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Abstract

Background

The Bland-Altman limits of agreement (LoA) method is almost universally used to compare

two measurement methods when the outcome is continuous, despite warnings regarding

the often-violated strong underlying statistical assumptions. In settings where only a single

measurement per individual has been performed and one of the two measurement methods

is exempt (or almost) from any measurement error, the LoA method provides biased results,

whereas this is not the case for linear regression.

Methods

Thus, our goal is to explain why this happens and illustrate the advantage of linear regres-

sion in this particular setting. For our illustration, we used two data sets: a sample of simu-

lated data, where the truth is known, and data from a validation study on the accuracy of a

smartphone image-based dietary intake assessment tool.

Results

Our results show that when one of the two measurement methods is exempt (or almost)

from any measurement errors, the LoA method should not be used as it provides biased

results. In contrast, linear regression of the differences on the precise method was

unbiased.

Conclusions

The LoA method should be abandoned in favor of linear regression when one of the two

measurement methods is exempt (or almost) from measurement errors.
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Introduction

Cross-validation of measurement methods, such as for diagnostic devices, ensures the accu-

racy of clinical data in innovation. The Bland-Altman’s limits of agreement (LoA) method is

one of the most widely applied statistical tools in medical research to assess the agreement/

interchangeability of two measurement methods when the outcome is continuous (the 1986

paper, published in the Lancet journal [1], has been cited 51’779 times as of August 3, 2022,

Google search). However, it has recently been shown to rely on strong statistical assumptions

(1. The two measurement methods have the same precision, i.e. the measurement error vari-

ances are the same, 2. The precision is constant and does not depend on the true latent trait,

i.e. the measurement error variances are constant, 3. The bias is constant, i.e. the difference

between the two measurement methods is constant, aka there is only a differential bias) which,

unfortunately, are often violated in practice [2–6]. Nevertheless, as exemplified by the numer-

ous (and still in augmentation citations), many researchers seem to be unaware of its impor-

tant limitations. Clearly, there is a need for challenging the relevance of using LoA method in

different usual experimental settings, particularly when one of the two measurement methods

is known to be exempt (or almost) from measurement errors.

Given the almost universal use of the LoA method, we found it important to investigate the

use of the LoA method when one of the two measurement methods is known to be exempt (or

almost) from measurement errors. This is typically the case when the device used to measure

the true latent trait is very precise so that repeated measurements on the same individual

would result in the same (or almost) value each time. To be concrete and motivate our presen-

tation, consider the example of a dietician weighting the different food items on a plate with a

very precise weighing scale and assessing the nutritional value of each item in terms of caloric

intake [6]. If she were to repeat measurements, the same quantity (or almost) of each food

item would be found and the same number of calories (or almost) would be assessed and mea-

surement errors would be almost null or at least very small. Now, as employing a dietician is

costly and may not be always feasible, imagine using, instead, a smartphone image-based die-

tary intake assessment tool, based on a special application allowing to recognize the photo-

graphed items on the plate and their quantity. This measuring device may be used on a large

scale very easily but may not be as precise as the dietician. Actually, given the novelty of the

technology and the difficulty to recognize the food items and assess their quantity based solely

on a smartphone picture, it may be anticipated that measurement errors of this measuring

device may be non-negligible. Before making the application available to the public, it is desir-

able to assess the agreement/interchangeability between the two measurement methods (i.e.

dietician versus smartphone).

In this setting, it would be ill-advised to use the LoA method to compare the two measure-

ment methods, as the required underlying statistical assumptions to validly use this methodol-

ogy are violated [2, 4]. Indeed, it has been shown that regression of the differences (y1-y2) on

the means (y1+y2)/2 (i.e. the LoA method) provides unbiased estimates of the bias (which can

be decomposed into differential and proportional biases) only when the ratio of the variances

of measurement errors is strictly proportional to the proportional bias (see equation (10) in

Taffé [2]), a condition certainly violated when one of the two measurement methods is almost

exempt from measurement errors.

When individual repeated measurements are available by at least one of the two measure-

ment methods, Taffé [2, 7] has developed a new methodology to assess bias, precision, and

agreement between the two measurement methods, which circumvents the deficiencies of the

Bland-Altman LoA method. However, when individual repeated measurements are not avail-

able and there is only one measurement per individual, by each instrument, applied
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researchers may still be tempted to use the LoA method, despite the strong and often violated

underlying statistical assumptions, as it does not rely on individual repeated measurements.

The goal of this report is to show that when only one measurement per individual is avail-

able, by each instrument, and the reference method is almost exempt from measurement

errors, the use of the LoA method is discouraged, as it provides biased estimates. It will be

demonstrated that, when the signal-to-noise ratio is large (e.g. at least 100), in the sense that

the amplitude of the true signal is much larger than measurement errors, or in statistical

terms, the variance of the true latent trait is much larger than that of measurement errors, then

simple regression analysis of the measurements by the new method (y1), or of the differences

(y1-y2), on the reference method (y2) provides unbiased estimates.

Material and methods

To answer this question, we have carried out a simulation study (so that the truth is known)

and assessed the performance of both the conventional LoA method and, as an alternative sta-

tistical method, linear regression of the measurements by the device plagued by measurement

errors (i.e. y1 as dependent variable) on the measurements by the device exempt of measure-

ment errors (i.e. y2 as the independent variable), as well as regression of the differences (y1-y2)

on the measurements by the device exempt of measurement errors (y2). To provide a concrete

example, using both methods we have analyzed data from a validation study on the accuracy

of a smartphone image-based dietary intake assessment tool in terms of caloric content com-

pared with the evaluation made by a dietician [6].

It is useful to recall that with the LoA method one of the two measurement methods, say y2,

is implicitly taken as the reference and the other, y1, is compared to it by computing the aver-

age of the differences (e.g. y1-y2) to estimate the average/differential bias. The sign of the bias

will depend on which difference is computed, either y1-y2 or y2-y1, and consequently on the

method used as the reference (note that, here, “reference” means the benchmark for the com-

parison and not that the method deemed as “reference” is unbiased or without measurement

error) [4].

For the simulation study, data have been generated by considering that measurement

method2 (y2) is unbiased and has almost no measurement errors (i.e. the variance of the mea-

surement errors is set to a very small level, but not to zero as it is fundamentally almost impos-

sible to measure anything without measurement errors):

measurement method2 ¼ true traitþmeasurement error2

which may be formally and compactly written:

y2 ¼ xþ error2

error2 � Nð0; s2

error2Þ

where the true trait x takes values between 25 and 50, according to a uniform distribution with

mean μx = 37.5 and variance s2
x = 52.08 (see Fig 1 below, where the x-axis represents the true

latent trait and the y-axis the measurements made by the two measurement methods, which

clearly suffer from measurements errors as the points are not all aligned on the 45˚ line). To

mimic real-world conditions, despite being very small, the variance s2
error2 of measurement

error2 is assumed to be increasing with the level of the true trait x:

s2

error2 ¼ ð0:01þ 0:01xÞ2
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For example, when x = 25, s2
error2 = 0.0676, and when x = 50, s2

error2 = 0.2601. Clearly, even

when the true trait x takes value 50, the variance of the measurement errors s2
error2 = 0.2601 is

much smaller than the variance of the true trait s2
x = 52.08 and the signal-to-noise ratio

s2
x=s

2
error2 is about 200, which means that measurement errors remain negligible.

Assuming that measurement errors are increasing with the level of the true trait is a rather

natural assumption, which can be observed in many practical experiments. For example, in a

study on energy expenditure in ventilated critically ill children, we found that the variance of

measurement errors was increasing with the level of energy expenditure [5]. In another study

on the bias and precision of oscillometric devices, we also found that the variance of measure-

ment errors was increasing with the level of blood pressure [3]. Finally, in a very recently pub-

lished study, we found that the variance of measurement errors when measuring the energy

content of a meal using a smartphone application was increasing with the true caloric content

assessed by a dietician [6].

Regarding method1 (y1), it is assumed to be plagued by both a differential bias (i.e. a con-

stant difference between the true trait and the measurement method) and a proportional bias

(i.e. a difference which depends on the value of the true trait):

measurement method1 ¼ differential biasþ proportional bias � true traitþmeasurement errors1

which may be formally and compactly written:

y1 ¼ aþ b � xþ error1

Consequently, the (total) bias (i.e. the systematic difference E(y1—x) between y1 and x) is

given by:

bias ¼ aþ x�ðb � 1Þ

Fig 1. Simulated data.

https://doi.org/10.1371/journal.pone.0278915.g001
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This formulation makes it clear that the (total) bias depends on the differential bias (α),

which represents the constant difference between the true trait and the measurement method,

whatever the value x of the true trait, and the proportional bias (β 6¼ 1), which takes into

account that the amount of bias may depend on the value of the true trait x. It is only when α =

0 and β = 1 that the measurement method is unbiased.

For our simulation, the differential bias has been set to 7 (i.e. α = 7) and the proportional

bias to 0.75 (i.e. β = 0.75). Therefore, in our simulated data the amount of bias is 0.75 when

x = 25 and -5.5 when x = 50.

Contrary to method2 (y2), we assumed that method1 (y1) bears a non-negligible amount of

measurement errors given by:

s2

error1 ¼ ð0:01þ 0:01xÞ2 þ 23

For example, when x = 25, s2
error1 = 23.0676, and when x = 50, s2

error1 = 23.2601. When the

true trait x is 50 the signal-to-noise ratio s2
x=s

2
error1 is about 2.2, which represents a setting

where measurement errors are large.

The simulated data are represented in Fig 1 below:

Clearly, with respect to method2 (y2), method1 (y1) exhibits a non-constant negative bias

(the blue regression line lies below the green one), which depends on the value of the true trait

x: the bias is quasi null around 25 and about -5 when the true trait is 50. Also, method1 is

much less precise than method2: the blue points are much more dispersed than the green

ones. Note, though, that method2 exhibits a small amount of measurement errors (the green

points do not lie exactly on the green regression line, there is some scatter), as expected in real-

world settings.

For the readership not acquainted with the Bland-Altman’s LoA method, recall that in the

conventional LoA methods the differences (y1-y2) (i.e. the dependent variable represented in

the y-axis), are regressed on the means (y1+y2)/2 (i.e. the independent variable represented in

the x-axis) and the average bias is simply estimated by the mean of the differences [1]. A

regression line is sometimes superimposed on the graph to allow for the presence of a propor-

tional bias in addition to the differential bias [8].

Results

Now, we are ready to illustrate what happens when using the LoA method to assess the agree-

ment/interchangeability between the two measurement methods:

On Fig 2, the conventional LoA method indicates a differential bias of -2.2 (i.e. α = -2.2,

95%CI[-7.4;3.0]), and no proportional bias (i.e. β = 0.99, 95%CI[0.86;1.13]) (see ref. [4] for

details regarding the computation of the differential and proportional biases when using the

LoA method). Notice also that the regression line of the differences on the averages is almost

confounded with the observed average agreement (i.e. the mean of the differences), as there is

no proportional bias. As the data have been simulated, we know that there is a differential bias

of 7 and a proportional bias of 0.75. Clearly, in this example, the LoA method is misleading, as

the true bias is null for values of the true trait near 25 and about -5 when the true trait is 50

(see Fig 1).

Turning to the linear regression of the measurements by the device plagued by measure-

ment errors (y1) on the measurements by the device exempt or almost of measurement errors

(y2), one gets:

Fig 3 represents a scatter plot of measurements y1 versus y2. The black regression line is the

45˚ reference line of no bias, whereas the green line represents the regression of y1 on y2 (i.e.

y1 = a + b�y2). When y2 is exempt from measurement errors coefficient “a” estimates the
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Fig 2. Simulated data: Classical Bland-Altman LoA plot augmented with the regression line.

https://doi.org/10.1371/journal.pone.0278915.g002

Fig 3. Simulated data: Linear regression of y1 on y2 with 95% limits of agreement.

https://doi.org/10.1371/journal.pone.0278915.g003
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differential bias and coefficient “b” the proportional bias. We obtained a = 5.4, 95%CI

[0.8;10.0], and b = 0.79, 95%CI[0.67;0.91]. These intervals contain the true values of the differ-

ential = 7 and proportional = 0.75 biases. The green regression line indicates that method1

(y1) is unbiased for values of y2 (method2) near 25 and biased for larger values; the bias

increases gradually and amounts to about 5 when y2 = 50. Clearly, in this example, the regres-

sion method provides unbiased estimates, whereas the Bland-Altman method is biased.

The 95% limits of agreement exhibit a slight funnel-shaped pattern, as the variance of the

measurement errors is (slightly) increasing with the value of the true trait. The limits are com-

puted by a methodology based on the absolute value of the residuals [2].

To provide a similar figure as the traditional LoA plot, we have also considered the regres-

sion of the differences (y1 –y2) on the measurements by the device exempt (or almost) of mea-

surement errors (y2):

Fig 4 resembles more the standard LoA plot except that the x-axis is not the mean (y1 + y2)/

2 but y2. As method2 (y2) is exempt (or almost) of measurement errors, the coefficients of the

regression of the differences (y1 –y2) on y2 (i.e. (y1 –y2) = a + b �y2) allows one to estimate the

differential = a and proportional = b + 1 biases. One gets exactly the same values as above with

the regression y1 on y2. Consequently, the regression of the differences (y1 –y2) on y2 provides

an alternative valid method to estimate the bias of method1 (with respect to method2).

The green regression line of the differences (y1 –y2) on y2 clearly illustrates that method1 (y1)

is unbiased for values of y2 (method2) near 25 and biased for larger values; the bias increases grad-

ually and amounts to about 5 when y2 = 50. Again, it is clear in this example that the regression

method provides unbiased estimates, whereas the Bland-Altman method is biased.

These results are easily confirmed by carrying out simulation analyses. However, analytic

results (when possible) are more general and we formally explain below why the Bland-Altman

LoA method is biased, whereas linear regression of the measurements by the device plagued by

measurement errors (y1 as the dependent variable) or of the differences (y1-y2 as the

Fig 4. Simulated data: Linear regression of the differences (y1—y2) on y2 with 95% limits of agreement.

https://doi.org/10.1371/journal.pone.0278915.g004
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dependent variable) on the measurements by the device exempt of measurement errors (y2 as

the independent variable) provides unbiased estimates.

Why the Bland-Altman LoA method is biased?

Actually, an important assumption of the linear regression model, that is sometimes over-

looked, is that regressors are measured without measurement errors. This assumption is vio-

lated in the Bland-Altman method when regressing the differences on the means, whereas this

is not the case when using y2 instead of the mean, as by assumption y2 is exempt (or almost)

of measurement errors.

One can show that in the linear regression model y1 = α + β � y2 + error, where the indepen-

dent variable y2 is measured with errors (i.e. y2 = x + error2), the estimate b (of β) will converge

to β/(1þ s2
error2=s

2
x) when the sample size increases indefinitely. This formula shows that when

the variance s2
error2 of the measurement errors is small, with respect to the variance s2

x of the true

latent trait x, then (1þ s2
error2=s

2
x) is almost equal to 1 and the estimate b is almost equal to the

true parameter β. The term s2
error2=s

2
x is exactly the inverse of the signal-to-noise ratio s2

x=s
2
error2,

which shows that when the signal-to-noise ratio is large, regression estimates are almost unbiased.

Above, we suggested a signal-to-noise ratio of at least 100 or more to get very accurate esti-

mates. Notice, however, that without repeated measurements from method2 (y2) it is not pos-

sible to identify the two variances s2
x and s2

error2, and one must rely on outside information (e.g.

other studies) to appraise the likely value of the signal-to-noise ratio.

Illustration based on a concrete example

To illustrate the advantages of the proposed regression approach (either the regression of y1 on y2

or of the differences (y1-y2) on y2) compared to the commonly used Bland-Altman method, we

have used both methods to analyze data from a validation study on the accuracy of a smartphone

image-based dietary intake assessment tool to quantify the caloric content of different meals [6].

Here, the measurements made by the smartphone application are labeled kcalMFR (y1) and those

computed by the dietician kcalIU (y2, the reference method). We assume that measurements

made by the dietician are (almost) exempt from measurement errors, and were she to reassess the

weight and caloric content of the different food items from the meals she would obtain (almost)

exactly the same results (as she used a very precise weighing scale up to the gram).

As we have shown above, the regression of y1 on y2 or of the differences (y1-y2) on y2 pro-

vides exactly the same estimates and we focus, here, on the latter:

Based on the Bland-Altman method (Fig 5 left) one may believe that the smartphone appli-

cation provides an almost unbiased estimate of the caloric content of the meals (the green

regression line is almost flat on zero), whereas the regression method indicates that the appli-

cation over-estimates the caloric content of low-calorie meals (less than 200 kcal) but under-

estimates the caloric content of high-calorie meals (larger than 200 kcal).

However, the inspection of the plots illustrates that there are two clusters of meals, one

whose food items present a caloric content below 200 kcal and the other with higher calorie

food items. Therefore, we have repeated the analyses separately for the two groups:

In Fig 6 (left), the Bland-Altman method seems to indicate (green regression line) that the

smartphone application underestimates the caloric content up to about 60 kcal and over-esti-

mates afterward. The regression method (right) tells a different story, the smartphone applica-

tion overestimates the caloric content, particularly for low-calorie food items, and is more

accurate when the caloric content is about 200 kcal.

Turning to the second group of food items:

In Fig 7 (left), the Bland-Altman method seems to indicate (green regression line) that the

smartphone application underestimates the caloric content of food items containing between
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Fig 5. (Left) Classical Bland-Altman LoA plot augmented with the regression line (right) Linear regression of the differences (y1—y2)

on y2 with 95% limits of agreement.

https://doi.org/10.1371/journal.pone.0278915.g005

Fig 6. (Left) Classical Bland-Altman LoA plot augmented with the regression line, for low-caloric aliment cluster (right) Linear

regression of the differences (y1—y2) on y2 with 95% limits of agreement.

https://doi.org/10.1371/journal.pone.0278915.g006

Fig 7. (Left) Classical Bland-Altman LoA plot augmented with the regression line, for high-caloric aliment cluster (right) Linear

regression of the differences (y1—y2) on y2 with 95% limits of agreement.

https://doi.org/10.1371/journal.pone.0278915.g007
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200 and 700 kcal, and over-estimates afterward. However, the regression method (right) shows

that the smartphone application increasingly underestimates the caloric content of food items

containing more than 400 kcal.

Take-home message

• When one of the two measurement methods is exempt (or almost) of measurement errors,

the Bland-Altman method should not be used and regression of the differences (y1-y2) on

the precise method y2 or of y1 on y2 should be preferred.

• When the two measurement methods are known to have non-negligible measurement errors

(in the sense that the signal-to-noise ratio is much lower than 100), the Bland and Altman

method can be used as long as the following statistical assumptions do hold [2, 4]: 1) absence

of any proportional bias and 2) equal and 3) constant variances of the measurement errors.

• When these three assumptions do not hold, which is often the case in practice, one must

gather repeated measurements from at least one of the two measurement methods and use a

more complex existing statistical methodology to analyze the data [2, 7, 9, 10]. The method-

ology developed in references [2] and [7] has been made available in the Stata [11, 12] and

(some part of it) R packages [13]. The methodology developed in this report will be made

available in a future Stata package.

Discussion

In this paper, we have stuck to the original Bland-Altman LoA method where a single mea-

surement per individual is available by each measurement method [1]. However, the method-

ology has been extended by these authors to the setting of repeated measurements per

individual [8] (we will refer to it as the “extended Bland-Altman LoA method”), but this is not

the topic of this report as the focus is explicitly on the setting where only a single measurement

per individual is available and one of the two measurement methods is exempt or almost of

measurement errors.

The Bland-Altman LoA method is simple to use and understand. However, it has been

shown to rely on strong statistical assumptions, which, unfortunately, are often violated in

practice [2–6]. When individual repeated measurements are available by at least one of the two

measurement methods, various statistical methods have been developed to circumvent the

deficiencies of the extended Bland-Altman LoA method [2, 7, 9, 10]. However, these method-

ologies are not applicable with a single measurement per individual and an investigator may

be tempted to use the (conventional) Bland-Altman LoA method despite violation of the

underlying statistical assumptions (e.g. in settings where one of the two measurement methods

is exempt or almost of measurement errors). We have shown that in this case, it would be ill-

advised to use the Bland-Altman method and simple linear regression analysis of the differ-

ences or the measurement method plagued by measurement error on the precise method pro-

vides unbiased estimates.

There is a debate in the literature regarding the pro and cons of the Bland-Altman LoA

method [14–17]. Unfortunately, in these papers, the genuine reason for the bias of the method,

when the underlying statistical assumptions are violated, has not been identified as being a

problem of endogeneity, which has somewhat obscured the debate and it is only very recently

that this problem has been clarified and solved [2, 7, 9, 10]. It requires, however, repeated mea-

surements per individual, otherwise, it is not possible to disentangle the differential from the

proportional bias.
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Conclusions

We have highlighted that when one of the two measurement methods is exempt (or almost)

from measurement errors, the Bland-Altman method should not be used. In this setting,

regression of the differences (y1-y2) on the precise method y2 or of y1 on y2 should be pre-

ferred. The choice of the statistical methods has thus important implications for the validity of

studies using cross-validation of measurement methods.
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7. Taffé P. Assessing bias, precision, and agreement in method comparison studies. Stat Methods Med

Res. 2020; 29:778–796. https://doi.org/10.1177/0962280219844535 PMID: 31018772

PLOS ONE Bland-Altman method and negligible measurement errors

PLOS ONE | https://doi.org/10.1371/journal.pone.0278915 December 12, 2022 11 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0278915.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0278915.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0278915.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0278915.s004
http://www.ncbi.nlm.nih.gov/pubmed/2868172
https://doi.org/10.1177/0962280216666667
http://www.ncbi.nlm.nih.gov/pubmed/27705883
https://doi.org/10.1016/j.jpeds.2016.12.063
http://www.ncbi.nlm.nih.gov/pubmed/28108105
https://doi.org/10.3390/nu14030635
http://www.ncbi.nlm.nih.gov/pubmed/35276994
https://doi.org/10.1177/0962280219844535
http://www.ncbi.nlm.nih.gov/pubmed/31018772
https://doi.org/10.1371/journal.pone.0278915


8. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res.

1999; 8:135–160. https://doi.org/10.1177/096228029900800204 PMID: 10501650

9. Nawarathna LS, Choudhary PK. Measuring agreement in method comparison studies with heterosce-

dastic measurements. Stat Med. 2013; 32:5156–5171. https://doi.org/10.1002/sim.5955 PMID:

24038348

10. Nawarathna LS, Choudhary PK. A heteroscedastic measurement error model for method comparison

data with replicate measurements Stat Med. 2015; 34:1242–1258. https://doi.org/10.1002/sim.6424

PMID: 25614299
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13. Taffé P, Peng M, Stagg V, Williamson T. MethodCompare: An R package to assess bias and precision

in method comparison studies. Stat Methods Med Res. 2019; 28:2557–2565. https://doi.org/10.1177/

0962280218759693 PMID: 29488448

14. Hopkins WG. Bias in Bland-Altman but not regression validity analyses. Sportscience 2004; 8:42–46.

15. Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard

method is misleading. Lancet 1995; 346:1085–1097. https://doi.org/10.1016/s0140-6736(95)91748-9

PMID: 7564793

16. Krouwer JS. Why Bland-Altman plots should use X, not (Y+X)/2 when X is a reference method. Stat

Med. 2008; 27:778–780. https://doi.org/10.1002/sim.3086 PMID: 17907247

17. Mansournia MA, Waters R, Nazemipour M, Bland M, Altman DG. Bland-Altman methods for comparing

methods of measurement and response to criticisms. Global Epi 2021; 3:100045.

PLOS ONE Bland-Altman method and negligible measurement errors

PLOS ONE | https://doi.org/10.1371/journal.pone.0278915 December 12, 2022 12 / 12

https://doi.org/10.1177/096228029900800204
http://www.ncbi.nlm.nih.gov/pubmed/10501650
https://doi.org/10.1002/sim.5955
http://www.ncbi.nlm.nih.gov/pubmed/24038348
https://doi.org/10.1002/sim.6424
http://www.ncbi.nlm.nih.gov/pubmed/25614299
https://doi.org/10.1177/0962280218759693
https://doi.org/10.1177/0962280218759693
http://www.ncbi.nlm.nih.gov/pubmed/29488448
https://doi.org/10.1016/s0140-6736%2895%2991748-9
http://www.ncbi.nlm.nih.gov/pubmed/7564793
https://doi.org/10.1002/sim.3086
http://www.ncbi.nlm.nih.gov/pubmed/17907247
https://doi.org/10.1371/journal.pone.0278915

