (2013). We choose three specific calibration targets - one intermediate and

two extremes - to mirror the range of carbon cycle responses considered plausible from a

climate science point of view. As an intermediate target, we use the average response of

3Below, we use the abbreviation DICE-2016 and DICE interchangeably.
4The CE calibrations and test cases used here are all based on CMIP5 data. Meanwhile, data from

the 6th generation of the Coupled Model Intercomparison Project (CMIP6) are available, and one may
wonder whether switching from the CMIP5 data to the newer CMIP6 data makes a difference. Dedicated
studies comparing CMIP5 and CMIP6 simulation data suggest that this is not the case for those aspects
of climate and its modeling that we are interested in here. We discuss this point in detail in Section 1.3.4
below.
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all models in Joos et al. (2013); their multi-model mean (MMM).5 As extreme calibration

targets, we use two specific models from the study by Joos et al. (2013), leaving either a

very large (cf. their model “MESMO”) or small (cf. their model “LOVECLIM”) fraction

of emitted carbon in the atmosphere in the long run (cf. Joos et al., 2013). In the following,

to make the different calibration targets transparent where necessary, we add the name of

the corresponding target model to the general name CDICE.

The second test we use targets the calibration of the temperature equations. Being

highly idealized, it follows the evolution of the global mean temperature after an instan-

taneous quadrupling of atmospheric CO2 concentrations with respect to pre-industrial

values. The CE is calibrated to meet benchmark data anchored in CMIP5 and adopted

from Geoffroy et al. (2013). The range of warming displayed by the different CMIP5 mod-

els is considered plausible from a climate science point of view, strong or weak warming

are plausible limiting cases (Knutti, Rugenstein, & Hegerl, 2017). We choose three specific

calibration targets again to capture this range: the MMM, as well as two models that show

a rather strong (model HadGEM2-ES, Hadley Centre Global Environmental Model 2) or

weak (model GISS-E2-R, Goddard Institute for Space Studies Model E) warming in the

long run within CMIP5.

Any full-fledged quantitative economic treatment of climate change must take this

“model uncertainty” seriously. Even in a simple representative agent framework, the

attitude of the representative agent towards risk and uncertainty becomes a crucial deter-

minant for optimal carbon policy (see, e.g., Barnett, Brock, and Hansen (2020a, 2020b)).

To assess the effect of climate model uncertainty on economic models, the so-called equi-

librium climate sensitivity (ECS) parameter is often varied within the range observed in

CMIP5 models (see, e.g., Hassler, Krusell, and Olovsson (2018), or W. Nordhaus (2018)).

The ECS measures the long-term increase in global average temperature expected to occur

after an instantaneous doubling of the atmospheric CO2 concentration; different projected

warmings imply a different ECS (Geoffroy et al., 2013). While being endogenously deter-

mined in AOGCMs, the ECS is an exogenous parameter determining long-run warming in

CEs. The approach of just changing the ECS parameter to sample the uncertainty range

is often a useful shortcut, but it misses part of the relevant temperature dynamics. We

5The multi-model mean is a debated, but regularly used, benchmark quantity in climate sciences
(see, e.g., Beusch, Gudmundsson, and Seneviratne (2020); Thao, Garvik, Mariethoz, and Vrac (2021), and
references therein).
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will show below that it makes a difference whether one changes only the ECS of the CE

or, as we do, really calibrates the CE against CMIP5 model data whose ECS (high for

HadGEM2-ES, low for GISS-E2-R) can then be associated with upper and lower bounds

on the true costs of climate change and can also provide an average scenario (MMM) that

can, perhaps, be viewed as “most likely”.

The third test evaluates the CE’s transient climate response (TCR), using the same

setup as in climate science: starting in 1850 at pre-industrial levels, the atmospheric CO2

concentration gradually increases at one percent per year until doubling after 70 years

(quadrupling after 140 years). The TCR is defined as the warming after 70 years. It is

not calibrated for but, rather, is an emergent property of both the CE and CMIP5 models

- or any AOGCM or ESM in general. This test allows comparing the TCR of the CE

with values from CMIP5. In fact, the TCR is a standard test in climate sciences and a

compulsory test for any GCM to take part in CMIP (see Eyring et al. (2016)). As the

test takes CO2 concentrations as input, not emissions, it addresses only the temperature

equations of the CE.

The fourth test case is closer to what integrated assessment models (IAMs) are ex-

pected to cope with in real applications: the CMIP5 simulations for the historical period

and future representative concentration pathways (RCPs) for three different forcing levels

(RCP26, RCP45, RCP60, RCP85).6 Input data are either prescribed atmospheric CO2

concentrations or CO2 emissions.7 In the latter case, the entire climate model is tested;

in the former case, only its temperature equations. Within the CE, an assumption has to

be made on non-CO2 forcings, which form part of the CMIP5 data. The CE climate is

evaluated against data from the CMIP5 archive.

To exemplify our calibration strategy, we apply it to the climate part of the widely used

DICE-2016 model by W. Nordhaus (2018). As Dietz, van der Ploeg, Rezai, and Venmans

(2021) point out, the most commonly used CEs in economics, including Nordhaus’ widely

used DICE-2016 model, seem seriously flawed in that they cannot reproduce the evolution

of atmospheric CO2 and temperature for the basic test case of an instantaneous carbon

6The scenarios describe the results of different socioeconomic narratives that produce particular con-
centration profiles of greenhouse gases, aerosols, and other climatically relevant forcing agents over the
21st century. The RCP85 scenario, for instance, reflects a “no policy” narrative, in which total anthro-
pogenic forcing reaches approximately 8.5W/m2 in the year 2100. Conversely, the RCP26 scenario involves
aggressive decarbonization, causing radiative forcing to peak at approximately 3W/m2 around 2050 and
to decline to approximately 2.6W/m2 at the end of the 21st century.

7Meinshausen et al. (2011), http://www.pik-potsdam.de/~mmalte/rcps.



1.1. Introduction 11

pulse to the present-day atmosphere (Joos et al., 2013). Based on this one test case, which

mixes the response of the carbon cycle and the temperature equations, they conclude that

“economic models of climate change are out of line with state of the art in climate science”,

and they recommend that “the climate modules in economic models be replaced.” While

we confirm the finding by Dietz et al. (2021) that the carbon cycle of DICE-2016 leaves

too much CO2 in the atmosphere and its temperature response to a sudden increase in

CO2 concentration is too slow, our study also demonstrates that their conclusion that the

climate model must be replaced is incorrect. In particular, we show that the functional

form of the CE in DICE-2016 is fit for purpose and can be re-calibrated to match results

from our test cases with respect to the multi-model mean as well as concerning CMIP5

extreme cases. For the carbon cycle, no perfect calibration is possible as the functional

form in DICE and the benchmark data from Joos et al. (2013) are different. By contrast,

the temperature equations in DICE are formally identical to those in Geoffroy et al. (2013),

thus the calibration target can be matched exactly.8 Our study goes beyond Dietz et al.

(2021) in that we present a comprehensive set of tests to ascertain transparently whether

a CE is fit for purpose and, if not, we also present means to re-calibrate a CE properly on

the condition that its functional form is fit for purpose.

To examine the impact of different climate calibrations on the optimal price of car-

bon, we first consider a very simple partial equilibrium setup where we take the path of

emissions, the growth rate, and the interest rate as exogenously given. As it is standard

in economic models of climate change (see, e.g., Golosov et al. (2014); W. D. Nordhaus

(1979)), we assume that an aggregate damage function determines what fraction of out-

put is destroyed as a function of the temperature. In these (deterministic) models, the

optimal carbon tax equals the social cost of carbon (SCC), which can be computed as the

marginal cost of carbon emissions, that is, as the sum of all future damages, discounted

at the market interest rate, that results from an infinitesimal extra emission of CO2 into

the atmosphere. The ratio of growth rate and interest rate then constitutes the correct

discount factor for these calculations and, as it is well documented in the literature, one

of the most important determinants of the SCC. We show that for a given discount factor

and emissions scenario, the model uncertainty from climate science can change the SCC

8The original formulation of DICE hides this similarity somewhat, as it absorbs the time step of the
climate part in the coefficients of the equations. We offer a more transparent formulation where the time
step is explicitly exposed, which allows us to directly use coefficients from Geoffroy et al. (2013) that are
already calibrated to match the CMIP5 results.
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by a factor of four if one assumes a quadratic damage function; one of the most common

functional forms in the literature. This finding is (roughly) independent of discounting and

emissions, but depends crucially on the functional form of the damage function. Simply

adjusting the ECS in the equations of the climate emulator leads to significantly different

estimates for the SCC than using our full-blown calibrations of extreme climate models.

In this simple partial equilibrium setting, the incorrect calibration of the CE in DICE-

2016 leads to an SCC that is oversensitive to the discount rate. This high sensitivity

has important consequences for a general equilibrium setting, where the interest rates are

endogenous.

In order to investigate the economic consequences of our different calibrations in a

general equilibrium framework, we use the economic model from DICE-2016 together with

our newly calibrated versions of “CDICE” to compute the SCC and the optimal mitigation.

We find that in our re-calibrated model, when updated with respect to the MMM, the

SCC and the optimal mitigation are very similar to the values found in DICE-2016 if we

take the exact same economic parameters.9 We point out that for the BAU scenario, the

temperature increases in DICE-2016 are below those predicted by our extreme calibration,

that is, CDICE-HadGEM2-ES. This finding implies that the DICE-2016 predictions are

within the range of what is considered plausible in climate science. However, being in

the plausible range is merely caused by the fact that two different flaws in the original

calibration of the temperature equations and the carbon cycle in DICE-2016 partially

offset each other. In particular, the calibration gives the wrong results for the optimal

economic response to climate change. In the optimal mitigation scenario, carbon taxes

turn out to be too low in the sense that the temperature response of DICE-2016 now

falls outside of the CMIP5 range. As a result, the model with an optimal carbon policy

predicts a higher temperature than CDICE-HadGEM2-ES.

As pointed out above, the SCC in the DICE-2016 calibration is oversensitive to the

discount rate. The role of the rate of time-preference of the social planner / representative

agent for the SCC and optimal carbon taxes has been extensively documented and dis-

cussed in the literature (see, e.g., Barrage (2018); Hänsel and Quaas (2018)). While this

parameter is obviously important for the SCC, we show that a large part of the quanti-

9A significant difference is that the long-run temperature in DICE-2016 is substantially higher, that
is, about one degree Celsius, higher than in our calibration. This finding holds both for the business as
usual (BAU) scenario without any mitigation and the optimally mitigated scenario.
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tative results are driven by an incorrect calibration of the climate module in DICE-2016.

Moreover, in a model with time-varying growth rates (as DICE-2016), it is not only the

rate of time preference, but also the curvature of cardinal utility that determines the dis-

count rates. We show that this implies that the DICE-2016 climate calibration does not

produce reliable results for important comparative statics questions.

The remainder of the paper is organized as follows. In section 1.2, we briefly con-

nect our paper to the related literature. In section 1.3, we detail our four test cases.

Section 1.4 explains how to re-calibrate the parameters in the climate part of DICE to

produce forecasts that are consistent with our test cases. Section 1.5 explores the impli-

cations of different CE calibrations for the SCC in a simple partial equilibrium model.

Subsequently, in section 1.6, we use the re-calibrated DICE model, that is, CDICE, to

study the role of the climate calibration in the economic model of DICE-2016. Section 1.7

concludes. In addition, for the convenience of the reader, we provide a complete specifica-

tion of the different variants of the DICE model (some of which we use in our numerical

experiments below) in the online Appendix 1.B, including the DICE versions from 2007,

2016, as well as the re-calibration that we suggest in this paper, that is, CDICE.

1.2 Literature

Starting with Nordhaus’ seminal work on climate change (W. D. Nordhaus, 1979), a mas-

sive field of research was spawned, including Nordhaus’ own development of the DICE

model (see, e.g., W. Nordhaus (2013, 2018); W. D. Nordhaus (2012)). For example, An-

derson, Borgonovo, Galeotti, and Roson (2014) as well as Miftakhova (2021b) conducted

uncertainty quantification, whereas Cai and Lontzek (2019); Lemoine and Traeger (2014),

and Lontzek, Cai, Judd, and Lenton (2015) added stochastic tipping points on top of the

DICE-2007 model. Hwang, Reynès, and Tol (2017) performed learning about equilibrium

climate sensitivity with fat tails, whereas Popp (2004) studied endogenous growth in the

DICE framework. Wouter Botzen and van den Bergh (2012) and Michaelis and Wirths

(2020) studied DICE with an alternative damage function. The fact that DICE was criti-

cized for a flawed climate model (in particular by Dietz et al. (2021)) puts the quantitative

predictions of these contributions into a questionable position and motivates our study.

We show below that the climate model in DICE-2016 can be re-calibrated to perform well

in our tests.
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Golosov et al. (2014) develop a simple CE that is at present widely used as an al-

ternative to the climate module of DICE (see, e.g., Hassler and Krusell (2018); Hassler,

Krusell, Olovsson, and Reiter (2019); L. Kotlikoff et al. (2021b)). Due to its simplicity,

the model is computationally much more tractable than DICE. However, the simplicity of

this model implies that certain stylized facts of temperature change in response to CO2

in the atmosphere cannot be captured adequately.10 This model, therefore, does not lend

itself to our calibration strategy.11

More directly related to our paper, there have been several important contributions

about the calibration of CEs. Miftakhova, Judd, Lontzek, and Schmedders (2020) propose

a general emulation method for constructing low-dimensional approximations of complex

dynamic climate models and develop an emulator for MAGICC to approximate the impact

of emissions on global temperature. Cai, Brock, Xepapadeas, and Judd (2019) calibrate a

spatial climate system to match four RCP scenarios and historical data. Traeger (2014)

and Cai, Judd, and Lontzek (2012); Cai and Lontzek (2019) re-calibrate the DICE CE

from a ten-year time step (as in the DICE-2007 formulation) or five-year time step (as

in the DICE-2016 formulation) to higher frequency data. In the climate-science litera-

ture, Calel and Stainforth (2017) discuss the physics of different climate models, including

DICE. Thompson (2018) conducted an intercomparison study of models, including DICE

to assess how they were designed from a physics point of view. Geoffroy et al. (2013) show

how two-layer energy-balance models (formally identical to the temperature equations in

DICE) can be used to match the results in CMIP5. Joos et al. (2013) quantify responses

to emission pulses in a carbon cycle intercomparison project. Our analysis relies heavily

on these two latter papers. In particular, we use Geoffroy et al. (2013)’s calibration of the

temperature equation and take our carbon-cycle benchmarks from Joos et al. (2013). Our

paper is closest to Dietz et al. (2021), and we compare our contributions in more detail in

the following sections.

10For example, since in Golosov et al. (2014) there is only one temperature equation that links CO2 in
the atmosphere directly to the current temperature, the temperature must decrease as soon as there are
net-zero emissions and CO2 concentration in the atmosphere decreases. We will show in section 1.5.1 that
the timing of warming plays an important role for the SCC.

11Interestingly, Dietz et al. (2021) argue that although the model in Golosov et al. (2014) is very simple,
it matches some important stylized facts that can be derived from CMIP5 data better than the original
DICE-2016 calibration.
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1.3 A comprehensive framework to calibrate the climate in

IAMs

Naively, one would think that existing historical data suffices for calibrating and evaluat-

ing CEs used in IAMs. However, it turns out that, broadly speaking, the signal-to-noise

ratio in that sort of data is simply too low for a reliable calibration of CEs with their

focus on forcing from CO2. Put differently, in observed records of annual global mean

temperature, the anthropogenic signal due to CO2 emissions comes in combination with

a range of other relevant effects. The change in global mean temperature over the last

150 years is not only due to changes in CO2. It also bears substantial imprints from other

greenhouse gases, from aerosols of anthropogenic or natural origins, including volcanoes,

and also from land use changes (Gambhir et al., 2017; Mengis & Matthews, 2020). Re-

liably disentangling the different contributions is challenging. To illustrate, Millar and

Friedlingstein (2018) estimate that from 1880 to 2015, CO2 contributed about 0.7 degrees

to global warming, whereas non-CO2 agents contributed about 0.3 degrees, with 5% to

95% uncertainty ranging from 0.5 to 1.5 degrees and -0.2 to +0.4 degrees, respectively (cf.

their Figure 4). Hence, we need to base our suite of tests on historical observations, but

also on the so-called third pillar of science: computational experiments.

As detailed in the introduction, the CMIP experiments are a logical choice for this pur-

pose. We focus on CMIP5 in this paper – CMIP 6 is briefly discussed below. The range of

models participating in CMIP then raises the issue that for any specific CMIP experiment

(or CE test), one faces not a single benchmark, but a range of benchmarks. Given that

the full range is considered plausible by climate scientists, it is important that any CE

captures this model diversity in some way. In this light, a first and primary benchmark is

the MMM,12 the average of all cases reported in CMIP5. The MMM is complemented by

extreme cases bracketing the CMIP5 range. Two extreme cases that bracket the plausible

temperature response to CO2 in the atmosphere in CMIP5 are the HadGEM2-ES model

(strongly warming, ECS of 4.55 K) and the GISS-E2-R model (weakly warming, ECS of

2.15 K) (Geoffroy et al., 2013). Two extreme cases that bracket the amount of emitted

carbon remaining in the atmosphere are MESMO and LOVECLIM, with about 55% and

12For a recent application of the MMM, the multi-model mean, in climate science, see, e.g., Beusch et
al. (2020).
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30%, respectively, of the 100 GtC test pulse mass remaining in the atmosphere after 100

years, according to Figure 1a from Joos et al. (2013).

1.3.1 Choice of test cases

The choice of the four test cases outlined in the introduction, that is, two for the calibra-

tion, and two for the evaluation of the CE, was guided by the following considerations.

First, all test cases should be widely used in the relevant climate science literature and

transparently documented. Thus, they can easily be reproduced and compared with pub-

lished results. Second, some of the tests should be highly idealized to allow for the inde-

pendent calibration of the carbon cycle and the temperature response, respectively. Third,

we want some test cases to be close to the ultimately envisaged real-world applications,

with gradual changes in CO2 emissions, exogenous forcing, and associated temperature

response. The proximity to real applications makes these tests somewhat like a gold

standard, but also makes them more difficult to interpret than the highly idealized tests.

Taken together, the four test cases we propose to use may, loosely speaking, be regarded

as necessary and sufficient to answer whether an emulator is fit for purpose. They allow the

calibration and comprehensive evaluation of a CE like that in DICE, from its individual

components to real application cases. To this end, it is crucial that highly idealized

settings, which are frequently used as benchmarks in the literature, are augmented with

closer-to-reality tests. We advocate that the same four tests may be used to examine

the performance of the climate parts of other IAMs featuring a carbon cycle and a set

of temperature equations. Any climate model that fits the CMIP5 data for the four test

cases will likely provide a good fit for all emissions paths arising in economic modeling.

1.3.2 Technical setup of test cases

The first of four experiments in our test suite is used to calibrate the carbon cycle. Its

highly idealized setup follows the temporal evolution of an instantaneous release of 100

Gt carbon (GtC) to the present-day atmosphere. The said 100 GtC roughly corresponds

to ten years of present-day CO2 emissions from fossil fuels (Le Quéré et al., 2018). The

test requires two steps, which we outline here. For more detailed explanations of the

test and its benchmark data, we refer to Joos et al. (2013). In a first step, the CE is

used to simulate the evolution of the climate from its 1850 equilibrium to 2015, using as
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input historical carbon emissions from 1850 to 2015. The simulation is then continued

from 2015 onward, with annual carbon emissions being iteratively determined to keep the

atmospheric CO2 concentration constant at the value of the year 2015. These emissions

are then used in a second simulation that starts in 2015, but now with an additional,

instantaneous pulse of 100 GtC to the atmosphere. Changes in atmospheric CO2 are then

taken as the difference between this second and the first simulation. The test is used to

calibrate the time scales and rates at which the atmospheric CO2 concentration decays in

the wake of instantaneous carbon release to the atmosphere.13

The second test case in our proposed framework is used to calibrate the amplitude

and time scales of a given emulator’s temperature response, that is, how fast and how

strongly the global mean temperature warms in response to a sudden quadrupling of

CO2.14 Starting from pre-industrial equilibrium conditions, that is, in the year 1850, with

atmospheric CO2 at 285 parts per million (ppm), the atmospheric CO2 concentration

is instantaneously quadrupled, and the change in temperature as a function of time is

examined. The related benchmark data is anchored in CMIP5 and adopted from Geoffroy

et al. (2013).

The third test case and its benchmark data come directly from CMIP5: starting in

1850 at pre-industrial levels, the atmospheric CO2 concentration gradually increases from

285 ppm CO2 at one percent per year until quadrupling after 140 years. It is used to

evaluate the TCR of the CE in comparison with the CMPI5 values of TCR. The test is

still relatively simple, as it involves the temperature part of the CE solely, but not the

carbon cycle. That is, it uses CO2 concentrations as input, not emissions. It involves

forcing only from CO2. The change in CO2 concentration is not an instantaneous step

function, but is gradual in time. The test thus examines a situation where the temperature

response time scales overlap with an additional time scale associated with the gradually

increasing forcing from CO2.

The fourth test case is close to what DICE, or some other IAM, is expected to cope

with in real applications: the CMIP5 simulations for the historical period and future rep-

resentative concentration pathways (RCPs) for four different forcing levels of 2.6 W/m2,

4.5 W/m2, 6.0 W/m2, and 8.5 W/m2 by 2100 (RCP26, RCP45, RCP60, RCP85). The

13Depending on the concrete formulation of the CE’s carbon cycle, the decay of atmospheric CO2 may
result in increasing CO2 concentrations in other carbon reservoirs, notably ocean or land.

14Note that while the test described here applies to any emulator, it will in particular target Equa-
tions (1.4) and (1.5) of the DICE-2016 model (cf. section 1.4 below).
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input data consists of either prescribed atmospheric CO2 concentrations or CO2 emis-

sions (Meinshausen et al., 2011, http://www.pik-potsdam.de/~mmalte/rcps/), as illus-

trated in the left and middle panel of Figure 1.1. The former case tests only the tem-

perature response to gradually changing CO2 concentrations. The latter case tests the

full climate model of the CE, including the carbon cycle. In this test case, it is neces-

sary to make an assumption on the non-CO2, exogenous radiative forcing FEX
t , which in

the actual CMIP simulations is modeled in great detail. In the online Appendix 1.C, we

show how this choice affects the quantitative results of the full model. Here, we assume

FEX
t = 0.3 ·FCO2

t , that is, proportional to the forcing from CO2 alone (FCO2
t ) and result-

ing in a total radiative forcing, Ft = FCO2
t + FEX

t , which is 30% larger than from CO2

alone (cf. section 1.4.1 below). This is in line with estimates for the radiative forcing in

2011 with respect to pre-industrial times (see, e.g., Climate Change 2014 Synthesis Report

IPCC, 2014; Gambhir et al., 2017) and with estimates for the different RCPs in 2100: 26%

(RCP26), 33% (RCP45), 32% (RCP60), 35% (RCP85), where the total forcing comes from

the scenario and the CO2 forcing is computed from concentrations given in Meinshausen

et al. (2011); a base concentration of 285 ppm CO2, and F2XCO2 = 3.68 W/m2. An il-

lustration of the temporal evolution of the different forcings is given in Figure 1.1, right

panel. Note that estimates for the forcing from non-CO2 GHGs by MacDougall, Eby, and

Weaver (2013) (their Figure 6) show more temporal structure than FEX
t . Additionally,

the assumption of strict proportionality between CO2 and non-CO2 forcings is subject to

debate in climate sciences, especially in the context of strong mitigation scenarios (see,

e.g., Mengis & Matthews, 2020). Benchmark data for the evolution of atmospheric tem-

perature is taken directly from the CMIP5 archive. The proximity to real applications

makes this test difficult to interpret, yet it is a key test that CEs in economic models

should pass.

1.3.3 Metric for performance evaluation

The choice of a metric to assess the calibration and subsequent evaluation of a CE is not

straightforward. The basic reason lies in the design of the CE, in its reduced functional

form, and the limited number of free parameters as compared to ESMs, which capture

only some aspects of the benchmark cases used for calibration and evaluation. This also

implies that the choice of metric may depend on the concrete form of the CE, the sim-
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Fig. 1.1 Illustration of CMIP5 historical and future evolution (RCP26, RCP45, RCP60,
and RCP85 scenarios, shown in blue, green, yellow, and red), from 1850 to 2100, of pre-
scribed CO2 emissions (left, in GtC per year), alternatively prescribed CO2 concentrations
(middle, in ppm CO2), and the forcing derived from prescribed CO2 concentrations (right,
in W/m2). The total forcing Ft (solid lines) is decomposed into forcing from CO2 (FCO2

t ,
dashed lines) and non-CO2 forcing assumed as FEX

t = 0.3 · FCO2
t (dotted lines).

plicity or complexity of its carbon cycle, and temperature equations. If the CE explicitly

covers further elements, like, for example, methane, then not only the metric but also the

benchmarks for calibration and evaluation may need adaptation.

Focusing on simple CEs, like that in DICE, one prominent difference with respect to

ESMs concerns the response time scales upon perturbation: an ESM features a whole

range of response time scales, whereas the CE only a few, for example, two in the case of

DICE-2016. Furthermore, an ESM explicitly covers a range of forcings; the CE explicitly

covers only CO2 via its carbon cycle, while any other forcings are included in a more or

less ad hoc fashion. The temperature may affect the carbon cycle in an ESM, but not in

the simple CE considered here. A comprehensive discussion of why to favor any particular

metric in view of these issues is beyond the scope of the present paper. Therefore, we limit

ourselves to a short statement of what we did and why.

We calibrate the carbon cycle of a CE via the response to an instantaneous 100 GtC

pulse to the atmosphere. The comparison is performed against benchmark data from Joos

et al. (2013), using the maximum norm over a time range of 100 years after the pulse. This

choice of metric favors solutions, that is, calibrations that remain close to the benchmark

data at all times over a time scale of interest in an economic context. The calibration of

the temperature equations does not require any metric because their functional form is

identical to the benchmark data from Geoffroy et al. (2013). Therefore, we can just adopt

parameter values from the benchmark data.

We evaluate a calibrated CE first with regard to TCR, and we expose the CE to

the corresponding test case from climate science, where TCR is defined as the change
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in global mean temperature after 70 years (and after 140 years) when the atmospheric

CO2 concentration steadily increases from 1850 onward at a rate of one percent per year.

We measure the performance of the CE with respect to CMIP5 models by comparing the

TCR. Finally, we evaluate the performance of the calibrated CE with regard to climate

projections and historical simulation data from CMIP5. Here, we explicitly renounce using

a specific metric for mainly two reasons: the CMIP5 models span a range of plausible

climates, and they explicitly include non-CO2 forcings that depend on the projection

(RCP26, RCP45, or RCP85) and are included in the CE only in an ad hoc fashion. We

consider the CE fit for purpose if a visual inspection shows that its climate in terms of

atmospheric CO2 concentration and the global mean temperature falls within the range

of CMIP5 models.

1.3.4 CMIP5 serves the purpose, no need for CMIP6

Throughout this study, we use data from CMIP5 or studies relying on such data, notably

Geoffroy et al. (2013) or Joos et al. (2013). We argue in the following that for the purpose

at hand - calibration and testing of a simple CE - the CMIP5 database is sufficient; there

is no need to consider the more recent CMIP6 data.

Starting with the calibration of the CE’s carbon cycle, we note that the benchmark

data from Joos et al. (2013) combines models that already span a rather wide range.

Data from a more recent study (Jeltsch-Thömmes & Joos, 2020) examining the same

test case finds a slightly faster decay of atmospheric CO2 in the wake of the 100 GtC

pulse (compare Figure 1 of both papers), yet well within the range of Joos et al. (2013).

Similarly robust is the benchmark data from Geoffroy et al. (2013), used for calibrating

the temperature response of the CEs. Using the same two-layer energy balance model and

fitting procedure as in Geoffroy et al. (2013), but applied to 4xCO2 data from 8 CMIP6

models, Jackson et al. (2022) find parameter values in line with Geoffroy et al. (2013),

the MMM ±1σ range overlap (compare Tables 3 and 4 in Geoffroy et al. (2013) with

Table S2 in the supplementary material in Jackson et al. (2022)). One may worry that the

larger range of the ECS reported in CMIP6, notably the higher ECS of some models (e.g.

Zelinka et al., 2020), implies a too conservative ECS range in CMIP5 (bracketed here by

the models GISS-E2-R and HadGEM2-ES). However, Tokarska et al. (2020) show that



1.4. CDICE - re-calibrating the climate of DICE 21

the CMIP6 range is reduced considerably, becoming largely consistent again with CMIP5

if observational data is used to constrain the models.

Likewise, we see no necessity to use CMIP6 instead of CMIP5 when testing the cali-

brated CE against two more test cases. Warming in the ‘one percent per year atmospheric

CO2 increase’experiment is slightly stronger in CMIP6 as compared to CMIP5, the MMM

temperature across 11 models being around 10% higher after 140 years (Fredriksen, Smith,

Modak, and Rugenstein (2023), Supplementary Figure S7), while the range of CMIP5 and

CMIP6 models strongly overlaps. Arora et al. (2020) examine fully coupled simulations of

the ‘1%/year atmospheric CO2’test case, finding a MMM warming after 140 years (qua-

drupling of atmospheric CO2 concentration) by 4.87 Celsius in CMIP5 and 4.74 Celsius

in CMIP6, that is, a difference of less than 3%.

Testing the CE against future scenarios, we note that a subset of the Shared Socioeco-

nomic Pathways (SSPs) in CMIP6 were designed similarly to the RCPs of CMIP5 in order

to provide continuity. Comparing the simulated temperature evolution for corresponding

RCPs and SSPs using Reduced Complexity Models (RCMs), Nicholls et al. (2020) find

that global mean temperature evolution essentially falls on top of each other (their Figure

3). Tebaldi et al. (2021) find that global mean temperature change in the CMIP5 RCPs

falls within the range of corresponding SSPs in CMIP6. They elaborate on a number of

reasons for the slightly wider range in CMIP6 (including differences, for example, in as-

sumed future aerosol forcing, or methane emissions) and more generally note that CMIP5

RCPs followed a more ‘middle-of-the-road’pollution policy path. We refer the interested

reader to their original work or the paper by Fredriksen et al. (2023) for more detailed

information on CMIP5 versus CMIP6. With regard to our purpose here - the calibration

and testing of a simple CE - the above publications corroborate that no essential changes

happened between CMIP5 and CMIP6. We take this as an argument to use the well-

prepared CMIP5-based data in Joos et al. (2013) and Geoffroy et al. (2013) to calibrate a

CE’s carbon cycle and temperature response, respectively. Subsequent further testing of

the calibrated CE may then be done against either CMIP5 RCP or CMIP6 SSP data.

1.4 CDICE - re-calibrating the climate of DICE

So far, we put forward our suite of four test cases: one test to calibrate the carbon cycle

of the CE, one test case to calibrate the temperature equation of the CE, and two test
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cases to examine emerging properties of the calibrated CE, notably its performance under

gradually changing conditions in terms of CO2 and non-CO2 forcings. We claim that,

taken together, these tests are necessary and sufficient to transparently evaluate and, if

needed, re-calibrate the CE of an IAM, which is used in an economic context.

In this section, we illustrate our claim with the example of the climate module of the

seminal DICE-2016 model. We choose DICE-2016 as an example because it is widely

used in the IAM modeling community and because it is known to be flawed (Dietz et

al., 2021). We re-examine these flaws in the light of our four test cases and present an

improved version, CDICE, that has the same functional form as DICE-2016 but is fully

re-calibrated. We go beyond the work of Dietz et al. (2021) in three essential points: i)

while Dietz et al. (2021) use one test, the 100 GtC pulse, to evaluate the CE, we stress that

it is crucial to separately examine each part of the CE, carbon cycle, and temperature

equations; ii) we provide corresponding test setups and show how they can be used to

calibrate, and not only to examine a CE; iii) we demonstrate that even a simple CE like

that in DICE is fit for purpose if properly calibrated in this way.

This section is structured as follows: First, we lay down in section 1.4.1 the fun-

damental building blocks of DICE’s CE, its carbon cycle and temperature equations,

along with the commonly used calibration of DICE-2016. Next, we demonstrate in sec-

tions 1.4.2, 1.4.3, 1.4.4, and 1.4.5 how our battery of tests can be used to systematically

test and re-calibrate DICE-2016. Finally, a critical synthesis of our learnings is provided

in section 1.4.6. A summary of all CDICE model parameters is given in Table 1.A1 in

online Appendix 1.A.

1.4.1 Model equations

The climate model in DICE-2016 translates carbon emissions from the model’s economic

side into atmospheric CO2 concentrations (i.e., the carbon cycle; cf. section 1.4.1 below)

and, subsequently, into a global mean temperature change (i.e., the temperature equations;

cf. section 1.4.1 below), which then feeds back into the part of the model that represents

the economic side of the IAM. Thus, the carbon cycle affects temperature, but not vice

versa.

The carbon cycle is a linear three-box model, where the three carbon reservoirs rep-

resent the atmosphere (AT), the upper ocean (UO), and the lower ocean (LO), with the
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respective carbon masses M = (MAT,MUO,MLO). Carbon can be exchanged between

the atmosphere and upper ocean and between the upper and lower ocean, but not directly

between the atmosphere and lower ocean. The global mean temperature is modeled via a

system of two ordinary differential equations that couple two heat reservoirs, that is, the

atmosphere, including the upper ocean, and the lower ocean, T = (TAT, TLO). The cli-

mate is anchored at an assumed pre-industrial equilibrium state, MEQ and TEQ. Climate

change is quantified as deviations from this equilibrium state. In an economic context,

time integration in DICE-2016 typically does not start at pre-industrial times, but at

present day, for example, in the year 2015. A corresponding initial state MINI and TINI

must be determined so as to be in line with carbon emissions since pre-industrial times

and the equations of the CE (cf. section 1.4.1).

Carbon cycle

The carbon cycle model (see, e.g., Keeling, 1973) formally reads

Mt+1 = (I + ∆t ·B) ·Mt + ∆t · Et, (1.1)

with I being the identity matrix, ∆t being the time step in years, andMt = (MAT
t ,MUO

t ,MLO
t )

representing the carbon mass at time t in the three reservoirs. The carbon emissions per

year to the atmosphere, as well as to the ocean15, are specified via Et. The time-constant

matrix B,

B =


b11 b21 b31

b12 b22 b32

b13 b23 b33

 , (1.2)

describes the mass transfer among reservoirs and has units “mass fraction per time step”.

Assuming that mass conservation holds, that is,

∑
i

bji = 0 for j = 1, 2, 3, (1.3)

15This is an interesting option in the context of Carbon Dioxide Removal (CDR) techniques (see, e.g.,
Rickels, Reith, Keller, Oschlies, & Quaas, 2018).
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and that there is no direct mass transfer between AT and LO (implying that b13 = b31 = 0),

leaves four free parameters in matrix B that are used to calibrate the carbon cycle. In

DICE, the said parameters are chosen as the transfer coefficients from AT to UO (b12) and

from UO to LO (b23), as well as the equilibrium carbon mass ratios at pre-industrial times

between the reservoirs, r1 = MAT
EQ/M

UO
EQ and r2 = MUO

EQ /M
LO
EQ . The remaining matrix

entries bij are then given by b11 = −b12; b21 = b12 · r1; b22 = −b21 − b23; b32 = b23 · r2;

b33 = −b32. Parameter values for CDICE are given in Table 1.1. In DICE-2016, the

numerical values for the free parameters are given by MEQ = (588, 360, 1720), r1 = 1.633,

r2 = 0.209, as well as b12 = 0.12 and b23 = 0.007, with a time step of ∆t = 5 years being

hard-wired (absorbed) into the coefficients bij . To alleviate this limitation of being bound

to a time step of fixed size, the bij in our formulation are specified in units of one year

and are then explicitly multiplied with a time-step. The latter thus can be freely chosen,

for example, as the time-step prescribed by the respective economic model.

Temperature

The two-layer energy balance model in DICE-2016 reads as

TAT
t+1 = TAT

t + ∆t · c1
(
Ft − λTAT

t − c3
(
TAT
t − TOC

t

))
, (1.4)

TOC
t+1 = TOC

t + ∆t · c4
(
TAT
t − TOC

t

)
, (1.5)

and thus formally corresponds to that described in Geoffroy et al. (2013). TAT
t and TOC

t

denote the temperature change with respect to pre-industrial times of the upper layer

(atmosphere and upper ocean) as well as the lower layer (deep ocean), respectively, at time

step t. The free parameters c1, c3, c4, and λ in (1.4) and (1.5) are used for calibration.

From a physics perspective, they may be interpreted as a heat exchange coefficient between

the upper and lower layer, γ = c3, effective heat capacities of the upper and lower layer,

C = 1/c1 and C0 = γ/c4, and the radiative feedback parameter λ = F2XCO2/T2XCO2, that

is, the ratio of the forcing from a doubling of CO2 to the associated temperature change,

that is, the ECS. Finally, Ft denotes the total radiative forcing from CO2, FCO2
t , and

other exogenous factors, FEX
t , such as GHGs other than CO2 and also aerosols:

Ft = F2XCO2
log(MAT

t /MAT
EQ)

log(2) + FEX
t . (1.6)
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In, DICE-2016, FEX
t is assumed to change linearly with time from 0.5 in the year 2015

to 1.0 in 2100. Parameter values for CDICE are given in Table 1.2. Parameter values in

DICE-2016 are c1 = 0.1005, c3 = 0.088, c4 = 0.025, and λ = 3.6813/3.1 = 1.1875, with a

time step of ∆t = 5 years formally hard wired (absorbed) into c1 and c4. To lift this issue,

we provide, here again, a generic formulation of the temperature equations such that the

time-step can be chosen freely in discrete values of one year, that is, one year, two years,

and so forth.

Initialization at present day

In the context of economic models, the time integration typically does not start at pre-

industrial times but rather at the present day. Corresponding initial values for the carbon

and temperature reservoirs used in CDICE for 2015 are MINI = (851, 628, 1323) and

TINI = (1.10, 0.27) for the MMM case (see section 1.4.5 for more details regarding the

MMM and the alternative calibrations). Values for extreme calibrations of CDICE are

also given in Table 1.3

These initial values should meet three criteria: the atmospheric carbon mass and

temperature change should be consistent with observed changes from pre-industrial to

present times, and all values should be internally consistent in that they can be obtained

by integrating the CE in time from its assumed pre-industrial equilibrium to the present.

Regarding the first criterion, the 851 Gt atmospheric carbon corresponds to 400 ppm

CO2, in line with measured concentrations in 2015.16 The 1.1 K change in global mean

temperature since pre-industrial times corresponds to the 2015 centered 11-year average

(years 2010 to 2020) observation-based value.17 We assert the third criterion by integrating

the CE from its 1850 equilibrium state to the present day. We use the historical carbon

emissions from CMIP5. We slightly adjust the non-CO2 forcing, by default, at 30% of the

CO2 forcing (see section 1.3.2) to meet the warming target of 1.1 K by 2015. Such an

adjustment is legitimate given that from a climate science perspective, this forcing comes

with substantial uncertainty (see, e.g., Mengis & Matthews, 2020). From the internally

consistent time series of Mt and Tt obtained in this way, we pick that time (year) with the

desired atmospheric CO2 concentration, for example 400 ppm, as initial conditions, MINI

and TINI.

16https://www.co2levels.org.
17http://berkeleyearth.org/global-temperature-report-for-2020.
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Model b12 b23 MEQ

DICE-2016, 5yr 0.12 0.007 (588, 360, 1720)
CDICE 0.054 0.0082 (607, 489, 1281)

CDICE-MESMO 0.059 0.0080 (607, 305, 865)
CDICE-LOVECLIM 0.067 0.0095 (607, 600, 1385)

Table 1.1 Values of free parameters in the carbon cycle, original DICE-2016 (with ∆t = 5
years) and our proposed, different calibrations of CDICE.

Model c1 c3 c4 ECS F2XCO2 λ

DICE-2016, 5yr 0.1005 0.088 0.025 3.1 3.6813 1.19
CDICE 0.137 0.73 0.00689 3.25 3.45 1.06

CDICE-HadGEM2-ES 0.154 0.55 0.00671 4.55 2.95 0.65
CDICE-GISS-E2-R 0.213 1.16 0.00921 2.15 3.65 1.70

Table 1.2 Values of the free parameters of the temperature equations for different versions
of DICE: original DICE-2016 with ∆t = 5 years and re-calibrated (CDICE). Also given are
versions mirroring CMIP5 models with extreme ECS from Geoffroy et al. (2013), which
are used for comparison purposes. Note that λ = F2XCO2/ECS is a derived quantity.

The original initialization values used in DICE-2016 are MINI = (851, 460, 1740) and

TINI = (0.85, 0.0068). The 0.85 K change in global mean temperature tends to be on the

low side when compared to observation-based estimates.18

1.4.2 Atmospheric CO2 after 100 GtC pulse to the atmosphere

To evaluate and re-calibrate the carbon cycle of DICE-2016, we use the idealized test

case of an instantaneous 100 GtC pulse to the present-day atmosphere, as described in

section 1.3.2 and illustrated in Figure 1.2. Compared to benchmark data from Joos et

al. (2013) (black and gray lines), the known deficiency of DICE-2016 (blue dashed; see,

e.g., Dietz et al. (2021)) is apparent: DICE-2016 overestimates the fraction of the pulse

remaining in the atmosphere. Retaining the functional form of the carbon cycle, but

re-calibrating the model against the MMM benchmark (black solid) using the maximum

norm over the first 100 years after the pulse (see section 1.3.3), the new best-fit version,

CDICE (red solid), performs clearly better. Full agreement between CDICE and the MMM

benchmark data cannot be reached because of the different functional forms of the carbon

18http://berkeleyearth.org/global-temperature-report-for-2020.
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Fig. 1.2 Fraction of an instantaneous 100 GtC pulse remaining in the atmosphere (y-axis)
as a function of time (x-axis, three different time scales from left to right). Shown are
benchmark data adapted from Joos et al. (2013) (black and gray lines, J13) and three
calibrations against this data: CDICE (red solid), which is calibrated against the multi-
model mean (MMM, black solid), and two extreme calibrations, CDICE-MESMO (red
dotted) and CDICE-LOVECLIM (red dash-dotted), which essentially capture the range
of benchmark models (thin gray lines). DICE-2016 (blue dashed) removes too little CO2
from the atmosphere compared to the benchmark data. Absolute values of pulse height
and equilibrium masses are irrelevant in DICE’s carbon cycle model (CDICE, 5000 GtC
on 1850 equilibrium masses, orange dotted), which is in contrast to findings in J13 (dashed
and dotted gray lines, see their paper for details).

cycle.19 Extreme calibrations against MESMO and LOVECLIM (CDICE-MESMO, red

dotted, and CDICE-LOVECLIM, dash-dotted) are also shown. They are representative

of scientifically plausible, but extreme, carbon cycles that remove CO2 very efficiently (or

inefficiently) from the atmosphere, and which we use later on in our economic analysis.

Figure 1.2 also shows the functional limitation of the carbon cycle model in CDICE

(or DICE in general). The fraction of the carbon pulse remaining in the atmosphere is

sensitive to neither the pulse height nor the equilibrium state. The 100 GtC test case (red

solid line) shows the same decay as a 5000 GtC pulse to pre-industrial equilibrium (orange

dashed line). This is in contrast with informed expectations (see, e.g., Joos et al., 2013):

the pulse should decay more slowly if it is larger, if it is applied to present day instead of

pre-industrial conditions, or if climate feedback processes are taken into account (dashed

and dotted gray lines, PI and PD indicating pre-industrial and present day, respectively,

adapted from Joos et al. (2013)).

The test case used here is further suited to examine sensitivities to the parameter values

of the carbon cycle (colored lines) in Figure 1.3, anchored at CDICE (see Table 1.2). As

expected, the transfer coefficient b12 between the atmosphere and the upper ocean has

the largest effect on short time scales. On intermediate time scales, up to about 50 years,

19The benchmark data in Joos et al. (2013) has three characteristic decay time scales, whereas DICE
with its three carbon reservoirs has only two.
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Fig. 1.3 Parameter sensitivities (thin colored lines) of the carbon cycle, anchored at
CDICE (red), illustrated at the example of an instantaneous 100 GtC pulse to the at-
mosphere. Shown is the fraction of the pulse remaining in the atmosphere (y-axis) as a
function of time (x-axis, three different time scales from left to right). Benchmark data
from Joos et al. (2013) is shown in black and gray.

assumptions about the equilibrium masses in the upper and lower ocean start to matter.

The effect of the transfer coefficient b23 starts to have a clear effect only later on. The

long-term evolution is equally dependent on b23 and the equilibrium masses in the upper

and lower ocean.

In this context, the eigenvalues (EV) of matrix B are of interest, as they relate to the

decay or the half-life time scales (τ = ∆t·ln(0.5)/ln(EV )) of an instantaneous perturbation

(carbon emission). One EV equals 1 and corresponds to the equilibrium solution. The

other two EVs are (1 + g ± h)/2, with g = 1 − b12 · (1 + r1) − b23 · (1 + r2) and h =

((1 − g)2 − 4f)1/2, where f = b12 · b23 · (1 + r2(1 + r1)). Associated numerical values for

DICE-2016 are 0.6796 and 0.9959, corresponding to half-life times of 9 and 851 years.

For our CDICE calibration, we arrive at EVs of 0.8742 and 0.9933, corresponding to half-

life times of 5 and 102 years. This highlights the difference between our carbon-cycle

calibration and that in DICE-2016.

1.4.3 Temperature evolution upon quadrupling of CO2 concentration

Our second test case, namely the temperature response to an instantaneous quadrupling

of the atmospheric CO2 concentration (cf. section 1.3.2), allows for an evaluation and

re-calibration of the temperature equations of the CE under consideration. In principle,

a metric would again be needed for this purpose (see section 1.3.3). However, as CDICE

(or DICE in general) and the benchmark data from Geoffroy et al. (2013) share the

same functional form (cf. section 1.4.1), a re-calibration is trivial: we simply adopt the

parameter values already fitted to the CMIP5 data by Geoffroy et al. (2013). Specifically,
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Model MINI TINI

DICE-2016, 5yr (851, 460, 1740) (0.85, 0.0068)
CDICE (851, 628, 1323) (1.10, 0.27)

CDICE-HadGEM2-ES (851, 628, 1323) (1.10, 0.27)
CDICE-GISS-E2-R (851, 628, 1323) (1.10, 0.27)
CDICE-MESMO (851, 403, 894) (1.10, 0.27)

CDICE-LOVECLIM (850, 770, 1444) (1.10, 0.27)
CDICE-HadGEM2-ES-MESMO (851, 403, 894) (1.10, 0.27)

CDICE-HadGEM2-ES-LOVECLIM (850, 770, 1444) (1.10, 0.27)
CDICE-GISS-E2-R-MESMO (851, 403, 894) (1.10, 0.27)

CDICE-GISS-E2-R-LOVECLIM (850, 770, 1444) (1.10, 0.27)

Table 1.3 Initial conditions for the year 2015 as used in DICE-2016 and in CDICE,
as well as for extreme calibrations of CDICE with respect to the carbon cycle and/or
temperature. The atmospheric CO2 concentration is always 400 ppm ( 851 GtC). All
other values result from integrating the differently calibrated CEs from 1850 to the present
day using the CMIP5 setup as described in the fourth test case.

we obtain CDICE using their fit to the multi-model mean and two extreme models, that is,

CDICE-HadGEM2-ES and CDICE-GISS-E2-R. As explained above, these extreme cases

play an important role in our economic analysis below (cf. sections 1.5 and 1.6). Table 1.2

summarizes the relevant coefficients for these alternative calibrations.

The test confirms previous findings that DICE-2016 warms too slowly compared to

any CMIP5 model (dashed blue versus solid gray lines in Figure 1.4). All the CMIP5

models (solid gray lines) agree that warming occurs rapidly. Meanwhile, their level of

warming differs by a factor of roughly two, in line with their differing ECS, given in Ta-

ble 1.2. The overly slow warming in DICE-2016 finds confirmation via formal expressions

for the characteristic fast and slow response time scales associated with Equations (1.4)

and (1.5) (see Geoffroy et al., 2013, their Table 1), which yield numerical values of 4 and

249 years for the CMIP5 multi-model mean in Geoffroy et al. (2013), but 40 and 219 years

for DICE-2016.

The test discussed here is further suited to shed some light on the role of the different

parameter values in the temperature equations of CDICE, as illustrated in Figure 1.5.

How quickly the temperature responds to an increase in atmospheric CO2 is mainly gov-

erned by the heat capacity of the upper ocean via the parameter c1 (left panel, yellow

and brown dashed lines), which, in turn, does not affect the mid-and long-term absolute

warming (beyond roughly 20 years, middle and right panel). As expected, the very long-
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Fig. 1.4 Temperature response to instantaneous quadrupling of atmospheric CO2 with re-
spect to pre-industrial values on time scales of 20 years (left), 200 years (middle), and 1000
years (right). Parameters in CDICE (red solid) can be chosen such as to exactly repro-
duce the calibration target, the CMIP5 multi-model mean (black solid, G13-MMM). Also
shown are two extreme ECS calibrations (solid green and light blue, CDICE-HadGEM2-
ES and CDICE-GISS-E2-R). In DICE-2016 (dashed blue, 5 year time step), temperature
increase is too slow compared to any CMIP5 model (thin gray lines, G13, from Geoffroy
et al. (2013)).

Fig. 1.5 Parameter sensitivity of the temperature equations in DICE, illustrated at the
example of an instantaneous quadrupling of the CO2 concentration with respect to pre-
industrial values. Shown is warming (y-axis) as a function of time (x-axis) for different
time scales (from left to right). Parameters are varied one by one with respect to the
CMIP5 multi-model mean from Geoffroy et al. (2013) (black solid, G13-MMM) and its
adaptation in CDICE (red solid).

term warming is set by the ECS (right panel, pink and violet dash-dotted lines). The

track toward long term equilibrium across intermediate time scales and levels of warming

depends on the energy exchange between the upper and lower ocean, via the choice of c3

(solid green lines, after roughly four years), and on the heat capacity of the deep ocean,

entering in the form of c4 (cyan dotted lines, after roughly 20 years).

In summary, the test case demonstrates that the temperature equations in DICE-2016

can be re-calibrated to reach general agreement with corresponding results from CMIP5.

Specific CMIP5 models or the multi-model mean as given in Geoffroy et al. (2013) can be

recovered precisely by appropriate parameter choice.
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1.4.4 Temperature evolution as atmospheric CO2 increases at 1% per

year

The purpose of the third test is to evaluate a CE’s TCR. In contrast, the first two test

cases primarily aim at calibrating a CE. The TCR is of interest as a measure of how

the (model) climate responds to steadily changing conditions. From the point of view of

a CE, one may also say that the TCR examines the CE’s performance upon a series of

perturbations; not a single one as in the tests used for calibration of the CE. Although still

highly idealized, this test is thus closer to reality. Consequently, TCR is often considered a

better measure to evaluate the performance of a climate model than ECS, which assumes

the climate system to have equilibrated. A reasonable TCR is a necessary condition for

any CE but, as we shall see, not a sufficient one.

Of the test results shown in Figure 1.6, two aspects deserve highlighting. First, all

variants of DICE (shown in different color coding) are compatible with the CMIP5 data

(black and gray lines). The temperature evolution of DICE-2016 (blue dashed lines)

now lies within the range of CMIP5 models (solid gray lines). However, the warming is

still slightly slower than the CMIP5 multi-model mean (black solid) during the first few

decades. CDICE (solid red) warms slightly faster than the CMIP5 multi-model mean.

Variants of CDICE with extreme ECS (green and cyan lines, see Table 1.2 for parameters)

indeed bracket the individual CMIP5 models. Second, the transient warming of the models

remains clearly below their ECS, even after the quadrupling of CO2 after 140 years. The

TCR of the models is between 1.3 K and 2.3 K across CMIP5 models (gray lines in

Figure 1.6). Associated values for ECS are roughly 50% to 100% larger, ranging between

2.05 K and 4.55 K (see Table 1.2). Upon the quadrupling of CO2 after 140 years, ECS

still exceeds the transient temperature change by about 40% to 70%.

Contrasting the above findings with those from Sect. 1.4.3 demonstrates that the model

performance is highly sensitive to the concrete test. In particular, the striking under-

performance of DICE-2016 in the idealized CO2 quadrupling test case is hardly detectable

if CO2 increases gradually at a rate of one percent per year instead. The decent perfor-

mance in terms of TCR may seem to come as a relief given the ample amount of existing

literature using DICE-2016. This impression is, however, deceptive, as will be further

elaborated on in section 1.6.
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Fig. 1.6 Temperature response (y-axis) to transient, one percent per year, increase of the
CO2 concentration as a function of years (x-axis) from 1850 onward. The CO2 concen-
tration doubles within 70 years (left panel), and associated warming levels correspond, by
definition, to the transient climate response (TCR) of the model. CO2 quadruples within
140 years (right panel), and TCR roughly doubles. DICE-2016 (dashed blue), our new
version CDICE (solid red), as well as its extreme scaling variants (solid cyan and green),
are all compatible with CMIP5 models and their TCR (individual models and multi-model
mean, solid gray and black, respectively).

1.4.5 CMIP5 historical and RCP evolution as simulated by DICE

Our fourth test was chosen to be as close as possible to real applications, that is, a necessary

gold standard test any CE should pass: the CMIP5 simulations for historical and future

representative concentration pathways (RCP26, RCP45, RCP60, and RCP85, from top

to bottom in Figure 1.7). Compared to the other three tests, this test features some

additional hurdles. First, the entire CE is examined, that is, the carbon cycle combined

with the temperature equations. Second, strong mitigation scenarios are considered that

test a CE’s ability to capture a regime transition from, basically, emission-dominated

to response-dominated. Third, non-CO2 forcings must be taken into account. They form

part of the CMIP5 simulations and the real world alike and thus must be incorporated and

examined in the context of any CE. To facilitate the interpretation of results, we separately

examine in Figure 1.7 CO2 concentrations due to changing carbon emissions (left column,

performance of carbon cycle), the temperature in response to changing CO2 concentrations

(middle column, performance of temperature equations), and finally, temperature as a

function of carbon emissions (right column, performance of full CE).

The CMIP5 data (gray and black lines in Figure 1.7) provide a benchmark range: de-

pending on the model, warming by 2100 is between 1 K and 2.5 K for RCP26 and between
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3 K and over 6 K for RCP85. The range exists, although the models feed on prescribed

concentrations, not emissions. A subset of CMIP5 models recomputed the RCP85 scenario

based on prescribed emissions. By 2100, their CO2 concentrations lie in a range from 800

ppm to 1150ppm, or within about 20% of the CMIP5 prescribed value of 935 ppm, and

warming ranges roughly from 2.7 K to 6.5K (Figure 12.36 in the Intergovernmental Panel

on Climate Change & Intergovernmental Panel on Climate Change, 2015). The episodic

cooling apparent in Figure 1.7, which is due to significant volcanic eruptions such as Mt.

Pinatubo in 1991, is a reminder that the temperature evolution in CMIP5 encapsulates a

whole range of forcings. The decreasing CO2 concentrations and temperatures in RCP26

are of particular interest as they allow us to benchmark the CE in the context of mitigation

scenarios.

Looking at the carbon cycle (left column in Figure 1.7), we find that CO2 concentra-

tions modeled by the DICE family are mostly within 20% of those prescribed by CMIP5

(black dotted lines), thus within the range of emission-based CMIP5 simulations (see

above). Concentrations are always highest for DICE-2016, followed by CDICE-MESMO,

CDICE, and CDICE-LOVECLIM, in line with calibration (CDICE family) and evaluation

(DICE-2016) against the 100 GtC pulse test (see section 1.4.2). Looking at the different

scenarios, the strong mitigation scenario RCP26 has concentrations prescribed in CMIP5

(black solid) that are lower than in any model of the DICE family. The situation changes

as one moves to RCP45 and RCP85, where towards the end of the century (the year 2100),

concentrations in CDICE are even lower than those prescribed in CMIP5. The behavior

may indicate a dependence of the carbon cycle on the scenario (strong mitigation versus

continued strong emission) either on the side of the DICE model family or on the side of

CMIP5. A dedicated analysis is beyond the scope of the present paper.

Turning to the temperature response to CO2 concentrations as prescribed in CMIP5

(middle column), the curves for the different versions of CDICE echo corresponding cal-

ibrations (see section 1.4.3). In particular, CDICE (red solid) falls on top of the CMIP5

multi-model mean (black solid) independent of the RCP scenario considered. This is

remarkable in several respects. The temperature equations in CDICE were calibrated

against one perturbation (instantaneous quadrupling of CO2), whereas CO2 keeps con-

stantly changing here. The temperature evolution is well captured even in RCP26 after

2050, when CO2 concentrations decrease again. Finally, the data by Geoffroy et al. (2013),
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used to calibrate CDICE, incorporates only a subset of CMIP5 models.20 DICE-2016 (blue

dashed line) features relatively high temperatures under strong mitigation (RCP26) and

rather low temperatures in the strong forcing RCP85 scenario. One reason could be that

the slow temperature response of DICE-2016 to an instantaneous increase in CO2 concen-

trations turns into a lagging response upon gradually changing CO2. Another reason could

be the non-CO2 forcing (see Section 1.4.1), which may be too strong in the RCP26 sce-

nario, but too weak in the RCP85 scenario. For CDICE, the (assumed) non-CO2 forcing

(dotted orange line) contributes around 0.5 to 1-degree warming by 2100.

The performance of the entire CE (Figure 1.7, right column) encapsulates the fea-

tures just described. Some combinations of the independently calibrated carbon cycle and

temperature equations fall outside the range of CMIP5 models (thin gray lines). For exam-

ple, CDICE-HadGEM2-ES-MESMO and CDICE-HadGEM2-ES are too warm in RCP26,

whereas CDICE-GISS-E2-R-LOVECLIME tends to be on the cool side in RCP85. The

relative importance of the carbon cycle and temperature response depends on the forcing

scenario. Upon strong forcing, like RCP85, temperatures differ mainly because of the dif-

ferent ECS calibrations (cyan, red, and green curves). In contrast, the calibration of the

carbon cycle plays a minor role (dotted, solid, and dash-dotted curves). For RCP26, CEs

that combine high ECS with efficient removal of carbon emissions (CDICE-HadGEM2-ES-

LOVECLIM, cyan dash-dotted) have a similar temperature evolution as CEs combining

inefficient carbon removal with an intermediate ECS (CDICE-MESMO, red dotted). In

section 1.6, we examine the degree to which this degeneracy persists within an economic

context.

In summary, CDICE falls within CMIP5 models for all future scenarios. This is not

the case for some variants of CDICE that combine extreme calibrations of the carbon cycle

and temperature equations. DICE-2016 performs better for the strong forcing scenario

RCP85 than for the strong mitigation scenario RCP26. Concrete assumptions about the

non-CO2 forcing term, notably its strength, are demonstrated to matter for global mean

temperature change.

20Only a subset of all CMIP5 data was available when Geoffroy et al. (2013) performed their analysis.
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Fig. 1.7 Comparison of DICE with historical and future (years 1850 to 2100, scenarios
RCP26, RCP45, RCP60, and RCP85, from top to bottom) CMIP5 data. Shown are atmo-
spheric CO2 concentrations (left) as prescribed in CMIP5 (solid black, with dotted lines
indicating ±5% and ±20% ranges) and as computed from CO2 emissions with DICE-2016
(dashed blue), CDICE (solid red), as well as CDICE-MESMO and CDICE-LOVECLIM
(dotted and dash-dotted red). Also shown is temperature evolution based on prescribed
CO2 concentrations (middle) and based on emissions (right) for DICE-2016, CDICE, and
variants of CDICE.
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1.4.6 Synthesis and lessons learned from the climate test cases

The results presented in this section show that it is important to independently calibrate

the two basic building blocks of any CE, that is, the carbon cycle and the temperature

equations. In this paper, we provide two corresponding, highly idealized test cases that

are based on published data from CMIP5. We advocate that the calibrated CE should,

subsequently, be exposed to two additional tests: one to quantify the CE’s transient climate

response and the other to evaluate the CE’s performance for realistic future scenarios,

under strong forcing as well as under strong mitigation. Associated tests are described

that rely only on publicly accessible data from CMIP5. We illustrated that DICE-2016,

although failing both calibration tests, passes the two additional tests, possibly due to

compensating errors. Additionally, we demonstrated that the functional form of the DICE

family is fit for purpose: a re-calibrated version, CDICE, passes all four tests.

The CMIP5 test cases highlight the existence of a target range for both the carbon

cycle and the temperature equations. Full-fledged ESMs do not agree on global mean

temperature change, even if this change is only due to prescribed gradual changes in

atmospheric CO2 concentration, as in the one percent per year CO2 increase test case.

Variants of CDICE using calibrations for the temperature response that are extreme yet in

line with CMIP5 have been shown to bracket the range of CMIP5 models for all four RCPs

examined. We advocate exploiting this bracketing behavior in the context of economic

studies as a measure of the uncertainty arising from the climate part. The same applies

with regard to the carbon cycle. We caution, however, that combining extreme calibrations

for both the carbon cycle and the temperature equations may result in an overly extreme

climate of the CE.

Non-CO2 forcings have been shown to play a prominent role and, as such, constitute

another source of uncertainty for any CE. Their assumed linear increase with time in DICE-

2016 has the advantage of being simple. Climate literature rather advocates that non-CO2

forcings amount to about one-third of the forcing from CO2 (cf. section 1.3.2); the form

adopted in CDICE. It is not obvious whether any of the two forms is clearly superior with

regard to the envisaged applications; studying the interplay of climate, society, economy,

and technology. Net-zero targets, mitigation scenarios, or scenarios presenting even more

heavy use of fossil fuels may affect the mix of non-CO2 forcing agents and associated

lifetimes. A more detailed description of such developments is not desirable as it would
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necessitate including non-CO2 agents, reservoirs, and processes, thereby violating the

deliberately simple approach to climate taken in DICE. Retaining a simple form, but

testing for associated sensitivities, seems a more promising avenue.

Focusing again on CO2-forcings alone, the temperature part of CDICE has been shown

to perform very well with respect to any benchmark data for prescribed CO2 concentra-

tions. Working with carbon emissions has turned out to be more challenging. It is difficult

for CDICE to reproduce both high emission and mitigation scenarios, like RCP85 and

RCP26 (cf. Figure 1.7, left column) equally well. The point is relevant given that DICE

should be applicable to a broad range of socio-economic scenarios, from fossil fuel domi-

nated to mitigation and net-zero emissions. We speculate that the issue is rooted at least

in part in the availability of only two time scales (of 5 and 102 years, see section 1.4.1)

related to the three reservoir carbon cycle.

A reservoir-based carbon cycle model has the advantage that the total amount of

carbon is preserved. In particular, carbon leaving the atmospheric reservoir is still present

in another reservoir, notably the ocean, in the case of DICE. From there, it may continue

to play a role for the climate system at some point in time. This capability of a reservoir-

based approach is especially interesting with regard to strong mitigation scenarios, where

the amount of carbon currently being stored in the (upper) ocean is likely to affect the

carbon uptake capability of the ocean as emissions decline (Ridge & McKinley, 2021). For

the same reason, it seems questionable whether even simpler climate models without any

reservoirs - an example of such a model could be the approximately linear relationship

between cumulative carbon emissions and global mean temperature - would be able to

properly cope with strong mitigation scenarios.

In summary, the emission-based global mean temperature evolution from 1850 to 2100

as modeled by either DICE-2016 or CDICE lies, despite the models’ simple functional

form, well within the range of CMIP5 results for most RCPs. For DICE-2016, this find-

ing is noteworthy as the model, in contrast to CDICE, clearly fails more idealized tests

(instantaneous quadrupling of CO2 and 100 GtC pulse). Moreover, it is deceiving, as com-

pensating errors play an important role in DICE-2016. Noteworthy also is the challenge

posed to either DICE-2016 or CDICE by the strong mitigation scenario RCP2.6: CDICE

struggles, and DICE-2016 clearly fails and clearly warms far too much towards 2100. As
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already noted by Traeger (2014), such strong mitigation scenarios excessively challenge

the models’ functional form.

1.5 The social cost of carbon in partial equilibrium

In standard economic models, climate change is treated as an externality, and, going back

all the way to the work of Pigou (1920), it is well known that Pareto efficiency can be

restored by adding the marginal value of the externality to the market price of carbon. To

reach this goal, IAMs compute the net present value of all future damages caused by the

emission of an additional unit of carbon at some date t. The effect of these extra emissions

on damages depends on the calibration of the damage function and the path of emissions.

Computing the net present value of the damages requires knowledge of all future interest

rates. A change in the market price of carbon will change the path of emissions and of

interest rates. Consequently, one has to impose an economic model with many assumptions

to obtain an accurate estimate of the SCC. However, one can gain important insights by

examining the future path of damages caused by a pulse of emissions for a given RCP

emissions scenario. One can then assume constant interest and growth rates and make

general statements about the SCC. As we will show in section 1.5.1 below, in the BAU case

of the DICE-2016 model, the effects of the climate model on emissions and the interest

rates are indeed tiny (of course, the effects on optimal abatement and mitigated emissions

are very large). The social cost of carbon is defined for each date t. As it turns out,

if one assumes constant interest rates, the SCC relative to output is relatively constant

across the next 50 years, and we, therefore, focus on the somewhat arbitrary date 2020

for reporting the SCC in this section.

In this, and the subsequent section 1.6, we assume that exogenous forcing, FEX
t ,

changes linearly with time from 0.5 in the year 2015 to 1.0 in 2100, that is, as speci-

fied in DICE-2016 (cf. equation (1.6)). This measure allows us to compare the impact

of our CDICE calibration with DICE-2016 consistently. However, to be fully in line with

state-of-the-art climate science, it might be better to assume FEX
t = 0.3 · FCO2

t (see, e.g.,

Climate Change 2014 Synthesis Report IPCC, 2014; Gambhir et al., 2017). In the online

Appendix 1.C, we show how such change in the full model affects our quantitative results.

Following the majority of the economic literature on climate change, we assume that

the temperature influences the economic activity via a damage function Ω(·) that multi-
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plies total output Y Gross
t (·) at time t. Given a constant interest rate r, and a constant

growth rate of output, g, the present value of damages at some future date t is given

by
(

1+g
1+r

)t
Ω(TAT,t). In this section, we take 1+r

1+g as given, and refer to it simply as the

“g-adjusted interest rate”. Note that output growth can come from population growth as

well as total factor productivity (TFP) growth, and it is likely not to be constant over the

next 300 years. Real risk-free rates and returns to capital certainly vary over the business

cycle, but also might change in the long term (see, e.g., Bauer and Rudebusch (2021)).

The damage functions used in DICE-2016, but also in Hänsel et al. (2020) and Howard

and Sterner (2017) among others, all assume the following quadratic functional form:

Ω(TAT,t) = ψ2 · (TAT,t)2. (1.7)

Since, in this section, we only consider the SCC relative to the CDICE calibration (both

the temperature equations as well as the carbon cycle calibrated to the MMM), the value

of the parameter ψ2 is irrelevant. Of course, ψ2 matters for the absolute value of the

SCC and for optimal abatement, but not for ratios of the SCC for different calibrations.

However, as we show, the functional form is very important, and higher-order terms (as,

for instance, discussed in Weitzman (2012a)) can make a significant difference in the effect

of climate model uncertainty on the SCC.

1.5.1 Different climate calibrations and the SCC

Figure 1.8 displays the SCC under two different RCP emission scenarios, that is, RCP8.5

with very high emissions and RCP2.6 with very low emissions, and four different calibra-

tions of our CE. In all the cases in the Figure, the social cost of carbon is relative to the

CDICE MMM social cost of carbon for RCP2.6. We consider the MMM for both the

temperature equations and the carbon cycle (denoted by CDICE). Furthermore, we also

look at HadGEM2-ES and GISS-E2-R as alternative temperature calibrations, as well as

MESMO as an alternative carbon-cycle calibration. As we vary the growth-adjusted in-

terest rate from 0.5 percent to 4 percent, the SCC for the RCP 2.6 scenario with the basic

CDICE model (both temperature equation and carbon cycle calibrated to the MMM) is

always normalized to one. All models considered in this Figure are a calibration of CDICE;

for simplicity, the term CDICE is often omitted in the legends in Figures 1.8 and 1.9.
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Fig. 1.8 SCC for different CDICE calibrations, emission scenarios, and a quadratic dam-
age function.

There are four key takeaways from this stylized exercise. First, model uncertainty for

the temperature equation can lead to three to five times higher SCC for very pessimistic

scenarios as opposed to the most optimistic scenario. Second, the effect of an extreme

carbon cycle is much smaller compared to the temperature block (it increases the SCC

by about 20 percent relative to the MMM), but the combined effect of a pessimistic

carbon cycle and a pessimistic temperature scenario can be very large. Third, the relative

uncertainty introduced by climate model uncertainty does not change very much with

discounting, at least for g-adjusted interest rates above 2 percent. Fourth, the SCC does

not change very much with an alternative to the emissions scenario. It is uniformly

higher when the emissions are very large, but relative to the effect of the climate model

uncertainty and the discount factor, the changes are small.

It is important to note that the last two observations depend crucially on the assump-

tion that damages are quadratic (cf. equation (1.7)). Typically, for any strictly convex

cost function, one would expect that marginal costs increase in quantity and that, there-

fore, the SCC is substantially higher for RCP8.5 than for RCP2.6. However, the marginal

costs of emissions also include the non-linear effects of emissions on the temperature. The

concavity in the forcing equation (1.6) counters the convexity of damages, and thus, the

overall shape of the cost function is an unknown a priori.
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This point is further illustrated in Figure 1.9, where we show the analog of Figure 1.8

for a linear damage function (left panel) as well as a cubic damage function of the form

Ω(TAT,t) = ψ3 · (TAT,t)3 (right panel).

(a) Linear Damages (b) Cubic Damages

Fig. 1.9 SCC for alternative damage functions.

For linear damages, the marginal costs decrease in emissions. For high-emission sce-

narios, the SCC is lower than for low-emission scenarios. The overall effect of climate

model uncertainty is significantly smaller than in the quadratic cost case. For the cubic

damages, on the other hand, marginal costs clearly increase. For high-emission scenarios,

the SCC is much higher. The effect of model uncertainty, in this case, is huge. Depending

on the assumed interest rate, the SCC for the most pessimistic climate scenario can be

almost eight times the SCC for the most optimistic scenario.

1.5.2 The effect of miscalibration

How important are the exact details of our calibration for the SCC? What happens, for

instance, if, instead of using the CDICE-HadGem2-ES calibration, we just change the ECS-

parameter in Equation (1.4) to 2.15 or to 4.55 without changing any other parameters?

How does the SCC for the original DICE-2016 calibration differ from the SCC in our

calibration? Figure 1.10 shows how the SCC changes with various calibrations of the CE.

We focus here on the RCP 8.5 scenario with quadratic damages and compute the SCC at

t=5 (the year 2020) relative to the CDICE calibration.

Figure 1.10 shows the SCC for CDICE-HadGEM2-ES and CDICE-GISS-E2-R as al-

ternative temperature calibrations and compares them to simply setting the ECS to the

associated values (4.55 in CDICE-HadGEM2-ES and 2.15 in CDICE-GISS-E2-R), but
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Fig. 1.10 SCC for different calibrations. RCP8.5 and quadratic damage function.

leaving the CDICE calibration unchanged otherwise (cf. the dot-dashed lines labeled

’ecs45-CDICE’ and ’ecs21-CDICE’). This is how uncertainty about the ECS is typically

treated in economic models of climate change (see, e.g., W. Nordhaus (2018) or Hassler

and Krusell (2018)). We observe that even within the CDICE calibration, just changing

the ECS is not a very good proxy for the extreme warming scenarios in CMIP5. In partic-

ular, the SCC for an ECS of 2.15 is about 15 percent too large relative to GISS-E2-R, and

the SCC for an ECS of 4.55 is about 10 percent too small relative to CDICE-HadGEM2-

ES. This indicates that for a quantitative treatment of climate model uncertainty, it is not

sufficient to simply vary the ECS parameter in the CE. As explained above, the ECS is not

a free parameter in Earth System models, but emerges as one characteristic of simulated

climate change describing the very long-run behavior of temperature. For the social cost

of carbon, this very long run is largely irrelevant, and the speed of warming is often more

important. Modeling the climate uncertainty by simply varying the ECS parameters in

the climate emulator incorrectly reduces the uncertainty about the SCC by a significant

amount.

Figure 1.10 also shows the ECS for the DICE-2016 calibration, the MMM, as well as

calibrations with an ECS of 2.15 and with 4.55. The differences with respect to CDICE

are apparent: For intermediate values of the discount fact (say 0.97 or so), the SCC for

CDICE and DICE-2016 are very similar, both for the MMM and for the calibrations with

ECS of 2.15 and 4.55, respectively. In the case of a discount factor of 0.96, DICE-2016
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underestimates the SCC substantially and is about 20 percent lower than for CDICE. For

high values of this parameter, DICE-2016 produces much higher values for the SCC, for a

value of 0.99, about 30 percent larger than CDICE.

1.6 The social cost of carbon and optimal abatement in

the DICE economy

In this section, we present the optimal solutions for the adjusted DICE-2016 model, which

features both the calibration of the economic part as presented in DICE-2016 (W. Nord-

haus, 2018) merged with the re-calibrated CDICE climate part (cf. section 1.4). We will,

in the following, also refer to this complete IAM as CDICE. A comprehensive summary of

the complete calibration of CDICE is available in the online Appendix 1.B. We will refer

to the original calibration of the DICE model as DICE-2016.21

The key non-climate part of the DICE-2016 model consists of a single, infinitely lived,

representative consumer and a single firm. As it is standard in economics the equilibrium

allocation can be described as the solution to a planner’s problem (see, e.g., Golosov et

al. (2014) for more details, and L. Kotlikoff et al. (2021a) for a critique of this approach).

The planner / representative agent maximizes a time-separable utility function over (per

capita) consumption (CtLt )
∞
t=0 with a constant intertemporal elasticity of substitution (IES),

ψ > 0, and a time preference parameter, 0 < β < 1.22 The optimal value, V0 is given by

the following expression:

V0 = max
{Ct,µt}∞

t=0

∞∑
t=0

βt

(
Ct
Lt

)1−1/ψ
− 1

1 − 1/ψ Lt (1.8)

s.t. Kt+1 = (1 − Θ (µt) − Ω (TAT,t))Kα
t (AtLt)1−α + (1 − δ)Kt − Ct (1.9)

Eq. (1.1), Eq. (1.4), Eq. (1.5)

0 ≤ Kt+1 (1.10)

0 ≤ µt ≤ 1 (1.11)

where Et = σtY
Gross
t (1 − µt) + ELand

t . (1.12)

21Note that the calibration for the original DICE-2016 stems from the publicly available GAMS code
specification. For details, see http://www.econ.yale.edu/~nordhaus/homepage/homepage/DICE2016R
-091916ap.gms.

22In the online Appendix 1.B, we list all exogenous variables, equations, and parameters of DICE-2016
and CDICE.

http://www.econ.yale.edu/~nordhaus/homepage/homepage/DICE2016R-091916ap.gms.
http://www.econ.yale.edu/~nordhaus/homepage/homepage/DICE2016R-091916ap.gms.
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The CO2 emissions, denoted by Et, consist of non-industrial emissions, ELand
t , as well as

industrial emissions that are modeled as a fraction of output, σtY Gross
t , with σt being

emission intensity and µt ≥ 0 being mitigation. Output is produced in a Cobb-Douglas

technology with capital, Kt, and labor, Lt. Mitigation is costly and decreases output at

a rate Θ(µt). Higher temperatures decrease output at a damage Ω(TAT
t ). For a detailed

specification and parametrization of all the equations including exogenous variables and

damages, please refer to the online Appendix 1.B.

First, the planner solves the maximization problem stated above without understand-

ing that higher mitigation µt leads to lower damages from a temperature increase. In the

BAU scenario, she only chooses an investment path, and mitigation is set to zero. Then,

she solves the problem optimally by choosing mitigation as well as an investment path. In

both cases, the SCC is the marginal cost of atmospheric carbon in terms of the numeraire

good. Following the literature (see, e.g., Traeger (2014) and Cai and Lontzek (2019)), we

can write the SCC as the planner’s marginal rate of substitution between the atmospheric

carbon concentration and the capital stock. Thus, we have:23

SCCt = −∂Vt/∂MAT,t
∂Vt/∂Kt

. (1.13)

The optimal carbon tax (CTt) is the tax that equates the private and the social cost of

carbon. W. Nordhaus (2018), among others, defines the optimal carbon tax as a function

of mitigation µt. The social planner chooses the mitigation µt, which is equivalent to

choosing the carbon tax in units [USD/tC]24, that is,

CTt = θ1,tθ2µ
θ2−1
t

σt
, (1.14)

where θ1,t is the abatement cost, and σt is emission intensity.25 By definition, the SCC is

equal to the optimal carbon tax if µt < 1.

23We mention here for the sake of accuracy that in DICE-2016, the cost of backstop is given in 2010
thousand USD per ton of CO2 in 2015, whereas the mass of carbon in the atmosphere is measured in tons
of carbon. Thus to make the social cost of carbon formula numerically correct with respect to units of
measurement, one needs to adjust it by a factor of 3.66, which is a conversion rate between carbon and
CO2. The SCC is measured in 2010-US dollars per ton of carbon.

24One needs to multiply the carbon intensity σt in the denominator by 1000 because we define the
carbon intensity in the units of 1000 GtC.

25A detailed description of all parameters and exogenous parameters of the model can be found in the
online Appendix 1.B.
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(b) g-adjusted interest rate

Fig. 1.11 BAU emissions (left panel) as well as growth adjusted interest rate (right panel)
for different climate calibrations. Year zero on the graph corresponds to the starting year
2015.

In the following, we first consider the CDICE model under different CMIP5 calibrations

for the carbon cycle and the temperature equation. This is to illustrate that different

reasonable calibrations for the CE can have large effects on the optimal abatement. Second,

we compare CDICE to DICE-2016 to show some economic consequences of the incorrect

calibration in DICE-2016. We do so in two steps. First, we compare the predictions of the

two calibrations with the exact economic calibration from DICE-2016. Second, we also

investigate the effects of differences in the IES-parameter ψ, which can have large effects

on future g-adjusted interest rates.

1.6.1 CDICE - Economic consequences of climate model uncertainty

We consider the economic model of DICE-2016 combined with our nine different reason-

able calibrations for carbon-cycle and temperature equations. We explore the economic

consequences of the large uncertainty in our climate model.26

We take as a starting date (t=0) the year 2015. In addition, the initial conditions are

listed in Table 1.3.

We start our analysis by examining the predictions of the model in a scenario without

mitigation. The first observation is that in this framework, the emissions are not sensitive

to the climate calibration used. Figure 1.11a shows the path of emissions for our nine

26All results we report in the following were obtained by using “Deep Equilibrium Nets” by Azinovic,
Gaegauf, and Scheidegger (2022), a method for computing global solutions to high-dimensional dynamic
economic models. Additional implementation details, as well as the level of accuracy for our computations,
are provided in the online Appendix 1.D.
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versions of CDICE and compares it to the emissions in RCP 8.5 and RCP 6. The assumed

climate parameters have an effect on BAU emissions via differences in damages (higher

temperatures imply higher damages that, in turn, imply less carbon emissions in this

model), but the effect is quantitatively insignificant. One reason for this behavior is that

the damages only become large once emissions have started to decline substantially. The

fraction by which emissions are reduced by these damages might be significant, but the

absolute value of the reduction is small. Figure 1.11a also shows that the emissions from

DICE-16 lie somewhere between RCP6 and RCP8.5. The lessons from our detailed analysis

of these emission scenarios above should also carry over to the DICE-2016 BAU emissions.

Figure 1.11b shows that the path of the growth-adjusted interest rate is also more or

less the same across different climate calibrations. There is some variation that can be

explained by differences in future damages that translate into differences in the interest

rate. Higher expected future damages imply a lower capital stock and a (slightly) higher

interest rate today. The variation over time, which is much more substantial, is mostly

explained by the assumption in DICE-2016 that TFP growth, as well as population growth,

flattens over time. The DICE-2016 calibration starts with an initial population growth of

1.4 percent and an initial TFP growth of 2.25 percent, with population growth declining

fast over the next 50-100 years and TFP growth declining substantially slower. The

way the time-varying growth rates translate into the time-varying interest rate depends

crucially on the preferences of the representative agent. We will return to this issue in

section 1.6.3 below. Note for now that the initial g-adjusted interest rate is close to zero,

whereas after 50 years, it is around 2 percent, and then finally converges to 1.5 percent in

the very long run.

Figure 1.12 shows the effect of different climate calibrations on damages as a per-

centage of GDP and the SCC as a percentage of GDP. As is to be expected from our

discussions in section 1.5.1 above, our three different calibrations for the carbon cycle

imply three vastly different predictions for CO2 concentrations. Across different temper-

ature equations, for a fixed carbon cycle, this then results in 9 vastly different paths for

temperature. As already pointed out in section 1.5.1 above, the effects of the carbon

cycle calibration on temperatures and damages are not nearly as large as the effect of

the calibrations of the temperature equation, and the combination of an extreme carbon

cycle and an extreme temperature equations yields extreme damages. This is true both
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(b) Relative SCC

Fig. 1.12 This figure shows the evolution damages (left panel) and the relative SCC (right
panel) over time for nine CDICE-calibrations in the business as usual case. Year zero on
the graph corresponds to the starting year 2015.

for CDICE-MESMO-HadGEM2-ES as well as for CDICE-LOVECLIM-GISS-E2-R. The

range of plausible damages in 300 years goes from around three percent of GDP to over

17.5 percent of GDP; almost a factor of six. As expected this has a very large effect on

optimal abatement. The relative SCC depicted over the next 50 years in Figure 1.12b is

fully consistent with our results in section 1.5.1 above. In this section, we discussed only

the SCC at a fixed date t = 5, whereas we examine it here over the next 30 periods. The

SCC initially falls over time, and this effect is caused by the stark rise in the g-adjusted

interest rate discussed above. After that, it stays relatively flat, and the relative SCC

between the different temperature calibrations is similar to that described in section 1.5.1

above.

The large differences in damages and the SCC across calibrations imply large differ-

ences in the optimal solution. We now assume that the social planner optimally chooses

mitigation, µt, in the optimization-problem (1.8). Figure 1.13a shows the optimal abate-

ment choices for the nine different climate calibrations. Differences in the social cost of

carbon translate mechanically into differences in optimal abatement via Equation (1.14)

above. Since the exogenous parameters in (1.14) are time-varying, optimal mitigation is

time-varying. The differences in optimal mitigation between the different climate calibra-

tions are huge over the next 80 years; about a factor of three. By definition, differences

in abatement lead to differences in emissions. Figure 1.13b shows BAU emissions for our

9 cases compared to the emission scenarios in RCP 2.6 and in RCP 4.5. It is interesting

to note that in all cases, optimal emissions remain far above RCP 2.6 emissions. This is a
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(b) Opt. Emissions

Fig. 1.13 This figure shows optimal abatement (left panel) and emissions (right panel)
over time. Year zero on the graph corresponds to the starting year 2015.

consequence of the specification of the damage function in DICE-2016, which we use here,

and the fact that the model does not allow for carbon removal, which becomes an active

part of future policy in RCP 2.6. Emissions in the MMM case closely mirror optimal

emissions in RCP 4.5.

The fact that optimal emissions stay far above RCP2.6, which is the strong-mitigation

scenario from IPCC, readily implies that the optimal temperature rises far above the

Paris limit. Figure 1.14a shows that in the MMM calibration, temperature rises (relative

to preindustrial levels) by 3 degrees Kelvin and stays at that level for hundreds of years. In

our most pessimistic climate calibration, the optimal temperature rises by over 4 degrees.

As pointed out before, this depends crucially on the choice of the damage function, which

we take directly from DICE-2016 for comparison purposes. As W. D. Nordhaus (2008)

points out, “the economic impact of climate change ... is the thorniest issue in climate-

change economics”. See Hänsel et al. (2020) or Carleton et al. (2020) for more realistic

treatments of damages.

Naturally, the choice of the damage function leads to relatively low SCC in levels.

Figure 1.14b depicts the social cost of carbon in dollars over the next 50 years. Note that

it increases only because of GDP growth. The relative SCC is almost identical to that in

the BAU case depicted in Figure 1.12b above. Recall that the optimal tax on carbon is

equal to the SCC. Thus, the model’s optimal tax lies, for the MMM case, slightly below

what is typically discussed for economic policy purposes.
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Fig. 1.14 Evolution of temperature (left panel) and SCC (right panel) with optimal
abatement. Year zero on the graph corresponds to the starting year 2015.
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Fig. 1.15 Mass of carbon (left panel) and atmospheric temperature (right panel) for the
CDICE and DICE-2016 calibrations. Year zero on the graph corresponds to the starting
year 2015.

1.6.2 The economic consequences of miscalibrated climate

As pointed out above, the calibration of the climate part of DICE-2016 has two serious

flaws. Both the temperature equations and the carbon cycle are miscalibrated. As men-

tioned in Section 1.4.2, the carbon cycle in DICE-2016 overstates the fraction of CO2

emissions that end up in the atmosphere relative to the MMM in Joos et al. (2013) and

the extreme CDICE-MESMO case. We can confirm this by inspecting the BAU results.

Compared to all three carbon calibrations in CDICE, DICE-2016 predicts way too much

carbon in the atmosphere (cf. Figure 1.15a). In fact, the amount of carbon in the at-

mosphere is larger than for the CDICE-MESMO calibration (which corresponds to the

extreme case in (Joos et al., 2013)) at any point in time.
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The effect is less pronounced if one considers the overall temperature response. In

addition to a mistake in the carbon cycle, the DICE-2016 calibration also makes a mistake

in the temperature equation. As Figure 1.15b illustrates, in the short run (for the first 50

years or so), CDICE predicts more warming than the DICE-2016, despite the fact that

there is far less CO2 in the atmosphere. Even for an ECS of 4.5, DICE-2016 initially

warms slower than the CDICE MMM calibration. The combined effect of temperature-

and carbon-cycle miscalibration is crucial here; if one takes the CDICE MMM temperature

equations together with the DICE-2016 carbon cycle, the temperature evolution is com-

parable to DICE-2016. The most notable difference is the initially overly slow warming in

the DICE-2016 temperature equations.

Note that in the very long run, the dynamic system, defined by equations (1.1), (1.4)

and (1.5), that governs climate in our simple model will converge to a new steady-state

after all emissions are zero. In this steady-state, relative masses of carbon are given by

the vector MEQ/
∑3
l=1MEQ,l and it can be easily seen that the fraction of emitted CO2

that remains in the atmosphere is about 0.26 for our CDICE calibration and about 0.22

for DICE-2016. The long-run effect on temperature is determined by the ECS, which is

chosen to be 3.25 in CDICE and 3.1 in DICE-2016. Overall, the very long-run behavior

of the two calibrations will be similar, with more warming in CDICE than in DICE-2016.

Nevertheless, the miscalibration in DICE-2016 implies a consistently higher mass of carbon

in the atmosphere over the next 500 years and a higher temperature after about 100 years.

The important lesson is that parameters that determine the very long run of the climate

system are more or less irrelevant to temperature over the next 300 years and, therefore,

for the SCC that determines optimal policy today.

So far, we are repeating statements that we already made in section 1.4 above. The

crucial question is what the implications of this miscalibration are for the optimal pol-

icy. Figure 1.16a depicts the optimal levels of abatement for the different calibrations.

Abatement is presented as a share of industrial emissions that are mitigated. Hence, its

numerical values are bound to the interval [0, 1], where 0 corresponds to the absence of

any abatement, whereas 1 implies using the full mitigation capacities. The figure shows

that the DICE-2016 calibrations imply a little more optimal abatement than the respec-

tive CDICE calibrations. The differences are so small because initial warming lies below

the CDICE case and, with discounting, this is important for abatement over the next
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Fig. 1.16 Optimal abatement in CDICE and DICE-2016. Year zero on the graph corre-
sponds to the starting year 2015.

decade. This finding again highlights the relevance of both parts of the climate model, of

the carbon cycle and the temperature response, and of caution against the potential for

compensating errors.

From this figure, one might be tempted to argue that for policy recommendations it

does not make much of a difference whether one uses the CDICE calibration or the DICE-

2016 calibration. However, it makes a large difference for optimal temperature as Figure

1.16b demonstrates. The DICE-2016 (with the ECS of 3.1) atmospheric temperature is

now outside of the CMIP5 range. It can be seen that after about 90 years, the black

line (corresponding to DICE-2016) crosses the predicted temperature under the optimal

mitigation in DICE-2016, and it is above the temperature predicted by the extreme cli-

mate sensitivity scenario CDICE-HadGEM2-ES. In the BAU scenario, DICE-2016 falls

well within the CMIP5 range, whereas in the economic model with mitigation, this is no

longer the case. This issue arises because, in the BAU scenario, DICE-2016 is ‘helped’

by offsetting errors in the climate equations and the carbon cycle. In the case of optimal

mitigation, the flaw in the carbon cycle dominates and leads to so little mitigation that

the temperature rises by more than 4 degrees. This is already implicit in the BAU SCC.

Despite the fact that DICE-2016 leads to much larger damages and much higher temper-

atures than CDICE, the SCC is almost identical. This implies (to first order) the same

optimal carbon tax for CDICE and DICE-2016, resulting in far higher temperatures in

DICE-2016.

Although long-run temperatures differ so much, the reason why abatement and the

SCC are comparable between CDICE and DICE-2016 is simply that these temperature
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differences only become significant in 75 years and, as shown in Figure 1.11b, the g-

adjusted interest rate is relatively high at that point in time. The damages that occur

are heavily discounted. If one takes a different perspective and, instead of maximizing

the utility of a social planner, restricts long-run warming to lie below 2 degrees Kelvin,

the differences between the two climate-model calibrations become starker. In fact, for

the DICE-2016 calibration, it is impossible to keep the temperature below 2 degrees. Full

abatement that reduces industrial emissions to zero does not suffice to keep global warming

below 2 degrees. This is very different in CDICE, where putting an immediate stop to

industrial emissions will keep warming below 1.7 degrees. Somewhat more realistically, if

one considers the RCP 2.6 emissions profile (that includes carbon removal), DICE-2016

warms by more than 2.5 degrees (as can already be seen in Figure 1.7 above) and stays

above 2.3 degrees beyond 2300 while CDICE warms by 2.1 degrees, but warming is below

1.8 degrees by 2300.

Clearly, discounting is crucial for the small differences in abatement between the two

calibrations. The interest rate is endogenous, as it depends on consumption growth, but

also on the preferences of the representative agent.

1.6.3 The role of discounting

There is a large literature (see, e.g., Hänsel and Quaas (2018); N. H. Stern (2007)) about

the “right”discount rate for the social planner, that is, about the correct value of the

parameter β = 1
1+ρ in the planner’s utility function. It is sometimes argued that this

parameter can be pinned down by the observed average rates of return to capital (or

interest rates). In a growth economy, this is not quite correct as the curvature of the

planner’s felicity function, ψ, and the time preference β are not jointly identified from

average interest rates. The fact that in DICE-2016, the SCC is so sensitive to the growth-

adjusted interest rate (documented in section 1.5 above) implies that changing these two

preference parameters simultaneously while keeping average interest rates fixed has large

effects on the SCC and on optimal abatement in the DICE-2016 calibration. For simplicity,

we take the baseline per-capita consumption growth rate to be 2 percent, which gives an

interest rate of 4 percent in the DICE-2016 calibration (the long-run average growth rate

in DICE-2016 is assumed to be zero, so we pick the 2 percent somewhat arbitrary to be

consistent with the historical average and common long-run assumptions).
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Fig. 1.17 Interest rate (left panel) and SCC (right panel) under different values for ψ.
Year zero on the graph corresponds to the starting year 2015.

Figure 1.17a shows the paths of growth adjusted interest rate for different values of

the IES, ψ, in the business as usual case. G-adjusted interest rates are quite similar for

the first 40 years, but there is significant divergence in the long run. After 200 years the

difference in g-adjusted interest rates between ψ = 0.5 and ψ = 2 is almost a factor of

2. As Figure 1.17b shows, this naturally translates into a large difference in the social

cost of carbon across different specifications of the IES. The figure shows the SCC relative

to output. The absolute SCC increases over time in all cases because of output growth.

Because of the incorrect timing in the climate calibration of DICE-2016, the effect of the

parameter ψ on interest rates is amplified, and the differences in the SCC between low

and high ψ are larger than 50 percent. While a value of ψ = 2 might be considered an

unrealistically high value of the IES, ψ = 0.5 is certainly well within the range of the IES

which is typically assumed.27

For the ψ = 0.5 case, the relative social cost of carbon initially decreases slightly and

then strongly increases over time. This is obviously caused by the fact that g-adjusted

interest rates decrease over time. In contrast, for a high value of the IES, ψ = 2, g-adjusted

interest rates start decreasing significantly in about 40 years, leading to decreases in the

SCC over time.

These differences in the BAU SCC obviously imply large differences in optimal policies.

Figure 1.18 shows optimal abatement for the three values of ψ, comparing the DICE-2016

calibration to CDICE. The three panels in the figure show different ECS calibrations for

27There are large differences in the IES typically assumed in the macro-literature (one or larger) to those
typically found in household studies. There it is found that the IES varies significantly across households,
ranging from 0.3 to 1. See, e.g., Calvet, Campbell, Gomes, and Sodini (2021).
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Fig. 1.18 Optimal abatement for different values of ψ and different climate calibrations.
The left panel shows results for MMM, the middle panel for high ECS calibrations and the
right panel for low ECS calibrations. Year zero on the graph corresponds to the starting
year 2015.

DICE-2016 and HadGEM2-ES and GISS-E2-R for CDICE. Differences in abatement are

very large between the different ψ-cases. In particular, in DICE-2016, for large ψ, the

use of carbon is extended by about 50 years relative to the low IES case. This is true

independently of the assumption on the ECS. Since the timing in the DICE-2016 calibra-

tion is wrong, the effects of future lower interest rates are much more pronounced than

for CDICE. In fact, for a high value of ψ (higher future interest rates), the optimal policy

in CDICE and DICE-2016 are quite similar; the differences become large as expected fu-

ture interest rates become small. The range of plausible values for ψ adds another model

uncertainty to economic models of climate change, and it turns out that the miscalibra-

tion in DICE-2016 amplifies the effect. In more interesting models with uncertainty and

Epstein-Zin utility (see, e.g., Cai and Lontzek (2019)), the use of the DICE-2016 climate

calibration is likely to lead to serious problems.

As above, optimal long-run temperatures in DICE-2016 are far above the values in

CDICE. Now there is an even larger spread caused by different values for ψ. Figure 1.19

shows future temperature under optimal abatement for different values of ψ and for the

three different specifications of ECS. For the case of a high ECS, the optimal warming

under DICE-2016 is now quite dramatic if one assumes a high value of ψ. In 200 years,

optimal warming is almost 6 degrees; far above anything considered acceptable by most

climate scientists. Even for the MMM calibration, a high ψ implies warming by more than

4.5 degrees. For this high IES case, warming prescribed by DICE-2016 falls significantly

out of the CMIP5 range.

Future interest rates and growth rates matter a lot for optimal mitigation and optimal

interest rates. Even if one settles on a path for TFP growth, different reasonable preference

specifications lead to large differences in interest rates. The fact that the DICE-2016
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calibration of the climate emulator contains two flaws (discussed in detail above) implies

an unrealistically large sensitivity to discounting, and differences in future interest rates

translate into an unrealistically large difference in the SCC.

The results presented here clearly highlight the need for reliable climate calibrations

and show the advantages of our approach. The fact that DICE-2016 lies within the range

of CMIP5 predictions in some cases does not ensure that it can be used as a reliable tool

within a calibrated economic model.
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Fig. 1.19 Optimal temperatures for different values of ψ and different climate calibrations.
The left panel shows results for MMM, the middle panel for high ECS calibrations and the
right panel for low ECS calibrations. Year zero on the graph corresponds to the starting
year 2015.

1.7 Conclusion

IAMs provide a quantitative framework that takes into account economic and environmen-

tal stocks and flows as well as their interaction and which allows researchers to investigate

climate change and possible mitigation pathways (Hassler, Krusell, & Smith, 2016b). IAMs

differ very much in terms of structure, complexity, level of detail, and possible solution

methods (Flamos, 2019; Hare, Brecha, & Schaeffer, 2018; Weyant, 2017). Models like the

one by Clarke et al. (2009) have very rich climate representation, whereas Bosetti, Eni,

Mattei, Massetti, and Tavoni (2007) provide a detailed economic model. Other models

provide a detailed representation of the energy sector. Models like Golosov et al. (2014);

Hambel, Kraft, and Schwartz (2021); Hassler and Krusell (2018); W. Nordhaus (2018);

Traeger (2019) have a more parsimonious structure and exhibit a higher level of aggrega-

tion, but allow for monetary estimates both for the cost of curbing climate change and for

the economic benefits that it brings, which is a necessary feature from a policy-making

perspective. Having a very detailed model with the possibility of a cost-benefit analysis

would be the preferable option. However, computational costs for such kinds of models
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are extremely high. Thus, there is a strong demand for IAMs, on the one hand, for cap-

turing and reflecting relevant processes both in the economy and climate. On the other

hand, IAMs are necessary for quantitative estimation (uncertainty, risks, tipping points,

endogenous growth), so they should be parsimonious enough to have reasonable computa-

tional complexity. The perfect candidate to satisfy both requirements could be the DICE

model (W. Nordhaus, 2018). However, it has been strongly criticized by climate scientists

and recently by economists for representing climate not in accordance with the recent

climate science advancements (Dietz et al., 2021).

Our paper’s three main contributions are as follows. First, we develop a series of tests

to evaluate the quality of CEs used in economic modeling. These tests include one test

that is similar to Dietz et al. (2021), but overall they are more comprehensive in that they

specifically test both, the temperature equations and the carbon cycle of CEs.

Second, we update the parsimonious climate representation of climate in DICE with

a new calibration of coefficients that aligns it with the CMIP5 benchmark, making the

DICE model both simple and transparent yet making it realistically represent climate.

The functional form of the climate part in DICE is retained. This allows authors who

have the climate module of DICE “hard-wired” in their economic model to obtain more

reliable results by simply changing parameters.

Third, we explain that, although the DICE-2016 predictions in a BAU scenario fall

within the range of CMIP5, this is caused by two compensating errors in the calibration.

We demonstrate that mitigation scenarios are highly sensitive to such compensating errors

between the carbon cycle and the temperature response of the model. We advocate that

this result is generic and not specific to DICE-2016 and that the proposed battery of tests

enables the identification of such issues in climate models used in climate economics. Re-

garding DICE-2016, our conclusion is similar to that in Dietz et al. (2021); the calibration

of DICE-2016 is not suited for reliable policy analysis.

An important aspect for the calibration and testing of a CE, is what physics is covered

by either the test data or the functional form of the CE - as, for example, the box-model

formulation used here or an impulse response function (IRF) formulation frequently seen in

the literature. This is a vast question that may easily fill a paper of its own, but it is useful

to point out a few aspects that come to mind in the context of the present study. We first

note that a box model, as used here for the carbon cycle, preserves the total carbon mass
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in the system, apart from carbon added to the system via human activity. A corollary is

that such a box description ‘knows’ when its reservoirs (boxes) are out of (pre-industrial)

equilibrium, factoring in any resulting associated fluxes among reservoirs automatically.

This is in contrast to IRF approaches, as used, for example, in Joos et al. (2013), where

the temporal evolution of a perturbation to a reservoir (as a carbon emission pulse to the

atmosphere) is described as a function of time but without taking into account where the

part of the perturbation leaving that reservoir (e.g., the atmosphere) goes. Consequently,

an IRF formulation cannot be aware of whether or how strongly out of equilibrium different

reservoirs (atmosphere, ocean, land, etc.) are. Coefficients in either formulation, box, or

IRF, can be made aware (calibrated) such as to take into account feedbacks affecting the

exchange among reservoirs (e.g., Sterner and Johansson (2017) for box models, or Joos

et al. (2001) for IRFs). On the side of the carbon cycle, such feedbacks include carbon

concentration and carbon-climate feedback, that is, carbon fluxes among reservoirs are

sensitive to changes in atmospheric carbon concentration or global mean temperature

that have already occurred relative to pre-industrial times (see, e.g., Arora et al. (2013,

2020)). Other effects present in the full climate system are more difficult to capture via

simple climate emulators. An example here is feedback due to two-dimensional patterns of

ocean surface temperature (see, e.g., Andrews et al. (2022)). By design, such feedbacks are

beyond the scope of simple zero-dimensional CEs as the one studied here. Nevertheless,

such simple CEs are of obvious interest for economic applications.
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Appendix

1.A Summary table of the models and parameters

Name b12 b23 MEQ
AT,UO,LO M INI

AT,UO,LO c1 c3 c4 f2xco2 t2xco2 T INIAT,OC

CDICE (MMM-MMM) 0.054 0.0082 (607, 489, 1281) (851, 628, 1323) 0.137 0.73 0.00689 3.45 3.25 (1.1, 0.27)

CDICE-HadGEM2-ES 0.054 0.0082 (607, 489, 1281) (851, 628, 1323) 0.154 0.55 0.00671 2.95 4.55 (1.1, 0.27)

CDICE-GISS-E2-R 0.054 0.0082 (607, 489, 1281) (851, 628, 1323) 0.213 1.16 0.00921 3.65 2.15 (1.1, 0.27)

CDICE-MESMO 0.059 0.008 (607, 305, 865) (851, 403, 894) 0.137 0.73 0.00689 3.45 3.25 (1.1, 0.27)

CDICE-LOVECLIM 0.067 0.0095 (607, 600, 1385) (850, 770, 1444) 0.137 0.73 0.00689 3.45 3.25 (1.1, 0.27)

CDICE-MESMO-HadGEM2-ES 0.059 0.008 (607, 305, 865) (851, 403, 894) 0.154 0.55 0.00671 2.95 4.55 (1.1, 0.27)

CDICE-MESMO-GISS-E2-R 0.059 0.008 (607, 305, 865) (851, 403, 894) 0.213 1.16 0.00921 3.65 2.15 (1.1, 0.27)

CDICE-LOVECLIM-HadGEM2-ES 0.067 0.0095 (607, 600, 1385) (850, 770, 1444) 0.154 0.55 0.00671 2.95 4.55 (1.1, 0.27)

CDICE-LOVECLIM-GISS-E2-R 0.067 0.0095 (607, 600, 1385) (850, 770, 1444) 0.213 1.16 0.00921 3.65 2.15 (1.1, 0.27)

DICE-2016 0.12 0.007 (588, 360, 1720) (851, 460, 1740) 0.1005 0.088 0.025 3.6813 3.1 (0.85, 0.0068)

Table 1.A1 Labelling of the models, and their respective parameterization. Note that
the coefficients for the DICE-2016 model correspond to a five-year time step, whereas all
other models are defined for an annual time step.

1.B Generic DICE formulation and calibration

In section 1.6, we laid out the DICE model as a whole, that is, we specified the dynamic

optimization problem that we solve with a calibration of parameters that are either given

by DICE-2016 or by variants of our CDICE. We call this dynamic problem, specified

by Eqs. (1.8) to (1.12), the generic formulation of the DICE model in terms of its for-

mal structure. The generic formulation allows for an easy switch in parameters between

different versions of the DICE model (DICE-2007, DICE-2016) as well as a switch to

the CDICE parametrization.28 The functional forms of DICE-2007 and DICE-2016 are

slightly different; however, they do not provide a critical difference in the results. This fact

is especially relevant for the laws of motion of exogenous parameters in both models be-

cause of the differences in time steps (DICE-2007 operates with a ten-year time step, and

DICE-2016 operates with a five-year time step), differences in units of measurement for

emissions (GtC in DICE-2007 versus GtCO2 in DICE-2016) and other minor divergences.

We believe that it is important to have a unified specification for the DICE model, which

28Note that in the online Appendix Section 1.B, we also include DICE-2007, for completeness, as there
is a vast number of research papers and policy studies that have used this formulation of the DICE model.
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in turn allows a broader group of researchers to consider updating their parametrization

of the model with respect to our proposed CDICE.

Another feature of the generic specification of the DICE model is that we explicitly

allow for the time step. The time step enters all relevant equations as the multiplication

factor ∆t with respect to the annual baseline calibration for all the parameters. This

applies both for the main equations of the model specified in Sections 1.B.2 and 1.B.3 and

for exogenously specified parameters of the model in Section 1.B.1.

This online Appendix is organized as follows. We present the generic equations and

calibration for all the exogenous parameters of the DICE-2007 (reads Value 2007 in the ta-

bles with parameters), DICE-2016 (reads Value 2016), and CDICE first. Then we provide

core equations of the model corresponding to the mass of carbon evolution, temperature

evolution, and economic growth with calibrations corresponding to DICE-2007, DICE-

2016, and CDICE. When necessary, we provide a detailed comment on how the functional

forms of certain equations were changed to be the same in the generic formulation and,

at the same time, equivalent to the initial formulation of DICE-2007 and DICE-2016 (for

example, the law of motion for TFP).

1.B.1 Exogenous variables

We start by introducing the law of motion for exogenous variables that are time dependent.

The law of motion for labor is given in Eq. (1.B.1) along with labor growth presented

in Eq. (1.B.2):

Lt = L0 + (L∞ − L0)
(
1 − exp

(
−∆tδ

Lt
))
, (1.B.1)

gLt =
dLt
dt

Lt
= ∆tδ

L

L∞
L∞−L0

exp (∆tδLt) − 1
. (1.B.2)

The numerical values of the parameters for the world population and its growth rate given

in Table 1.B2:
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Calibrated parameter Symbol Value 2007 Value 2016/CDICE

Annual rate of convergence δL 0.035 0.0268

World population at starting year [millions] L0 6514 7403

Asymptotic world population [millions] L∞ 8600 11500

Time step of a model ∆t 10 5/1

Table 1.B2 Generic parametrization for the evolution of labor.

The total factor productivity evolves according to the equation Eq. (1.B.3) with its

growth rate following Eq. (1.B.4):

At = A0exp
(

∆tg
A
0 (1 − exp(−∆tδ

At))
∆tδA

)
. (1.B.3)

gAt =
dAt
dt

At
= ∆tg

A
0 exp

(
−∆tδ

At
)
. (1.B.4)

The respective parameters of the total factor productivity evolution and TFP growth rate

are given in Table 1.B3:

Calibrated parameter Symbol Value 2007 Value 2016/CDICE

Initial growth rate for TFP per year gA0 0.01314 0.0217

Decline rate of TFP growth per year δA 0.001 0.005

Initial level of TFP A0 0.0058 0.010295

Time step of a model ∆t 10 5/1

Table 1.B3 Generic parametrization for the evolution of TFP.

The carbon intensity, defined in Eq. (1.B.5) for DICE-2007 and in Eq. (1.B.6), char-

acterizes how much anthropogenic carbon inflows the climate system due to production

activity:

σt = σ0 exp
(∆tg

σ
0 (1 − exp(−∆tδ

σt))
∆tδσ

)
. (1.B.5)

The carbon intensity in DICE-2016 is given by:

σt = σ0 exp
( ∆tg

σ
0

log(1 + ∆tδσ)
(
(1 + ∆tδ

σ)t − 1
))

. (1.B.6)
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The parametrization for carbon intensity processes is given by Table 1.B4:

Calibrated parameter Symbol Value 2007 Value 2016/CDICE

Initial growth of carbon intensity per year gσ0 -0.0073 -0.0152

Decline rate of decarbonization per year δσ 0.003 0.001

Initial carbon intensity (1000GtC) σ0 0.00013418 0.00009556

Time step ∆t 10 5/1

Table 1.B4 Generic parametrization for the carbon intensity evolution.

DICE-2016 uses a backstop technology capable of mitigating the full amount of indus-

trial emissions that enter the atmosphere. The cost of backstop technology is assumed to

be initially high but could be reduced over time, which is reflected in the definition of the

coefficient of the abatement cost function θ1,t as defined in Eq. (1.B.7) for DICE-2007 and

Eq. (1.B.8) for DICE-2016.29

The abatement cost in DICE-2007 is given by:

θ1,t =
pback

0 (1 + exp
(
−gbackt

)
)1000σt

θ2
. (1.B.7)

The abatement cost in DICE-2016 is given by:

θ1,t =
pback

0 exp
(
−gbackt

)
1000 · c2co2 · σt

θ2
. (1.B.8)

The parameters for the abatement cost are presented in Table 1.B5:

29The scale parameter 1000 in the equations (1.B.7) and (1.B.8) reflects the fact that we use a 1000
GtC unit of measurement; the parameter c2co2 transforms carbon intensity measured in GtC into GtCO2,
as the backstop price in DICE-2016 is given for GtCO2 instead of GtC.
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Calibrated parameter Symbol Value 2007 Value 2016/CDICE

Cost of backstop 2005 thUSD per tC 2005 pback
0 0.585 -

Cost of backstop 2010 thUSD per tCO2 2015 pback
0 - 0.55

Initial cost decline backstop cost per year gback 0.005 0.005

Exponent of control cost function θ2 2.8 2.6

Transformation coefficient from C to CO2 c2co2 - 3.666

Table 1.B5 Generic parametrization for the abatement cost.

The non-industrial emissions from land use and deforestation decline over time accord-

ing to Eq. (1.B.9), with parameters are presented in Table 1.B6:

ELand,t = ELand,0 exp
(
−∆tδ

Landt
)
. (1.B.9)

Calibrated parameter Symbol Value 2007 Value 2016/CDICE

Emissions from land 2005 (1000GtC per year) ELand,0 0.0011 -

Emissions from land 2015 (1000GtC per year) ELand,0 - 0.000709

Decline rate of land emissions (per year) δLand 0.01 0.023

Time step ∆t 10 5/1

Table 1.B6 Generic parametrization for the emissions from land.

The exogenous radiative forcings that result from non-CO2 GHG are described in Eq. (1.B.10):

FEXt = FEX0 + 1
T/∆t

(FEX1 − FEX0 ) min(t,T/∆t). (1.B.10)

The parameters of the exogenous radiative forcings are given in Table 1.B7:
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Calibrated parameter Symbol Value 2007 Value 2016/CDICE

2000 forcings of non-CO2 GHG (Wm-2) FEX0 -0.06 -

2015 forcings of non-CO2 GHG (Wm-2) FEX0 - 0.5

2100 forcings of non-CO2 GHG (Wm-2) FEX1 0.3 1.0

Number of years before 2100 T 100 85

Time step ∆t 10 5/1

Table 1.B7 Generic parametrization for the exogenous forcing.

1.B.2 The equations of the climate system

The laws of motion for the mass of carbon in the atmosphere are presented in the main

body of the text with Eq. (1.1). The temperature equations are given in Eqs. (1.4)

and (1.5). However, we believe it can be helpful to provide the full description of the

equations above together with their parametrization that can be used to relate DICE-

2007 to DICE-2016 and CDICE.

The evolution for the mass of carbon in all three reservoirs is given by the Eqs. (1.B.11)

to (1.B.13), carbon emissions are determined with the Eq. (1.B.14):

MAT
t+1 = (1 − ∆tb12)MAT

t + ∆tb12
MAT

EQ
MUO

EQ
MUO
t + ∆tEt, (1.B.11)

MUO
t+1 = ∆tb12M

AT
t + (1 − ∆tb12

MAT
EQ

MUO
EQ

− ∆tb23)MUO
t + ∆tb23

MUO
EQ

MLO
EQ

MLO
t , (1.B.12)

MLO
t+1 = ∆tb23M

UO
t + (1 − ∆tb23

MUO
EQ

MLO
EQ

)MLO
t , (1.B.13)

Et = σtY
Gross
t (1 − µt) + ELand

t . (1.B.14)

(1.B.15)

The parameters for the laws of motion for the masses of carbon, as well as the starting

values and equilibrium values, are given in Table 1.B8.
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Calibrated parameter Symbol 2007 2016 CDICE

Carbon cycle, annual value b12 0.0189288 0.024 0.054

Carbon cycle, annual value b23 0.005 0.0014 0.0082

Time step ∆t 10 5 1

Eq. concentration in atmosphere (1000GtC) MAT
EQ 0.587473 0.588 0.607

Eq. concentration in upper strata (1000GtC) MUO
EQ 1.143894 0.360 0.489

Eq. concentration in lower strata (1000GtC) MLO
EQ 18.340 1.720 1.281

Concentration in atmosphere 2015 (1000GtC) MAT
INI 0.8089 0.851 0.851

Concentration in upper strata 2015 (1000GtC) MUO
INI 1.255 0.460 0.628

Concentration in lower strata 2015 (1000GtC) MLO
INI 18.365 1.740 1.323

Table 1.B8 Generic parametrization for the mass of carbon.

The temperature evolution is determined by Eqs. (1.B.16) to (1.B.18) with parameters

and starting values given in Table 1.B9:

TAT
t+1 = TAT

t + ∆tc1Ft − ∆tc1
F2XCO2
T2XCO2

TAT
t − ∆tc1c3

(
TAT
t − TOC

t

)
, (1.B.16)

TOC
t+1 = TOC

t + ∆tc4
(
TAT
t − TOC

t

)
, (1.B.17)

Ft = F2XCO2
log(MAT

t /MAT
base)

log(2) + FEXt . (1.B.18)

Calibrated parameter Symbol 2007 2016 CDICE

Temperature coefficient, annual value c1 0.022 0.0201 0.137

Temperature coefficient, annual value c3 0.3 0.088 0.73

Temperature coefficient, annual value c4 0.01 0.005 0.00689

Forcings of equilibrium CO2 doubling (Wm-2) F2XCO2 3.8 3.6813 3.45

Eq temperature impact (°C per doubling CO2) T2XCO2 3.0 3.1 3.25

Eq concentration in atmosphere (1000GtC) MAT
base 0.5964 0.588 0.607

Atmospheric temp change (°C) from 1850 TAT
0 0.7307 0.85 1.1

Lower stratum temp change (°C) from 1850 TOC
0 0.0068 0.0068 0.27

Time step ∆t 10 5 1

Table 1.B9 Generic parametrization for the temperature.
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1.B.3 Economy equations

The capital evolution and gross output in both models, DICE-2007 and DICE-2016, are

given by:

Kt+1 = (1 − δK)∆tKt + ∆tIt, (1.B.19)

Y Gross
t = (AtLt)1−αKα

t . (1.B.20)

The functional forms of damages differ in DICE-2007 and DICE-2016. In DICE-2007,

damages, abatement costs, output net of damages, and output net of damages and abate-

ment costs are given by:

Ωt = 1
1 + ψ1TAT

t + ψ2(TAT
t )2 , (1.B.21)

Θt = θ1,tµ
θ2
t , (1.B.22)

Y Net
t = Y Gross

t · Ωt = Y Gross
t

1 + ψ1TAT
t + ψ2(TAT

t )2 , (1.B.23)

Yt = Y Gross
t · Ωt · (1 − Λt) = Y Gross

t (1 − θ1,tµ
θ2
t )

1 + ψ1TAT
t + ψ2(TAT

t )2 . (1.B.24)

(1.B.25)

The same variables for DICE-2016 are given by the following equations:

Ωt = ψ1T
AT
t + ψ2(TAT

t )2, (1.B.26)

Θt = θ1,tµ
θ2
t , (1.B.27)

Y Net
t = Y Gross

t · (1 − Ωt) = Y Gross
t (1 − ψ1T

AT
t − ψ2(TAT

t )2), (1.B.28)

Yt = Y Gross
t · (1 − Λt − Ωt) = Y Gross

t (1 − θ1,tµ
θ2
t − ψ1T

AT
t − ψ2(TAT

t )2). (1.B.29)

(1.B.30)

Consumption in both DICE-2007 and DICE-2016 models is given by:

Ct = Yt − It. (1.B.31)
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However, the utility function in DICE-2007 differs slightly from the utility used in DICE-

2016. Utility in DICE-2007 is the following:

Ut =
T∑
t=0

βt · ∆t ·

(
Ct
Lt

)1−1/ψ
− 1

1 − 1/ψ Lt. (1.B.32)

And utility in DICE-2016 is given by:

Ut =
T∑
t=0

βt · ∆t ·

(
Ct
Lt

)1−1/ψ
− 1

1 − 1/ψ Lt. (1.B.33)

The discount rate in both DICE-2007 and DICE-2016 models is the same and determined

as:

β = 1
(1 + ρ)∆t

. (1.B.34)

The parameters for the economic part of DICE-2007 and DICE-2016 are given in Ta-

ble 1.B10.

Calibrated parameter Symbol Value 2007 Value 2016/CDICE

Capital annual depreciation rate δK 0.1 0.1

Elasticity of capital α 0.3 0.3

Damage parameter ψ1 0.0 0.0

Damage quadratic parameter ψ2 0.0028388 0.00236

Exponent of control cost function θ2 2.8 2.6

Risk aversion ψ 0.5 0.69

Time preferences ρ 0.015 0.015

Initial capital (trillions USD 2015) K0 - 223.

Initial capital (trillions USD 2005) K0 137. -

Time step ∆t 10 5/1

Table 1.B10 Generic parametrization for the parameters of economy.
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1.C Sensitivity exercise: change in the exogenous forcing

In section 1.4.5 we used an alternative evolution equation for exogenous forcings, namely

FEX = 0.3 · FCO2
t . (1.C.35)

This specification was adopted instead of Eq. (1.B.10) that was used in DICE-2016. As

was shown in Figure 1.7, this switch from the original DICE-2016 exogenous forcings

can make quite a difference in the temperature evolution. However, when computing

the simulation results in section 1.6, we used the original exogenous forcings equation

Eq. (1.B.10) to remain consistent with the DICE-2016 model and to focus on analyzing

the influence of the re-calibrated climate part on policies, which was the goal of the section.

Therefore, in this section of the online Appendix, we want to investigate the consequences

of implementing time-dependent exogenous forcings that differ for the DICE-2016 and

CDICE models.

Below we present some solution results for the optimization problem Eq. (1.8) when

the agent chooses optimal investment and mitigation paths. Furthermore, we compare

DICE-2016 and CDICE with original and alternative exogenous forcings. Overall changing

exogenous forcings does not make much of a difference for the modeling results. However,

there are a couple of interesting observations that are worth mentioning.
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Fig. 1.C1 Mass of carbon in the atmosphere (left) and temperature of the atmosphere
(right) for DICE-2016, and CDICE models with different exogenous forcing evolution
(DICE-2016-FEX, CDICE-FEX show the model variables under the assumption of time
dependent exogenous forcings) for an optimal abatement case. Year zero on the graphs
corresponds to a starting year 2015.
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From Figure 1.C1 we see that change in the exogenous forcings does not affect the

CDICE model much but has some effect on DICE-2016. In DICE-2016 exogenous forcings

being time-dependent results in a lower mass of carbon in the atmosphere than in DICE-

2016 with the original forcings. However, it leads to an even higher temperature increase.

The reason for this increased sensitivity of DICE-2016 is the same as for its excessive

sensitivity to the discount rate. The carbon cycle and temperature equations are not in

balance. Thus they overreact in transmitting changes in the inputs of the model towards

outputs.
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Fig. 1.C2 Damages (left) and the social cost of carbon (right) for DICE-2016, and CDICE
models with different exogenous forcings evolution (DICE-2016-FEX, CDICE-FEX show
the model variables under the assumption of time dependent exogenous forcings) for an
optimal abatement case. Year zero on the graphs corresponds to a starting year 2015.

Figure 1.C2 reports damages and the social cost of carbon for models under consid-

eration. Both variables are coherently in line with the expectations that one might get

analyzing temperature equations. DICE-2016 with time-dependent forcings predicts more

damages and thus a higher social cost of carbon. For CDICE, both damages and the social

cost of carbon remain roughly the same, with CDICE variables being slightly lower for

alternative exogenous forcing formulation.

1.D Computational details

In this online Appendix, we briefly outline how we numerically solve the re-calibrated

DICE-2016 model (cf. Section 1.6) by applying “Deep Equilibrium Nets”(DEQNs) (Azi-

novic et al., 2022). To do so, we proceed in two steps. First, we summarize in Section 1.D.1

the DEQN solution technique in the most general form. Second, we detail in Section 1.D.2
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how the CDICE model can be cast in a form amenable to DEQNs. Section 1.D.3 fi-

nally reports detailed error statistics for our benchmark CDICE model. For further im-

plementation details, we refer the reader to the repository hosted under the following

URL: https://github.com/ClimateChangeEcon/Climate_in_Climate_Economics and

which contains all replication codes.

1.D.1 Deep Equilibrium Nets in a Nutshell

From an abstract perspective, the DEQN algorithm is a simulation-based solution method

using deep neural networks30 to compute an approximation of the optimal policy function

p : X → Y ⊂ RK to a dynamic model under the assumption that the underlying economy

can be characterized via discrete-time first-order equilibrium conditions, that is,

G(x,p) = 0 ∀x ∈ X, (1.D.36)

Intuitively, DEQNs work as follows: An unknown policy function is approximated

with a neural network, that is, p(x) ≈ Nν(x), and where the ν’s are ex-ante unknown

coefficients of the neural network that have to be determined based on some suitable loss

function measuring the quality of a given approximation at a given state of the economy.

The DEQN algorithm is started by randomly initializing the ν’s (Glorot & Bengio,

2010), that is, an arbitrary guess for the ex-ante unknown approximate policy function.

Next, we simulate a sequence of Npath length states. Starting from some given state xt,

the next state xt+1 is a result of the policies encoded by the neural network, Nν(x), and

remaining model-implied dynamics.

If we knew the (approximate) policy function satisfying the equilibrium conditions,

expression (1.D.36) would hold along a simulated path. However, since the neural network

is initialized with random coefficients, G(xt,Nν(xt)) ̸= 0 along the simulated path of

length Npath length. This fact is now leveraged to improve the quality of the guessed policy

function. Specifically, DEQNs use the error in the equilibrium conditions as a loss function,

that is,

ℓν := 1
Npath length

∑
xton sim. path

Neq∑
m=1

(Gm(xt,Nν(xt)))2 , (1.D.37)

30See, e.g., Goodfellow, Bengio, and Courville (2016) for a textbook treatment of neural networks.

https://github.com/ClimateChangeEcon/Climate_in_Climate_Economics
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where Gm(xt,Nν(xt))) represent all the Neq first-order equilibrium conditions of a given

model. Expression (1.D.37) can now be used to update the parameters of the network

with any variant of gradient descent,31 namely,

ν
′
k = νk − αlearn∂ℓ(ν)

∂νk
, (1.D.38)

where ν ′
k represents the updated k−th parameter of the neural network, that is, Nν = N ′

ν ,

and where αlearn ∈ R denotes the so-called learning rate. The updated neural network-

based representation of the policy is subsequently used to simulate a sequence of length

Npath length steps, along which the loss function is recorded, and the latter is again used

to update the network parameters. This iterative procedure is pursued until ℓν < ϵ ∈ R,

that is, until an approximate equilibrium policy, has been found.

In summary, the DEQN algorithm consists of four building blocks: i) deep neural

networks for approximating the equilibrium policies; ii) a suitable loss function measuring

the quality of a given approximation at a given state of the economy; iii) an updating

mechanism to improve the quality of the approximation; and iv) a sampling method for

choosing states for updating and evaluating of the approximation quality. We next outline

each of these components for clarity in the context of CDICE.

1.D.2 Mapping CDICE onto Deep Equilibrium Nets

In this online Appendix, we introduce a formal way of mapping CDICE, but more broadly

speaking, non-stationary models, onto the neural network-based DEQN solution frame-

work. To ensure the replicability of our procedure, we next thoroughly list every mathe-

matical manipulation that is required.

We begin by stating the CDICE model (cf. the online Appendix 1.B for the detailed

calibration), that is,

max
{Ct,µt}∞

t=0

∞∑
t=0

βt

(
Ct
Lt

)1−1/ψ
− 1

1 − 1/ψ Lt (1.D.39)

s.t. Kt+1 = (1 − Ω (TAT,t) − Θ (µt))Kα
t (AtLt)1−α + (1 − δ)Kt − Ct (λt) (1.D.40)

31In our practical applications, we use “Adam” (Kingma & Ba, 2014).
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MAT
t+1 = (1 − b12)MAT

t + b12
MAT

EQ
MUO

EQ
MUO
t + σt(1 − µt)Kα

t (AtLt)1−α + ELand
t

(
νAT
t

)
(1.D.41)

MUO
t+1 = b12M

AT
t +

(
1 − b12

MAT
EQ

MUO
EQ

− b23

)
MUO
t + b23

MUO
EQ

MLO
EQ

MLO
t

(
νUO
t

)
(1.D.42)

MLO
t+1 = b23M

UO
t +

(
1 − b23

MUO
EQ

MLO
EQ

)
MLO
t

(
νLO
t

)
(1.D.43)

TAT
t+1 = TAT

t + c1

(
F2XCO2

log(MAT
t /MAT

base)
log(2) + FEXt

)
− c1

F2XCO2
T2XCO2

TAT
t

− c1c3
(
TAT
t − TOC

t

) (
ηAT
t

)
(1.D.44)

TOC
t+1 = TOC

t + c4
(
TAT
t − TOC

t

) (
ηOC
t

)
(1.D.45)

0 ≤ µt ≤ 1 (λµt ) , (1.D.46)

where the Lagrange and KKT multipliers we will employ below have been added in paren-

theses for completeness.

The state of the economy at time t is given by

xt ∈ R6 :=
(
kt,M

AT
t ,MUO

t ,MLO
t , TAT

t , TOC
t , t

)T
. (1.D.47)

Note that we take time t as an exogenous state to account for the non-stationary nature of

the IAM, whereas all other states are endogenously determined. Furthermore, to ensure

computational tractability, we follow Traeger (2014) and map the unbounded physical

time t ∈ [0,∞) via the strictly monotonic transformation

τ = 1 − exp (−ϑt) . (1.D.48)

into the unit interval, τ ∈ (0, 1].32 To scale back from the auxiliary time τ to the physical

time, the inverse transformation of equation (1.D.48) can be applied, that is,

t = − ln (1 − τ)
ϑ

. (1.D.49)

32An alternative way to deal with transitory dynamics is to use so-called “shooting methods” (see,
e.g., Arellano, Bai, and Mihalache (2020), and references therein).
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Next, we re-scale consumption and capital as

ct := Ct
AtLt

, kt := Kt

AtLt
. (1.D.50)

The following normalization of the Lagrangian and the KKT multipliers helps to stabilize

the solution process, that is:

λ̂t := λt

A
1− 1

ψ

t Lt

, λ̂µt := λµt

A
1− 1

ψ

t Lt

, ν̂AT
t := νAT

t

A
1− 1

ψ

t Lt

, ν̂UO
t := νUO

t

A
1− 1

ψ

t Lt

, ν̂LO
t := νLO

t

A
1− 1

ψ

t Lt

,

η̂AT
t := ηAT

t

A
1− 1

ψ

t Lt

, η̂OC
t := ηOC

t

A
1− 1

ψ

t Lt

. (1.D.51)

Furthermore, we introduce a quantity called the “effective discount factor”,

β̂t := exp
(

−ρ+
(

1 − 1
ψ

)
gAt + gLt

)
. (1.D.52)

The policy function p we intend to approximate with the aid of deep neural networks

is given by

Nν(xt) ∈ R9 :=
(
kt+1, µt, λ̂t, λ̂

µ
t , ν̂

AT
t , ν̂UO

t , ν̂LO
t , η̂AT

t , η̂OC
t

)
. (1.D.53)

and consists of the choice variables (kt+1, µt)33 as well as the Lagrange and KKT multi-

pliers.

Next, we derive the first-order conditions in order to form a loss function for the

CDICE model that is suitable for DEQNs (cf. equation (1.D.37)). To do so, we start by

formulating the Lagrangian of the model, which reads,

L =
∞∑
t=0

β̂t
[c1−1/ψ
t −A

1/ψ−1
t

1 − 1/ψ

+ λ̂t
{

(1 − Ω (TAT,t) − Θ (µt)) kαt + (1 − δ) kt − ct − exp
(
gAt + gLt

)
kt+1

}
+ λ̂µt {1 − µt}

+ ν̂AT
t

{
(1 − b12)MAT

t + b12
MAT

EQ
MUO

EQ
MUO
t + σt(1 − µt)AtLtkαt + ELand

t −MAT
t+1

}
33In our computations, we follow the literature and employ kt+1 instead of ct as a choice variable, as it

allows for a simpler update of the state variable kt. Nevertheless, we still keep the first-order conditions
with respect to kt+1 and ct. In practical applications, the performance of neural networks can, as in our
case, often benefit from redundant information (see, e.g., Azinovic et al. (2022) for more details).
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+ ν̂UO
t

{
b12M

AT
t +

(
1 − b12

MAT
EQ

MUO
EQ

− b23

)
MUO
t + b23

MUO
EQ

MLO
EQ

MLO
t −MUO

t+1

}

+ ν̂LO
t

{
b23M

UO
t +

(
1 − b23

MUO
EQ

MLO
EQ

)
MLO
t −MLO

t+1

}

+ η̂AT
t

{
TAT
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(
F2XCO2

log(MAT
t /MAT

base)
log(2) + FEXt

)
− c1

F2XCO2
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TAT
t

− c1c3
(
TAT
t − TOC
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)
− TAT

t+1

+ η̂OC
t

{
TOC
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(
TAT
t − TOC

t

)
− TOC

t+1

}]
(1.D.54)

The Lagrangian is now used to compute the first-order conditions, that is,

∂L
∂kt+1

= 0 ⇔ exp
(
gAt + gLt

)
λ̂t − β̂t

[
λ̂t+1

(
(1 − Ω (TAT,t+1) − Θ (µt))αkα−1

t+1 + (1 − δ)
)

+ ν̂AT
t+1σt+1(1 − µt+1)At+1Lt+1αk

α−1
t+1

]
= 0 (1.D.55)

∂L
∂ct

= 0 ⇔ c
−1/ψ
t A

1−1/ψ
t Lt − λ̂t = 0 (1.D.56)

∂L
∂µt

= 0 ⇔ λ̂tΘ′ (µt) kαt + λµt + ν̂AT
t σtAtLtk

α
t = 0 (1.D.57)

∂L
∂MAT,t+1

= 0 ⇔ ν̂AT
t − β̂t

[
ν̂AT
t+1 (1 − b12) + ν̂UO

t+1b12 + η̂AT
t+1c1F2XCO2

1
ln 2MAT,t+1

]
= 0

(1.D.58)

∂L
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[
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EQ
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(
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MAT
EQ

MUO
EQ
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)
+ ν̂LO

t+1b23

]
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(1.D.59)

∂L
∂MLO,t+1

= 0 ⇔ ν̂LO
t − β̂t

[
ν̂UO
t+1b23

MUO
EQ

MLO
EQ

+ ν̂LO
t+1

(
1 − b23

MUO
EQ

MLO
EQ

)]
= 0 (1.D.60)

∂L
∂TAT,t+1

= 0 ⇔ η̂AT
t − β̂t

[
−λt+1Ω′(TAT,t+1)kαt+1 + η̂AT

t+1(1 − c1
F2XCO2
T2xco2 − c1c3) + η̂OC

t+1c4

]
= 0

(1.D.61)
∂L

∂TOC,t+1
= 0 ⇔ η̂OC

t − β̂t
[
η̂AT
t+1c1c3 + η̂OC

t+1(1 − c4)
]

= 0 (1.D.62)

∂L
∂λ̂t

= 0 ⇔ (1 − Ω (TAT,t) − Θ (µt)) kαt + (1 − δ) kt − ct − exp
(
gAt + gLt

)
kt+1 = 0

(1.D.63)
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(1.D.64)
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∂L
∂ν̂UO

t

= 0 ⇔ b12M
AT
t +

(
1 − b12

MAT
EQ

MUO
EQ

− b23

)
MUO
t + b23

MUO
EQ

MLO
EQ

MLO
t −MUO

t+1 = 0

(1.D.65)
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log(MAT
t /MAT
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∂L
∂η̂OC

t

= 0 ⇔ TOC
t + c4

(
TAT
t − TOC

t

)
− TOC

t+1 = 0, (1.D.68)

as well as the KKT condition, that is,

1 − µt ≥ 0 ⊥ λµt ≥ 0. (1.D.69)

In our practical applications, though, we replace the KKT condition Eq. (1.D.69) above

with the Fischer-Burmeister function (see, e.g., Maliar, Maliar, and Winant (2021), and

references therein), that is,

ΨFB
(
λ̂µt , 1 − µt

)
= λ̂µt + (1 − µt) −

√(
λ̂µt

)2
+ (1 − µt)2, (1.D.70)

where we replaced λ̂µt such that

λ̂µt := −λ̂tΘ′ (µt) kαt − ν̂AT
t σtAtLtk

α
t (1.D.71)

holds. We also use expression (1.D.56) to replace consumption ct in the budget con-

straint (1.D.63).

One feature that appears when working with first-order conditions of an IAM is the

need to compute them not only with respect to the economic choice variables such as µt
and ct, but also with respect to the climate variables, despite the fact that they are not

choice variables. The reason for this is that one needs to assess the marginal effects of the

change in choice variables that propagate through the climate system. Those effects cannot

be computed analytically here, which is why we need Lagrange multipliers associated with

every single climate equation (cf. expressions (1.D.41)-(1.D.45)) to estimate the shadow

price of a marginal change in a respective constraint.
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Using all the above definitions, the eight individual components that enter the loss

function amendable for the DEQN algorithm read as

l1 := exp
(
gAt + gLt

)
λ̂t − β̂

[
λ̂t+1

(
(1 − Ω (TAT,t+1) − Θ (µt))αkα−1

t+1 + (1 − δ)
)

+

ν̂AT
t+1(1 − µt+1)σt+1At+1Lt+1αk

α−1
t+1

]
= 0 (1.D.72)

l2 := (1 − Ω (TAT,t) − Θ (µt)) kαt + (1 − δ) kt − ct − exp
(
gAt + gLt

)
kt+1 = 0 (1.D.73)
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[
ν̂AT
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t+1b12 + η̂AT
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1
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]
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l6 := η̂AT
t − β

[
−λ̂t+1Ω′(TAT,t+1)kαt+1 + η̂AT

t+1(1 − c1
F2XCO2
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]
= 0
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l7 := η̂OC
t − β

[
η̂AT
t+1c1c3 + η̂OC

t+1(1 − c4)
]

= 0 (1.D.78)

l8 := λ̂µt + (1 − µt) −
√(

λ̂µt

)2
+ (1 − µt)2 = 0, (1.D.79)

and result in the total loss function given by

ℓν := 1
Npath length

∑
xton sim. path

Neq=8∑
m=1

(lm(xt,Nν(xt)))2 . (1.D.80)

The final ingredient we need for the DEQN algorithm is the evolution of the state xt
one period forward such that the loss function (1.D.80) can be evaluated along a simulated

path. In CDICE, xt+1 is given by

xt+1 =
(
kt+1,M

AT
t+1,M

UO
t+1,M

LO
t+1, T

AT
t+1, T

OC
t+1, t+ 1,

)T
, (1.D.81)

where kt+1 is updated as a choice variable from the policy function Eq. (1.D.53) and the

climate variables MAT
t+1,M

UO
t+1,M

LO
t+1, T

AT
t+1, and TOC

t+1 can be updated via equations (1.D.64)-

(1.D.68), whereas time t is simply incremented by one unit.
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1.D.3 Error Statistics

Table 1.D11 provides detailed error statistics for the benchmark CDICE model at con-

vergence (cf. all the normalized expressions (1.D.72) - (1.D.79) that contribute to the

loss function (1.D.80)). All other models presented in the article reach a similar level of

accuracy.

Stats. l1 l2 l3 l4 l5 l6 l7 l8

mean 1.13e− 04 5.32e− 04 2.29e− 04 3.76e− 04 1.15e− 04 1.82e− 05 3.07e− 05 5.04e− 04

std 6.35e− 05 1.23e− 04 1.15e− 04 7.75e− 05 6.31e− 05 1.49e− 05 2.42e− 05 3.17e− 04

min 1.19e− 07 1.90e− 05 5.36e− 07 5.39e− 05 1.18e− 05 5.96e− 08 < 1.0e− 8 < 1.0e− 8

0.1% 1.19e− 07 1.91e− 05 5.36e− 07 5.39e− 05 1.18e− 05 5.96e− 08 < 1.0e− 8 < 1.0e− 8

25% 5.82e− 05 4.28e− 04 1.37e− 04 3.23e− 04 6.71e− 05 8.15e− 06 1.09e− 05 1.89e− 04

50% 1.15e− 04 5.28e− 04 2.58e− 04 3.62e− 04 9.70e− 05 1.33e− 05 2.60e− 05 5.06e− 04

75% 1.70e− 04 6.34e− 04 3.16e− 04 4.11e− 04 1.58e− 04 2.32e− 05 4.71e− 05 7.83e− 04

max. 3.26e− 04 9.83e− 04 5.36e− 04 7.40e− 04 3.13e− 04 8.54e− 05 1.26e− 04 1.30e− 03

Table 1.D11 Summary statistics of the loss function components along the simula-
tion path for the optimal solution of the CDICE model. Following the literature (see,
e.g., Brumm and Scheidegger (2017)), we define the maximum error as the 99.9 percent
quantile of the error distribution.



Chapter 2

Deep Uncertainty Quantification

for Stochastic Integrated

Assessment Models†

Abstract

Integrated assessment models (IAMs) are essential tools in climate economics for guid-

ing policy decisions and risk management. However, the reliability of IAMs is contingent

upon assumptions about parameters and functional forms and the results are subject to

significant uncertainty. To address these concerns, the current study presents a two-fold

approach. Firstly, a stochastic IAM with Bayesian learning is constructed to address

the uncertainty arising from the equilibrium climate sensitivity (ECS) in economy-climate

models. Secondly, a computationally efficient framework is developed to solve the stochas-

tic IAM while quantifying its parametric uncertainty using deep learning techniques. The

proposed method is applicable beyond IAMs, offering insights into a variety of economic

models.

This study contributes to enhancing the understanding of uncertainty in climate eco-

nomics, offering a novel framework for addressing parameter uncertainty in complex eco-

nomic models.

†This chapter is co-authored with Felix Kübler from the University of Zürich, Simon Scheidegger from
the University of Lausanne, and Takafumi Usui from the University of Zürich.
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2.1 Introduction

In climate economics, integrated assessment models (IAMs) are crucial for making in-

formed policy decisions and managing risks. However, as with any other economic model,

their performance and results are dependent on sometimes restrictive assumptions about

the parameters and functional forms. This can make one skeptical about their predictions.

(Pindyck, 2013, 2017) claimed that certain inputs of IAMs - namely functional forms, e.g.

damage function, and parameter values, e.g. preferences, climate sensitivity values - are

arbitrary. Based on this (Pindyck, 2013, p. 860) warned against using the IAMs in general

since IAMs "have crucial flaws that make them close to useless as tools for policy anal-

ysis.". Rather than considering model uncertainty and parametric uncertainty as fatal

limitations to the applicability of the whole class of the models, we address the issue by

(i) building a stochastic IAM with Bayesian learning about the equilibrium climate sensi-

tivity to study the most significant source of uncertainty in economy-climate models (ii)

developing a unified computationally efficient framework for solving this stochastic IAM

and quantifying its parametric uncertainty using the deep learning based solution method.

We depart from the stochastic version of the seminal DICE model (W. D. Nordhaus,

2017) with Epstein-Zin preferences (Epstein and Zin (1989) as presented in Jensen and

Traeger (2014) and make certain changes to it. First, we adopt the re-calibrated climate

module developed in Folini, Friedl, Kubler, and Scheidegger (2023). This way the climate

dynamics match the most comprehensive global climate models that participated in the

Coupled Model Intercomparison Project, Phase 5 (CMIP5). Second, equilibrium climate

sensitivity (ECS), which is another iconic number in climate science (Knutti et al., 2017), is

known to take enormous uncertainty, and the probability distribution of climate sensitivity

exhibits fat-tailed, potentially causing catastrophic outcomes for the economy (Allen &

Frame, 2007; Roe & Baker, 2007; Zaliapin & Ghil, 2010). We assume that the social

planner in the model can update her belief on ECS following the Bayes rule, and we

demonstrate that she effectively reduces uncertainty in climate sensitivity over time.
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To perform the parametric uncertainty quantification we select two types of uncer-

tainty: economic uncertainty and climate uncertainty. To study economic parametric

uncertainty we select the pure rate of time preference, (see W. D. Nordhaus (2008) and

N. Stern (2008)), intertemporal elasticity of substitution (IES), and relative risk aversion.

To address the climate uncertainty we take the initial values of the prior distribution of the

ECS and parameter affecting severity of damages. We propagate parametric uncertainty

globally on the social cost of carbon. Global sensitivity analysis identifies non-linearities

when mapping from input parameters to model outcomes considering interactions among

input parameters, which are largely underestimated in conventional local or ’one-at-a-

time’ sensitivity analyses. Specifically, we employ Shapley values in addition to Sobol’

indices and univariate effects, which are typically used in the recent economic literature

see, among others, Harenberg, Marelli, Sudret, and Winschel (2019). By examining these

metrics, we attribute the overall model variance to each input parameter, prioritize which

parameter(s) shall be investigated, and in which direction each parameter affects the model

outcomes.

To globally solve the model outlined above together with the uncertain parameters

presents a formidable computational challenge. The problem has nine state variables, two

sources of stochastic shocks, and six uncertain parameters. The high number of states in

the problem implies the presence of the curse of dimensionality Bellman (1961). Strong

non-linearities in the functional forms that come from the interaction of climate and econ-

omy together with the stochastic shocks make the problem impossible to solve by the

traditional numerical methods for global optimisation. To address these issues we employ

deep equilibrium nets (DEQN) - deep-learning based global solution method (Azinovic et

al., 2022).1 We leverage the fact that the stochastic gradient descent, the optimization

routine we employed to train the neural net, can ameliorate the curse of dimensionality.

Being able to efficiently handle the curse of dimensionality problem in the case of high-

dimensional state spaces, we add the uncertain parameters as additional and continuous

pseudo-states (Scheidegger & Bilionis, 2019). This approach circumvents potential diffi-

culties found in the literature, which limit the applications of global sensitivity analysis

only to a deterministic case, for instance, see Miftakhova (2021a), or a simple stochas-

tic model, for instance, see Harenberg et al. (2019). Our approximated policy functions

1Kelly and Kolstad (1999) and Kelly and Kolstad (2001) interpolate the value function by the neural
net.
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globally support all possible realizations of model parameters in a single run instead of

resolving the same model for varying model parameters. The parametric uncertainty is

propagated by repeatedly simulating the model with the approximated policy functions

from the first part at randomly drawn parameter vectors. In the literature, the sampling

is typically done via Monte Carlo simulations, but due to the slow convergence properties

of Monte Carlo, a very large number of sampling is necessary. Moreover, one model simu-

lation requires a non-negligible computation cost, which makes global sensitivity analysis

of large-scale models even infeasible. To overcome these, we interpolate mapping from in-

put parameters to model outcomes using a Gaussian process-based surrogate model (Iooss

& Prieur, 2019; Marrel, Iooss, Laurent, & Roustant, 2009). By deploying the surrogate

model, we compute the Shapley values, the Sobol’ indices, and the univariate effects with

high accuracy but at a negligible computational cost. Finally, the application of the pro-

posed numerical method is not limited to dynamic stochastic IAM. Rather, we use IAM

as a showcase, and our method would be highly applicable to any economic model. We

perform the uncertainty quantification analysis on the stochastic model with Bayesian

learning over the ECS to evaluate the impact of the uncertain parameters on the value of

the social cost of carbon (SCC) in the years 2020, 2050, and 2100. The Shapley and Sobol’

indices show that for the SCC in 2020, the most contributing parameters are the initial

belief of the social planner about the ECS value and the pure rate of time preferences.

The IES has less of an impact and the variance of the initial belief about the ECS does

not play any significant role in explaining the variance of the SCC in 2020. With the time

uncertainty about the ECS resolves due to the learning. The value of the SCC becomes

more robust towards the initial belief about the ECS. The impact of the pure rate of time

preferences also diminishes with time. At the same time, the IES gains its importance

in explaining the variance of the SCC, dominating all other uncertain parameters for the

SCC value in 2100. The univariate effects - they indicate the direction of the impact of

the uncertain parameters on the SCC - all show the expected direction of the influence,

except the IES. Different from the literature studying the impact of the IES on the SCC

in case of the TFP shock Jensen and Traeger (2014), Cai and Lontzek (2019), we find that

with the IES increasing the SCC is decreasing. A significant difference of our model from

the studies mentioned above, is that our model includes temperature shocks but no TFP

shock. We believe that TFP shock and temperature shock may affect decision-making
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under uncertainty differently, however this remains a future avenue for the research. The

remainder of this article is organized as follows. In Section 2.2, we provide a brief review of

the related literature. Next, we outline in Section 2.3 a stochastic IAM as a benchmark we

intend to study. Section 2.4 introduces our generic uncertainty quantification framework

and discusses its computational advantages relative to other existing methods. Section 2.5

presents an application of our proposed method. Section 2.6 finally concludes.

2.2 Literature Review

This paper is related to four key strands of the literature: i) research focusing on stochastic

IAMs, ii) studies investigating the uncertain ECS, such as through Bayesian learning, iii)

parametric UQ in IAMs, and iv) global solution methods based on machine learning.2

First, our paper contributes to a fast-growing body of literature on endogenizing eco-

nomic and climate uncertainty in the IAMs to study, among other quantities, the SCC.

Various studies (see, e.g., Golosov et al. (2014); Traeger (2019)) solve stochastic IAMs

analytically and offer closed-form representations of the SCC but it comes at the ex-

pense of strong assumptions on the carbon cycle and other functional forms that enter the

model. Other work that tackles IAMs with uncertainty while trying to maintain numerical

tractability by introducing various assumptions consists of Traeger (2014), which imple-

ments a state-reduced and annually calibrated recursive dynamic programming version of

the canonical DICE-2007 model (W. D. Nordhaus, 2008), (Crost & Traeger, 2013, 2014)

to study uncertainty in the damage function, long-run growth risk is studies in (Jensen &

Traeger, 2014), and climate tipping points (Lemoine & Traeger, 2014, 2016). Other work

is based on deterministic finite-horizon models, which investigates the implications of un-

certainty by Monte-Carlo sampling in the parameter space (see, e.g., Ackerman, Stanton,

and Bueno (2010); Anthoff, Tol, and Yohe (2009); Gillingham et al. (2018); W. Nordhaus

(2018)). One of the disadvantages of this approach is that “...this first-order approximation

to stochastic analysis does not model a decision maker’s optimal response to uncertainty."

as Jensen and Traeger (2014) point out. In a series of papers, the team of authors (Cai &

Lontzek, 2019; Lontzek et al., 2015; Lontzek & Narita, 2011),(Cai, Judd, Lenton, Lontzek,

& Narita, 2015; Cai, Lenton, & Lontzek, 2016; Lontzek, Narita, & Wilms, 2016) exam-

ine the social cost of carbon under long-run growth risk and irreversible climate tipping,

2Hassler, Krusell, and Smith (2016a) provide an excellent general introduction and review on IAMs.
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dropping many analytical simplifications and resorting to high-performance computing.

McInerney, Lempert, and Keller (2012) explore the robust strategies of the climate poli-

cies and Barnett et al. (2020a) continue on the topic of robust decision-making in climate

policies by studying ambiguity. Barnett (2023) applies an asset pricing approach to assess

uncertainty related to climate change impact, and van der Ploeg (2021) take uncertainty

into account, deriving the risk-adjusted discount rate. The work presented here differs

from previous studies in that we introduce a deep-learning-based method to solve stochas-

tic IAMs of unprecedented complexity without the need to analytically simplify IAMs in

a restrictive way or tap high-performance computing systems.

Second, our work is related to studies examining the interplay of uncertainty in the

ECS (Knutti et al., 2017) and the economy. Kelly and Kolstad (1999), subsequently

followed for instance by Leach (2007), Jensen and Traeger (2013), Kelly and Tan (2015),

Fitzpatrick and Kelly (2017), and Hwang et al. (2017), developed a dynamic stochastic

IAM in a recursive formulation and considered Bayesian learning to update a posterior

distribution of the equilibrium climate sensitivity parameter, which is unknown to the

social planner. The literature found that the social planner with Bayesian learning resolves

fat-tailed uncertainty in the equilibrium climate sensitivity in the long run. We build on

the aforementioned literature of the Bayesian learning over the ECS and combine it with

the disentangled Epstein-Zin preferences to capture the risk preferences and intertemporal

consumption decisions under the long-run risk.

Third, our work contributes to studies that examine parametric uncertainty in IAMs.3

Parametric uncertainty is often evaluated by averaging over a large number of deter-

ministic Monte-Carlo simulation runs, where input parameters are drawn from relevant

distributions for each simulation (Ackerman et al., 2010; W. D. Nordhaus, 2008). Saltelli

and D’Hombres (2010) criticize these Monte-Carlo analyses, as they follow the so-called

one-at-a-time (OAT) principle and can be highly misleading, failing to offer reliable policy

recommendations (Crost & Traeger, 2013). In our work presented below, we propagate

and quantify the parametric uncertainty when computing the SCC using a global sen-

sitivity analysis (GSA) method (see, e.g., (Smith, 2014) for a review). Anderson et al.
3Other sources of uncertainty, which we do not pursue in this paper but have been studied in the

literature, include model misspecification and ambiguity (see, e.g. Barnett et al. (2020b); Zhao, Basu,
Lontzek, and Schmedders (0)). Other sources of uncertainty encompass climate tipping points (Lenton et
al., 2008), the damage function, and the transition to green technology. Weitzman (2012b), for instance,
introduced a tipping point to the standard Nordhaus damage function, which raises damages dramatically
for temperature increases beyond a given level.
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(2014) and Butler, Reed, Fisher-Vanden, Keller, and Wagener (2014) are early examples

where GSA is applied to the canonical DICE model based on a large number of Monte-

Carlo samples. More recently, Miftakhova (2021a) constructed surrogate models4 of the

deterministic DICE model using the polynomial chaos expansion method and analyzed

the GSA of the SCC on various input parameters.5 In the GSA literature, the so-called

Sobol’ indices are standard metrics to measure the importance of some input parameters

to overall model outcome uncertainty. An alternative, important metric in the context of

UQ is the Shapley value. Owen (2014) adopted the idea of the Shapley value from the lit-

erature of cooperative game theory and demonstrated that the Shapley values intuitively

attribute the overall variance of the model to some input variables but not necessarily to

be matched to the Sobol’ indices. Song, Nelson, and Staum (2016) proposed an efficient

numerical routine to avoid traversing all permutations of input variables in estimating the

Shapley values, and Iooss and Prieur (2019) efficiently sped up the numerical estimation

of the Shapley values by replacing the true model with a Gaussian process-based surro-

gate model. Scheidegger and Bilionis (2019) intrusively added the uncertain parameters

as pseudo-state variables and solved the model globally for all possible realizations of the

uncertain parameters in a single model evaluation. When enlarging the number of state

variables, one has to overcome the curse of dimensionality (Bellman, 1961), which the

authors addressed by applying the active subspace method (see also Constantine (2015);

Kubler and Scheidegger (2023), and references therein). The current study enhances the

existing body of knowledge by presenting novel, machine-learning-oriented techniques that

capitalize on contemporary concepts originating from deep neural networks, Gaussian pro-

cess regression, and the surrogate modeling approach. These methods are employed to

conduct Global Sensitivity Analysis (GSA) within extensive Integrated Assessment Mod-

els (IAMs) in a resource-efficient manner. To the best of our comprehension, this work

represents the pioneering endeavor to investigate Sobol’ indices, Shapley values, and uni-

variate effects within stochastic IAMs, while incorporating Bayesian learning regarding

the Equilibrium Climate Sensitivity (ECS).

4A surrogate model is a high-precision approximation of an otherwise expensive-to-evaluate model,
such as a high-dimensional, nonlinear, and non-stationary IAM. For more details on the applications of
surrogate models in economics and finance, see, e.g., Chen, Didisheim, and Scheidegger (2021); Scheidegger
and Bilionis (2019), and references therein.

5Harenberg et al. (2019) is the first example in economics to present GSA based on a polynomial chaos
expansion of a standard real-business-cycle model.
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Finally, our work relates to the emerging but fast-growing literature on machine

learning-based solution methods in dynamic economic models (see, e.g., Duarte (2018);

Ebrahimi Kahou, Fernández-Villaverde, Perla, and Sood (2021); Fernández-Villaverde,

Nuño, Sorg-Langhans, and Vogler (2020); Maliar et al. (2021); Renner and Scheidegger

(2018); Villa and Valaitis (2019)). The numerical solution to stochastic IAMs is often

achieved by applying traditional, grid-based value-function iteration (see, e.g., Cai and

Judd (2014); Cai and Lontzek (2019), and references therein). However, while highly suc-

cessful in small to mid-scale models, such methods are strongly limited when the model

complexity increases, and consequently often needs to resort to high-performane comput-

ers. In our work presented below, we solve for the functional rational expectations equi-

librium (Spear, 1988) of the IAM by adopting the so-called “deep equilibrium net” algo-

rithm (Azinovic et al., 2022; Folini et al., 2023) to the context of stochastic, nonstationary

IAMs. To the best of our knowledge, we are the first to implement a deep learning-based

solution method to solve a high-dimensional and stochastic IAM with Bayesian learning

about the equilibrium climate sensitivity parameter and to propagate parametric uncer-

tainty using a Gaussian process-based surrogate model when estimating the social cost of

carbon in a computationally efficient fashion, guaranteeing affordable numerical precision,

as all our numerical results are computed on a laptop. This methodological contribution

will enable the IAM community to tackle much richer models without the need of using

hundreds of thousands of CPU hours of compute time on a supercomputer to solve a single

model specification.

2.3 A Stochastic IAM with Bayesian Learning

This section posits a discrete-time stochastic IAM with Bayesian learning about the un-

certain equilibrium climate sensitivity. Our model combines a stochastic representative

agent framework with Epstein-Zin-Weil preferences (Epstein & Zin, 1989; Weil, 1989),

a climate emulator6 that follows the specification of Folini et al. (2023), and stochastic

tipping points modeled similarly to L. Kotlikoff et al. (2021b).

We proceed with the following four steps: First, in Section 2.3.1, we provide a brief

summary of the economic building blocks of the model. Second, in Section 2.3.2, we
6To analyze climate change mitigation strategies, economists rely on simplified climate models – so-

called climate emulators – that provide a realistic quantitative link between CO2 emissions and global
warming at low computational costs.
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outline the climate externality. Third, Section 2.3.3 describes our approach to modeling the

learning process concerning the climate equilibrium sensitivity. Finally, in Section 2.3.4,

we present the recursive formulation of our model. In addition, a comprehensive summary

of the complete model calibration is available in Section 2.B.

2.3.1 The economic model

The economic side of our IAM is a growth model where production produces greenhouse

gas emissions, and productivity is affected by the state of the climate. Following the spirit

of W. D. Nordhaus (2017), we describe our economy using a Ramsey growth model in

a social planner formulation. Within this economic setup, the model assumes a single,

infinitely-lived representative agent.

We adopt the Epstein-Zin (-Weil) preferences (Epstein & Zin, 1989; Weil, 1989) to

address the critical aspects of risk preferences and intertemporal consumption decisions in

long-run climate policy discussions (see, e.g., Cai and Lontzek (2019); Crost and Traeger

(2013), and references therein). The social welfare function Ut is recursively defined as

follows:

Ut =
[
(1 − β) (Ct/Lt)1−1/ψ

1 − 1/ψ Lt + e−ρEt
[
U1−γ
t+1

] 1−1/ψ
1−γ

] 1
1−1/ψ

, (2.1)

where time t is discrete and measured in years, Ct represents consumption, and Lt de-

notes an exogenous population path adopted from W. D. Nordhaus (2017). In addition,

ρ denotes the pure rate of time preference, ψ measures the intertemporal elasticity of

substitution, γ represents the Arrow-Pratt risk aversion parameter, and Et [·] denotes the

expectation operator conditional on time t.

The gross output Y Gross
t in the economy is described by a standard Cobb-Douglas

production function with labor-augmenting technological progress, that is,

Y Gross
t = Kα

t (AtLt)1−α , (2.2)

where α elasticity of substitution of capital, and At is a deterministic trend (cf. Sec-

tion 2.B). There is an externality to the production in the form of industrial carbon
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emissions, EInd,t, that reads as

EInd,t = σt(1 − µt)Y Gross
t . (2.3)

Through the emission flow, the economic side of our IAM affects the climate module

(cf. Section 2.3.2 below). We follow W. D. Nordhaus (2017) and assume that the emissions

produced are proportional to the final output, and scaled with an exogenous emission

intensity σt. In our model, the emissions can be abated, that is, reduced, at a rate

µt ∈ [0, 1]. A zero abatement rate corresponds to the business-as-usual (BAU) case,

whereas a value of µ = 1, abatement corresponds to full mitigation.7 As W. D. Nordhaus

(2017), we assume that abatement is costly for the social planner and depends on the

abatement rate with the following functional form:

Θt(µt) = θ1,tµ
θ2
t . (2.4)

In Eq. (2.4), θ1,t is an exogenous process for the abatement cost evolution, and θ2 is a

parameter of the abatement cost function (see Section 2.B for more details).

The unabated emissions enter the climate system and will ultimately lead to an increase

in the temperature TAT,t of the atmosphere (cf. Section 2.3.2). A rise in the atmospheric

temperature triggers damages that, in turn, will affect the final output. In our modeling

set-up, we employ the type of damage functions commonly used in the IAM literature.

The damage function denoted by–Ωt (TAT,t)– is quadratic damage by W. D. Nordhaus

(2017):

Ωt (TAT,t) = 1
1 + π1TAT,t + π2T 2

AT,t
. (2.5)

The abatement costs and the damages jointly reduce the gross output of the economy.

Thus the budget constraint reads as follows:

(1 − Θt (µt)) Ωt (TAT,t)Y Gross
t − Ct − It = 0. (2.6)

7Note that in this augmented Ramsey model with a climate externality, the abatement rate is a choice
variable for the social planner in addition to the standard choice of investment.
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2.3.2 The climate model

In our modeling setup, we employ a climate emulator following the specification of Folini

et al. (2023). This emulator is built on W. D. Nordhaus (2017) and comprises two funda-

mental building blocks: i) three stacked carbon reservoirs, i.e., boxes, that represent the

global carbon cycle and ii) a two-layer energy balance model.

There are two sources of emissions that enter the simple carbon cycle: industrial

emissions EInd,t, as defined in Eq. (2.3), which are related to the economic activity of the

representative agent, and exogenous emissions ELand,t. Their sum Et = EInd,t + ELand,t

constitutes the total emission flow entering the carbon cycle.

The three carbon reservoirs are represented by a three-dimensional vector Mt =

(MAT,t,MUO,t,MLO,t), where the entries represent the mass of carbon in the atmosphere

(AT), upper ocean (UO) and lower ocean (LO) respectively. The concentration of carbon

in those three boxes evolves according to a diffusion process described by the following

expression:

Mt+1 = BMt+1 + Et, (2.7)

where A is given by

B =


1 − b12 b21 0

b12 1 − b21 − b23 b32

0 b23 1 − b32

 . (2.8)

The diffusion coefficients b12, b21, b23, b32 that we will employ in our computations are based

on the calibration by Folini et al. (2023).

The baseline energy balance system–which we will have to slightly modify in Sec-

tion 2.3.3–comprises two layers: the temperature of the atmosphere, TAT,t+1 (representing

the atmosphere and upper ocean), and the temperature of the deep ocean, TOC,t, which

are described by the following equations:

TAT,t+1 =
(

1 − c1c3 − c1
F2xco2

∆TAT,×2

)
TAT,t + c1c3TOC,t + c1

(
F2xco2 log2

(
MAT,t
M∗

AT

)
+ FEX,t

)
(2.9)

TOC,t+1 = c4TAT,t + (1 − c4)TOC,t. (2.10)
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F2xco2 denotes the forcing of equilibrium CO2 doubling, ∆TAT,×2 is the ECS, M∗
AT stands

for the equilibrium mass of carbon in the atmosphere, FEX,t represents exogenous radiative

forcing, and c1, c3, c4 are temperature-related parameters. All values, except the ECS, are

calibrated according to Folini et al. (2023). A detailed discussion about the ECS follows in

Section 2.3.3. More details on the calibration of our climate model are given in Section 2.B.

2.3.3 Bayesian learning over the equilibrium climate sensitivity

The climate response in the form of the atmospheric temperature increase to the emissions

(cf. Section 2.3.2) is subject to uncertainty in many ways. However, the ECS is presumably

the most controversial number determining how severe climate change will be in the long

run (Knutti et al., 2017), as arguments between Roe and Baker (2007) and Zaliapin and

Ghil (2010) in the climate science community illustrate. Therefore, in order to take state-

of-the-art climate science seriously in our IAM, Eq. (2.9) has to be modified appropriately.

Empirical observations, as well as studies based on energy-balance models and global

climate models, suggest that the probability density function of the ECS is most likely to

peak in the region [2.0◦C, 4.5◦C], but exhibits a highly skewed and fat-tailed distribution

(Roe & Baker, 2007). The latter authors, among others, pointed out that the ECS, TAT,×2,

relates to the following feedback process:

TAT,×2 =
T 0

AT,×2
1 − f

, (2.11)

where f denotes the so-called climate feedback parameter, and T 0
AT,×2 is a reference climate

sensitivity parameter, and which is known to the social planner. Climate feedback consists

of the climate processes (such as clouds, precipitation, forest greening, etc.) which can

either magnify or lessen the effect of climate forcings. The climate feedback parameter

determines the actual amplitude of the climatic response to the climate forcings (IPCC

(2021)). If the absolute value of the feedback parameter is small, the warming will be

weaker and if it is big, the warming will be more intense. The true value of the climate

feedback parameter is not known with certainty. Thus, the uncertainty in the equilibrium

climate sensitivity TAT,×2 can be represented as the uncertainty in the climate feedback

parameter f . Following Roe and Baker (2007), we assume that f follows a Gaussian

distribution. By substituting Eq. (2.11) into Eq. (2.9), we obtain
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TAT,t+1 =
(
c1

F2xco2
∆T 0

AT,×2
f + 1 − c1c3 − c1

F2xco2
∆T 0

AT,×2

)
TAT,t + c1c3TOC,t

+ c1

(
F2xco2 log2

(
MAT,t
M∗

AT

)
+ FEX,t

)
+ ϵ̃T,t+1, (2.12)

where the uncertainty about the ECS is now modeled indirectly via f . Following the

literature, we introduce the Gaussian distributed shock ϵ̃T,t+1 ∼ N (0, SϵT ), which the

social planner cannot observe.

Following a seminar strand of literature on Bayesian learning (see, e.g., Fitzpatrick and

Kelly (2017); Hwang et al. (2017); Kelly and Kolstad (1999); Kelly and Tan (2015); Leach

(2007); Webster, Jakobovits, and Norton (2008)), we update the social planner’s belief

on the climate feedback parameter, not the ECS parameter, which is uncertain to the

social planner. The social planner subjectively assumes his belief on the climate feedback

parameter in period t, f̃t+1, when solving the dynamic programming problem.

As Roe and Baker (2007) suggest,8 we assume that his prior belief on f̃t+1 follows a

Gaussian distribution with mean µf,t and variance Sf,t. We also assume that the distri-

bution is truncated from below at f = 0.45 and from above at f = 0.85 . This means that

f̃t+1 ∼ N
(
µf,t, Sf,t, f , f

)
9, and leads to an enhanced expression for the evolution of the

atmospheric temperature, that is,

TAT,t+1 =
(
c1

F2xco2
∆T 0

AT,×2
f̃t+1 + 1 − c1c3 − c1

F2xco2
∆T 0

AT,×2

)
TAT,t + c1c3TOC,t

+ c1

(
F2xco2 log2

(
MAT,t
M∗

AT

)
+ FEX,t

)
+ ϵ̃T,t+1. (2.13)

In period t, we denote the prior probability function of the social planner’s belief of the

climate feedback parameter, which follows the Gaussian distribution with mean µft and

variance Sf,t, as p (f). Given the prior p (f), the planner observes the atmospheric temper-

ature change and the likelihood function of which is also given as a Gaussian p (TAT | f).

By applying Bayes’ rule, the posterior probability function of the climate feedback param-

8We take initial values for the prior mean, and prior variance as in Roe and Baker (2007). With
this, we need to take a value of a reference climate sensitivity ∆T 0

AT,×2 = 1.2◦C. This value, together
with the starting value of the prior mean to a large extent, corresponds to our baseline calibration of
the ratio between radiative forcing that is F2xco2 = 3.45W/m2 and equilibrium climate sensitivity that is
∆TAT,×2 = 3.25◦C.

9The details of numerical integration of the truncated normal distribution are presented in Sec-
tion 2.C.2.
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eter given the observation TAT is also Gaussian distributed, and reads as:

p (f | TAT) ∝ p (TAT | f) × p (f) (2.14)

Following Kelly and Tan (2015), we rewrite the two stochastic components in Eq. (2.13)

as

(
1 − c1c3 − c1

F2xco2
∆T 0

AT,×2

)
TAT,t + c1c3TOC,t + c1

(
F2xco2 log2

(
MAT,t−1
M∗

AT

)
+ FEX,t

)

+ φ1C f̃t+1TAT,t + ϵ̃T,t+1 − TAT,t+1 = 0, (2.15)

where φ1C = c1
F2xco2

∆T 0
AT,×2

, and where f̃t+1 ∼ N
(
µf,t, Sf,t, f , f

)
, ϵ̃T,t+1 ∼ N (0, SϵT ). Finally,

by applying DeGroot (1970, p. 167, Theorem 1), we can analytically compute the posterior

mean and the variance, that is,

µf,t+1 =
SϵTµf,t + φ1CTAT,t

(
φ1CTAT,tf̃t+1 + ϵ̃T,t+1

)
Sf,t

SϵT + (φ1CTAT,t)2 Sf,t
(2.16)

Sf,t+1 = SϵTSf,t

SϵT + (φ1CTAT,t)2 Sf,t
. (2.17)

2.3.4 The recursive formulation

After having put all building blocks in place in Sections 2.3.1 to 2.3.3, we now present

the recursive formulation of our IAM with Bayesian learning about the ECS. The social

planner choices consumption Ct, investment Kt+1 and mitigation µt ∈ [0, 1] to solve

V (Xt)1−1/ψ = max
Ct,Kt+1,µt

{(
Ct
Lt

)1−1/ψ
Lt + e−ρEt

[
V (Xt+1)1−γ

] 1−1/ψ
1−γ

}
(2.18)

s.t. (1 − Θ (µt)) Ωt (TAT,t)Kα
t (AtLt)1−α − Ct − It = 0 (2.19)

(1 − δ)Kt + It −Kt+1 = 0 (2.20)

1 − µt ≥ 0 (2.21)

(1 − b12)MAT,t + b21MUO,t + (1 − µt)σtKα
t (AtLt)1−α + ELand,t −MAT,t+1 = 0

(2.22)

b12MAT,t + (1 − b21 − b23)MUO,t + b32MLO,t −MUO,t+1 = 0 (2.23)

b23MUO,t + (1 − b32)MLO,t −MLO,t+1 = 0 (2.24)
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(1 − c1c3 − φ1C)TAT,t + c1c3TOC,t + c1

(
F2xco2 log2

(
MAT,t
M∗

AT

)
+ FEX,t

)
+

φ1C f̃t+1TAT,t + ϵ̃T,t+1 − TAT,t+1 = 0 (2.25)

c4TAT,t + (1 − c4)TOC,t − TOC,t+1 = 0 (2.26)

SϵTµf,t + φ1CTAT,t
(
φ1CTAT,tf̃t+1 + ϵ̃T,t+1

)
Sf,t

SϵT + (φ1CTAT,t)2 Sf,t
− µf,t+1 = 0 (2.27)

SϵTSf,t

SϵT + (φ1CTAT,t)2 Sf,t
− Sf,t+1 = 0 (2.28)

f̃t+1 ∼ N
(
µf,t, Sf,t, f , f

)
, ϵ̃T,t+1 ∼ N (0, SϵT ) (2.29)

Ωt (TAT,t) = 1
1 + π1TAT,t + π2T 2

AT,t
(2.30)

where the Bellman equation, given by Eq. (2.18) is subject to the budget constraint (2.19),

the occasionally binding upper bound on mitigation variable µt, the three laws of motion

of the carbon concentration in the atmosphere (2.22), in the upper ocean (2.23) and in the

lower ocean (2.24), the two laws of motion of the atmospheric temperature (2.25) and the

ocean temperature (2.26), the Bayesian updates of the ECS, and the stochastic motion of

the damage coefficients.

In Eq. (2.18), the the state of the model is given by Xt = (Kt,Γt,St, t; ϑ), where

Γt = (MAT,t,MUO,t,MLO,t, TAT,t, TOC,t) denote the climate variables, St = (µf,t, Sf,t) the

mean and variance of the agent’s beliefs, whereas t abbreviates the state variable that

handles time. Finally, ϑ is a collection of N uncertain parameters ϑ = (ϑ1, · · ·ϑN ), which

we consider pseudo state variables (Scheidegger & Bilionis, 2019), and over which the

planner, in contrast to the other stochastic variables, does not compute expectations.

Thus, the total dimensionality d of the IAM, therefore, is given by:

d = |Kt| + |Γt| + |St| + |t| + |ϑ| = 1 + 5 + 2 + 1 +N = 9 +N. (2.31)

2.4 Deep Uncertainty Quantification

This section introduces our computational framework called “Deep Uncertainty Quantifi-

cation" (Deep UQ), which can effectively solve non-stationary high-dimensional dynamic

stochastic climate economy models and perform uncertainty quantification (UQ) at neg-
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ligible computational costs.10 An important task in UQ, and the one we are concerned

with in this paper, is to measure the relative importance of the various parameter inputs

to quantities of interest, such as the SCC. Importance can be quantified via the effects of

changing those inputs at random. This leads to a global sensitivity analysis (Saltelli et al.,

2008), in which statistical methods based on an analysis of variance decomposition mea-

sure variable importance. However, the measures traditionally used in the literature, that

is, Sobol’ indices, univariate effects, and Shapley values (see, e.g., Owen (2014) and Song

et al. (2016), and references therein) typically require thousands, if not tens of thousands

of model solutions to obtain convergent statistics (Harenberg et al., 2019). Thus, such an

approach is a significant roadblock for performing UQ on stochastic IAMs, where a single

model solution can take more than 100k CPU hours (Cai & Lontzek, 2019). Consequently,

the previous literature on UQ in IAMs has typically been limited to local perturbations

of solutions to stochastic models or to global sensitivity analysis in non-stochastic set-

tings (see, e.g., Anderson et al. (2014), Butler et al. (2014) and Miftakhova (2021a), and

references therein).

We now introduce a two-step approach for performing global sensitivity analysis in

IAMs to alleviate the abovementioned challenges. First, we adopt a generic, deep learning-

based algorithm for solving stochastic IAMs globally11 as a function of the endogenous

and exogenous state variables as well as their parameters at once in a single model solution

(cf. Section 2.3.4). Such a “deep surrogate” – a high-precision approximation of an IAM

based on deep neural networks,12 speeds up the model evaluations required to perform

UQ by orders of magnitudes and thus allows for various compute-intensive applications,

as the respective tasks now simplify to interpolation tasks on the pre-computed optimal

policies–which are now functions of the state variables and parameters–rather than solving

an entire model for a fixed set of parameters. Second, we propose constructing a second,

cheap-to-evaluate surrogate model for the quantities of interests (QoIs), such as SCC, to

perform global sensitivity analysis by using the former neural network surrogate of the

IAM as an input. For computational tractability, we propose to use Gaussian Process

10For a textbook treatment of UQ, see, e.g., Saltelli et al. (2008), and references therein.
11A global solution adheres to the model equilibrium conditions throughout the entire state space, that

is, the computational domain. In contrast, a local solution is only concerned with the local approximation
around a point, typically the deterministic steady state of the model, as discussed, e.g., in Eftekhari and
Scheidegger (2022).

12For a thorough introduction to deep surrogates in economics and finance, see, e.g., Chen et al. (2021),
and references therein.
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Regression (GPR) as the surrogate modeling technique to approximate QoIs as a function

of the model parameters.13

In what follows, we introduce our Deep UQ methodology in three steps. First, we

outline in Section 2.4.1 how “Deep Equilibrium Nets” can be adapted to compute global

solutions to (non-stationary) stochastic IAM model as a function of its economic states and

parameters (Section 2.4.1), and how the resulting optimal policies can subsequently be used

to construct cheap-to-evaluate surrogate models for derived quantities of interest, such as

the SCC, by using GPR (Section 2.4.1). Section 2.4.2 introduces the global sensitivity

measures we intend to study in the context of our IAM. Section 2.4.3 finally presents the

Deep UQ algorithm formally. Additional implementation details are found in Section 2.C.

2.4.1 Surrogate models for IAMs

Deep equilibrium nets

There are substantial computational bottlenecks in solving the type of IAMs detailed in

Section 2.3 as a function of endogenous and exogenous states as well as parameters in a

single model evaluation globally because of i) the presence of random shocks, ii) a high-

dimensional state space, iii) strong non-linearities in the optimal policies (introduced,

for instance, by the presence of highly non-linear damage functions (see, e.g., Cai and

Lontzek (2019), and references therein), iv) irregular, that is, non-hypercubic geometries

of the set of states visited along a simulation, and v) non-stationarity. In the presence

of these five features, the curse of dimensionality (Bellman, 1961) imposes a considerable

roadblock. While some methods can handle a subset of i) - v), most fail at matching

all five requirements. Currently, and to the best of our knowledge, the only numerically

tractable method that jointly addresses all five features relies on deep neural networks.

Therefore, Section 2.4.1 will briefly summarize the general idea of DEQN, thereby adopting

the notation of Azinovic et al. (2022); Folini et al. (2023).

13In this study, we deliberately construct the surrogate models using two different function approxima-
tors. As a rule of thumb, one should use a surrogate model based on deep neural networks when dealing
with large datasets that require learning complex nonlinear relationships. For example, in the context of
solving our stochastic, nonlinear IAMs, we generate billions of observations in the solution process to train
our neural network. Hence, we apply neural networks. Conversely, surrogate models based on GPs are
appropriate when dealing with small datasets or when interpretability is a priority over predictive accu-
racy. Consequently, since in our concrete case, the SCC and other QoIs are based on relatively expensive
simulations based on the model solution, we apply GPs in the latter case.
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The DEQN algorithm is a simulation-based solution method using deep neural net-

works to compute an approximation of the optimal policy function p : X → Y ⊂ RM to a

dynamic model under the assumption that the underlying economy can be characterized

via discrete-time first-order equilibrium conditions, that is,

G(x,p) = 0 ∀x ∈ X ⊂ Rd. (2.32)

Intuitively, DEQNs work as follows: An unknown policy function is approximated with a

neural network, that is, p(x) ≈ Nν(x), and where the ν’s are ex-ante unknown coefficients

of the neural network that have to be determined based on some suitable loss function

measuring the quality of a given approximation at a given state of the economy.

Although there are several different types of deep neural networks, we use in this

paper the so-called densely-connected feedforward neural networks (FNN).14 Following

the literature, we define an L-layer FNN as a function N NL(x) : Rdinput → Rdoutput and

say that there are L − 1 hidden layers such that the ℓ-th layer has Nℓ neurons. In our

concrete case, K = N0 = din and M = NL = doutput.15 Furthermore, for each 1 ≤ ℓ ≤ L,

we define a so-called weight matrix Wℓ ∈ RNℓ×Nℓ−1 and bias vector bℓ ∈ RNℓ . Then,

letting Aℓ(x) = Wℓx + bℓ be the affine transformation in the ℓ-th layer, for some non-

linear activation function σ(·) such as relu, swish, or selu, an FNN is given by

p(x) ≈ Nν(x) = NL(x) = AL ◦ σL−1 ◦AL−1 ◦ . . . ◦ σ1 ◦A1(x). (2.33)

In Figure 2.1, we illustrate a simple FNN with two hidden layers. The selection of hyper-

parameters
{
L, {Nl}Ll=1, {σl(·)}Ll=1

}
is known as the architecture selection. Approaches to

determine these hyper-parameters include using prior experience, manual, random, or grid

search, as well as more complex methods such as Bayesian optimization (see, e.g., Bergstra,

Bardenet, Bengio, and Kégl (2011)).

The DEQN algorithm to determine p(x) is started by randomly initializing the ν’s (Glo-

rot & Bengio, 2010), that is, an arbitrary guess for the ex-ante unknown approximate policy

14Neural networks are universal function approximators (Hornik, Stinchcombe, & White, 1989), can
resolve highly non-linear features, and can handle a large amount of high-dimensional input data. See,
e.g., Goodfellow et al. (2016) for an excellent introduction to deep learning.

15Recall that in our model, we din = d = 10 + N input dimensions (cf. Eq. (2.31)). Furthermore,
doutput = 3, as we have our model has three choice variables, that is, choices consumption, investment, and
mitigation (cf. Section 2.3.4).
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Fig. 2.1 The figure above depicts an FNN, where the input x is a 12−dimensional vector,
two hidden layers with 16 neurons each, and p(x) is a 3−dimensional output, thereby
representing a stylized architecture for an IAM with 10 economic state variables, two pa-
rameters that are considered as pseudo-states, and three control variables (cf. Eq. (2.31)).

function. Next, we simulate a sequence of Npath length states. Starting from some given

state xt, the next state xt+1 is a result of the policies encoded by the neural network,

Nν(x), and remaining, model-implied dynamics.

If we knew the (approximate) policy function satisfying the equilibrium conditions,

Eq. (2.32) would hold along a simulated path. However, since the neural network is ini-

tialized with random coefficients, G(xt,Nν(xt)) ̸= 0 along the simulated path of length

Npath length. This fact is now leveraged to improve the quality of the guessed policy func-

tion. Specifically, DEQNs use a loss function as the error in the equilibrium conditions,

that is,

ℓν := 1
Npath length

∑
xton sim. path

Neq∑
m=1

(Gm(xt,Nν(xt)))2 , (2.34)

where Gm(xt,Nν(xt))) represent all the Neq first-order equilibrium conditions of a given

model, that is, G(xt,Nν(xt)) = ∑Neq
m=1 (Gm(xt,Nν(xt))). Expression (2.34) can now be
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used to update the weights of the network with any variant of gradient descent,16 namely,

ν
′
k = νk − αlearn∂ℓ(ν)

∂νk
, (2.35)

where ν ′
k represents the updated k−th weight of the neural network, and where αlearn ∈ R

denotes the so-called learning rate. The updated neural network-based representation of

the policy is subsequently used to simulate a sequence of length Npath length steps, along

which the loss function is recorded, and the latter is again used to update the network

parameters. This iterative procedure is pursued until ℓν < ϵ ∈ R, that is, an approximate

equilibrium policy, has been found.

In summary, the DEQN algorithm consists of four building blocks: i) deep neural

networks for approximating the equilibrium policies; ii) a suitable loss function measuring

the quality of a given approximation at a given state of the economy; iii) an updating

mechanism to improve the quality of the approximation; and iv) a sampling method for

choosing states for updating and evaluating of the approximation quality. In Section 2.C.1,

the step-by-step procedure for mapping stochastic and non-stationary climate economic

models in general, and our model in particular, onto the neural network-based DEQN

solution framework is provided.

Gaussian process surrogate models for global sensitivity analysis

We now briefly introduce the Gaussian process regression (GPR), a probabilistic approach

for modeling a regression problem17 that we will use below to construct surrogates for

approximating and interpolating quantities of interest (QoIs), such as the SCC, as a func-

tion of the model input parameters, to enable the swift computation of global sensitivity

measures such as the Sobol’ indices, the univariate effects and the Shapley values (cf.

Section 2.4.2 below).

GPR assumes that the underlying function is a sample from a Gaussian process (GP).

The latter is defined by a mean function, m(x), and a covariance function, k(x, x′). For a

regression problem, we are given a set of n input-output pairs, D = {xi, yi}ni=1 = [X, y],

where xi ∈ Rd, yi ∈ R, X ∈ Rn×d and y ∈ Rn×1, and to which the literature also

16In our practical applications, we use “Adam” (Kingma & Ba, 2014).
17See, e.g., Rasmussen and Williams (2005), for a textbook treatment.
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refers to as “ training dataset” or “experimental design”.18 The goal is to “learn”, that is,

approximate a function f(x) that maps inputs to outputs. In GPR, one often assumes that

the output y is generated by a noisy evaluation of the function f(x), i.e., y = f(x)+ϵ, where

ε ∼ N
(
0, σ2

ϵ

)
, as it renders the computations numerically more stable (see, e.g., Murphy

(2012); Rasmussen and Williams (2005)).

The prior distribution over functions is given by a GP, that is, f(x) ∼ GP(m(x), k(x, x′)).

In practical applications, the mean function, m(x), is often set to a constant value, e.g.,

zero. The covariance function, k(x, x′), defines the correlation between two arbitrary in-

puts x and x′. The exact choice of the kernel within an application depends on how the

modeler encodes prior knowledge about the function(s) to be approximated, such as dif-

ferentiability and periodicity. In our work below, we use the Matérn 5/2 kernel, which is

given by:

k(x, x′) = σ2
f

(
1 +

√
5r
ρ

+ 5r2

3ρ2

)
exp

(
−

√
5r
ρ

)
, (2.36)

where σ2
f denotes the variance parameter, and ρ represents the length scale parameter.

The distance r between x and x′ can be calculated using a suitable metric, such as the

Euclidean distance.19

Given the input-output pairs in D, we can compute the posterior distribution over

functions using Bayes’ rule, that is,

p(f∗|x∗,D) = N (µ∗, σ
2
∗), (2.37)

where x∗ is an arbitrary point from the computational domain (also referred to as “test

input”), f∗ is the corresponding output, and µ∗ and σ2
∗ are the mean and variance of the

predictive distribution. They can be computed as:

µ∗(x∗) = k(x∗, X)[K(X,X) + σ2
ϵ I]−1y, (2.38)

σ2
∗(x∗) = k(x∗, x∗) − k(x∗, X)[K(X,X) + σ2

ϵ I]−1k(X,x∗), (2.39)

18Below, the input vector xi will be given by the vector of parameters of dimensionality N
(cf. Eq. (2.31)), whereas corresponding observations yi will represent the QoIs.

19Note that the hyperparameters of the covariance function are typically estimated by maximizing the
likelihood (Rasmussen & Williams, 2005). For more details on kernels, see, e.g., Murphy (2022, Ch. 18.2).
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where K(X,X ′) is the matrix of pairwise covariances between inputs in X and X ′. More-

over, I is an identity matrix, and σϵ is the assumed noise level of observations, that is,

the variance of ϵ. Thus, the interpolation value of a function at a location x∗ is given

by f(x∗) = µ∗. For more details on GPs, see, e.g., Renner and Scheidegger (2018), and

references therein.

Below, we require cheap-to-evaluate GP surrogates for one particular QoI as a function

of the model input parameters that is relevant to the climate policy and for which we intend

to perform global sensitive analysis at any given point in time. The SCC is defined as

the marginal cost of atmospheric carbon in terms of the numeraire good. Following the

literature (see, e.g., Traeger (2014)), we define SCC as the marginal rate of substitution

between atmospheric carbon concentration of a 1000 Gt of carbon where c2co2 represents

carbon to CO2 transformation coefficient20 and the normalized capital stock, that is,

SCCt = − (∂Vt/∂MAT,t) /c2co2
∂Vt/∂Kt

= − (∂vt/∂MAT,t) /c2co2
∂vt/∂kt

AtLt. (2.40)

To enable a comparison to related studies, we focus below on the SCC in the year

2100, a date commonly used in the literature (see, e.g., Cai and Lontzek (2019)), that is,

ySCC = E [SCC2100] . (2.41)

To construct the GP surrogates of the QoI mentioned above as a function of the model

input parameters ϑ, we proceed as follows:21 We generate a training set Ds = {ϑi, yi}ni=1 =

[Θs, ys] consisting of n sample vectors ϑi ∈ RN from a joint (uniform) distribution of the

uncertain model parameters (cf. Section 2.3.4), whereas yi ∈ R corresponds to the QoI at

a given combination of parameters and can be generated at essentially zero computational

costs by interpolating on the DEQN surrogate of the pre-computed IAM solution (cf.

Eq. (2.33)).

Next, we fit a GP model to the training data set Ds. We use the predictive mean,

µ∗(ϑ), of the respective GP model that we denote by MGP |Θs,ys , as the interpolation value

20The stock of carbon in the carbon cycle is measured in 1000 Gt of carbon; however, the backstop cost
as in W. D. Nordhaus (2017) is measured in 1000 Gt of CO2 emissions; thus, to obtain a correct value
for the SCC, we need to transform a value measured in carbon into CO2 by the transformation coefficient
c2co2 = 3.666.

21In Section 2.4.1, we generally introduce the GPR that is trained on a set of n input-output pairs,
which is D = {xi, yi}ni=1 = [X, y]. Hereafter we focus more on our specific case where the mode input
parameters are denoted by ϑi, not xi and define the n input-output pairs Ds = {ϑi, yi}ni=1 = [Θs, ys].
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for the respective QoI, that is, ySCC . 22 Evaluating µ∗(·) numerically is extremely fast, as

the algorithmic complexity is linearly in the size n of the training data set (cf. Eq. (2.38)).

Thus, global sensitivity analysis of very rich specified models (cf. Section 2.4.2) now be-

comes numerically tractable. More details regarding the accuracy of GP surrogate models

are provided in Section 2.C.4.

2.4.2 Global sensitivity analysis in a nutshell

In this section, we present a formal introduction to surrogate-based global sensitivity

analysis.

Some definitions

We commence our discussion on GSA by introducing essential notation, following the

notation set forth by Harenberg et al. (2019); Sudret (2008). Let us define a (true)

mathematical model M (·) that maps

ϑ ∈ Dϑ ⊂ RN → Y = M(ϑ) ∈ R, (2.42)

where Y is a QoI23 that is, a random endogenous outcome of the computational model

M (·), where ϑ = (ϑ1, · · · , ϑN ) is the random vector of N input parameters, where each

of which is characterized by a probability density function (PDF) fϑi , i = 1, . . . , N , and

where the joint density fϑ is defined over a probabilistic space (see, e.g., Jaynes (1957,

1982)). The corresponding ex-ante unknown distribution of the endogenous output Y

is inferred by evaluating the model on a large sample of parameter values drawn from

the specified distribution fϑ, a technique that is termed uncertainty propagation (see,

e.g., Sudret (2008) and references therein). Based on this distribution, we next look at

three particular types of metrics that are typically studied in UQ, namely, Sobol’ indices

(Section 2.4.2), univariate effects (Section 2.4.2), and Shapley values (Section 2.4.2).

22Note that the GP surrogate is redundant when a QoI is not a derived quantity from the optimal
policies such as µt. In contrast, where a QoI relies on simulations such as the SCC, constructing a GP-
based surrogate can reduce the computational burden substantially since next to evaluating the exact
formula of the SCC at n points to train a GP, everywhere else in the parameter space, the respective
quantity can be retrieved by evaluating the surrogate model.

23Recall that in our case, we consider the SCC as a function of the model parameters at a given point
in time (cf. Eq. (2.40)).
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Sobol’ indices

Variance-based GSA methods discriminate among all the model’s parameters according to

their contribution to the variance of its output. In our concrete case, we intend to study

which (combinations of) parameters drive the QoI’s volatility by applying Sobol’s decom-

position (Sobol, 2001). Given a square-integrable function ν(·) over the N -dimensional

unit hypercube ΩN ⊂ RN , Sobol’s decomposition is given by24

ν(ϑ) = ν0 +
N∑
i=1

νi (ϑi) +
∑

1≤i<j≤N
νi,j (ϑi, ϑj) + · · · + ν1,2,...,N (ϑ1, ϑ2, . . . , ϑN ) , (2.43)

where the components of the expansion are given by ν0 = E[ν(ϑ)], νi (ϑi) = E [ν (ϑ) | ϑi]−

ν0, νij (ϑi, ϑj) = E [ν (ϑ) | ϑi, ϑj ] − ν0 − νi (ϑi) − νj (ϑj), and so forth.25 Furthermore,

E[·] is the expectation operator, and E [ν(ϑ) | ϑi] is the expectation of the function ν (ϑ)

conditional on its input ϑi.

It is common practice in the UQ literature to apply the Sobol expansion given by Eq. (2.43)

to decompose the variance of a given QoI,

Var [Y ] = E
[
(M (ϑ) − E [M (ϑ)])2

]
, (2.44)

into its partial variances, that is,

Var [Y ] =
N∑
i=1

Var [Mi (ϑi)] +
∑

1≤i≤j≤N
Var [Mij (ϑi, ϑj)] + · · · + Var [MK (ϑ)] , (2.45)

where Var [Mu (ϑu)] denotes the partial variances for any subset of parameter indices

u ⊂ 1, ..., N , and K = {1, ..., N} is a full set of uncertain parameters. A natural extension

to the relative shares of partial variances in the total variance leads to the well-known

sensitivity measures, i.e., Sobol’ indices (Sobol, 2001). For any subset of parameters’

indices u, the Sobol’ index is defined as

Su = Var[Mu (ϑu)]
Var[Y ] . (2.46)

24Note that expression Eq. (2.43) is unique if the components of the expansion are orthogonal.
25Sobol’s decomposition is closely related to a function approximation technique called “high-dimension

model representation" (see, e.g., Ma and Zabaras (2010), Eftekhari and Scheidegger (2022); Eftekhari,
Scheidegger, and Schenk (2017), and references therein).
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The Sobol’ indices given by Eq. (2.46) are indicators used in the variance-based sensi-

tivity analysis (Sobol, 2001). In practical terms, Sobol’ indices quantify which uncertain

parameters and non-linear interactions among uncertain parameters primarily contribute

to the variances of model outcomes. In other words, one can screen uncertain parameters

to decrease overall model variance by investigating the Sobol’ indices. In our work below,

we particularly look at the first-order Sobol’ index when we set u = {i} in Eq. (2.46), that

is,

Si = Var[Mi (ϑi)]
Var[Y ] . (2.47)

In our numerical examples below, we follow Marrel et al. (2009); Oakley and O’Hagan

(2004) and use the predictive mean of the fitted GP surrogate model MGP |Θs,ys instead

of the “true” M(·) to enable a swift computation of the first-order Sobol’ indices defined

in Eq. (2.47).26

Univariate effects

From the aforementioned variance decomposition, we do not obtain any information as to

which direction a QoI moves when the uncertain parameters deviate from their benchmark

values. To this end, GSA is also concerned with computing univariate effects (Younes et

al., 2013). Formally, a univariate effect represents the model’s conditional expectation

given its parameter ϑi, that is,

U(ϑi) = E [M(ϑ|ϑi)] . (2.48)

As we discussed in Section 2.4.2, we replace the true “true” M(·) again by the GP

surrogate model MGP|Θs,ys , and evaluate the model outputs by using the posterior mean

of the GP.

Shapley value

An essential task in UQ is to attribute the uncertainty of the overall outcome of the model

to various input parameters. In the field of GSA, the Sobol’ indices have been widely

26Next to GPs, polynomial chaos expansions is also commonly used in the literature to construct
surrogate models for the swift computation of Sobol’ indices (see, e.g., Harenberg et al. (2019); Sudret
(2008)).
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adopted for variance decomposition (Harenberg et al., 2019; Saltelli et al., 2008). On the

other hand, the economic literature, especially in cooperative game theory, has studied a

similar problem and developed a solution concept known as the Shapley value (Shapley,

1953; Winter, 2002). The key idea behind the Shapley value is to determine a fair way

to attribute the value created by a team effort to each team member. Based on this

insight, Owen (2014) introduced a global sensitivity measure that is based on the Shapley

value, and shows that the Shapley value is a compelling choice for identifying how much

model variance can be attributed to the uncertainty in input parameters.

Following Owen (2014); Song et al. (2016) and our previously introduced notation we

define a Shapley value for the i-th uncertain parameter as:

Shi =
∑

u⊆K\i

(N − |u| − 1)!|u|!
N !

(
Var

[
Mu∪{i}

(
ϑu∪{i}

)]
− Var [Mu (ϑu)]

)
, (2.49)

where N = |K| is the size of the whole set and |u| is the size of subset u. We also define

Var [M∅ (ϑ∅)] = 0. Eq. (2.49) measures the incremental cost when including parameter i

in set u averaged over all sets u ⊆ K \ i. Owen (2014) proposes to choose

Var [Mu (ϑu)] = Varu

[
EK\u [Y |ϑu]

]
, (2.50)

with which one can measure a similar effect as the one of the first-order Sobol’ indices.

Another functional form of the cost function used in the literature is given by the following

expression:

Var [Mu (ϑu)] = EK\u

[
Varu

[
Y |ϑK\u

]]
. (2.51)

Song et al. (2016) prove that the Shapley values using either the cost function in

Eq. (2.50) or Eq. (2.51) are equivalent. Furthermore, when numerically estimating the

Shapley value, Sun, Apley, and Staum (2011) pointed out that the Monte Carlo estimation

of the inner expectation operator in Eq. (2.50) requires a sufficiently large number of model

evaluations and could be highly biased. On the other hand, the estimation in Eq. (2.51)

is unbiased for all sample sizes. Consequently, we use Eq. (2.51) in all our computations.

When the number of uncertain parameters N , as in our case, is reasonably “small”,

one typically uses the “exact" method by Song et al. (2016). The latter involves traversing
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N ! permutated sets. To enhance the efficiency of the Monte Carlo sampling required

for precise evaluation of the expectation and variance operators, we again employ the

GP-based surrogate model, thereby replacing the original model; that is, we utilize the

predictive mean of the posterior for this purpose.27

2.4.3 The deep uncertainty quantification algorithm

After having discussed the ingredients to our “Deep UQ” methodology in Section 2.4.1

and Section 2.4.2, we now present code listing Section 2.4.3 the complete algorithm. It

consists of two fundamental building blocks. First, the DEQN is used to solve the IAM as a

function of all endogenous, exogenous, and pseudo-state variables in a single solution step.

The resulting neural network-based surrogate model then serves as an input to construct

Gaussian Process (GP) surrogates for QoI metrics, such as the SCC. Subsequently, UQ

can be performed on these GP surrogates to assess and analyze the uncertainty in the

model predictions.

27See Iooss and Prieur (2019) for more technical details.



Algorithm 1 Deep UQ algorithm
Part 1: Deep equilibrium nets

Approximate policy functions p (xC) using DEQN parametrized by the coefficients ⌫, where xC ⌘
[ C , �C ,XC , C;#].

Input:
Neural network architecture and hyper-parameters, simulation length ) (length of an episode), �learn

(learning rate), x0 (initial states). Upper and lower bound of the pseudo states # 2
h
#,#

i
.

Output:
The neural network’s trained parameters ⌫⇤, such that the policy function p (xC) ⇡ NN (xC)minimizes
the loss function, i.e., the system of the first-order equilibrium conditions.

while ✓⌫ > & do
x80  x0 3 Initialize the states at time 0
D 8

train  
�
x0 ,x81 ,x

8
2 , · · · ,x8)

 
3 Generate training data based on the previous policy p8�1 (xC)

Evaluate a loss function

✓⌫ := 1
#path length

’
xCon sim. path

#4@’
<=1

(⌧<(xC ,NN(xC)))2

for : 2 {1, 2, · · · , len (⌫)} do 3 Perform stochastic gradient descent

⇡
0
: = ⇡: � �learn %✓ (⌫)

%⇡:

end for
8  8 + 1 3 Go to the next episode 8 + 1

end while
return ⇡⇤  ⇡8 3 Optimal policy at convergence: p⇤ (xC) ⇡ NN (xC)

Part 2: Uncertainty quantification based on GP surrogate models
Uncertainty quantification using the predictive mean of the GP surrogate modelMGP|⇤B ,HB .

Input:
p⇤ (xC) (optimal policy functions), = (size of training set for the GPs), and H (QoI, e.g., the SCC).

Output:
(8 (the first-order Sobol’ indices), *8 (the univariate effects) and (⌘8 (the Shapley values) for the
uncertain parameter '8 .

while ⌘LOO
GP|⇤B ,HB

� &LOO
GP do 3 Criterion to ensure high-quality GP surrogate model (cf. Appendix B.3)

for 9 2 {1, ..., =} do 3 Generate a training setDB for the GP
H9 =M

�
#9

�
3 Compute the QoI for a given combination of parameters #9 by using p⇤ (xC)

end for
Fit the GP modelMGP|⇤B ,HB toDB

Compute the leave-one-out error &LOO
GP|⇤B ,HB

=  = + 1 3 Increase the size of the training set if necessary
end while
returnMGP|⇤B ,HB 3 Accurate GP surrogate model; used to replace true modelM (·) in UQ tasks
for 8 2 {1, ...,#} do 3 UQ for each uncertain parameter '8

Compute the Sobol’ indices (8 (cf. Eq. (47)).
Compute the univariate effectsU8 (cf. Eq. (48)).
Compute the Shapley values (⌘8 following (cf. Eq. (49)).
return (8 ,U8 and (⌘8

end for

28
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2.5 Results

This section reports the illustrative results. First, we describe the parameter choices for

the uncertainty quantification. Second, we briefly present the optimal policy results for

three types of models: the fully deterministic model, the model with the temperature

shock and the one with the Bayesian learning over the equilibrium climate sensitivity -

our benchmark model. Third, we complete the section with discussing the results of the

uncertainty quantification with respect to the benchmark model and outlining the further

research steps.

2.5.1 Parameters for the uncertainty quantification analysis

We subjectively select uncertain parameters ϑ as summarized in Table 2.1. We introduce

three uncertain parameters from the economic module and three from the climate module.

From the economic module we include the pure rate of time preferences ρ, the Arrow-Patt

relative risk aversion γ and the intertemporal elasticity of substitution ψ that characterize

the Epstein-Zin preferences.

From the climate module we include the initial values of the prior mean µf,0 and

variance Sf,0 of the Bayesian learning process over equilibrium climate sensitivity. We as

well include damage parameter π2 that is a part of quadratic damage function.

As there is no apriori knowledge available on the distribution of each uncertain pa-

rameter ϑi, in line with Harenberg et al. (2019), we assume a uniform distribution with

a lower ϑi and upper bound ϑi, and each parameter ϑi is statistically independent, as

reported in Table 2.1. ϑi ∈
[
ϑi, ϑi

]
shall be plausible yet still arbitrary selected to include

common values in the literature.

Table 2.1 Parameter ranges for the uncertainty quantification analysis.

Parameter ϑ0
i ϑi ϑi Source etc.

ρ 0.015 0.01 0.02 N. Stern (2008)
γ 10 2.5 12.5 Jensen and Traeger (2014) and Cai and Lontzek (2019)
ψ 1.5 1.2 2.0 Jensen and Traeger (2014) and Cai and Lontzek (2019)
π2 0.00236 0.002 0.008 W. D. Nordhaus (2017) and Weitzman (2012b)
µf,0 0.65 0.45 0.73 Roe and Baker (2007) and Folini et al. (2023)
Sf,0 0.0169 0.01 0.04 Roe and Baker (2007)
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2.5.2 Optimal policy

In this section, we present and briefly discuss the optimal policy results for the deter-

ministic model, a model with the temperature shock without learning, and a model with

Bayesian learning over the ECS. In the Figure 2.2 we see that optimal emissions are the

highest for the case with learning and the lowest for the deterministic case. The intuition

behind this result is that to quicker learn the ECS the agent needs to emit more carbon

in the beginning.
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(b) Stochastic temperature
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(c) Bayesian learning

Fig. 2.2 Emissions in deterministic case (left), with temperature shocks (middle), and
with Bayesian learning (right).

The mean of atmospheric temperature increase in the Figure 2.3 is approximately the

same in all the cases and comprises 2.4 − 2.5◦C. The variance of the temperature increase

is observed to be the highest in the case of learning, as the model features two types of

shocks, one to the climate feedback parameter and one to the temperature itself.
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Fig. 2.3 Temperature of the atmosphere in deterministic case (left), stochastic tempera-
ture (middle), and with learning (right).

Abatement level in Figure 2.4 as well as the value of the social cost of carbon in

Figure 2.5 are the lowest for the deterministic case, with more abatement in place in case
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of a stochastic temperature and also in case of learning. This reveals the precautionary

motive of the agent, to increase abatement in case of uncertainty.

The abatement rate as well as the SCC in the case of stochastic temperature are slightly

higher than in the case of learning. This happens because in the case of learning the agent’s

precautionary motive to increase abatement in response to uncertainty is counteracted by

the gains of more emissions, which help the agent to learn quicker and resolve uncertainty

quicker.
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Fig. 2.4 Abatement in deterministic case (left), stochastic temperature (middle), and
with Bayesian learning (right).
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Fig. 2.5 SCC in deterministic case (left), stochastic temperature (middle), and with
Bayesian learning (right).

Overall the results found from a comparison of three types of models correspond to the

findings in the literature for example Kelly and Tan (2015) and Hwang et al. (2017). How-

ever, our results are different from Jensen and Traeger (2013). They find that first, there

is no change in mitigation and a slight increase in emissions in the stochastic temperature

case in comparison to the deterministic case. Second, they also find that there is more

mitigation under the Bayesian learning case in comparison to the stochastic temperature

case. The differences in results can be potentially explained by the fact that Jensen and

Traeger (2013) did not use the disentangled Epstein-Zin preferences and also the variance
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of the stochastic temperature shock in their model is almost two orders of magnitude

higher than in our model.

2.5.3 Uncertainty quantification results

The set of figures Figures 2.6 to 2.8 presents the value of Shapley indices (in blue) and

Sobol’ indices (in green) for the impact of uncertain parameters on the value of the SCC

in the years 2020, 2050, and 2100. Both indices measure the contribution of the variance

of uncertain parameters to the variance of the quantity of interest, in our case the value

of the SCC.
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Fig. 2.6 Impact of the uncertain parameters on the SCC in 2020 (left), SCC in 2050
(middle), and SCC in 2100 (right) in the deterministic model.

In the fully deterministic case (Figure 2.6) ECS contributes the most to the variance of

the SCC together with the damage parameter. Over time the influence of the ECS on the

variance of the SCC remains constant with a slight tendency to get higher, and the impact

of the damages remains constant with a modest leaning to lower values. The same dimin-

ishing over time pattern can be observed in the pure rate of time preferences contribution.

These impacts are related, as damages are reflected in the social cost of carbon through

the discount rate. With time the contribution of the discount rate on the SCC variance

drops, so the damages follow the same pattern. Neither the intertemporal elasticity of

substitution (IES) nor the relative risk aversion parameters matter for the social cost of

carbon, which is predictable, as in the deterministic case Epstein-Zin preferences collapse

into the standard CRRA preferences.

In the case of the model with the temperature shock, the IES starts to play a significant

role in the variance of the SCC. The damage parameter remains important as in the

deterministic case but with less of an impact. Interestingly enough, in the case of the

temperature shock, there is no observed impact of the ECS on the variance of the SCC. It
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Fig. 2.7 Impact of the uncertain parameters on the SCC in 2020 (left), SCC in 2050
(middle), and SCC in 2100 (right) in the model with temperature shock.

appears that uncertainty related to the climatic factor is not reflected in the variance of

the SCC in the presence of internalized temperature uncertainty. At the same time, the

impact of the IES by far dominates the contribution of the other uncertain parameters on

the variance of the SCC. The value of consumption smoothing preferences alone explains

around eighty percent of the SCC variance. All the impacts remain rather constant with

time.
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Fig. 2.8 Impact of the uncertain parameters on the SCC in 2020 (left), SCC in 2050
(middle), and SCC in 2100 (right) in the model with Bayesian learning.

The impact of uncertain parameters in the variance of the SCC in the case of learning

about the ECS seems to be the middle case between deterministic and pure stochastic

temperature case.

First, we can observe that the uncertainty around the prior mean of the climate feed-

back parameter µf,0 does get resolved with the learning over time. This is an effect of

learning, that we did not observe in the deterministic case. The contribution of the prior

mean in the SCC variance decreases by 1.5 times in 2100 in comparison to the year 2020.

Second, the impact of the damage uncertainty as well as the pure rate of time preferences is

also diminishing over time. This reminds us in some way of the deterministic case results.
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Third, we observe the increase in the contribution of the IES on the SCC variance over

time which resembles the temperature shock case. The SCC value in 2100 becomes robust

to other uncertain parameters and the only parameter that still contributes to the SCC

variability is the desire to smooth consumption over time. These results can be interpreted

as follows. By the year 2100, the major part of the uncertainty that could be resolved

was already resolved due to learning. The remaining uncertainty, as in the case of the

pure temperature shock, is manifested through the sensitivity of the SCC to the IES. In

a way, by the year 2100, the impact of the uncertain parameters in the case of learning

becomes closer to the case of pure temperature shock. Finally, the prior variance of the

climate feedback parameter, as well as relative risk aversion, does not have any effect on

the variance of the SCC in the learning case.

The Figures 2.9 to 2.11 present the univariate effects of the uncertain parameters on

the value of the SCC 28. The univariate effects depict the direction of the influence of the

uncertain parameters on the absolute value of the SCC. For most of the parameters, the

directions of the impacts correspond to the economic intuition behind it: the SCC grows

in the prior mean of the feedback parameter and damages; the SCC decreases in the pure

rate of time preferences; the SCC does not change in relative risk aversion and the prior

variance of the climate feedback parameter.
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Fig. 2.9 Univariate effects on the SCC in 2020 in a deterministic model.

28The univariate effects for the SCC values in the year 2100 can be found in Section 2.A
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Fig. 2.10 Univariate effects on the SCC in 2020 in a model with temperature shock.
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Fig. 2.11 Univariate effects on the SCC in 2020 in a model with Bayesian learning.

The only parameter that impacts the SCC in a non-obvious way is the IES. In the

deterministic case, the SCC seems to increase with the increase in IES which is in line

with the results for the deterministic case reported by Jensen and Traeger (2014). However,

in stochastic cases (both pure temperature shock and learning) SCC decreases in case of

an increase in the IES (decrease in desire to smooth consumption).

This finding is different from the results reported in Jensen and Traeger (2014) and Cai

and Lontzek (2019), which document the increase in the SCC in response to the increase

in IES. However, there is an important distinction between our model and the models

in the studies mentioned above. Specifically, in our model we include the temperature
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shocks, while in the aforementioned studies, the TFP shock is considered. It can be that

TFP shock and temperature shock affect decision-making under uncertainty differently. A

possible explanation can be as follows. Positive TFP shock has a counteracting first-order

impact on the economy: on the one hand, it gives output, on the other hand, it is related

to more emissions and consequently more damages. Positive temperature shock has a

one-direction first-order impact on the economy: emissions stay the same, but the net

output is reduced. In both cases of shocks, the agent increases investments in capital for

a precautionary motive as a response to uncertainty. In the case of TFP shock, additional

investment into mitigation helps to gain more from ’good’ TFP shock. This way the effect

of positive TFP on the emission rise is being addressed by higher mitigation. In case of

temperature shock, additional investment into abatement does not seem to pay off in terms

of the possible gains; the precautionary motive alone may be too small to justify more

abatement efforts due to little consumption smoothing desire. However, this is just one

possible explanation to the results observed and it requires further research to understand

and quantify potential differences in the decision-making under uncertainty coming from

the different sources.

2.6 Conclusion

Uncertainty in IAMs comes from several sources: modeling uncertainty, uncertainty around

the evolution of the economy and climate, and parametric uncertainty. In the present re-

search, we quantify parametric uncertainty of the stochastic IAM that explicitly features

(i) the main source of the climatic uncertainty, which is ECS, and (ii) the possibility of

the social planner to uncover the ECS through Bayesian learning. To tackle our problem

we develop a new methodological approach. We implement a deep learning-based solution

method to solve a high-dimensional and stochastic IAM with Bayesian learning about

the ECS parameter and propagate parametric uncertainty using a Gaussian process-based

surrogate model when estimating the social cost of carbon in a computationally efficient

fashion. We find that indeed the Bayesian learning process contributes to the reduction of

the impact of the uncertain prior of the ECS on the value of the SCC. Naturally, the im-

pact of the uncertain pure rate of time preferences and damages also decreases with time.

At the same time, the importance of the IES to the SCC increases with the SCC decreas-

ing in response to an increase in IES. This finding is different from the previous literature
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studying the impact of the IES on the SCC. In the case of the TFP shock Jensen and

Traeger (2014), Cai and Lontzek (2019) find that with IES increasing the SCC is increasing

as well. A significant difference in our model from the studies mentioned above is that our

model includes temperature shocks but no TFP shock. We believe, that TFP shock and

temperature shock may affect decision-making under uncertainty differently however, this

is subject to further research. The comprehensive computationally efficient methodology

for the uncertainty quantification analysis presented in this paper allows us to investigate

further the subtle underlying economic mechanisms under the decision-making response

to uncertainty. This forms the future area of research.
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Appendix

2.A Univariate effects on the SCC in 2100
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Fig. 2.A1 Univariate effects on the SCC in 2100 in a deterministic model.
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Fig. 2.A2 Univariate effects on the SCC in 2100 in a model with temperature shock.
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Fig. 2.A3 Univariate effects on the SCC in 2100 in a model with Bayesian learning.

2.B Additional Model Details

The complete paramterization of the model as well as full specification of the functional

forms of the model can be found in the Section 1.B. The model in the Chapter 2 differs

from the model in the Chapter 1 in two main ways. First, the model in the Chapter 2

features the Bayesian learning around the equilibrium climate sensitivity. The parameters

and starting values of Bayesian learning are given in Table 2.B1:

Calibrated parameter Symbol Value

Initial prior mean µf,0 0.65

Initial prior variance Sf,0 0.0169

Upper bound for a climate feedback parameters f 0.85

Lower bound for a climate feedback parameters f 0.45

Reference temperature impact (°C per doubling CO2) ∆T ◦
ATX2 1.2

Variance of temperature shock SϵT 0.01

Table 2.B1 Annual parametrization for the Bayesian learning process.

Second, the preferences are not in CRRA form but expressed in Epstein-Zin form. The

parameters specific for the Epstein-Zin preferences are given in the Table 2.B2.
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Calibrated parameter Symbol Value

Intertemporal elasticity of substitution ψ 1.5

Risk aversion γ 10.

Table 2.B2 Annual parametrization for the economy.

2.C Implementation Details

In this section, we discuss some practical points when an IAM is mapped to the DEQN

solution method.

2.C.1 Deep equilibrium nets for stochastic IAMs

In this Appendix, we provide a detailed procedure for mapping a stochastic, nonlinear,

and non-stationary IAM onto the DEQN solution framework. The original problem, as

introduced in Section 2.3.4 (cf. Eqs. (2.18) to (2.30))), requires some modifications to

leverage the capabilities of the DEQN.

Recall that the state of the economy at time t is given by

Xt ∈ R9+N :=
(
Kt,M

AT
t ,MUO

t ,MLO
t , TAT

t , TOC
t , µf,t, Sf,t, t,ϑ

)T
(2.C.1)

, where, next to the endogenous and exogenous state variables, we consider N uncertain

parameters as pseudo-state variables.

Following, for instance Folini et al. (2023), we consider time t as an exogenous state

to account for the non-stationary nature of the IAM, whereas all the other states except

the pseudo-states ϑ are endogenously determined. Furthermore, to ensure computational

tractability, we follow Traeger (2014) and map the unbounded physical time t ∈ [0,∞) via

the strictly monotonic transformation,

τ = 1 − exp (−ςt) , (2.C.2)
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into the unit interval τ ∈ (0, 1]. To scale back from the artificial time τ to the physical

time, the inverse transformation of equation (2.C.2) can be applied, that is,

t = − ln (1 − τ)
ς

. (2.C.3)

It is known that the dynamic programming problem presented in Section 2.3.4 would

be computationally inefficient and unstable, mainly due to the capital stock that evolves

significantly over time. Following Traeger (2014) among others, we normalize economic

variables, capital stock, consumption, and investment, as well as the value function in the

effective labor units, that is,

ct := Ct
AtLt

, kt := Kt

AtLt
, it := It

AtLt
, vt := Vt

AtL
1

1−1/ψ
t

, (2.C.4)

where At represents a deterministic TFP growth trend and Lt is the global population (or

labor).

Furthermore, we introduce a quantity called the effective, or growth-adjusted, discount

factor,

β̂t := exp
(

−ρ+
(

1 − 1
ψ

)
gAt + gLt

)
. (2.C.5)

Using Eq. (2.C.4), we transform the original dynamic programming problem.

Furthermore, we also apply Eqs. (2.16) and (2.17) and also leverage the fact that

f̃t+1 = µf,t +
√
Sf,tϵ

f , where ϵf ∼ N
(
0, 1, ϵf , ϵf

)
, ϵf = f−µf,t√

Sf,t
, ϵf = f−µf,t√

Sf,t
. For simplicity

we replace ϵ̃T,t+1 from Eqs. (2.16) and (2.17) with by the short-hand notation ϵT . The

laws of motion for posterior mean and posterior variance can be expressed as:

µf,t+1 = µf,t +
√
Sf,tSf,t (φ1CTAT,t)2

SϵT + (φ1CTAT,t)2 Sf,t
ϵf + φ1CTAT,tSf,t

SϵT + (φ1CTAT,t)2 Sf,t
ϵT , (2.C.6)

Sf,t+1 = SϵTSf,t

SϵT + (φ1CTAT,t)2 Sf,t
, (2.C.7)

where ϵf ∼ N
(
0, 1, ϵf , ϵf

)
, ϵf = f−µf,t√

Sf,t
, ϵf = f−µf,t√

Sf,t
and ϵT ∼ N (0, SϵT ).

The normalized problem reads as follows:

v (xt)1−1/ψ = max
kt+1,ct,µt

{
c

1−1/ψ
t + βtEt

[
v (xt+1)1−γ

] 1−1/ψ
1−γ

}
(2.C.8)
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s.t. (1 − Θ (µt)) Ω (TAT,t) kαt − ct − it = 0 (λt) (2.C.9)

(1 − δ) kt + it − exp
(
gAt + gLt

)
kt+1 = 0

(
νKt

)
(2.C.10)

1 − µt ≥ 0 ⊥ λµt ≥ 0 (2.C.11)

(1 − b12)MAT,t + b21MUO,t + (1 − µt)σtAtLtkαt + ELand,t −MAT,t+1 = 0
(
νAT
t

)
(2.C.12)

b12MAT,t + (1 − b21 − b23)MUO,t + b32MLO,t −MUO,t+1 = 0
(
νUO
t

)
(2.C.13)

b23MUO,t + (1 − b32)MLO,t −MLO,t+1 = 0
(
νLO
t

)
(2.C.14)

(1 − c1c3 − φ1C)TAT,t + c1c3TOC,t + c1

(
F2xco2 log2

(
MAT,t
M∗

AT

)
+ FEX,t

)

+ φ1CTAT,tµf,t + φ1CTAT,t
√
Sf,tϵ

f + ϵT − TAT,t+1 = 0
(
ηAT
t+1

)
, (2.C.15)

where ϵf ∼ N
(
0, 1, ϵf , ϵf

)
, ϵT ∼ N (0, SϵT )

c4TAT,t + (1 − c4)TOC,t − TOC,t+1 = 0
(
ηOC
t

)
(2.C.16)

µf,t +
√
Sf,tSf,t (φ1CTAT,t)2

SϵT + (φ1CTAT,t)2 Sf,t
ϵf + φ1CTAT,tSf,t

SϵT + (φ1CTAT,t)2 Sf,t
ϵT − µf,t+1 = 0

(
λ
µf
t+1

)
where ϵf ∼ N

(
0, 1, ϵf , ϵf

)
, ϵT ∼ N (0, SϵT ) (2.C.17)

SϵTSf,t

SϵT + (φ1CTAT,t)2 Sf,t
− Sf,t+1 = 0

(
λ
Sf
t

)
(2.C.18)

where the Lagrange multipliers we will employ below have been added in parentheses for

completeness. In Eq. (2.C.11), the symbol ⊥ indicates complementary slackness. Note

also that the Lagrangian multipliers ηAT
t+1 in Eq. (2.C.15) and λ

µf
t+1 in Eq. (2.C.17) are

stochastic due to the uncertain shocks ϵf , ϵT .

The policy function p we intend to approximate with the aid of deep neural networks

is given by

Nν(xt) ∈ R14 :=
(
ct, it, vt, µt, λt, η

K
t , λ

µ
t , ν

AT
t , νUO

t , νLO
t , ηAT

t+1η
OC
t , λ

µf
t+1, λ

Sf
t

)
, (2.C.19)

and consists of the choice variables (ct, it, µt)29 as well as the Lagrange and KKT multi-

pliers.

29We keep the first-order conditions with respect to kt+1 and it. In practical applications, the perfor-
mance of neural networks can, as in our case, often benefit from redundant information (see, e.g., Azinovic
et al. (2022) for more details).
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Next, we derive the first-order conditions to form a loss function for the IAM model

that is suitable for DEQNs (cf. Eq. (2.34)).

We derive the following first-order conditions in effective labor units.

∂vt
∂kt+1

=
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vk,t+1

]
− λt exp

(
gAt + gLt

)
= 0 (2.C.20)

∂vt
∂ct

=
(

1 − 1
ψ

)
c

− 1
ψ

t − λt = 0 (2.C.21)

∂vt
∂µt

= λtΘ′ (µt) Ωt (TAT,t) kαt + λµt + νAT
t σtAtLtk

α
t = 0 (2.C.22)

∂vt
∂MAT,t+1

=
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vMAT,t+1

]
− νAT

t = 0 (2.C.23)

∂vt
∂MUO,t+1

=
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vMUO,t+1

]
− νUO

t = 0 (2.C.24)

∂vt
∂MLO,t+1

=
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vMLO,t+1

]
− νLO

t = 0 (2.C.25)

∂vt
∂TAT,t+1

=
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vTAT,t+1

]
−
∫ +∞

−∞

∫ ϵf

ϵf
ηAT
t+1(ϵf , ϵT )pdf(ϵf )dϵfpdf(ϵT )dϵT = 0 (2.C.26)

∂vt
∂TOC,t+1

=
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vTOC,t+1

]
− ηOC

t = 0 (2.C.27)

∂vt
∂µf,t+1

=
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vµf ,t+1

]
−
∫ +∞

−∞

∫ ϵf

ϵf
λ
µf
t+1(ϵf , ϵT )pdf(ϵf )dϵfpdf(ϵT )dϵT = 0 (2.C.28)

∂vt
∂Sf,t+1

=
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vSf ,t+1

]
− λ

Sf
t = 0 (2.C.29)

At the equilibrium, the following envelop theorem conditions hold

vk,t = ∂vt
∂kt

= λt
∂kt+1
∂kt

+ νAT
t

∂MAT,t+1
∂kt

⇔
(

1 − 1
ψ

)
v

−1/ψ
t vk,t = λt

{
(1 − Θ (µt)) Ω (TAT,t)αkα−1

t + (1 − δ)
}

+ νAT
t (1 − µt)σtAtLtαkα−1

t (2.C.30)

vMAT,t = ∂vt
∂MAT,t

= νAT
t

∂MAT,t+1
∂MAT,t

+ νUO
t

∂MUO,t+1
∂MAT,t

+ ηAT
t+1

∂TAT,t+1
∂MAT,t

⇔
(

1 − 1
ψ

)
v

−1/ψ
t vMAT,t = νAT

t (1 − b12) + νUO
t b12+

c1F2xco2
1

log 2MAT,t

∫ +∞

−∞

∫ ϵf

ϵf
ηAT
t+1(ϵf , ϵT )pdf(ϵf )dϵfpdf(ϵT )dϵT (2.C.31)
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vMUO,t = ∂vt
∂MUO,t

= νAT
t

∂MAT,t+1
∂MUO,t

+ νUO
t

∂MUO,t+1
∂MUO,t

+ νLO
t

∂MLO,t+1
∂MUO,t

⇔
(

1 − 1
ψ

)
v

−1/ψ
t vMUO,t = νAT

t b21 + νUO
t (1 − b21 − b23) + νLO

t b23 (2.C.32)

vMLO,t = ∂vt
∂MLO,t

= νUO
t

∂MUO,t+1
∂MLO,t

+ νLO
t

∂MLO,t+1
∂MLO,t

⇔
(

1 − 1
ψ

)
v

−1/ψ
t vMLO,t = νUO

t b32 + νLO
t (1 − b32) (2.C.33)

vTAT,t = ∂vt
∂TAT,t

= λt
∂kt+1
∂TAT,t

+ ηAT
t+1

∂TAT,t+1
∂TAT,t

+ ηOC
t

∂TOC,t+1
∂TAT,t

+ λ
µf
t+1

∂µf,t+1
∂TAT,t

+ λ
Sf
t

∂Sf,t+1
∂TAT,t

⇔
(

1 − 1
ψ

)
v

−1/ψ
t vTAT,t = λt (1 − Θ (µt)) Ω′ (TAT,t) kαt

+
∫ +∞

−∞

∫ ϵf

ϵf
ηAT
t+1

(
ϵf , ϵT

) (
(1 − c1c3 − φ1C) + φ1Cµf,t + φ1C

√
Sf,tϵ

f
)

pdf(ϵf )dϵfpdf(ϵT )dϵT

+ ηOC
t c4+∫ +∞

−∞

∫ ϵf

ϵf
λ
µf
t+1

(
ϵf , ϵT

)2S3/2
f,t φ

2
1CTAT,tSϵT ϵ

f + φ1CSf,tSϵT ϵ
T − φ3

1CT
2
AT,tS

2
f,tϵ

T(
SϵT + (φ1CTAT,t)2 Sf,t

)2 pdf(ϵf )dϵfpdf(ϵT )dϵT

− λ
Sf
t

2SϵTφ2
1CTAT,tS

2
f,t(

SϵT + (φ1CTAT,t)2 Sf,t
)2 (2.C.34)

vTOC,t = ∂vt
∂TOC,t

= ηAT
t+1

∂TAT,t+1
∂TOC,t

+ ηOC
t

∂TOC,t+1
∂TOC,t

⇔
(

1 − 1
ψ

)
v

−1/ψ
t vTOC,t = c1c3

∫ +∞

−∞

∫ ϵf

ϵf
ηAT
t+1(ϵf , ϵT )pdf(ϵf )dϵfpdf(ϵT )dϵT + ηOC

t (1 − c4)

(2.C.35)

vµf ,t = ∂vt
∂µf,t

= ηAT
t+1

∂TAT,t+1
∂µf,t

+ λ
µf
t+1

∂µf,t+1
∂µf,t

⇔
(

1 − 1
ψ

)
v

−1/ψ
t vµf,t = φ1CTAT,t

∫ +∞

−∞

∫ ϵf

ϵf
ηAT
t+1(ϵf , ϵT )pdf(ϵf )dϵfpdf(ϵT )dϵT+

∫ +∞

−∞

∫ ϵf

ϵf
λ
µf
t+1(ϵf , ϵT )pdf(ϵf )dϵfpdf(ϵT )dϵT (2.C.36)

vSf ,t = ∂vt
∂Sf,t

= ηAT
t+1

∂TAT,t+1
∂Sf,t

+ λ
µf
t+1

∂µf,t+1
∂Sf,t

+ λ
Sf
t

∂Sf,t+1
∂Sf,t

⇔
(

1 − 1
ψ

)
v

−1/ψ
t vSf,t =

∫ +∞

−∞

∫ ϵf

ϵf
ηAT
t+1(ϵf , ϵT )1

2φ1CTAT,tS
−1/2
f,t ϵfpdf(ϵf )dϵfpdf(ϵT )dϵT

+
∫ +∞

−∞

∫ ϵf

ϵf
λ
µf
t+1(ϵf , ϵT )

3
2 (φ1CTAT,t)2 ϵfSϵT + 1

2Sf,t (φ1CTAT,t)4 ϵf + φ1CTAT,tSϵT ϵ
T(

SϵT + (φ1CTAT,t)2 Sf,t
)2 pdf(ϵf )dϵfpdf(ϵT )dϵT



2.C. Implementation Details 121

+ λ
Sf
t

S2
ϵT(

SϵT + (φ1CTAT,t)2 Sf,t
)2 (2.C.37)

Finally, the following optimality condition holds:

v
1−1/ψ
t = c

1−1/ψ
t + βtEt

[
v1−γ
t+1

] 1−1/ψ
1−γ , (2.C.38)

as well as budget constraint, that is,

(1 − Θ (µt)) Ω (TAT,t) kαt − ct − it = 0. (2.C.39)

We replace the KKT condition in Eq. (2.C.11) with the Fischer-Burmeister function

(see, e.g., Maliar et al. (2021), and references therein) and directly embed it in the system

of non-linear equilibrium conditions:

ΨFB (λµt , 1 − µt) = λµt + (1 − µt) −
√
λµ

2

t + (1 − µt)2, (2.C.40)

where from Eq. (2.C.22), we define λµt such that

λµt ≡ −λtΘ′ (µt) Ω (TAT,t) kαt − νAT
t σtAtLtk

α
t . (2.C.41)

One feature one faces with working with first-order conditions of an IAM is that one

needs to compute them not only with respect to the economic choice variables such as µt
and ct, but also with respect to the climate variables, even though they are not choice

variables. The reason for this is that one needs to assess the marginal effects of the change

in choice variables that propagates through the climate system. Those effects cannot be

computed analytically here, which is why we need Lagrange multipliers associated with

every single climate equation (cf. Eqs. (2.C.23) to (2.C.27)) to estimate the shadow price

of a marginal change in a respective constraint.

Using all the above definitions, the eleven individual components that enter the loss

function amendable for the DEQN algorithm read as

l1 := c
1−1/ψ
t + βtEt

[
v1−γ
t+1

] 1−1/ψ
1−γ − v

1−1/ψ
t (2.C.42)

l2 := (1 − Θ (µt)) Ω (TAT,t) kαt − ct − it (2.C.43)
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l3 := λµt + (1 − µt) −
√
λµ

2

t + (1 − µt)2 (2.C.44)

l4 := λt exp
(
gAt + gLt

)
−
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vk,t+1

]
(2.C.45)

l5 := νAT
t −

(
1 − 1

ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vMAT,t+1

]
(2.C.46)

l6 := νUO
t −

(
1 − 1

ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
vγt+1vMUO,t+1

]
(2.C.47)

l7 := νLO
t −

(
1 − 1

ψ

)
βtEt

[
v1γ
t+1

] γ−1/ψ
1γ Et

[
vγt+1vMLO,t+1

]
(2.C.48)

l8 :=
∫ +∞

−∞

∫ ϵf

ϵf
ηAT
t+1(ϵf , ϵT )pdf(ϵf )dϵfpdf(ϵT )dϵT

−
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vTAT,t+1

]
(2.C.49)

l9 := ηOC
t −

(
1 − 1

ψ

)
βtEt

[
v1γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vTOC,t+1

]
(2.C.50)

l10 :=
∫ +∞

−∞

∫ ϵf

ϵf
λ
µf
t+1(ϵf , ϵT )pdf(ϵf )dϵfpdf(ϵT )dϵT

−
(

1 − 1
ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vµf ,t+1

]
(2.C.51)

l11 := λ
Sf
t −

(
1 − 1

ψ

)
βtEt

[
v1−γ
t+1

] γ−1/ψ
1−γ Et

[
v−γ
t+1vSf ,t+1

]
(2.C.52)

and result in the total loss function given by

ℓν := 1
Npath length

∑
xton sim. path

Neq=11∑
m=1

(lm(xt,Nν(xt)))2 . (2.C.53)

The final ingredient we need for the DEQN algorithm is the evolution of the state xt
one period forward such that the loss function (2.C.53) can be evaluated along a simulated

path. In our application, xt+1 is given by

xt+1 =
(
kt+1,M

AT
t+1,M

UO
t+1,M

LO
t+1, T

AT
t+1, T

OC
t+1, µf,t+1, Sf,t+1, t+ 1,ϑ

)T
, (2.C.54)

where kt+1 is updated through the law of motion using a choice variable from the policy

function Eq. (2.C.19) and the climate variables MAT
t+1,M

UO
t+1,M

LO
t+1, T

AT
t+1, and TOC

t+1 can be

updated via Eqs. (2.C.12) to (2.C.18), whereas time t is simply incremented by one unit,

and the pseudo-states ϑ are re-sampled from their distribution at every iteration step.
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2.C.2 Numerical integration

For reasons of numerical tractability, we replace f̃t+1 = µf,t +
√
Sf,tϵ

f , where ϵf ∼

N
(
0, 1, ϵf , ϵf

)
, ϵf = f−µf,t√

Sf,t
, ϵf = f−µf,t√

Sf,t
. We replace ϵ̃T,t+1 from Eqs. (2.16) and (2.17)

with the short-hand notation ϵT . Taking these notational changes into account, we have

to approximate the following integral numerically:

∫ +∞

−∞

∫ ϵf

ϵf

(
φ1CTAT,t

√
Sf,tϵ

f + ϵT
)

pdf(ϵf )dϵfpdf(ϵT )dϵT (2.C.55)

where pdf(ϵf ) = K√
2π exp

(
− (ϵf )2

2

)
, K =

(
cdf(ϵf ) − cdf(ϵf )

)−1
, and pdf(ϵT ) = 1√

2πSϵT
exp

(
− (ϵT )2

2SϵT

)
.

To apply Gauss-Hermite quadrature, we need to make a change of notation by replacing:

x = ϵT√
2SϵT

⇒ ϵT =
√

2SϵT x. (2.C.56)

Thus we get:

∫ +∞

−∞

∫ ϵf

ϵf

(
φ1CTAT,t

√
Sf,tϵ

f +
√

2SϵT x
) K√

2π
exp

(
−(ϵf )2

2

)
dϵf

1√
π

exp(−x2)dx.

(2.C.57)

With the change of variables necessary for the Gauss-Legendre quadrature, we get:

n∑
i=1

wi√
π

m∑
j=1

vj

(
φ1CTAT,t

√
Sf,t

(
yj
ϵf − ϵf

2 + ϵf + ϵf

2

)
+
√

2SϵT xi
)

ϵf − ϵf

2
K√
2π

exp

−

(
yj
ϵf−ϵf

2 + ϵf+ϵf
2

)2

2

 (2.C.58)

where wi are Gauss-Hermite weights, xi - Gauss-Hermite nodes, vj are Gauss-Legendre

weights, yj - Gauss-Legendre nodes.

2.C.3 Error statistics

Table 2.C1 provides detailed error statistics for the model with learning and pseudo-states

at convergence. All other models presented in the article reach a similar level of accuracy.
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Stats. l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

mean 7.43e− 4 3.00e− 3 7.48e− 5 6.06e− 3 6.69e− 4 4.54e− 4 2.92e− 4 1.44e− 3 2.55e− 3 9.88e− 4 3.78e− 4

std 1.05e− 3 6.19e− 3 2.34e− 1 1.04e− 2 7.18e− 4 5.34e− 4 5.02e− 4 1.34e− 3 4.76e− 3 1.90e− 3 5.18e− 4

min < 1.e− 9 < 1.e− 9 < 1.e− 9 < 1.e− 9 < 1.e− 9 < 1.e− 9 < 1.e− 9 1.86e− 9 < 1.e− 9 < 1.e− 9 < 1.e− 9

0.1% 7.15e− 7 1.07e− 6 < 1.e− 9 1.84e− 6 5.96e− 7 4.76e− 7 2.68e− 7 1.00e− 6 1.39e− 6 9.53e− 7 3.27e− 7

25% 1.84e− 4 2.99e− 4 < 1.e− 9 5.14e− 4 1.70e− 4 1.27e− 4 7.01e− 5 2.77e− 4 3.66e− 4 2.52e− 4 8.68e− 5

50% 4.18e− 4 9.15e− 4 2.3e− 10 1.67e− 3 4.21e− 4 2.95e− 4 1.58e− 4 6.78e− 4 9.55e− 4 5.97e− 4 2.02e− 4

75% 8.81e− 4 3.08e− 3 1.86e− 9 5.99e− 3 9.18e− 4 6.02e− 4 3.20e− 4 1.43e− 3 2.69e− 3 1.28e− 3 4.39e− 4

99.9% 1.12e− 2 6.75e− 2 2.20e− 3 7.00e− 2 4.81e− 3 5.51e− 3 6.17e− 3 9.10e− 3 4.77e− 2 1.02e− 2 4.33e− 3

max 4.03e− 2 1.464e− 1 5.03e− 3 1.08e− 1 2.36e− 2 2.42e− 2 1.31e− 2 1.35e− 2 9.37e− 2 6.34e− 2 1.51e− 2

Table 2.C1 Summary statistics of the loss function components along the simulation
path for the optimal solution of the stochastic model with pseudo-states.

2.C.4 Leave-one-out error with Gaussian processes

The selection of the number of sample points n contained in the training set D is a trade-off

between accuracy and efficiency: our design philosophy is to minimize n but still guarantee

the accuracy of the surrogate model predictions based GP in a computationally affordable

way.

One common choice in the UQ literature to strike a balance between these two opposing

factors, although primarily discussed with polynomial chaos expansions (see, e.g., Blatman

and Sudret (2010); Harenberg et al. (2019); Le Gratiet, Marelli, and Sudret (2017)), is to

use the leave-one-out (LOO) error estimator. Recall that, as in Eq. (2.42), we have a com-

putational model M(·) that maps an input vector xi to a scalar output yi. We repeatedly

evaluate Eq. (2.42) n times to obtain a training dataset D = {xi, yi}ni=1 = [X, y]. Then, we

fit the GP interpolation of the original model M(·), denoted as MGP|X,y(·), as discussed

in Section 2.4.1. To measure the LOO error, we first construct a GP surrogate model

MGP|X−i,y−i on experimental design points X−i ≡ X \ xi = {x1, · · · , xi−1, xi+1, · · · , xn},

and estimate the error ∆i on the excluded point xi between the outcome from the true

model and the prediction from the GP model, that is,

∆i ≡ M(xi) − MGP|X−i,y−i(xi) (2.C.59)

Next, we compute the sum of ∆i over i and define the LOO error, that is,

ϵGP
LOO ≡ 1

n

n∑
i=1

∆2
i = 1

N

n∑
i=1

(
M(xi) − MGP|X−i,y−i(xi)

)2
. (2.C.60)
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In our numerical applications below, we choose the size of the training set n for the

GP surrogate such that we achieve ϵGP
LOO ≤ 10−2, which guarantees the required high

accuracy of the GP surrogate for our QoIs, obtained at moderate computational costs.

If a given initial n is insufficient, we systematically increase the size of the training set,

e.g., by applying Bayesian active learning (see, e.g., Renner and Scheidegger (2018), and

references therein).





Chapter 3

Green energy transition:

decarbonisation of developing

countries and the role of

technological spillovers

Abstract

The green energy transition is necessary within the next few decades to mitigate climate

change. In the paper, I explore the effectiveness of carbon pricing and the role of techno-

logical spillovers in achieving decarbonization, with a particular focus on the challenges

faced by developing countries. I develop a two-region integrated assessment model that

incorporates fossil fuel and renewable energy sources to investigate the quantitative impact

of spillovers on decarbonization in developing countries. The findings indicate that techno-

logical spillovers in developing countries contribute to the replacement of fossil fuels with

renewable energy inputs. The study suggests that implementing carbon taxation in both

advanced and developing regions, along with technological spillovers, yields the most favor-

able outcomes for the climate. However, the absence of carbon tax in developing countries

with spillovers still delivers slightly better environmental results compared to taxing both

regions without spillovers. The results emphasize the importance of considering spillovers

and carbon taxation when designing effective policies to achieve environmental goals.
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3.1 Introduction

The green energy transition is necessary within the next few decades to mitigate climate

change. In simple terms, first, there should be some form of carbon pricing to internalize

the climate externality. In its turn, increasing the relative price of fossil fuels leads to a

higher demand for renewable energy sources. Second, more demand incentivizes innovation

in renewable technologies with subsequent further increase in their productivity. These

processes create the green energy transition leading to the decarbonization of the energy

inputs.

This decarbonization mechanism seems to be working for the advanced countries1.

Many advanced countries have some form of carbon pricing in place e.g. carbon tax, cap

and trade etc.; a significant reduction in prices for renewable energy sources is observed

together with the rise in the share of renewable energy in primary energy consumption

(Känzig and Konradt (2023)). Application of the same decarbonization mechanism to

the developing countries does not seem to be straightforward for two reasons. First,

carbon pricing in developing countries is controversial due to concerns about carbon justice.

Second, as economic growth literature Aghion and Howitt (1997) points out, developing

countries are not innovating, but rather adopting already existing technology to catch up

to the technological frontier through global technological spillovers.

Difficulties with carbon pricing together with the key role of technological spillovers

for growth in developing countries create two counteracting forces. On the one hand, in

the absence of carbon pricing in developing countries, there is no economic incentive for

them to switch from fossil fuels to renewable energy sources. On the other hand, in the

case of decarbonization in advanced countries, renewable energy sources are becoming

more prevalent and generating more spillovers, substituting for fossil fuel technologies in

developing countries even without carbon pricing. Given that developing countries do

1The term "advanced countries" refers to the high-income (HI) and upper-middle-income (UMI) coun-
tries. The term "developing countries" refers to the low-income (LI) and lower-middle-income (LMI)
countries from the World Bank country classification by income level. The list of the countries in each
income group can be found in the Section 3.C.
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not have well-established energy infrastructure that relies on fossil fuels, they may have

a chance for an easy transition to renewable energy for sustaining growth as discussed in

Fay et al. (2015).

This motivates the research questions of the present paper. It investigates the role

and the quantitative impact of technological spillovers on decarbonization in developing

countries. Specifically, it aims to determine (i) whether a "renewable energy path" can be

established in the presence of spillovers without carbon taxation and (ii) whether a "fossil

fuel path" could emerge if there are high spillovers in fossil fuels.

To address these questions I develop a two-region integrated assessment model of the

global economy and climate with two energy sources, specifically fossil fuel and green

energy. The setup incorporates advanced and developing economies, with an advanced

economy featuring exogenous growth in energy inputs and a developing economy relying

on technological spillovers for the growth in both energy inputs.

The model introduced in this paper follows the spirit of DICE model as in W. D. Nord-

haus (2017), but also relies on Golosov et al. (2014) and Dietz and Venmans (2019) in

terms of the economic block of the integrated assessment model (IAM) and on Folini et al.

(2023) in terms of the climate block. The first novelty of the model presented in the paper

comes from coupling fossil fuels and renewable energy sources in the economy with the

three-reservoir carbon cycle and with two-reservoir temperatures in the climate emulator.

The second novelty is that the model explicitly features developing economies and techno-

logical spillovers in energy. To solve the model I rely on a novel deep learning algorithm

for global solutions suggested by Azinovic et al. (2022). This method is especially suitable

for large-scale highly non-linear dynamic optimization problems and this paper is the first

one to apply it to the multi-region integrated assessment models which make up for the

third, computational, novelty of the paper.

The main finding of the paper is that the presence of technological spillovers in de-

veloping countries leads to faster growth of renewable energy and slower growth of fossil

fuels resulting in the higher share of renewable energy input in the energy mix. This result

highlights the positive impact of spillovers on decarbonization efforts. Additionally, the

study suggests that implementing carbon taxation in both advanced and developing re-

gions in conjunction with technological spillovers still yields the most favorable outcomes

for the climate. However, it is worth noting that the absence of carbon tax in developing
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countries with spillovers still delivers slightly better environmental results compared to

taxation of both regions without spillovers.

These results emphasize the importance of considering both spillovers and carbon

taxation in designing effective strategies for achieving environmental goals. They moti-

vate further work in extending the model presented below with endogenous growth and

endogenous spillover rates to understand how advanced economies can influence the de-

carbonization process in developing countries through technological spillovers.

The remainder of the paper is organized as follows. Section 3.2 presents some stylized

empirical evidence that motivates the research, Section 3.3 provides a brief literature

overview on the topic, Section 3.4 outlines the model, parametrization, and the solution

method employed, Section 3.5 presents the findings of the paper and Section 3.6 concludes.

3.2 Empirical motivation

Throughout history, economically advanced countries have been the main contributors

to climate change being responsible for almost 90% of cumulative carbon emissions (see

Figure 3.1).

Fig. 3.1 Cumulative CO2 emissions by income group. Source: OWID

https://ourworldindata.org/grapher/cumulative-co-emissions
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Thus, they have been at the forefront of discussions on decarbonization and green

energy transition. As a result of these efforts, a number of the advanced countries have

some form of carbon initiative implemented or in progress and there is evidence of the

green energy transition process happening in these countries.

Developing countries being accountable for the remaining 10% in cumulative carbon

emissions (see Figure 3.1) may not seem to be a priority in discussions regarding immediate

decarbonization efforts at least for two reasons. First, their current emissions account

only for less than 20% of annual global emissions (Figure 3.2a), making them incapable of

playing a decisive role in the world’s decarbonization. Second, the climate justice principle

claims that advanced countries, which benefited the most from carbon emissions during

the industrialization process, have a greater responsibility to mitigate climate change.

According to this principle, it is considered unfair to demand developing countries equal

participation in decarbonization and green energy transition. Indeed, this reflects in the

empirical evidence on the adoption of decarbonization measures by developing countries.

Among fifty-four LMI countries, only two of them (Indonesia and Ukraine) have already

implemented some form of the carbon tax, with eight other countries considering carbon

pricing measures. LI countries do not have any decarbonization initiatives in place or

under consideration.

At the same time, according to the data from 1965 to 2021, fossil fuels comprise more

than 90% of the current energy mix and its consumption in developing countries has been

growing at an average rate of 6% per year (Figure 3.2b).

(a) Annual CO2 emissions. Source: OWID (b) Fossil fuel consumption. Source: OWID

Fig. 3.2 Annual CO2 emissions by country income group (left) and fossil fuel share of
primary energy consumption (right) for the different income groups of countries.

https://ourworldindata.org/grapher/annual-co2-emissions-per-country
https://ourworldindata.org/grapher/fossil-fuel-primary-energy?tab=chart
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If this growth rate persists, they could reach the current level of fossil fuel usage

in high-income countries by the year 2050. This potential future amount of fossil fuel

consumption coupled with the lack of decarbonization measures in developing countries

becomes significant for the climate change mitigation perspectives. It brings us to the

question of decarbonization and green energy transition possibilities available for develop-

ing countries.

One view on the decarbonization of developing countries can be by applying the same

mechanism as for the advanced countries: internalizing climate externality by carbon pric-

ing which creates more demand for renewable energy and incentivizes innovation in green

technology ultimately leading to the green energy transition. However, the assumption

about the possibility of innovation in developing countries seems to be unreasonable. The

growth literature suggests that developing countries up to a certain stage of development

do not innovate, they are involved in the activity of imitating the technological frontier

(Aghion and Howitt (1997)). In line with this growth literature narrative, in the Figure 3.3

I depict the share of the primary energy from renewable energy sources that are used by

different income groups of countries (Figure 3.3a) and the share of innovation in the green

energy among the total innovation (Figure 3.3b).

(a) Primary energy from renewable sources.
Source: OWID

(b) Renewable energy innovation. Author’s elab-
oration based on the data from WIPO, IRENA,
OWID.

Fig. 3.3 Primary energy from renewable sources (left) and renewable energy innovation
(right) for the different income groups of countries.

Lower-middle-income countries tend to increase their renewable energy usage however,

their innovation rate in terms of patenting activity is the lowest among all the income

groups. This indirectly suggests that the clean technologies in lower-income countries are

https://ourworldindata.org/grapher/renewable-share-energy
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the result of technological imitation. Thus, relying on the mechanism that involves carbon

pricing to unleash the process of green energy transition does not seem a viable option

for developing countries. On the one hand, carbon pricing may still seem necessary in

developing countries to steer the imitation process in the right direction. On the other

hand, if developing countries by imitation follow the technological portfolio of the advanced

countries, the switch to clean technologies may happen just by the nature of the technology

imitation process. These competing ideas pose the motivation for the present research.

Specifically, I would like to quantitatively investigate the role of technological imitation in

the decarbonization of developing countries and its interaction with carbon pricing.

Technological imitation is a process in which the developing (recipient) country is in-

volved in the activity of acquiring an existing technological frontier and adapting it to the

local realities. The frontier technology may be transferred in a regulated way, through the

rights to use the patented technology, or in an unregulated way, through other forms of

technological diffusion. The frontier technology cannot be perfectly acquired immediately

and takes time to fully diffuse in the world. All the transfer and diffusion processes (regu-

lated and unregulated) that make the imitation process possible for developing countries I

call technological spillovers. 2 As an example of the technological spillover one can think

of the solar photovoltaic (PV) technology. The technology was developed in the middle of

the 20th century in the advanced economies, then intensively commercialized by China at

the beginning of the 21st century, and is now being ramped up significantly in developing

countries. It is hard to credibly track how this diffusion of technology was happening,

probably via all forms of diffusion. For the sake of simplicity in this paper, I call this

process technology spillovers.

3.3 A brief review of the literature

This paper is mainly related to the three strands of the literature. First, it follows the

tradition of carbon pricing literature based on the economy-climate modeling pioneered

2I depart here from the definition of Grossman and Helpman (1993):
’By technological spillovers, we mean that (1) firms can acquire information created by others
without paying for that information in a market transaction and (2) the creators (or current
owners) of the information have no effective recourse, under prevailing laws, if other firms
utilize information so acquired’.

in a way, that as technology spillovers I understand any processes of technological diffusion, with or without
market transactions involved in acquiring the information.
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by W. D. Nordhaus (1997). Second, it complements the increasing number of papers on

integrated assessment modeling with a heterogeneity of regions in the spirit of Hassler,

Krusell, Olovsson, and Reiter (2020). Third, it closely follows the literature on endogenous

growth and technological spillovers within integrated assessment set-ups as in Barrett

(2021).

The main purpose of the integrated assessment modeling is to quantify the welfare-

maximizing carbon price that is necessary for climate change mitigation. Pioneering re-

search of this cost-benefit analysis was done by W. D. Nordhaus (1997). His modeling

framework, although criticized, evolved with time as in W. D. Nordhaus (2017) and be-

came a cornerstone for further research of single-agent models including analytical set-ups

like Golosov et al. (2014) and Traeger (2019).

However, single-agent integrated assessment models suggest universal carbon policies

that are hard to implement in all countries due to the lack of agreement. This gives a rise

to the multiple-agent modeling framework. This literature was pioneered by W. D. Nord-

haus and Boyer (2000), with his famous RICE model which was later transformed by

Hassler and Krusell (2012) into a stochastic general equilibrium version. A number of

other integrated assessment models with multiple agents were developed, such as FUND

(the most recent version of the model is used in Waldhoff, Anthoff, Rose, and Tol (2014)),

REMIND 3, WITCH (Bosetti et al. (2007)) among others. These models were trying

to address the issue of cooperation in global climate mitigation. Further, W. A. Brock,

Engström, Grass, and Xepapadeas (2013), W. Brock, Cai, Judd, and Xepapadeas (2018)

discuss the transfers and how to set a carbon policy optimally across countries with dif-

ferences in income level and production possibilities. In a similar vein, Hillebrand and

Hillebrand (2019) present a dynamic general equilibrium model with a heterogeneous re-

gion structure. Krusell and Smith Jr (2018) analyze gains and losses from climate change

around the world and L. J. Kotlikoff et al. (2021) add inter-generational perspective to the

discussion. The main take-away of this strand of the literature is that an optimal climate

policy in the presence of regional heterogeneity consists of an emissions tax and a transfer

policy.

A parallel strand of the literature was dedicated to single-agent models that feature

endogenous technological change in the energy sector. The major contribution was done

3The full model description can be found on the f Potsdam Institute for Climate Impact Research

https://www.pik-potsdam.de/en/institute/departments/transformation-pathways/models/remind#webpage.o


3.3. A brief review of the literature 135

by Acemoglu, Aghion, Bursztyn, and Hemous (2012), showing that the carbon tax should

induce innovation in green technologies due to market size and price effects. Fried and La-

gakos (2023) empirically evaluates the quantitative impact of these channels and confirms

that a carbon tax induces large changes in innovation.

These two last strands of literature merge in Hassler et al. (2019), where a multi-

regional set-up with endogenous technological change is analyzed. Continuing with this

framework, Hassler et al. (2020) discuss second-best cases for carbon mitigation policies

and Hassler and Krusell (2018) study the consequences of a carbon tax for oil-consuming

and oil-producing regions. Barrett (2021) builds on top of these models adding a tech-

nological spillovers process for energy technology proliferation. This set-up with multiple

heterogeneous regions directed technical change and technological spillovers is an impor-

tant step forward. However, a possible limitation of this framework is the assumption that

all the regions have equal possibilities to innovate. This assumption does not seem plausi-

ble as developing countries usually do not innovate in the energy sector and rather catch

up with some lag to the current productivity frontier that is set by advanced economies

Aghion and Howitt (1997). Thus it is reasonable to assume that there is no endogenous

growth in energy source possible in developing countries, and the only source of growth for

them is through imitation. This setup was investigated in (Acemoglu, Aghion, & Hémous,

2014). The authors analytically show that the first-best solution requires coordination

between Northern and Southern regions, however, it is also possible to avoid a climate

disaster only with the mitigation efforts of the Northern countries. This paper provides a

significant insight into the innovation and imitation dynamics between regions. However,

an analytical solution of the model required significant simplifications of the climate as well

and the paper does not provide a quantitative evaluation of the process. A very detailed

quantitative model that deals with multiple regions and addresses the innovation and im-

itation dynamics between the regions is the WITCH model 4. It includes exogenously

determined energy innovation processes and their spillovers to the countries that imitate

rather than innovate. However, the innovation and technological spillover processes in

WITCH are not the central focus of attention and they lack tractability.

The present paper addresses the issue of decarbonization in a two-region world with

a simple quantitative framework that separates innovation activity and technological

4The current vintage of the model can be found here

https://www.witchmodel.org/model/
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spillovers in heterogeneously developed countries. The model explicitly features advanced

and developing regions as in Acemoglu et al. (2014) but delivers quantitative results. It

provides a tractable framework that allows to study of the technology spillover coun-

terfactual to the baseline case in which the regions rely on their innovation processes.

The framework also includes a rather detailed climate-emulator that is in agreement with

CMIP5.

3.4 Model

3.4.1 Model formulation

Economy

The model builds on W. Nordhaus (2018), Golosov et al. (2014), Hassler et al. (2019), and

Barrett (2021). The world is populated with two regions i ∈ {A,D} : advanced economy

(A) and developing economy (D). No trade happens in the model and there are no other

international markets.

Both regions have a representative consumer with identical preferences where Cit is

the stream of consumption for region i and the world total labor evolves according to

the exogenous process Lt = L0 + (L∞ − L0)
(
1 − exp

(
−δLt

))
with the population in an

advanced economy and developing economy summing up to the total labor force LAt +LDt =

Lt. The welfare of the region i can be presented as:

V i
t =

∞∑
t=0

ϕit

(
Cit/L

i
t

)1−1/ψ

1 − 1/ψ Lit (3.1)

where ϕit is a dynamic Negishi weight of the economy defined as in Denning and Emmerling

(2017), Cai et al. (2019):

ϕit =
(
Cit
)1/ψ∑

i∈{A,D}
(
Cit
)1/ψ . (3.2)

Advanced and developing economy use an aggregate production function for the final

good as follows:

Y i
t =

(
Ki
t

)α(
Ait(1 − πit − ξit)Lit

)1−α−ν (
Eit

)ν
(3.3)
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where Ait is the total factor productivity that grows exogenously as Ait = Ai0

(
1 + gA

)t
at the same rate gA for both regions, Ki

t is the capital, and Eit is the energy input into

production, πit and ξit are labor shares that are used in energy production. The final good

is assumed to be a numeraire.

Energy is produced in advanced and developing economies by a representative firm

with the following production aggregator over two available sources of energy Ei,dt
t - dirty

energy and Ei,cl
t - green energy:

Eit =
(
κidt

(
Ei,dt
t

)ρCES + κicl

(
Ei,cl
t

)ρCES)1/ρCES (3.4)

where κidt + κicl = 1. Dirty and green energy is produced via fuel-specific production

technologies Aidt,t and Aicl,t respectively which are linear in labor that goes into production

as in Golosov et al. (2014):

Ei
t,dt = Aidt,0

(
1 + gidt

)t
πitL

i
t (3.5)

Ei
t,cl = Aicl,0

(
1 + gicl

)t
ξitL

i
t. (3.6)

The growth rate of the technological progress in the dirty and green energy sources

is given exogenously and differs between the regions in the baseline formulation of the

model.

In the modeling set-up that features technological spillovers, there is a possibility for

developing regions to benefit from the production technology from the advanced region.

The technological spillovers process is a simplification of one from Barrett (2021) and

states:

ADdt,t+1 = ADdt,0 + ς(AAdt,t −AAdt,0) (3.7)

ADcl,t+1 = ADcl,0 + ς(AAcl,t −AAcl,0). (3.8)

where ς is the intensity of spillovers that is assumed to be the same for both fuels at

the baseline. The idea behind this spillover definition is straightforward. The developing

economy starts in period zero with the initial level of the TFP in the respective energy

sector. In period one the upgrade on the TFP level of the advanced economy net of its

initial level is being transmitted to the developing country. Spillover intensity ς determines
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how much of the TFP progress in the advanced country goes in the developing country.

Spillover intensity is assumed to be less than one, meaning that there is no full transmission

of the TFP progress from the advanced country in one given year. Transmitting the TFP

progress of the advanced economy net of the initial level is based on the assumption that

the developing region never catches up with the technological level in the advanced region.

More discussion on the no catch-up assumption for the developing countries is provided

in Sections 3.4.2 and 3.6.

Climate externality

The climate module in the integrated assessment model under consideration consists of

three reservoir carbon cycleM = (MAT
t ,MUO

t ,MLO
t ) and two reservoir energy balance T =

(TAT
t , TOC

t ). The model takes the functional forms of climate part from W. D. Nordhaus

(2017), and calibration from Folini et al. (2023).

MAT
t+1 = (1 − b12)MAT

t + b12
MAT

EQ
MUO

EQ
MUO
t + Eft (3.9)

MUO
t+1 = b12M

AT
t +

(
1 − b12

MAT
UQ

MUO
EQ

− b23

)
MUO
t + b23

MUO
EQ

MLO
EQ

MLO
t (3.10)

MLO
t+1 = b23M

UO
t +

(
1 − b23

MUO
EQ

MLO
EQ

)
MLO
t (3.11)

TAT
t+1 = TAT

t + c1Ft − c1
F2xco2
T2xco2

TAT
t − c1c3

(
TAT
t − TOC

t

)
(3.12)

TOC
t+1 = TOC

t + c4
(
TAT
t − TOC

t

)
(3.13)

where MEQ = (MAT
EQ,M

UO
EQ ,M

LO
EQ) are equilibrium carbon masses in preindustrial times,

Et emissions, and Ft is exogenous radiative forcing process. Coefficients b12, b23 in carbon

cycle and c1, c3, c4 in energy balance describe diffusion processes in the reservoirs, F2xco2

is forcings of equilibrium CO2 doubling and T2xco2 is equilibrium temperature impact.

Emissions from industrial activity and exogenous emissions are accumulated as follows:

Eft = σt
(
Ea,dt + Ed,dt

)
+ ELand

t (3.14)

where σt is the emission coefficient from dirty energy sources as in W. D. Nordhaus (2017)

and follows:

σt = σ0 exp
(

gσ0
log(1 + δσ)

(
(1 + δσ)t − 1

))
. (3.15)
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and ELand
t are exogenous emissions as in W. D. Nordhaus (2017) that follow:

ELand,t = ELand,0 exp
(
−δLandt

)
. (3.16)

Damages and resource constraint

The final output of the economy is subject to damages due to temperature increase:

Y Net,i
t = Ωi (TAT,t)

(
Ki
t

)α(
Ait(1 − πit − ξit)Lit

)1−α−ν (
Eit

)ν
(3.17)

where the climate damages are supposed to be different for both of the regions and are

considered as:

Ωi (TAT,t) = ψi1T
AT
t + ψi2

(
TAT
t

)2
. (3.18)

Final output net of damages is used for the consumption and investment which gives

the resource constraint:

Y Net,i
t + (1 − δ)Ki

t = Cit +Ki
t+1 (3.19)

.

I present the full write up of the model with the Bellman equation in Section 3.A.1.

3.4.2 Parametrization

To parametrize the model, I partially rely on the values available from the literature and

partially use the World Bank, Penn World Table (PWT 10.01), and "Our world in data"

(OWID) data sources from the period of 1990-2021 to discipline certain parameters.

For the conventional parameters such as capital and energy elasticity in the production

function, depreciation rate of capital, pure rate of time preferences and intertemporal

elasticity of substitution I take standard values from the literature:

The initial TFP level of each region is pinned down by the data on output, capital,

labor, and energy for each region in 1990. Table 3.2 shows the values for the initial TFP

levels as well as assumed TFP growth rates for each region.
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Calibrated parameter Symbol Value Source
Pure rate of time preferences ρ 0.015 W. D. Nordhaus (2017)

Capital elasticity α 0.3 W. D. Nordhaus (2017)
Energy elasticity ν 0.04 Golosov et al. (2014)

Intertemporal elasticity of substitution ψ 1.5 Cai and Lontzek (2019)
Capital depreciation rate δ 0.1 W. D. Nordhaus (2017)

Table 3.1 Economic parameters

Advanced economy Developing economy

AA0 0.0115 AD0 0.00251

gA 0.025 gD 0.025

Table 3.2 TFP parameters.

I assume a 2.5% growth rate in the world TFP that is the same for both regions. The

assumption of homogeneous growth in the world may be criticized for two opposite reasons.

On the one hand, in line with the idea of catching up on growth, developing countries may

exhibit higher growth rates than advanced economies Patel, Sandefur, and Subramanian

(2021). On the other hand, the presence of poverty traps and middle-income traps can

hinder growth and development, contributing to a slower growth rate in the developing

world Kraay and McKenzie (2014). However, there is no unequivocal evidence, putting

forward one of these theories. Thus for the sake of simplicity, I stick to the homogeneous

growth rate in the world. This way effectively I assume no possibility for a full catch-up for

developing countries. It may seem like a restrictive assumption, however, there is one more

reason to make it. The assumption of no possibility for a full catch-up is consistent with

the modeling setup. The model considers a social planner solution with the relative weights

of the regions in the value function determined by dynamic Negishi weights. The nature of

Negishi weights is to preserve the distribution of welfare across regions to exclude income

effects and capture only technological effects. Keeping the welfare distribution stable is

another way to assume no full catch-up for the developing world. More discussion on how

the assumption of no full catch-up for developing countries can affect the results of the

paper is provided in the Section 3.6.

For the CES energy aggregate, I take the elasticity of substitution between dirty and

green energy as 1.11 which implies parameter ρCES = 0.1. The reason for this choice is
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based on the recent evidence that found the elasticity of substitution between green and

dirty sources tends to be higher than unity (Papageorgiou, Saam, and Schulte (2017))

with some papers finding it to be much higher than unity (Jo (2020)). I stick to the

conservative approach assuming low but greater than unity elasticity having in mind that

higher elasticity can make all the effects more prominent.

Another issue if the elasticity of substitution can be considered the same in both

regions. There is no clear answer to that, as the nature of the dominant energy technology

in advanced and developing countries is fundamentally different. The main difference is

that most of the countries that I consider in the advanced group are relying on a centralized

energy infrastructure while developing countries are utilizing scattered small-scale mostly

traditional energy sources. This difference makes it unclear if the elasticity of substitution

can be higher or lower in advanced economies in comparison to developing ones. On the

one hand, due to centrally functioning energy infrastructure advanced regions can be more

responsive to change in energy prices and thus be more flexible in substituting dirty energy

sources with green ones. On the other hand, developing countries may benefit from the

absence of any infrastructure and be able to implement green high-power energy systems

from scratch. Given the inconclusiveness of the argumentation for the baseline version of

the model, I assume the elasticity of substitution between energy sources to be constant

for both regions. A promising further avenue of the research includes the uncertainty

quantification of the decarbonization paths based on a plausible range of the elasticity of

substitution.

To determine the weights of the energy CES aggregator κidt, κicl I employ the approach

from Golosov et al. (2014) using relative prices of fossil fuel energy to renewable energy

given by:

pidt
picl

= κidt
κicl

(
Ei,dtt

Ei,clt

)ρCES−1

. (3.20)

As proxies for energy prices, I use Levelized Cost of Electricity (LCOE) values from IEA

and IRENA databases. Although there are no accurate LCOE estimates available for the

starting year 1990, I produce some back-of-the-envelope estimations to get approximate

reasonable values. For fossil fuel and renewable energy usage, I rely on the World Bank

data on energy usage for the year 1990.
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The growth rates of the energy sources as well as the initial TFP levels for the energy

sources are chosen to target the fossil fuel energy and renewable energy consumption paths

provided in the data by the World Bank. Specifically, the initial TFP level in the fossil fuel

and renewable energy is pinned down by the consumption of the energy and labor shares

in energy sectors in 1990 for each region (more details on it are in the Section 3.B.4). The

growth rates of TFP in energy sectors are chosen to match the evolution of the energy

consumption as shown in the Figure 3.6.

Advanced economy Developing economy

AAdt,0 0.0458 AAcl,0 0.0227 ADdt,0 0.00712 ADcl,0 0.0232

gAdt 0.012 gAcl 0.014 gDdt 0.01 gDcl 0.001

κAdt 0.75 κAcl 0.25 κDdt 0.82 κDcl 0.18

Table 3.3 Energy parameters.

As a baseline speed of spillovers, I take the estimate of the full technology adoption

happening in 11 years which implies ς = 0.09 following Barrett (2021). Eaton and Kor-

tum (1999) estimated that on average it takes the technology 11 years to be fully adopted

internationally. This implies that about 9% of the technological frontier is adopted annu-

ally. This estimate was later confirmed by Comin and Hobijn (2010) which estimated the

length between 5 and 16 years for the technological adoption. Dechezleprêtre, Glachant,

and Ménière (2013) showed that there is no difference in technological adoption for green

technologies in comparison to other types of technology. Thus I use these results and set

the intensity of spillovers equal for both fossil fuel and renewable energy. Relying on these

estimates may be considered as an upper bound of the spillover intensity. Indeed, the

estimates of technological adoption include not only spillovers, in a sense of the definition

of Grossman and Helpman (1993), but also a targeted technology transfer. Excluding this

intentional technological adoption can result in a lower spillover intensity estimate.

It is important to have damage function different for both regions. It is well-documented

in the literature that developing countries are subject to higher damages than advanced

economies (see for example OECD review). I assume the standard quadratic damages for

the advanced economies as in W. D. Nordhaus (2017) and high damages for the developing

region as in Weitzman (2012a). The summary of damage coefficients is given in Table 3.4.
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Advanced economy Developing economy

W. D. Nordhaus (2017) Weitzman (2012a)

ψA1 0.0 ψA2 0.0236 ψD1 0.0 ψD2 0.0746

Table 3.4 Damages parameters.

The parameters that characterize the climate system come from Folini et al. (2023)

with the difference that starting value for the carbon masses as well as the temperature of

the atmosphere and the ocean are adjusted for 1990 as a starting year (see Section 3.B).

Exogenous processes that are present in the model, such as labor evolution, industrial

emission intensity, exogenous emissions, and radiative forcing inherit functional forms from

W. D. Nordhaus (2017). The emission intensity process I calibrate to match the RCP6.0

scenario (see Figure 3.4).
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Fig. 3.4 Total industrial emissions

In the Figure 3.5 and Figure 3.6, I depict how the business-as-usual solution of the

model without spillovers (in green) and with spillovers (in red) matches the data that was

used for the calibration. We can see that from the data we cannot infer any information

about the presence or absence of the spillovers. In both cases, the actual paths of the data

are matched fairly well. This observation makes the point for the relevance of the present

study. Based on the data we cannot credibly say what is the driving force for the growth in
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energy sectors for developing countries. We can model it both ways. However, in line with

the growth literature, it seems reasonable to assume that developing countries imitate

the technology, rather than innovate themselves. Thus it may be misleading to make

policy choices based on the models that assume the presence of innovation in developing

countries. Section 3.5 explicitly compares the results of the model assuming its growth in

every region with the model that allows for spillovers. It shows, that in the presence of

spillovers, carbon taxation policy may not be necessary for developing countries.
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(b) Emissions

Fig. 3.5 GDP (left) and emissions (right) for advanced and developing economies, BAU
scenario, computed and actual values. Year zero on the graphs corresponds to a starting
year 1990.
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(a) Fossil fuel energy
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Fig. 3.6 GDP (left) and emissions (right) for advanced and developing economies, BAU
scenario, computed and actual values. Year zero on the graphs corresponds to a starting
year 1990.

More details on parametrization is presented in the appendix Section 3.B.
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3.4.3 Solution method: Deep Equilibrium Nets

The solution to the problem is based on the deep equilibrium nets as in Azinovic et al.

(2022), which is presented in great detail in Chapter 2 of the thesis. The details of the

implementation of the DEQN solution to the problem from Section 3.4 can be found in

Section 3.A.1.

3.5 Results

This section presents the results. To answer the research question of the paper I consider

two baseline scenarios and three cases of interest.

Baseline scenarios

• ’Business-as-usual’ (BAU): no carbon taxation, damages are not internalised by the

social planner in both regions;

• ’Optimal’: optimal carbon taxation, damages are internalised by the social planner

in both of regions;

Cases of interest

• ’Second-best’: carbon tax for advanced regions only, damages are internalised by

the social planner in advanced region, developing region follows ’business-as-usual’

scenario;

• ’Optimal’ + technological spillovers: optimal carbon taxation, damages are inter-

nalised by the social planner in both of regions and the growth in energy source in

developing region happens only through spillover effects;

• ’Second-best’ + technological spillovers: carbon tax for advanced regions only, dam-

ages are internalised by the social planner in advanced region, developing region

follows ’business-as-usual’ scenario and the growth in energy source in developing

region happens only through spillover effects;

The main difference between the modeling setup with and without spillovers lies in the

TFP process for the energy sources. In case of no spillovers, both advanced and developing

countries rely on the exogenous growth rate that is specific to the region. In the case of
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spillovers, I assume, that the growth rate in the energy sector of a developing region is

dependent on the growth rate of the advanced region as shown in Eq. (3.7). Figure 3.7

depicts a difference between the TFP level of both energy sources with and without the

spillovers. We can see, that the presence of spillovers in the fossil fuel sector does not

change the TFP path significantly. However, in the case of renewable energy sources

presence or absence of spillovers plays a crucial role.
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(a) TFP process for fossil fuels
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(b) TFP process for renewable energy

Fig. 3.7 TFP level for the fossil fuels (left) and renewable energy (right) with and without
spillovers for developing economies, BAU scenario. Year zero on the graphs corresponds
to a starting year 1990.

3.5.1 Results without technological spillovers

First we compare the business-as-usual case with the optimal taxation case when the

social planner internalises the damages in both regions, which we can interpret as a case

of optimal taxation. In this section, we do not take technological spillovers into account.

From the Figure 3.8 we can see that optimal taxation reduces damages in advanced

countries from 3.5% of GDP loss to 2.5%. Similar way, damages in developing countries

are reduced by an optimal intervention from almost 10% of GDP loss only to 8%. The

difference in damages comes from the assumption of heterogeneity of damages affecting

the regions.
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Fig. 3.8 Damages in advanced countries (left) and developing countries (right) under
BAU and optimal taxation schemes. Year zero on the graphs corresponds to a starting
year 1990.

Figure 3.9 shows the evolution of the dirty energy sources for both regions and Fig-

ure 3.10 depicts the results for renewable energy sources. In both cases, the effect of the

’Optimal’ taxation follows the economic intuition. Thus fossil fuel usage is being reduced

in the ’Optimal’ case in comparison to ’BAU’ and renewable energy is slightly increased

due to the substitution effect. Advanced region reduces their fossil fuel usage more than

developing region in line with the initial assumptions of the model, that advanced region

pollutes more.
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Fig. 3.9 Dirty energy in advanced economy (left) and developing economy (right) under
BAU and optimal taxation schemes. Year zero on the graphs corresponds to a starting
year 1990.
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Fig. 3.10 Clean energy in advanced economy (left) and developing economy (right) under
BAU and optimal taxation schemes. Year zero on the graphs corresponds to a starting
year 1990.

The emissions in the Figure 3.11 predictably follow fossil fuels usage patterns. We

can see that business-as-usual emissions are relatively high in comparison to the case of

taxation.
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Fig. 3.11 Emissions in advanced economy (left) and developing economy (right) under
BAU and optimal taxation schemes. Year zero on the graphs corresponds to a starting
year 1990.

Overall, the optimal taxation scheme gives a decline in emissions of about 200GtC and

0.5C◦ decrease in temperature.
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(a) Mass of the carbon in the atmosphere
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Fig. 3.12 Mass of carbon in the atmosphere (left) and temperature of the atmosphere
(right) under BAU and optimal taxation schemes. Year zero on the graphs corresponds
to a starting year 1990.

The value of the social cost of carbon represents the optimal carbon taxation level. In

the Figure 3.13, we can see that the optimal carbon tax for developing countries equals

approximately 200USD/tC in advanced regions and 90USD/tC in developing regions at

the year 2040.
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Fig. 3.13 SCC in advanced region (left) and developing region (right) under optimal
taxation scheme. Year zero on the graphs corresponds to a starting year 1990.

3.5.2 Business-as-usual with technological spillovers

We consider now the business-as-usual case with technological spillovers. The technological

evolution in the advanced economy remains the same as in the case without the spillovers.

However, the developing economy gets the chance to catch up with the energy technologies

used in the advanced economy. The only source of growth in energy technologies in

developing regions are the technological spillovers.
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We can see on Figure 3.14 that usage of fossil fuel energy declines moderately and

renewable energy grows faster in developing economies in the presence of spillovers.

0 20 40 60 80 100 120 140 160

Year

2

4

6

8

10

12

G
to

fo
il

eq
ui

va
le

nt

BAU
BAU with diffusion

(a) Dirty energy
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(b) Green energy

Fig. 3.14 Dirty energy (left) and green energy (right) in developing economy. Year zero
on the graphs corresponds to a starting year 1990.

The reason for that is as follows: the main difference between the fossil fuel sectors in

two regions is in the initial levels of TFP, but the levels are not being transferred through

the spillovers. Thus, fossil fuel energy does not grow in response to the spillovers process

because the growth rate of fossil fuels in advanced region is approximately the same as the

respective growth rate in developing region. In fact, technology transfer in dirty energy

through spillovers happens slower than in the exogenous case. At the same time green

energy usage in developing countries increases dramatically due to the fact that the growth

rate of TFP in renewable energy in advanced economy is much higher than in developing

region. Thus the baseline level of the technological spillover in energy sector acts two

folds: slowing down the TFP growth in dirty energy and accelerating the TFP growth in

green energy in developing countries. Due to this twofold effect, in the case of business as

usual, the presence of the technological spillovers slightly reduces the mass of carbon in

the atmosphere and temperature.

It would be interesting to experiment with the elasticity of substitution between energy

sources in developing countries as well as with the intensity of the spillovers process, to

see if there is any plausible option to rely on technological spillovers and to improve

the environmental state in business as usual case. Certainly, the contribution of the

developing countries in climate change as well as in decarbonization so far is not considered

significant and cannot substitute for the efforts of advanced economies. However, it would

be beneficial to understand if there are certain circumstances in terms of the elasticity of
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the substitution between energy sources (which we cannot influence as a policy, but we

can test if it’s a plausible value that can be confirmed empirically) and spillovers intensity

(which we can influence as a policy) that can result in a significant reduction of the negative

climate externalities in business as usual case.
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(a) Mass of the carbon in the atmosphere
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Fig. 3.15 Mass of carbon in the atmosphere (left) and temperature of the atmosphere
(right). Year zero on the graphs corresponds to a starting year 1990.

3.5.3 Optimal taxation and second-best taxation with technological

spillovers

As we saw in the previous section, the presence of technological spillovers in the business-

as-usual case if anything makes climate indicators slightly better (under current assump-

tions about the elasticity of the substitution between energy inputs as well as the speed of

spillovers). Now we aim at understanding if technological spillovers makes any difference

for the optimal taxation case as well as for the second-best taxation case. Under the

second-best taxation case I imply the case when only advanced region is subject to carbon

taxation and developing region is evolving with unrestricted emissions.
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Fig. 3.16 Dirty energy in advanced (left) and developing economy (right) . Year zero on
the graphs corresponds to a starting year 1990.

In the Figure 3.16 we see that the presence of the technological spillovers do not change

fossil fuel usage for the advanced economy under any taxation scheme (see Figure 3.16a).

In developing countries the presence of spillovers generally decreases fossil fuel usage

both in optimal and second-best cases in line with the effect of the spillovers in business-

as-usual case. An interesting result that can be observed in the Figure 3.9b is that in case

of spillovers and no carbon taxation in developing countries, the level of fossil fuel usage

corresponds approximately to the level of fossil fuels with carbon taxation in developing

countries. It means that the spillovers in renewable energy create a replacement effects in

fossil fuels comparable in size with the effects of carbon taxation.
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Fig. 3.17 Green energy in advanced (left) and developing economy (right). Year zero on
the graphs corresponds to a starting year 1990.
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Renewable energy usage, as displayed in the Figure 3.17, is substantially increased

by the spillovers. In case of the renewable energy sources spillover effect is changing the

growth rate of the TFP in renewable energy thus effecting significantly its productivity.
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Fig. 3.18 Mass of carbon in the atmosphere (left) and temperature of the atmosphere
(right). Year zero on the graphs corresponds to a starting year 1990.

In the case of taxation in an advanced economy and spillover mass of carbon in the

atmosphere as well as the temperature tends to be slightly higher than in the case of opti-

mal abatement with spillovers. From the perspective of climate change optimal mitigation

with spillovers delivers the most desirable results in terms of temperature reduction.

The panel of results provides support for the policy recommendation to put effort into

taxing advanced economies to provide decarbonization efforts. Developing countries being

not taxed do not wipe off the gains that can be achieved by advanced economies. Allowing

the developing countries to grow without the burden of environmental taxation can be a

politically desirable solution and with technological spillovers the second-best taxation

option becomes as good as optimal taxation without spillovers in terms of the climate

impact.

3.5.4 Welfare analysis

In this section, I formally compare the welfare of the economies well as the total welfare

of the social planner as consumption equivalent under different scenarios. I compare the

welfare gains (losses) concerning the business-as-usual case without spillovers.
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Case Advanced Developing Total

region region welfare

Optimal -0.1 2.77 0.95

Second-best -0.02 2.51 0.92

BAU with spillovers -0.37 0.73 0.03

Optimal with spillovers -0.01 2.74 1.0

Second-best with spillovers -0.08 2.73 0.95

Table 3.5 Welfare values expressed in percent deviation from the BAU case without
spillovers

From the Table 3.5, we can see that for developing countries the most welfare im-

proving scenario is an optimal taxation. The reason for that can be the significant size

of the damages that developing region is facing and that is not being fully covered when

developing region is not internalising its damages.

The welfare gains for developing region from optimal taxation with spillovers and

second-best taxation with spillovers are approximately the same. At the same time to-

tal welfare is the same in case of the optimal taxation and second-best taxation with

spillovers. These two results confirm the policy recommendation that second-best taxa-

tion with spillovers is a preferable option both from the point of view of the total welfare

and welfare of the developing region.

3.6 Conclusion and discussion

The green energy transition in advanced in developing countries is necessary for success-

ful mitigation of the climate change. However, the role of technological spillovers and its

interaction with carbon taxation in the decarbonization process remains unclear. Develop-

ing countries, which represent more than half of the world’s population, require energy to

support their economic growth, but relying on fossil fuels could jeopardize global efforts to

mitigate climate change. The present paper investigates how technological spillovers be-

tween heterogeneously developed countries affect the decarbonization perspective for less

developed countries. The main finding suggests that in the presence of spillovers having

carbon taxation only in advanced economies becomes preferable to taxation of both and
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advanced countries of spillovers are not taken into account. This highlights the importance

of considering technological spillovers in the design of global climate policies.

The main result of this paper relies on two major assumptions. The first assumption

concerns the way the countries were split into advanced and developing countries. In

a current set-up, I assumed that advanced countries are high-income and upper-middle-

income countries based on the World Bank income classification and developing countries

are lower-middle-income and low-income economies. This choice was mostly driven by the

empirical evidence on the innovation activity in terms of registering patents. Indeed, the

set-up of the research question implies that the technology is being developed in one part

of the world and adapted by the rest of the world. Both high-income and upper-middle-

income countries innovate significantly, thus they were placed in the group of advanced,

innovating, countries.

This split of the countries into the regions is also related to the second major assump-

tion. By specifying the spillover process I assume the developing countries can’t catch up

with the advanced economies - there is always a lag in development. It is an open ques-

tion whether developing countries especially the poorest ones can catch up to the level

of middle-income or advanced economies. It would be possible to consider an alternative

split of the world economy that puts only high-income countries in the advanced economy

and the rest of the world in the developing economy. However, in this case, the context of

the model presented will be significantly changed. It will be necessary to take into account

that big emerging economies like China and countries of Latin America are part of the

upper-middle countries and now they are driving the growth of developing regions. This

would mean that innovations are not geographically anchored and spillovers can go both

ways. This alternative modeling setup falls into the narrative that in general innovations

around the world are produced by several big players and then spread around among other

countries as well and there is a catch-up of developing countries. This alternative setup

does not seem to bring additional insights to the research question of the present study,

thus it was omitted.

The future avenue of research based on the built framework is twofold. First, it seems

promising to conduct a global sensitivity analysis to better understand the interaction be-

tween growth rates of the energy sources in the advanced economy, technology spillovers

intensity, and elasticity of substitution between energy inputs. This allows for quantita-
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tively supported policy advice concerning the subsidies on innovation and technological

transfer. Second, the model can be extended to include endogenous technological growth

in energy as well as endogenous technological spillover intensity. This permits the explo-

ration of directed technical mechanisms (market size effect and price effect) interacting

with technological spillovers. In this case, an extension of the model with an alterna-

tive split of the world regions between advanced and developing countries as well as the

possibility of catching up for the developing countries seems to be beneficial.
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Appendix

3.A Model

3.A.1 Recursive formulation
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where Lt is a world population. φat , φdt , ϱat , ϱdt are exogenously given processes.

We normalize consumption, capital and energy for every economy by total labor in the

economy and production TFP of the world.
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We define the growth adjusted discount factor βt as in

βt := exp
(
−ρ+ (1 − 1/ψ)gAt + gLt

)
. (3.A.17)

We get a normalized problem:

vt
(
kit

)
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kit+1,c
i
t,π

i
t,ξ

i
t


∑

i∈{a,d}
ϕi

(
cit
ϱit

)1−1/ψ

1 − 1/ψ ϱit + βtvt+1
(
kit+1

) (3.A.18)

s.t. Ωi (TAT,t)
(
kit

)α(
φitϱ

i
t(1 − πit − ξit)

)1−α−ν (
eit

)ν
+ (1 − δ) kit − cit − exp

(
gAt + gLt

)
kit+1 = 0 (λat )

(3.A.19)

1 − πit ≥ 0 ⊥ λπ
i

t ≥ 0 (3.A.20)

1 − ξit ≥ 0 ⊥ λξ
i

t ≥ 0 (3.A.21)

eit =

(
κdt

(
Ei,dt
t

)ρCES + κcl
(
Ei,cl
t

)ρCES)1/ρCES

AtLt
(3.A.22)

Ei,dt
t = πitA

i
dt,tϱ

i
tLt (3.A.23)

Ei,cl
t = ξitA

i
cl,tϱ

i
tLt (3.A.24)

b11M
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t + b21M
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t + σt

(
Ea,dt + Ed,dt

)
+ ELand

t −MAT
t+1 = 0

(
νAT
t

)
(3.A.25)
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b12M
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(3.A.26)
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t+1 = 0
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(3.A.27)
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)
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(3.A.29)

3.A.2 Equilibrium conditions

• Envelope theorem with respect to state variables

∂vt
∂kit
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(
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i
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)
(3.A.30)

∂vt
∂MAT,t

= vMAT,t = νAT
t b11 + νUO

t b12 + ηAT
t c1F2XCO2

1
ln 2MAT,t

(3.A.31)

∂vt
∂MUO,t

= vMUO,t = νAT
t b21 + νUO

t b22 + νLO
t b23 (3.A.32)

∂vt
∂MLO,t

= vMLO,t = νUO
t b32 + νLO

t b33 (3.A.33)
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t c4 (3.A.34)
∂vt

∂TOC,t
= vTOC,t = ηAT

t c1c3 + ηOC
t (1 − c4). (3.A.35)

• FOCs with respect to consumption, capital tomorrow and climate variables tomor-

row

[cit] : cit =
(

λit

ϕi
(
ϱit
)1−1/ψ

)−ψ

(3.A.36)

[kit+1] : βtvki,t − exp
(
gAt + gLt

)
λit = 0 (3.A.37)

[MAT,t+1] : βtvMAT,t+1 − νAT
t = 0 (3.A.38)

[MUO,t+1] : βtvMUO,t+1 − νUO
t = 0 (3.A.39)

[MLO,t+1] : βtvMLO,t+1 − νLO
t = 0 (3.A.40)

[TAT,t+1] : βtvTAT,t+1 − ηAT
t = 0 (3.A.41)
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[TOC,t+1] : βtvTOC,t+1 − ηOC
t = 0 (3.A.42)

• Budget constraints:
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• KKT condition for πit:
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• KKT condition for ξit:
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Calibrated parameter Symbol Value 1990 Source
Capital in advanced economy (trill USD 2015) KA

0 148.03 PWT 10.01
Capital in developing economy (trill USD 2015) KD

0 14.31 PWT 10.01
Mass of carbon in the atmosphere (1000 GtC) MAT

0 0.723 author’s elaboration
Mass of carbon in the upper ocean (1000 GtC) MUO

0 0.555 author’s elaboration
Mass of carbon in the lower ocean (1000 GtC) MLO

0 1.301 author’s elaboration
Temperature of the atmosphere (C◦) TAT

0 0.64 author’s elaboration
Temperature of the ocean (C◦) TOC

0 0.15 author’s elaboration

Table 3.B1 Starting states

3.B Parametrisation

3.B.1 Initial values

3.B.2 Parametrisation of the exogenous processes for the starting year

1990

The functional forms of the exogenous variables can be found in the Section 1.B. However,

the parametrisation of the exogenous processes was adjusted to the starting year 1990.

The adjusted parameters are presented in the tables below. Population

Calibrated parameter Symbol Value 1990

Annual rate of convergence δL 0.012

World population at starting year [billion] L0 3.03

Asymptotic world population [billion] L∞ 11.5

Table 3.B2 Annual parametrization for labor evolution

Carbon Intensity

Calibrated parameter Symbol Value 1990

Initial growth of carbon intensity per year gσ0 -0.008

Decline rate of decarbonization per year δσ 0.01

Initial carbon intensity (1000GtC) σ0 0.0002

Table 3.B3 Annual parametrization for carbon intensity evolution
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Emissions from land

Calibrated parameter Symbol Value 1990

Emissions from land (1000GtC per year) ELand,0 0.00127

Decline rate of land emissions (per year) δLand 0.023

Table 3.B4 Annual parametrization for the emissions from land.

Exogenous radiative forcing

Calibrated parameter Symbol Value 1990

Forcings of non-CO2 GHG (Wm-2) FEX0 0.25

2100 forcings of non-CO2 GHG (Wm-2) FEX1 1.0

Number of years before 2100 T 110

Table 3.B5 Annual parametrization for the exogenous forcing.

3.B.3 The climate system

The functional forms of the temperature equations can be found in the Section 1.B. How-

ever, the starting values for the temperature equations were adjusted to the starting year

1990. The adjusted parameters are presented in the tables below.

Calibrated parameter Symbol Value 1990

Concentration in atmosphere (1000GtC) MAT
INI 0.723

Concentration in upper strata (1000GtC) MUO
INI 0.555

Concentration in lower strata (1000GtC) MLO
INI 1.301

Table 3.B6 Annual parametrization for the mass of carbon.

Calibrated parameter Symbol Value 1990

Atmospheric temp change (°C) from 1850 TAT
0 0.64

Lower stratum temp change (°C) from 1850 TOC
0 0.15

Table 3.B7 Annual parametrization for the temperature.
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3.B.4 Energy sector

To get parametrisation for the energy sector I first compute the labor shares in energy

sector under the assumption of profit maximisation and given energy consumption in the

year 1990. The net output was defined as follows:

Y i
0 = Ωi (TAT,0)

(
Ki

0

)α(
φitA0(1 − Ldt,0 − Lcl,0)

)1−α−ν
((
κdt

(
Aidt,0L

i
dt,0

)ρCES + κcl
(
Aicl,0L

i
cl,0

)ρCES) 1
ρCES

)ν
.

I take the derivative of the net output with respect to labor shares in energy sector:

∂Y i
0

∂Lidt,0
= −(1 − α− ν) 1

1 − Lidt,0 − Licl,0
+ νκdt

1
Lidt,0

(
Eidt,0
Ei0

)ρCES
∂Y i

0
∂Licl,0

= −(1 − α− ν) 1
1 − Lidt,0 − Licl,0

+ νκcl
1

Licl,0

(
Eicl,0
Ei0

)ρCES

This way I get the initial shares of labor in fossil fuel and renewable energy production:

Lidt,0 =
νκdt

(
Eidt,0
Ei0

)ρCES
1 − α− ν + νκdt

(
Ei
dt,0
Ei0

)ρCES
+ νκcl

(
Ei
cl,0
Ei0

)ρCES (3.B.48)

Licl,0 =
νκcl

(
Eicl,0
Ei0

)ρCES
1 − α− ν + νκdt

(
Ei
dt,0
Ei0

)ρCES
+ νκcl

(
Ei
cl,0
Ei0

)ρCES (3.B.49)

From this we get the following initial labor shares:

Calibrated parameter Symbol Value
Labor share FF in advanced LAdt,0 0.045
Labor share RE in advanced LAcl,0 0.012

Production labor share 1 − LAdt,0 − LAcl,0 0.942
Labor share FF in developing LDdt,0 0.047
Labor share RE in developing LDcl,0 0.001
Production initial labor share 1 − LDdt,0 − LDcl,0 0.94

Table 3.B8 Energy sector initial labor share values

Based on the initial labor shares computed above I pin down the initial TFP values for

each energy sector in each region reported in Table 3.3, based on the energy consumption

data in 1990.
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3.C Countries by income groups based on the World Bank

Classification

Afghanistan Guinea-Bissau Somalia

Burkina Faso Korea, Dem. People’s Rep South Sudan

Burundi Liberia Sudan

Central African Republic Madagascar Syrian Arab Republic

Chad Malawi Togo

Congo, Dem. Rep Mali Uganda

Eritrea Mozambique Yemen, Rep.

Ethiopia Niger Zambia

Gambia, The Rwanda

Guinea Sierra Leone

Table 3.C9 Low income countries: economies with GNI less than $1,086 per capita
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Angola India Philippines

Algeria Indonesia Samoa

Bangladesh Iran, Islamic Rep São Tomé and Principe

Benin Kenya Senegal

Bhutan Kiribati Solomon Islands

Bolivia Kyrgyz Republic Sri Lanka

Cabo Verde Lao PDR Tanzania

Cambodia Lebanon Tajikistan

Cameroon Lesotho Timor-Leste

Comoros Mauritania Tunisia

Congo, Rep. Micronesia, Fed. Sts. Ukraine

Côte d’Ivoire Mongolia Uzbekistan

Djibouti Morocco Vanuatu

Egypt, Arab Rep. Myanmar Vietnam

El Salvador Nepal West Bank and Gaza

Eswatini Nicaragua Zimbabwe

Ghana Nigeria

Haiti Pakistan

Honduras Papua New Guinea

Table 3.C10 Lower-middle income countries: economies with GNI between $1,086 and
$4,255 per capita.
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Albania Fiji Namibia

American Samoa Gabon North Macedonia

Argentina Georgia Palau

Armenia Grenada Paraguay

Azerbaijan Guatemala Peru

Belarus Guyana Russian Federation

Belize Iraq Serbia

Bosnia and Herzegovina Jamaica South Africa

Botswana Jordan St. Lucia

Brazil Kazakhstan St. Vincent and the Grenadines

Bulgaria Kosovo Suriname

China Libya Thailand

Colombia Malaysia Tonga

Costa Rica Maldives Türkiye

Cuba Marshall Islands Turkmenistan

Dominica Mauritius Tuvalu

Dominican Republic Mexico

Equatorial Guinea Moldova

Ecuador Montenegro

Table 3.C11 Upper-middle income countries: economies with GNI between $4,256 and
$13,205 per capita
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Andorra Greece Poland

Antigua and Barbuda Greenland Portugal

Aruba Guam Puerto Rico

Australia Hong Kong SAR, China Qatar

Austria Hungary Romania

Bahamas, The Iceland San Marino

Bahrain Ireland Saudi Arabia

Barbados Isle of Man Seychelles

Belgium Israel Singapore

Bermuda Italy Sint Maarten (Dutch part)

British Virgin Islands Japan Slovak Republic

Brunei Darussalam Korea, Rep. Slovenia

Canada Kuwait Spain

Cayman Islands Latvia St. Kitts and Nevis

Channel Islands Liechtenstein St. Martin (French part)

Chile Lithuania Sweden

Croatia Luxembourg Switzerland

Curaçao Macao SAR, China Taiwan, China

Cyprus Malta Trinidad and Tobago

Table 3.C12 High income countries: economies with GNI more than $13,205 per capita
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