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Résumé

Notre consommation en eau souterraine, en particulier comme eau potable ou pour l’irri-

gation, a considérablement augmenté au cours des années. De nombreux problèmes font alors

leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères

pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la ca-

ractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de

représenter cette incertitude en considérant de multiples scénarios géologiques et en générant

un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limita-

tion de ces approches qui est le coût de calcul dû à la simulation des processus d’écoulements

complexes pour chacune de ces réalisations.

Dans la première partie de la thèse, ce problème est investigué dans le contexte de pro-

pagation de l’incertitude, où un ensemble de réalisations est identifié comme représentant les

propriétés du sous-sol. Afin de propager cette incertitude à la quantité d’intérêt tout en limitant

le coût de calcul, les méthodes actuelles font appel à des modèles d’écoulement approximés.

Cela permet l’identification d’un sous-ensemble de réalisations représentant la variabilité de

l’ensemble initial. Le modèle complexe d’écoulement est alors évalué uniquement pour ce sous-

ensemble, et, sur la base de ces réponses complexes, l’inférence est faite. Notre objectif est

d’améliorer la performance de cette approche en utilisant toute l’information à disposition.

Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire

un modèle d’erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire

la réponse du modèle complexe. Cette méthode permet de maximiser l’utilisation de l’infor-

mation à disposition sans augmentation perceptible du temps de calcul. La propagation de

l’incertitude est alors plus précise et plus robuste.

La stratégie explorée dans le premier chapitre consiste à apprendre d’un sous-ensemble de

réalisations la relation entre les modèles d’écoulement approximé et complexe. Dans la seconde

partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un

modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal-posé, il est

nécessaire d’en réduire la dimensionnalité. Dans cette optique, l’innovation du travail présenté

provient de l’utilisation de l’analyse en composantes principales fonctionnelles (ACPF), qui non

seulement effectue la réduction de dimensionnalités tout en maximisant l’information retenue,

mais permet aussi de diagnostiquer la qualité du modèle d’erreur dans cet espace fonctionnel.

La méthodologie proposée est appliquée à un problème de pollution par une phase liquide non-

aqueuse et les résultats obtenus montrent que le modèle d’erreur permet une forte réduction
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du temps de calcul tout en estimant correctement l’incertitude. De plus, pour chaque réponse

approximée, une prédiction de la réponse complexe est fournie par le modèle d’erreur.

Le concept de modèle d’erreur fonctionnel est donc pertinent pour la propagation de

l’incertitude, mais aussi pour les problèmes d’inférence bayésienne. Les méthodes de Monte

Carlo par châıne de Markov (MCMC) sont les algorithmes les plus communément utilisés

afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces

méthodes souffrent d’un taux d’acceptation très bas pour les problèmes de grande dimension-

nalité, résultant en un grand nombre de simulations d’écoulement gaspillées. Une approche en

deux temps, le “MCMC en deux étapes”, a été introduite afin d’éviter les simulations du modèle

complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie

de la thèse, le modèle d’écoulement approximé couplé à un modèle d’erreur sert d’évaluation

préliminaire pour le “MCMC en deux étapes”. Nous démontrons une augmentation du taux

d’acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de

MCMC.

Une question reste sans réponse : comment choisir la taille de l’ensemble d’entrainement et

comment identifier les réalisations permettant d’optimiser la construction du modèle d’erreur.

Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d’écoulement, le

modèle d’erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans

la quatrième partie de la thèse, où cette méthodologie est appliquée à un problème d’intrusion

saline dans un aquifère côtier.
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Abstract

Our consumption of groundwater, in particular as drinking water and for irrigation, has

considerably increased over the years and groundwater is becoming an increasingly scarce and

endangered resource. Nowadays, we are facing many problems ranging from water prospec-

tion to sustainable management and remediation of polluted aquifers. Independently of the

hydrogeological problem, the main challenge remains dealing with the incomplete knowledge

of the underground properties. Stochastic approaches have been developed to represent this

uncertainty by considering multiple geological scenarios and generating a large number of re-

alizations. The main limitation of this approach is the computational cost associated with

performing complex flow simulations in each realization.

In the first part of the thesis, we explore this issue in the context of uncertainty propa-

gation, where an ensemble of geostatistical realizations is identified as representative of the

subsurface uncertainty. To propagate this lack of knowledge to the quantity of interest (e.g.,

the concentration of pollutant in extracted water), it is necessary to evaluate the flow re-

sponse of each realization. Due to computational constraints, state-of-the-art methods make

use of approximate flow simulation, to identify a subset of realizations that represents the

variability of the ensemble. The complex and computationally heavy flow model is then run

for this subset based on which inference is made. Our objective is to increase the performance

of this approach by using all of the available information and not solely the subset of exact

responses. Two error models are proposed to correct the approximate responses following a

machine learning approach. For the subset identified by a classical approach (here the distance

kernel method) both the approximate and the exact responses are known. This information is

used to construct an error model and correct the ensemble of approximate responses to predict

the “expected” responses of the exact model. The proposed methodology makes use of all

the available information without perceptible additional computational costs and leads to an

increase in accuracy and robustness of the uncertainty propagation.

The strategy explored in the first chapter consists in learning from a subset of realizations

the relationship between proxy and exact curves. In the second part of this thesis, the strategy

is formalized in a rigorous mathematical framework by defining a regression model between

functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty

of the work comes from the use of functional principal component analysis (FPCA), which not

only performs the dimensionality reduction while maximizing the retained information, but
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also allows a diagnostic of the quality of the error model in the functional space. The proposed

methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model

allows a strong reduction of the computational cost while providing a good estimate of the

uncertainty. The individual correction of the proxy response by the error model leads to an

excellent prediction of the exact response, opening the door to many applications.

The concept of functional error model is useful not only in the context of uncertainty

propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo

Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated

realizations are sampled in accordance with the observations. However, this approach suffers

from low acceptance rate in high dimensional problems, resulting in a large number of wasted

flow simulations. This led to the introduction of two-stage MCMC, where the computational

cost is decreased by avoiding unnecessary simulation of the exact flow thanks to a preliminary

evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error

model to provide an approximate response for the two-stage MCMC set-up. We demonstrate

an increase in acceptance rate by a factor three with respect to one-stage MCMC results.

An open question remains: how do we choose the size of the learning set and identify the

realizations to optimize the construction of the error model. This requires devising an iterative

strategy to construct the error model, such that, as new flow simulations are performed, the

error model is iteratively improved by incorporating the new information. This is discussed

in the fourth part of the thesis, in which we apply this methodology to a problem of saline

intrusion in a coastal aquifer.
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Chapter 1

Introduction

1.1 Preamble

Groundwater is one of the most crucial resources constituting approximately 26% of the world’s

total water abstraction and 43% of all irrigation water (UNESCO, 2012). It is a privileged

source of drinking water due to its excellent quality: Worldwide, it accounts for nearly half of

the total drinking water. In Switzerland, that fraction grows up to 80%, half of which does not

necessitate any purification (FOEN, 2009). For 75% of the African population, groundwater

is the main source of drinking water.

Unfortunately, this important resource is becoming increasingly scarce and endangered

due to population growth and over-exploitation. The world abstraction rate has tripled over

the past 50 years (UNESCO, 2012) and around 20% of the aquifers are being over-exploited

(UNESCO, 2014), which results both in a decreased availability and in the degradation of the

water quality. Depletions of groundwater tables have reached a dramatic level, particularly in

large urban areas such as Bangkok where a drawdown of 65m has been observed (Phien-Wej

et al., 2006). It has in turn caused land subsidences in several cities, such as in Tianjin (China,

1.5m), Jakarta (36cm/year), or in the dramatic case of Mexicocity (9m of subsidence) (Foster

et al., 1998). In addition, over-abstraction of groundwater increases the concentration of both

natural and anthropogenic contaminant. In areas boarded by the sea, the excessive exploita-

tion of coastal aquifers leads to saltwater intrusion. It has been estimated that 53 out of 126

groundwater coastal areas in Europe present an excess in salt (UNESCO, 2012).
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Chapter 1

Preserving this resource is a key issue for the future of the planet. In order to achieve a

sustainable management, it is important to be able to predict the dynamics of the groundwater

systems and their response to anthropogenic and environmental forcing. To this end, numerical

models are developed and used for numerous and varied objectives ranging from the estimation

of water supply to the design of remediation strategies.

1.2 Groundwater modelling

Flow in porous media, or more specifically groundwater flow, can be described by Darcy’s law,

which relates the water flux to the pressure gradient, i.e.,

u =
Q

A
= −k

µ
∇P, (1.1)

where u is the Darcy velocity, Q the volumetric flux, A the cross-sectional area of the medium,

µ the viscosity of the fluid, P the pressure, and k the permeability of the medium. This

equation expresses a simplified momentum balance in which acceleration is neglected. In order

to describe more complex physical phenomena, the equation has to be extended. For multi-

phase problems, for instance, we have a generalized Darcy’s law for each phase α, i.e.,

uα = −kRα(sα)k

µα

(
∇Pα − ραg

)
, (1.2)

where kRα is the relative permeability, which is a function of the saturation sα; µα, ρα and

Pα the viscosity, the density and the pressure of the phase α, respectively; g the gravity

acceleration. In case of single-phase flow in presence of a solute, whose concentration, c, can

affect the density, we have

u = −k
µ

(
∇P − ρ(c)g

)
. (1.3)

In addition to an appropriate form of the Darcy equation, subsurface models are based

on mass conservation equations. Focusing on single-phase flow of an incompressible fluid, for

instance, the mass balance equation is simply ∇·u = w, where w is a source term. Substituting

the Darcy velocity u of eq. 1.3 leads to an elliptic equation for the pressure P . The mass

conservation equation of the solute mass is

∂

∂t
(φc)−∇ ·

(
cu− (Dm + Dd)∇c

)
= q (1.4)

2



Introduction

where φ is the porosity of the medium, Dm the molecular diffusion coefficient and Dd is the

hydrodynamic dispersion tensor, and q a source term. Additional details regarding transport

and two-phase flow models can be found in appendix 3.7.1.

For practical purposes, most physical processes occurring in the subsurface are fairly well

described by these equations. However, major challenges arise because they take place in the

underground, whose properties cannot be measured systematically.

The characterization of the permeability field of the rock formation is particularly arduous;

owing to the fact that it varies in space by several orders of magnitude over short distances

(< 1m). Moreover, small scale features can play a crucial role on the hydraulic connectivity of

the geological structures and a realistic description of the medium is necessary to reproduce

the observations (Kerrou et al., 2008; Refsgaard et al., 2012; Renard and Allard, 2013). In the

recent years, many techniques have been developed to represent subsurface heterogeneity as

a function of geological environment and improve the realism of the geological models. They

can be classified into three categories: object-based models, which offer a parametrized rep-

resentation of the main observed structures for which analog values can be used (Lantuéjoul,

2002; Huber et al., 2015); pseudo-genetic models, which aim at mimicking the formation of the

aquifer by simulating a crude representation of the depositional processes (Deviese, 2010); and

multipoint statistics models, which generate geostatistical realizations based on a conceptual

representation of the subsurface via a training image (Strebelle et al., 2001; Mariethoz et al.,

2010; Mariethoz and Caers, 2014). Recent approaches at the cross-roads of these three cate-

gories have been developed to further improve the realism of the realizations, in particular to

represent braided-river depositional system: Pirot et al. (2014) make the use of a multipoint

statistics technique within a pseudo-genetic model.

Despite the availibility of many geophysical or hydrogeological techniques, only indirect

(e.g., hydraulic heads) or integrated observations (e.g., pumping test) of the properties (typ-

ically permeability) are possible. No matter how many measurements are taken, most of the

properties will remain unknown and this requires additional work to incorporate this data into

the model (see section 1.3.2). Note that the permeability field is not the only source of un-

certainty. Aquifer geometry, storativity, dispersivity, reactive properties, boundary conditions

and many other parameters have to be assessed and they are all subject to uncertainty.

3



Chapter 1

1.3 Stochastic methods

The most common approach to deal with uncertainties is to opt for a stochastic description

of the problem: the physics of the phenomena is considered deterministic, whereas the model

parameters (such as the permeability field) are treated as random variables to reflect the

uncertainty. While practitioners may not systematically follow this approach, Monte Carlo

techniques offer the simplest solution to uncertainty analysis (Kennedy and O’Hagan, 2001;

Dagan, 2002; Rubin, 2004; Carrera et al., 2005; Renard, 2007; Wu and Zeng, 2013).

1.3.1 Monte Carlo simulations

Monte Carlo approaches are based on the fundamental property that a sample converges to

the true distribution when we iteratively increase the number of elements in the sample. In

mathematical terms, if we are interested in the expected value of g(m), which depends on the

random variable m that follows a distribution p, then an estimation of the expectation can be

obtained by repeatedly sampling p and evaluate g for the sampled values mi, i.e.,

lim
n→∞

1

n

n∑
i=1

g(mi) =

∫
g(m)p(m)dm, (1.5)

where {mi}i=1,...,n ∼ p.
In groundwater problems, Monte Carlo methods are typically used to propagate the uncer-

tainty on the subsurface parameters to the quantity of interest (for instance, the concentration

of pollutant in drinking water). The unknown aquifer properties are assumed to follow a dis-

tribution p from which a sample can be obtained using geostatistical techniques. As we are

interested in how this translates to the quantity of interest, for each realization of the sample

the flow model g relating the input parameters m to the flow response is evaluated. Any sum-

mary statistic based on high dimensional integrals can then be estimated using the sampled

responses (for instance, the expectation can be approximated by the sample mean as in eq.

1.5) (Yustres et al., 2012).

1.3.2 Bayesian inference

The process of identifying the input parameters that match the observed data is referred to as

the inverse problem (Carrera et al., 2005; Zhou et al., 2014). In a Bayesian framework, if p(m)

is the prior distribution of the input parameters m, our objective is to update this knowledge
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and find the distribution of parameters that best fit the observed data d. A rigorous way to

incorporate the new information is to use the Bayes rule,

p(m|d) =
p(d|m)p(m)∫
p(d|m)p(m)dm

, (1.6)

where p(m|d) is the posterior distribution conditioned on d, and p(d|m) the likelihood function,

which measures how likely is the data d given a model m.

Except for simplistic representations, analytical formulation of the posterior from the prior

is impossible as the likelihood entails complex forward simulations of the processes to compare

modeled quantities to the observed data (e.g. hydraulic heads measurements, tracer tests).

Most importantly, the denominator in eq. 1.6 is generally unknown. These issues are re-

solved by Monte Carlo Markov Chains (MCMC) techniques, the most famous strategy being

the Metropolis-Hastings algorithm. Because the algorithm makes use of ratios of densities, it

allows us to sample from unnormalized distributions and obtain samples from the posterior

distribution (see section 4.4.2). We refer to Robert and Casella (2004) for the theoretical

background and to Zhou et al. (2014) and reference therein for reviews of applications to

groundwater problems.

The choice of prior distribution is a critical step. Rojas et al. (2009) have shown that, in a

multi-model framework, the posterior plausibility of the various conceptual models heavily de-

pends on the prior model probabilities. Ideally, an extremely large datasets could be acquired

to eliminate the influence of the choice of prior. This is unrealistic for groundwater applica-

tions due to the large number of uncertain parameters and to the sparsity of data. A possible

strategy is to elicit experts’ opinion to try to identify a reliable prior. However, incorporation

of soft data is not without danger as Freni and Mannina (2010) have shown in the context of

storm water quality: incorporation of weak information (mostly coming from literature or other

model applications) may lead to wrong estimations of uncertainty in modelling results. The

preferred approach remains to choose a non-informative prior (such as uniform distribution)

arguing that the incorporation of the data will dominate the posterior distribution (Kavetski

et al., 2006).

The likelihood function is defined by the error model selected for the analysis (Kavetski
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et al., 2006). Yustres et al. (2012) remark that the correct construction of the likelihood function

and the identification of the sources of uncertainty [...] are essential to carry out a meaningful

analysis. A metric is required to quantify the discrepancy (or misfit) between simulated and

observed data. The most common choice is to assume that the misfit dominates other sources

of errors and that errors are Gaussian (see section 1.5).

Beside the problems related to the choice of prior and likelihood distributions, the main

limitation of Monte Carlo approaches stems from the computational cost of simulating the

flow responses particularly in presence of complex physical processes. While the convergence

of Monte Carlo (or Monte Carlo Markov Chains) is guaranteed only asymptotically, in practice

MC can be expected to reach convergence after 103−104 iterations depending on the difficulty

of the problem (Ballio and Guadagnini, 2004), and MCMC after 105 iterations (e.g. Hassan

et al., 2009). The evaluation of the flow solver is necessary at each iterations (i.e for each

generated geostatistical realizations) resulting in an intractable computational cost.

1.4 How to limit the cost of the flow simulations

Several strategies have been developed to reduce the computational cost of flow simulations.

A classical approach is to reduce the size of the problem by using upscaling methods (Wen

and Gómez-Hernández, 1996; Renard and de Marsiliy, 1997; Christie, 1996; Durlofsky, 2005).

Instead of describing the porous media properties at fine-scale, the properties are averaged to

obtain a description at a coarser scale, hence leading to a smaller number of unknowns for

which the flow and transport equations have to be solved. However, the coarsening strategy

has to be devised with care to accurately model the behavior of the media. More sophisticated

methods were introduced to face this issue, such as the Multi-scale Finite Volume method

(MsFV, Jenny et al. 2003), in which a set of small local problems with fine scale resolution are

coupled through a global coarse-scale problem. This approach, however, is subject to approx-

imation errors. Two different strategies can be devised to reduce the potential bias: add an

iterative correction to reduce the localization error and converge to the true solution (Lunati

et al., 2011) or construct error models to correct the bias (see chapter 2).

Another strategy is to opt for an approximate flow solver (or proxy) in place of a more

complete physical description of the processes (see, e.g., streamline simulations, Aarnes et al.,
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2005). If simplification are too crude, the approximate responses cannot be used directly to

perform inference. In the context of uncertainty propagation, the approximate solver is most

often used to identify a subset of realizations for which the complex model is run. This is the

case, for instance, in dynamic ranking methods (McLennan and Deutsch, 2005), or distance

kernel methods (Scheidt and Caers 2009a, more details in 2.4.2). However, as the identification

of the subset of realizations is based solely on the proxy responses, the informativeness of the

proxy should be assessed in order to prevent a biased subset selection if the proxy is weakly

informative of the sought responses, or, on the contrary, to avoid a loss in information if the

quality of the proxy is good (see chapter 2).

The last strategy consists in using surrogate models (Razavi et al., 2012), where, from

a learning set of realizations for which the flow responses are known, an analytical model is

devised to find the mapping between the input parameters and the quantity of interest (such

as the misfit or the flow response). The most common example is polynomial chaos expansion

(PCE, Xiu and Karniadakis, 2002; Zeng et al., 2012; Elsheikh et al., 2014). An issue with sur-

rogate models is the parameterization of the permeability field, because an analytical model

using all grid cells permeability values as inputs would be under-determined. A solution is

to perform a Karhunen-Loève expansion of the field ensemble and to project each realization

on this basis (Elsheikh et al., 2014). While this may work well for lognormal random fields,

it is not appropriate for more realistic representation of the permeability. A second limita-

tion is that surrogate models often consider the prediction of scalar quantities such as the

response surface (e.g., oil in place in petroleum engineering applications, or more directly the

misfit between observed and generated data), rather than time dependent quantities (e.g., oil

or water extraction rates). In addition they are only appropriate when the scalar response

varies smoothly in the parameter space. In a Bayesian inference context, PCE is useful to

provide a first estimate of the generated realizations at virtually zero computational cost once

the prediction model has been devised. Recent application can be found in Zeng et al. (2012)

for the determination of a contaminant source in a MCMC framework and in Elsheikh et al.

(2014) where a generalized polynomial chaos is coupled with Nested Sampling.

The previously mentioned strategies are all subjected to limitations and prone to errors:

upscaling methods might smooth permeability loosing resolution to describe preferential paths

or flow barriers; approximate models may be too simplistic to enable inference; and surrogate
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models are appropriate only for relatively smooth problems. To obtain a reliable prediction of

the uncertainty it is necessary to combine approximate models, which allows the evaluation of

numerous realizations, with error models that correct the bias introduced by the approxima-

tions.

1.5 Model errors and error models

We first define the type of errors that we are considering.

1.5.1 Model errors

Many examples of model errors can be found in the literature (e.g., Kennedy and O’Hagan,

2001; Carrera et al., 2005; Kavetski et al., 2006; Yustres et al., 2012; Zhou et al., 2014). Here,

we follow the terminology introduced by Christie et al. (2005), who identifies three types of

errors: inaccuracy in the input data (e.g., permeability values), inaccuracy in the physical

description (e.g., perfect tracer transport assumptions) and errors stemming from the solution

strategies (e.g., numerical and discretization errors).

Another source of uncertainty is the conceptual uncertainty (Yustres et al., 2012), which

can be seen as arising from erroneous conceptual models. For instance, rather than the un-

certainty associated with the distribution of the width of a channel, conceptual uncertainty

relates to establishing whether channels are actually present. Another example would be to

determine the number of facies necessary to describe the geology of the aquifer. Taking into

account the conceptual uncertainty is of tremendous importance to avoid the risk of wasting

generated realizations that will rarely or never match the data. The Bayesian framework of-

fers a mean to compare the different designed scenarios S1, S2, ... corresponding to different

conceptualizations. The probability of explaining the observed phenomenon can be quantified

by the evidence of each scenario,

ZSi =

∫
p(d|mSi)p(mSi)dmSi , (1.7)

where the integral is taken over all the possible models following the scenario Si, and
ZSi∑
i ZSj

is the probability associated with the scenario Si. The evaluation of ZSi in eq. 1.7 requires a

Monte Carlo approach to compute the integrals, and many flow simulations have to be per-
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formed.

The last type of errors is experimental. While not directly associated to the simulation

process, no simulation can be done without comparison to actual measurements that are prone

to errors. Whether the data is used as input or for model calibration, these errors have to be

taken into account.

1.5.2 Review of error models

The objective of error modeling is to provide a thorough analysis of the errors and establish

confidence in the predictions. Error models are crucial in balancing accuracy and computa-

tional cost. While this is widely acknowledged (Kennedy and O’Hagan, 2001; Carrera et al.,

2005; Kavetski et al., 2006; Yustres et al., 2012; Zhou et al., 2014; Christie et al., 2005), few

studies address the question explicitly. However, inverse modelling (Bayesian or not) always

requires a measure to compare simulated to observed data, and it is never assumed that the

model is exempt of inaccuracies.

Error models aims at describing and quantifying the errors that are due to the modeling and

data acquisition. More specifically, we refer here to the error model underlying the definition of

likelihood. A complete description of the errors would require separating the different sources

of error. This is arduous as an accurate evaluation of parameter error requires knowledge of

perfect model and vice versa (Gaganis and Smith, 2001). Additionally, due to non-linearities

of many groundwater problems, an evaluation of the joint effects of the source terms is nec-

essary. To overcome these difficulties, it has been suggested to consider that modelling errors

can be treated as measurement errors (see argumentation in Beven, 2006). The general trend

seems to assume Gaussianity and additivity of the sources. In a MCMC set-up, the likelihood

is, to our knowledge, systematically defined assuming Gaussian errors and choosing the pa-

rameters according to the quality of the measurements, hence supposing that measurement

errors dominate (Zeng et al., 2012). Recent investigations have shown that simulation errors

may not follow a normal distribution, especially when drastic approximations of the physical

processes are introduced (Köpke et al., 2014). In addition, conceptual errors may be more

significant than measurement errors, and yet not described by Gaussian processes (Keating

et al., 2010). This has been pointed out by Beven (2006), who advocates that model errors can
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be assimilated to measurement errors assuming that the chosen distributional form is correct.

In recent years, error modeling has gone a step further and a correction of the error has been

proposed. When CPU limitations impose a crude simplification of the model, error models

are necessary to correct the bias introduced by the approximate physics or the solution errors.

Hereafter, we detail four examples that illustrate the various strategies. We do not aim at

providing an exhaustive review of correcting error model, but we remark that few examples

can be found in the literature.

O’Sullivan et al. (2005) and O’Sullivan and Christie (2006a) have studied a test case in

petroleum engineering, in which the objective is to calibrate the parameter of the fluid (the oil

viscosity) to the production data. They highlight that the exclusive use of an upscaled model

results in a biased estimation of the oil viscosity. They devised an error model by computing

the fine-grid and the upscaled solutions for several values of viscosity to estimate the error.

The error is then linearly interpolated to intermediate viscosity values and used to correct new

upscaled simulations.

Another example in petroleum engineering is introduced by Scheidt et al. (2010) to account

for upscaling errors during calibration of the permeability field. A distance metric is used to

cluster reservoir realizations on the basis of the upscaled response. Fine-scale simulations are

run for a realization subset and the observed errors are then applied to correct the approxi-

mation of each realization in the cluster. Due to the rather crude results, the error model is

used only to guide the exploration of the parameter space, while the calibration is still being

performed using fine-scale simulations.

Following a suggestion by Cui et al. (2011), Laloy et al. (2013) used a surrogate model

(generalized Polynomial Chaos, gPC) together with an error model to reduce the computational

cost of MCMC. Their error model is rather simple: the discrepancy between the approximated

and exact misfit at the previous iteration is used to correct the result of the successive gPC

prediction. This methodology is limited by the strong assumptions on the smoothness of the

problem, both for the error model and gPC construction.

A very promising approach has been proposed by Ginsbourger et al. (2013), who used a

proxy, together with a surrogate model (or “metamodel”), in a model calibration context. The

metamodel relates the proxy response to the misfit using kriging method. While this does not

allow the correction of the proxy response per se, the kriging metamodel provides an estimate

of the misfit and its variance. This allows the computation of the Expected Improvement
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criterion, which determines the regions of the parameter space that are of interest.

1.6 Objective

The general objective of the present study is to suggest a new framework to reduce the compu-

tational costs required by flow simulations in a stochastic context. We do not aim at devising

alternatives to the methods proposed in section 1.4, which focus on limiting of the cost of the

individual simulation, but rather at facilitating stochastic approach by reducing the CPU cost

of the ensemble of flow simulations. Combining simplified and surrogate models with error

modeling, we propose a purpose oriented approach in a machine learning context.

The thesis consists of four chapters. In chapter 2, the central concepts of the methodology

are laid out: the use of the information from both the proxy and exact flow simulation is

maximized to increase both accuracy and robustness of uncertainty propagation techniques.

In chapter 3, this strategy is formalized in a more rigorous mathematical framework by making

use of functional data analysis tools (Ramsay, 2006) to build a regression model between proxy

and exact solvers as error model. In chapter 4, we present a new application of the error

model in a Bayesian inference context by combining the error model with a two-stage MCMC

algorithm (Efendiev et al., 2005; Christen and Fox, 2005). Finally, in chapter 5, we present

an attempt of devising a fully automated procedure by proposing an iterative construction

of the error model. Throughout the thesis, various applications are considered as test cases.

For instance, solute transport (chapter 2), a two-phase contamination (chapters 3 and 5), an

history matching (chapter 4), and a saline intrusion problem (chapter 5). The thesis concludes

with an overview of the potential outlooks for the proposed methodology.
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2.1 Abstract

In groundwater applications, Monte Carlo methods are employed to model the uncertainty

on geological parameters. However, their brute-force application becomes computationally

prohibitive for highly detailed geological descriptions, complex physical processes, and a large

number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering

the realizations in a multidimensional space based on the flow responses obtained by means

of an approximate (computationally cheaper) model; then, the uncertainty is estimated from

the exact responses that are computed only for one representative realization per cluster (the

medoid). Usually, DKM is employed to reduce the space of uncertainty and decrease the size

of the ensemble of realizations that are considered. We propose to use the subset of exact

solutions provided by DKM to construct an error model and correct the potential bias of the

approximate model (here the Multiscale Finite Volume method (MsFV) is considered). We

devise two error models that employ the difference between approximate and exact medoid

solutions, but differ in the way medoid errors are interpolated to correct the whole ensemble

of realizations. The Local Error Model (LEM) rests upon the clustering defined by DKM

and can be seen as a natural way to account for intra-cluster variability; the Global Error

Model (GEM) employs a linear interpolation of all medoid errors regardless of the cluster

to which the single realization belongs. These error models are evaluated for an idealized

pollution problem in which the uncertainty of the breakthrough curve needs to be estimated.

For this numerical test case, we demonstrate that the error models improve the uncertainty

quantification provided by the DKM algorithm and are effective in correcting the bias of the

estimate computed solely from the MsFV results. The framework presented here is not specific

to the methods considered and can be applied to other combinations of approximate models

and techniques to select a subset of realizations.

2.2 Introduction

In groundwater applications one has to deal with an incomplete characterization of the aquifer:

only sparse and uncertain measurements of the properties dictating the flow response is usually

available. To account for this partial information, Monte Carlo methods are employed (Dagan

2002), which treat aquifer parameters, and in particularly the permeability (or equivalently

the hydraulic conductivity), as stochastic variables. Several realizations of the permeability
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field, conditioned on the available data, are generated and the uncertainty is estimated from

the variability of the responses obtained from different realizations. Despite the conceptual

simplicity of this approach, the geostatistical representation of the uncertainty is rarely suffi-

cient for realistically complex problems due to the large number of realizations required and

the consequent prohibitive computational costs.

One possible strategy to overcome this issue is to employ approximate models that are less

computationally expensive. Since in many applications large geological models are considered

to describe the aquifer with high spatial resolution, one of the most effective techniques is

to upscale the permeability on a coarser grid and solve reduced models. Several classical

techniques exist at this end (Wen and Gómez-Hernández 1996; Renard and de Marsiliy 1997;

Christie 1996; Durlofsky 2005); more modern multiscale approaches have been developed in

the last decade that allow a better representation of the fine-scale details of the permeability

field which are described by means of local numerical solution (Hou and Wu 1997; Arbogast

2002; Aarnes et al. 2005; Jenny et al. 2003).

The Multiscale Finite Volume (MsFV) method (Jenny et al. 2003) belongs to the latter

group and has demonstrated great flexibility in modeling physically complex flows (Jenny

et al. 2006; Lunati and Jenny 2006, 2007, 2008; Hajibeygi and Jenny 2009; Jenny and Lunati

2009; Künze and Lunati 2012a). The accuracy of the MsFV method has been studied in a

deterministic context and evaluated in terms of the ability to mimic the solution provided by

the exact model in a single realization. This has fostered the development of several iterative

strategies aimed at reducing these differences, which might be large in case of particularly

challenging problems (Hajibeygi et al. 2008; Lunati et al. 2011; Zhou and Tchelepi 2012;

Künze and Lunati 2012a; Hajibeygi et al. 2012). In a stochastic context, however, a high level

of accuracy might not be necessary because the goal is not to model each realization exactly,

but simply to represent the variability of the ensemble of solutions (Chen and Durlofsky 2008;

Chen et al. 2011; Aarnes and Efendiev 2008). As all methods that provide an approximate

and relative inexpensive solution, the MsFV method is well suited to be applied in a stochastic

context.

Another strategy to limit the computational cost of Monte Carlo approaches is to reduce the

number of realizations for which the exact model is solved to estimate the uncertainty. Several

methods exist to determine an optimal subset of realizations and coarsen the stochastic space.

Some ranking methods classify the realizations based on static criteria such as geostatistical

measures of connectivity or conductivity (McLennan and Deutsch 2005). As they do not
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exploit information about the flow response, these methods are extremely efficient in terms of

computational costs but have limited accuracy, which may result in a biased estimate of the

uncertainty. Accuracy can be improved by using methods that sort the realizations based on a

measure that depends on the flow response, such as in dynamic ranking methods (Ballin et al.

1992) or in the Distance Kernel Method (DKM) (Scheidt and Caers 2009a,b). While those

approaches lead to much better results as they can be tailored to the question of interest, the

problem remains of being able to inexpensively compute the dynamic measure.

In this paper, the MsFV method and the DKM are combined. However, rather than simply

employing the MsFV method as approximate model to compute the dynamic measure in the

DKM, the approximate MsFV solutions are used to obtain a first estimate of the uncertainty.

The DKM selects a subset of realizations for which the exact model is solved; then, an error

model to correct the potential bias of the MsFV estimate is constructed from the difference

between the exact and the approximate solutions, which are available for the subset. Here, the

ranking technique is used not solely to reduce the number of flow simulations, but rather to

provide a representative subset of exact solutions to be compared to the approximate solutions.

Note that whereas ranking techniques, or methods like DKM, make in general no direct use

of the dynamic measure, in our approach this information is further exploited to construct an

error model with negligible extra costs.

The paper is organized as follows: after a brief problem statement, we review the MsFV

method and the DKM; then we present two error models that are devised by combining MsFV

and DKM; finally, we present a thorough evaluation of the error models for a numerical test

case that is representative of fluvio-glacial aquifers. The paper ends with some concluding

remarks and perspectives for future development.

2.3 Problem statement

Here we consider the problem of predicting the breakthrough curve of a contaminant, which

behaves as an ideal tracer (i.e., it does not alter the density and the viscosity of the fluid).

The evolution of the contaminant concentration in the aquifer, c, is described by the following

system of equations:

∇ · (K∇h) = 0 (2.1)

φ
∂c

∂t
+∇ · (cu−D∇c) = 0 (2.2)
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where

u = −K∇h, (2.3)

is the Darcy velocity; K the hydraulic conductivity (which is obtained dividing the permeability

by the water viscosity); φ the porosity; and D the hydromechanical-dispersion tensor, which

includes the effects of molecular diffusion and dispersion. When appropriate boundary and

initial conditions are assigned, the system above can be solved and the breakthrough curve at

the location of interest can be computed as a function of time, C(t).

The solution strongly depends on the structure of permeability and porosity fields (Lunati

and Kinzelbach 2004), which are usually not fully characterized on the basis of experimental

observations. To model the uncertainty on these parameters, Nr realizations are generated,

{Ki, φi}i=1,2,...,Nr , which represent the variability of the properties due to the limited char-

acterization of the aquifer. To evaluate the propagation of this uncertainty to the quantity

of interest, flow and transport problems are solved in each realization and the breakthrough

curve is computed, Ci(t). (Here, initial and boundary conditions are treated as determin-

istic variables). The set of curves, {Ci(t)}i=1,2,...,Nr , obtained by these procedures, allows a

characterization of the uncertainty on the breakthrough curve conditioned to the set of re-

alizations that have been generated. In the following we are concerned with the problem of

reducing the computational cost of these procedures, which can become prohibitive in pres-

ence of many geological realizations containing a large number of cells and involving complex

physical processes.

2.4 Methodology

There are two natural strategies to overcome this issue: one is to use an approximate model

that reduces the cost of computing a set of (approximate) curves {Cai (t)}i=1,2,...,Nr ; the other

is to reduce the dimensionality of the stochastic space and consider only a subset of Ns < Nr

realizations with breakthrough curves, {Ci(t)}i=1,2,...,Ns . Both strategies, however, might lead

to biased predictions of the uncertainty.

The main idea of the present work is that the bias can be reduced by a combination of

these two approaches. In the DKM, for instance, approximate models are used only to select

the subset of realizations, {Ki, φi}i=1,2,...,Ns , on the basis of their flow response. However,
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these approximate solutions can be used to estimate the variability neglected by the subset

selection. On the other hand, the exact-model responses calculated for the selected realizations

can be used to construct an error model and reduce the bias of the uncertainty estimated by

the approximate model. In this paper we are precisely concerned with the problem of devising

a methodology which allows an optimal exploitation of the information contained in the two

sets of curves, that is {Cai (t)}i=1,2,...,Nr and {Ci(t)}i=1,2,...,Ns .

2.4.1 The Multiscale Finite Volume (MsFV) method

The approximate model employed in this study is the MsFV method, which has been devised to

efficiently solve the flow problem, Eq. (2.1), and deliver an approximate but fully conservative

velocity field that can be used in the transport equation without introducing mass-balance

errors (Jenny et al. 2003; Lunati and Jenny 2006). Although extensions of the MsFV method

have been proposed in the past to solve the transport problem (Lee et al. 2009; Künze and

Lunati 2012a), here the MsFV method is employed only to solve the flow problem, whereas

the transport problem is solved exactly.

We use the operator formulations employed in Lunati and Lee (2009) to briefly present the

MsFV method. First, we introduce the discrete form of Eq. (2.1)

Ah = r, (2.4)

where h is the vector of the unknown hydraulic heads; A is the coefficient matrix, which

depends on the hydraulic conductivity K; and r is the vector containing the information

about the boundary conditions. In addition to the fine-scale grid introduced to define Eq.

(2.4), the MsFV method employs two auxiliary coarse grids: a (primary) coarse grid and the

corresponding dual (coarse) grid, which are represented in Fig. 2.1.

The main idea of the MsFV method is to approximate the hydraulic head by means of a

set of interpolators, which are local numerical solutions computed on the cells of the dual grid,

that is

h ≈ hms = Bhn + Cr, (2.5)

where B is the basis-function operator, whose columns interpolate the hydraulic head, hn, at

the node of the dual grid (which are at the centers of the coarse grid, see Fig. 2.1) to the

fine-scale grid; C is the correction function operator, which accounts for the local effects of r
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Figure 2.1: Representation of the auxiliary coarse grids used in the MsFV method. The
dual (coarse) grid (red lines) is used to construct a set of local interpolators, which are local
numerical solutions, whereas the cells of the (primary) coarse grid (white lines) serve as control
volumes to build a coarse problem that defines the coarse-scale unknown at the nodes of the
dual grid, or centers of the coarse grid (blue circles). Once the coarse solution is obtained, the
interpolator can be used to obtain an approximate fine-scale solution.

and can be regarded as a source-term interpolator. In the MsFV method errors are introduced

by the localization assumptions that are required to assign the boundary conditions of the

local problems and compute basis and correction functions. Depending on flow conditions and

on medium heterogeneity, localization might prevent a faithful description of long-correlation

structures as channels or flow barriers (Lunati and Jenny 2004, 2007; Lunati et al. 2011).

The node hydraulic head, hn, is solution of the coarse equation

Mnnhn = (χAB)hn = χ(I−AC)r, (2.6)

which is obtained by imposing the mass balance on the cells of the coarse grid (which serve as

control volumes), that is by applying to Ahms = r the summation operator, χ, which sums up

all fine-cell values belonging to the same coarse cell and is the discrete analogous of control-

volume integration. The computational advantage of the MsFV method stems from the fact

that a large problem, Eq. (2.4), is split into a set of small local problems (which are solved to

construct B and C), and a coarse problem, Eq. (2.6), whose coefficient matrix, Mnn = χAB,

is smaller than the original matrix, A.

Once the approximate pressure solution, hms, is obtained, a fine-scale conservative velocity

field is constructed by solving a second set of local problems on the cells of the coarse grid and

used in the transport equation. We refer to the existing literature for further details on the
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MsFV method (Lunati and Lee 2009 and references therein). Here, we simply remark that this

framework offers great flexibility to implement several adaptive strategies: the MsFV method

can be seen as a numerical upscaling procedure, if the fine-scale velocity is not reconstructed

and the transport is solved on the coarse grid (Lee et al. 2009; Künze and Lunati 2012a);

as an iterative linear solver, if a procedure is introduced to iteratively correct the boundary

conditions of the localized problems (Hajibeygi et al. 2008; Lunati et al. 2011; Zhou and

Tchelepi 2012); or as a downscaling method, if the original grid is taken as the coarse grid

(Künze and Lunati 2012a). Here, we use the MsFV method (with construction of a conservative

velocity) as approximate model to compute a velocity field in each geostatistical realization;

then, the MsFV approximate velocity is used in the transport equation, Eq. (2.2), to obtain

a set of approximate breakthrough curves {Cmsi (t)}i=1,2,...,Nr , which can be used to estimate

the uncertainty.

2.4.2 Distance Kernel Methods (DKM)

DKM (Scheidt and Caers 2009a,b) is an alternative to traditional ranking techniques to select

a subset of realizations that preserves the uncertainty spread of the sample. Dynamic ranking

techniques (Ballin et al. 1992) sort realizations based on the responses of an approximate

model and solve the exact model only for a subset of realizations that correspond to the

desired quantiles. DKM, instead, employs the approximate information to quantify similarities

between geostatistical models and selects a subset aiming at reproducing the same statistics as

the full set of realizations. The first step is to compute a distance matrix d (a square matrix

of size Nr×Nr), which measures dissimilarity between realizations from the approximate flow

responses. Here, the distance between two realizations, i and j, is defined as the l2-distance

between their breakthrough curves

dij =

√√√√ nt∑
t=1

[Cmsi (t)− Cmsj (t)]2 (2.7)

where Cmsi (t) is the curve obtained using MsFV as approximate model, and the sum is taken

over all nt discrete times at which the concentration is recorded (in our case the nt time

steps of the simulation). Eq. (2.7) naturally defines a multidimensional space, S, where each

realization is represented by a point and the distance between points is proportional to their

dissimilarity in term of breakthrough response. It is natural to attempt to coarsen the space of
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uncertainty by grouping the realizations into Ns clusters based on their distances and assume

that each cluster, Γk, can be represented by a representative realization (e.g., the medoid)

weighted by the number of realizations in the cluster, NΓk .

In DKM the clustering is not applied directly in the original multidimensional space, S,

but a kernel expansion is used to project the points onto a new space (the feature space F)

in the attempt to linearize the space of uncertainty. Although the expansion is associated

with a kernel function of the form κ[Cmsi (t), Cmsj (t)] = 〈ϕ[Cmsi (t)], ϕ[Cmsj (t)]〉, where ϕ is the

mapping function from S to F , the distance matrix in the feature space, dF , can be computed

without an explicit definition of ϕ by using only the scalar product computed by κ. Then the

distance in the feature space is written as

dFij =
√
Kii +Kjj − 2Kij (2.8)

where K is the kernel matrix associated to the kernel function. Among the many possible

choices of the kernel matrix, we use a standard gaussian kernel of the form

Kij = exp

{
−dij2

2σ2

}
(2.9)

where σ is the kernel width parameter.

Based on dF , a k-medoid clustering algorithm (Hastie et al. 2009) is applied to find the

many-to-one mapping, f , that assigns each curve, Cmsi (t), to a cluster (i.e., f(i) = k if Cmsi (t) ∈
Γk). The mapping corresponds to an optimization procedure, which finds

f = arg min
f

∑
i,j:f(i)=f(j)

dFij (2.10)

and minimizes the average intra-cluster distances. In parallel to the definition of clusters, the

algorithm identifies the medoids as the realizations that satisfies

ik = arg min
i:f(i)=k

∑
j:f(j)=k

dFij . (2.11)

The main advantage of k-medoids over k-means is that it does not require to explicitly compute

points in the feature space and employs only the distance matrix in that space (Hastie et al.
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2009). Moreover, k-medoids is not limited to Euclidean distances as k-means. This gives

some freedom in defining the choice of the dissimilarity measure, which can be adapted to the

question of interest.

The medoids define a subset of realizations, {Kik , φik}k=1,2,...,Ns , for which the exact flow

model is solved and a subset of exact curves {Cik(t)}k=1,2,...,Ns is obtained. Classical DKM

uses solely {Ci(t)}i=1,2,...,Ns to compute experimental quantiles (Scheidt and Caers 2009a,b,

2010). This is done by assuming that all the realizations behave as the medoid realization,

which leads to compute the experimental quantiles by weighting the medoid curves by the

number of realizations in their cluster (or in other words, by considering a multiset of medoid

curves, each having multiplicity equal to the number of cluster elements).

2.4.3 Error models

With the techniques described above, two sets of curves can be used to estimate the uncertainty

of the predicted breakthrough curve that is {Cmsi (t)}i=1,2,...,Nr and {Cik(t)}k=1,2,...,Ns . In both

cases, a sample of Nr realizations

{C∗i (t)}i=1,2,...,Nr , (2.12)

is used to compute experimental quantiles. If one choose to use only the approximate curves

MsFV : C∗i (t) = Cmsi (t), (2.13)

the MsFV uncertainty estimation is obtained. Employing the standard DKM is equivalent to

choose

DKM : C∗i (t) = Cik(t), with k = f(i), (2.14)

which construct a multiset where each medoid has multiplicity equal to the number of realiza-

tions in its cluster.

When the DKM is employed, information from approximate and exact responses is available

and can be combined to improve uncertainty quantification at almost zero additional costs.

On one hand, the information contained in the approximate curves can be used to estimate the

intra-cluster variability, which is completely neglected by Eq. (2.14): the variability of cluster

can be represented by the differences between each approximate curve and the approximate

curve of its medoid, Cmsi (t)−Cmsik (t). On the other hand, the exact curves of the medoids can
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Figure 2.2: Starting from an set of geostatistical realizations {Ki, φi}, MsFV simulations are
run to compute a set of breakthrough curves, {Cmsi (t)}. To select a subset of realizations, the
euclidean distance between the curves, Eq. (2.7), is interpreted as a measure of dissimilarity.
After the distance matrix d (Eq. 2.7) is constructed, a kernel method is used to compute a new
distance in a feature space, dF , Eq. (2.8). Based on dF the k-medoid algorithm, Eqs. (2.10)
and (2.11), is used to cluster the realizations and finds a representative realization for each
cluster (the medoid). After exact breakthrough curves are obtained for the medoids, the error
model is constructed and generates the corrected curves, {C∗i (t)}, which are used to compute
the experimental quantiles.

be used to construct an error model aimed at reducing potential biases of the MsFV estimate:

the difference between the exact and the approximate curves of the medoids, Cik(t)−Cmsik (t),

can be used to correct all the curves in the cluster. These conceptually different approaches
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lead to exactly the same corrected curves

C∗i (t) = Cik(t) + [Cmsi (t)− Cmsik (t)] = Cmsi (t) + [Cik(t)− Cmsik (t)] (2.15)

with k = f(i).

An error model of this form has been proposed in Scheidt et al. (2011) to estimate an

upscaling error that is assumed to be the same for all realizations in the same cluster. In Scheidt

et al. (2011), however, the corrected curves are used to generate realizations constrained to

dynamic data. Notice that, if applied directly, Eq. 2.15 might lead to corrected curves that

are unphysical and not constrained between zero and one. This is a severe limitation if the

corrected curves are used to obtain an estimate of the uncertainty. To avoid this problem,

the breakthrough curves are not corrected directly: first a logistic transformation is applied

to all curves, Ĉi = logit−1(Ci); then the transformed curves are corrected, Ĉ∗i ; and finally, the

corrected curves are transformed back via logit transformation, C∗i = logit(Ĉ∗i ). This yields

the Local Error Model (LEM)

LEM: C∗i (t) = C lemi (t) = logit
{
Ĉmsi (t) + [Ĉik(t)− Ĉmsik (t)]

}
, (2.16)

which delivers corrected curves that lay between zero and one.

The error model above, which considers only intra-cluster information, can be readily

extended by considering a set of linear combinations of corrected curves

C∗i (t) =

Ns∑
k

βik{Cmsi (t) + [Cik(t)− Cmsik (t)]}, (2.17)

where the weights, βik, might be chosen to enforce that the corrected curves have some de-

sired characteristics (e.g., that they are constrained between zero and one, or that they are

monotonic). Although the choice of the weighting function might be critical, here we chose a

simple weighting function that depends exclusively on the distance in the feature space

βik =
exp(−dFiik)∑Ns
k exp(−dFiik)

. (2.18)

The underlying assumption is that realizations that are closer in the feature space have more

similar errors. As for the LEM, to guarantee concentration values constrained between zero and

one the logistic transformation used before applying the GEM and the corrected transformed
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curves are then transformed back via a logit transformation. This yields the Global Error

Model (GEM)

GEM: C∗i (t) = Cgemi (t) = logit

{
Ĉmsi (t) +

Ns∑
k

βik[Ĉik(t)− Ĉmsik (t)]

}
, (2.19)

where it is assumed that
∑

k βik = 1, and observed that Cmsi (t) is independent of k.

Eq. 2.19 can be interpreted as an error model for the MsFV method. The exact curves

computed for the Ns medoids are compared with the approximate curves of the medoids, and

their difference is used to correct the approximate solution for each realizations i. Note that

for an arbitrary weight, βik, all the medoid differences are used to correct each approximate

curve. If βik = δi,f(i), the GEM reduces to the LEM and only intra-cluster information is used.

If the constraint
∑

k βik = 1 is relaxed, the MsFV estimate of the uncertainty can be obtained

by choosing βik = 0. A flowchart of the uncertainty analysis proposed here (which combines

MsFV, DKM, and an error model) is presented in Fig. 2.2.

2.5 Numerical results

2.5.1 An idealized pollution problem

The methodology described above is applied to an idealized pollution problem in which the

breakthrough curve of a contaminant has to be predicted. We consider a two-dimensional

section of a confined aquifer of length 10.8 m and depth 5.1 m. The conductivity field, K, is

inspired by the geology of a sedimentary aquifer, typical of braided river deposits. A vertical

section acquired at the Herten site (Germany) (Bayer et al. 2011) is used as an input training

image in the Direct Sampling method (MPDS) (Mariethoz et al. 2010) to perform multiple

point geostatistical simulations and generate 1000 synthetic realizations. The 10 facies of the

original data (Bayer et al. 2011) are reduced to 5 facies by grouping similar lithofacies. The

porosity and of hydraulic conductivity values are reported in Fig. 2.3, together with the facies

distribution of four realizations and the corresponding breakthrough curves.

No-flow conditions are applied at the upper and lower boundary of the domain, whereas

two types of boundary conditions are considered for the left and right boundaries: prescribed

incoming flux (BCF), or prescribed hydraulic-head difference (BCH). The contaminant is re-

leased at the left boundary with normalized concentration c = 1, and the breakthrough curves

are computed by averaging the concentration of the outcoming fluxes at the right bound-
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Figure 2.3: (a-d) Examples of stochastic fields generated by DS (Mariethoz et al. 2010); (e)
Table of the hydraulic conductivity and the porosity of the 5 lithofacies; (f) Breakthrough
curves of the whole set of realization (grey) and of the four fields depicted in a, b, c and d
(colors).

ary. In accordance with realistic natural gradient conditions simulations in which contaminant

transport is dominated by advection (Péclet number Pe > 50) are run.

2.5.2 Application of the methodology

In this section, the methodology outlined in Fig. 2.2 is applied to the idealized pollution prob-

lem. Simulations with the exact model are performed on the full set of realizations and the

variability of the responses, {Ci(t)}i=1,2,...,Nr (Fig. 2.4(a)), is taken has the reference uncer-

tainty to evaluate the performance of the error models. Estimates provided by MsFV and

DKM are also computed to illustrate the improvement achieved by LEM and GEM.

Experimental quantiles are calculated based on the approximate breakthrough curves,

{Cmsi (t)}i=1,2,...,Nr (Fig. 2.4(b)), and provide the MsFV estimate of the uncertainty. Then,

a distance matrix is constructed using MsFV curves and DKM is applied to identified NΓk

clusters and select a subset of realizations. The number of clusters should be sufficient to

capture the error and estimate the desired quantiles, but not too large in order to limit the

26



Local and Global Error Models to improve uncertainty quantification

BCH BCF

a)

re
fe

re
n

ce

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

timesteps

c
o

n
c
e

n
tr

a
ti
o

n

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

timesteps

c
o

n
c
e

n
tr

a
ti
o

n

{Ci(t)}i=1,2,...,Nr

b)

M
sF

V

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

timesteps

c
o

n
c
e

n
tr

a
ti
o

n

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

timesteps
c
o

n
c
e

n
tr

a
ti
o

n

{Cmsi (t)}i=1,2,...,Nr

c)

D
K

M

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

timesteps

c
o

n
c
e

n
tr

a
ti
o

n

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

timesteps

c
o

n
c
e

n
tr

a
ti
o

n

{Cik(t)}ik=1,2,...,NΓk

d)

L
E

M

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

timesteps

c
o

n
c
e

n
tr

a
ti
o

n

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

timesteps

c
o

n
c
e

n
tr

a
ti
o

n {C lemi (t)}i=1,2,...,Nr

e)

G
E

M

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

timesteps

c
o

n
c
e

n
tr

a
ti
o

n

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

timesteps

c
o

n
c
e

n
tr

a
ti
o

n

{Cgemi (t)}i=1,2,...,Nr

Figure 2.4: Ensemble of the breakthrough curves corresponding to each model, for the two
types of boundary conditions: BCH (left), and BCF (right).

computational costs. Although a procedure could be devised to identify an optimal number,

here we simply set NΓk = 20, which corresponds to a coarsening factor of 50 for the uncertainty
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space and allows computing the 10th and 90th percentiles (P10 and P90, respectively) by the

DKM. The identification of the subset is performed in the feature space using a Gaussian-

kernel expansion. After a sensitivity analysis, the width parameter is set equal to the standard

deviation of the distance matrix, which 0.55 and 0.98 for BCF and BCH, respectively. The

clustering is performed only on the base of the kernel matrix and does not require constructing

the feature space explicitly. The k-medoids algorithm is used to identify NΓk medoids for

which the exact responses are computed, {Cik(t)}k=1,2,...,NΓk
.

A two-dimensional representation of the clustering in the feature space is shown in Fig. 2.5.

The realizations seem continuously distributed rather than arranged in well separated clusters.

Although this might be partially due to the two-dimensional visualization of the feature space,

the fact that clusters are not well defined is confirmed by the instability of the clustering al-

gorithm: different initializations of the algorithm (which require an initial guess on the NΓk

medoids) lead to different cluster repartitions and different uncertainty predictions, indepen-

dently of the kernel width choice. A set of exact breakthrough curves obtained for one of the

cluster repartitions, {Cik(t)}k=1,2,...,NΓk
, is shown in Fig. 2.4(c).

The approximate curves for the entire set of realizations and for the medoid exact response

are then used to construct the error model. Here our approach differs from the standard DKM,

which estimates the quantiles based exclusively on the subset of exact curves and does not make

any direct use of the set of approximate curves. In contrast, we use the differences between the

approximate and exact medoid responses to correct the entire set of approximate curves, which

is then used to estimate the quantiles. In the LEM the responses are corrected using only local

(intracluster) information and the set of curves {C lemi (t)}i=1,2,...,Nr (Eq. (2.16), Fig. 2.4(d)) is

used to compute the quantile. In the GEM the responses are corrected globally, regardless

to the cluster to which they belong, and the set of curves {Cgemi (t)}i=1,2,...,Nr (Eq. (2.19),

Fig. 2.4(e)) is obtained. Notice that few outliers are not effectively corrected due to the

limited coverage of the extreme regions by the set of medoids. As it will be seen in the next

section, this few outliers do not sensitively affect the estimate of P10, P50, and P90. However,

in cases where uncertainty on extremes needs to be quantified, a different strategy has to be

used to identify the subset of realizations used to construct the error models and extreme

regions have to be more densely sampled. Note that due to the non-clear repartitions of the

realizations into well defined clusters, this global model is more consistent with the data and

it is expected to lead to more stable uncertainty estimations in terms of dependency on the

initial medoids guess.
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Figure 2.5: A two-dimensional representation of the feature space for BCH on the left and
BCF on the right. Each dot is a realization, and each color represent a cluster. The realizations
represented by a square are the medoids defined by the clustering algorithm, for which exact
simulation are run. Note that this representation is obtained by the Multidimensional Scaling
(Borg and Groenen 2005; Cox and Cox 2008; Scheidt and Caers 2009a), which is used here for
visualization purposes only.

2.5.3 Comparison of quantile-curve estimates

In general, the characterization of uncertainty is done on the basis of a limited number of

experimental quantiles; here we consider the 10th, 50th and 90th percentiles (P10, P50, and

P90, respectively). Figs. 2.8 and 2.9 compare the three quantile curves obtained with the

four models (MsFV, DKM, LEM and GEM) with the reference quantile curves for both sets

of boundary conditions. Notice that due to the instability of the DKM algorithm, which

depends on the initial guess on the medoids, very different quantile curves can be obtained

with DKM, LEM, and GEM. Here we present the comparison for an initialization with yield

an average performance, whereas the variability in model response due to the stability of DKM

is investigated in the next section.

For BCF, MsFV provides a good measure of the statistical variability but tends to slightly

underestimate contaminant concentration of about 4.5% at early times (note that the concen-

tration will be overestimated at later time due to the constraint that the approximate MsFV

solution is conservative and therefore the mean arrival time of the contaminant must be exact

with this type of boundary conditions). DKM leads to curves that are less smooth due to the

reduction of statistical space, which deteriorates the estimates of quantile curves; the average

maximum fluctuations are of the order of 3%. LEM provides smoother curves than DKM,

whereas GEM gives an excellent estimation of the uncertainty (average maximum fluctuations
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LEM and GEM are of 1.8% and 1.5% respectively). MsFV bias is effectively corrected and

the uncertainty is correctly represented by the MsFV approximate curves.

For BCH, MsFV quantile curves are in good agreement with the reference (maximum dif-

ference between the curves is of 5.2%). DKM estimate is less good and the 20 exact medoid

responses provide a worst uncertainty estimate than the set of approximate responses (fluc-

tuations of 6.1%). This shows that in some case DKM can lead to a deteriorated prediction

of approximate solutions on which it is based. LEM also smooths the DKM estimation for

this set of boundary conditions, but P10 and P90 remain underestimate (averaged maximum

fluctuations of 4.3%); GEM leads again to an excellent estimate (3.3%).

2.5.4 Quantification of the quality of the estimate and stability

To illustrate the dependence of clustering on the initialization, DKM, LEM, and GEM are

applied 500 times time with a different initial guess of the medoid set (seed). The overall

quality of the different models is evaluated by considering the l2−norm of the quantile error

l2 :

√∑
t

(PT (t)− PE(t))2, (2.20)

where PT (t) is the reference quantile curve and PE(t) is the estimated quantile.

P10 P50 P90
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

MsFV

DKM

LEM

GEM

P10 P50 P90
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

MsFV

DKM

LEM

GEM

Figure 2.6: Errors on the quantile curves measured by the l2-norm between the models and
the reference curves. The bar plots represent the mean error of each method for each quantile
curve. The error bars show the 80% confidence interval obtained for 500 results computed
with different seeds. BCF is shown on the left and BCH on the right. Results for the l∞-norm
are shown in Fig. 2.7.

Figs. 2.6 and 2.7 shows the errors for the two set of boundary conditions and for the 500
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Figure 2.7: Errors on the quantile curves measured by the l∞-norm between the models and
the reference curves, for BCF (left) and BCH (right).

seeds. For each quantiles, the mean error of each method is represented by a bar plot, whereas

the error bars represent the 80% confidence interval (i.e., the interval in which one finds 80%

of the 500 results obtained with different seeds). These plots clearly show that the DKM

error can be much larger than what observed in Figs. 2.8 and 2.9, which correspond to an

initialization leading to an error close to the mean of the results from the 500 initializations.
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Figure 2.8: Quantiles curves estimated by MsFV (blue), DKM (green), LEM (yellow), and
GEM (red) for the BCF.

For BCF, DKM performs, in average, better than MsFV for P50 and P90. MsFV responses
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Figure 2.9: Quantiles curves estimated by MsFV (blue), DKM (green), LEM (yellow), and
GEM (red) for BCH

provide an accurate selection of representative realizations, but yield a relatively poor estimate

of the uncertainty due to the systematic underestimation of the concentration (see Fig. 2.8).

However, DKM shows a large variability depending on the initialization of the clustering

algorithm and for some seed can lead to larger errors than MsFV (1.7 times higher for P10 in

10% of the cases). LEM and GEM result in a much better estimate and lead to a considerable

reduction of the dependency on the initialization of the algorithm. GEM performs better than

LEM on both aspects (although for P90 GEM shows a slightly larger seed dependency).

For BCH, the MsFV estimate yields a sensibly lower error than the one obtained by DKM,

and this despite the fact that information from 20 exact simulations is used in DKM. This is

likely due to the large instability of the clustering algorithm that can lead to very unreliable

estimates. This example clearly demonstrate how dangerous could be to rely only on medoid

information, thus on an extremely small stochastic space, for estimate P10 and P90. The error

models can correct this problem and lead to a better estimate than MsFV for GEM. For P90,

one can observe a dramatic reduction of the seed dependency with respect to DKM, whose

upper bound of the 80% confidence interval lays at 0.57; LEM reduces this to 0.39 and GEM

to 0.16.

In conclusion, MsFV provides a good estimate of the statistical variability but tend to
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present some systematic bias. DKM provides a good subset of representative realizations, but

is strongly affected by the reduction of statistics. Both error models improve substantially the

quantification of uncertainty by combining the whole available information. They both lead to

a reduction of dependency on the algorithm seed; and GEM provides an excellent and much

more stable estimate in both situations.

2.5.5 Cumulative distribution function at a given time step
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Figure 2.10: CDF of contaminant concentration at time step t = 70 for BCF.

Finally, we consider the estimated Cumulative Distribution Function (CDF) at two time

steps: t = 70 for BCF (Fig. 2.10), and t = 14 (Fig. 2.11) for BCH, respectively. The CDFs in

Figs. 2.10 and 2.11 refer to a single initialization (seed) of DKM, which has been chosen to

be representative of the average result. Depending on the cluster initialization, however, the

quality of the DKM results would be different.

For fixed-flux boundary conditions (BCF), one can observe a systematic shift of the MsFV

CDF towards smaller concentrations; whereas for fixed-head boundary conditions (BCH), the

MsFV CDF is close to the reference. Depending on the percentile, the error of the DKM

estimate could be as high as 5% of concentration for BCF and 12% for BCH. The DKM CDF

exhibits a staircase behavior, which is the result of the clustering and the subsequent reduction
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Figure 2.11: CDF of contaminant concentration at time step t = 14 for BCH.

of the number of realizations used to compute the CDF: the DKM estimate employs only the

NΓk medoid curves and neglects intra-cluster variability. This problem can be overcome by

using the LEM or the GEM which construct a sample containing the same number of realiza-

tions as the original set, {C lemi (t)}i=1,2,...,Nr. As a consequence a smooth CDF is obtained and

the error is reduced. GEM provides an excellent estimate of the CDF for BCF and does just

as well as MsFV for BCH.

2.6 Conclusions

The DKM is applied to estimate uncertainty at lower computational costs than a brute-force

Monte Carlo approach. The method relies on an approximate model to select a subset of rep-

resentative realizations for which the exact model is solved; then, the uncertainty is estimated

only on the basis of the exact-response subset with no additional use of the approximate

solutions. This approach neglects intra-cluster variability, leads to a dimensional reduction

of the statistical space, and provides uncertainty estimates with a lower resolution than al-

lowed by the original set of realizations. For our numerical test case, the DKM is not stable

with respect to the initialization (seed) of the clustering algorithm and that this can lead to

inaccurate predictions: in most critical cases, the DKM can even deteriorate the uncertainty
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estimate provided solely by the approximate solutions. On the other hand, however, using only

the approximate responses obtained with the MsFV method can lead to biased estimates of

the uncertainty due to the localization assumptions, which reduce the accuracy of the solution

in presence of long structures spanning several coarse cells. If this is an issue in a deterministic

context (where iterative schemes are usually required to achieve the desired accuracy), in a

stochastic framework this is a minor problem, which can be solved by means of an error model.

Two error models are devised that aim at exploiting the whole available information and

combine the MsFV approximate responses with the exact responses obtained for medoids

selected by the DKM. Both models employs the difference between approximate and exact

solutions for the medoid realizations, but differ in the way this discrepancy is interpolated to

correct each realization. The LEM applies the same correction to all realizations belonging

the same cluster and can be seen as a natural way to model the intra-cluster variability of

the responses; the GEM corrects each realization by a linear interpolation of all medoid errors

(weighted by a function of the distance in the feature space) regardless to the cluster to

which it belongs. Both models improve the DKM estimate and reduce the dependency on

the initialization of the clustering. The GEM leads to excellent uncertainty estimates and

performs systematically better than the LEM; this is likely due to the fact that a global error

model (which does not rely only on intra-cluster information) is more consistent with the data

considered in this study, which are not separated in clearly defined clusters.

The framework presented here is not specific to the methods considered (namely MsFV

and DKM) but can be applied to other combinations of approximate models and techniques to

select a subset of realizations. For instance, it can be used in a multiphysics context where the

approximate model employs a simplified physical description and an error model is developed to

predict a more complicated physical process (e.g., single phase vs. multiphase flow problems).

Some of the steps can be extended and generalized to ameliorate the reliability of the error

model for challenging test cases. In particular four main improvements can be suggested:

the selection of the representative realizations can be modified to obtain a larger number of

realizations in regions of interest rather than uniformly covering the entire feature space; the

subset of representative realizations could be iteratively enlarged until a number of realizations

is selected that allows the required level of accuracy (note that this would require an a-posteriori

estimate of the accuracy to define the stopping criterion); the weights used in the global error

model can be obtained from the solution of an optimization problem, which can be tailored

to guarantee that the corrected responses satisfy certain physical constraints (this entails a
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more profound re-thinking of all steps to determine the ideal subset); finally, Functional Data

Analysis (FDA) can be used to keep an explicit time dependence and work with breakthrough

curves in a functional space rather than with points in a feature space.
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3.1 Abstract

Approximate models (proxies) can be employed to reduce the computational costs of estimat-

ing uncertainty. The price to pay is that the approximations introduced by the proxy model

can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quan-

tification, we propose to combine Functional Data Analysis and Machine Learning to build

error models that allow us to obtain an accurate prediction of the exact response without solv-

ing the exact model for all realizations. We build the relationship between proxy and exact

model on a learning set of geostatistical realizations for which both exact and approximate

solvers are run. Functional principal components analysis (FPCA) is used to investigate the

variability in the two sets of curves and reduce the dimensionality of the problem while max-

imizing the retained information. Once obtained, the error model can be used to predict the

exact response of any realization on the basis of the sole proxy response. This methodology is

purpose-oriented as the error model is constructed directly for the quantity of interest, rather

than for the state of the system. Also, the dimensionality reduction performed by FPCA al-

lows a diagnostic of the quality of the error model to assess the informativeness of the learning

set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction

of the exact response for any newly generated realization suggests that the methodology can

be effectively used beyond the context of uncertainty quantification, in particular for Bayesian

inference and optimization.

3.2 Introduction

The major challenge in hydrogeology is to deal with an incomplete knowledge of aquifer prop-

erties, which are usually measured only at few, discrete locations. This lack of information

makes it impossible to address hydrogeological problems in a deterministic sense. The prob-

lem is typically stated in a stochastic framework and Monte Carlo simulations are used to

propagate the uncertainty on aquifer properties to the quantities of interest (Dagan, 2002). A

typical example is the prediction of the fate of a contaminant, which depends on the hetero-

geneity structure of the aquifer. The uncertainty on the contaminant breakthrough curve at

a given location is estimated by solving the transport problem in a set of realizations, which

represent the uncertainty on the permeability of the aquifer. The ensemble of the responses

in the different realizations provides a sample of reference of the breakthrough curves.
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Despite the appealing conceptual simplicity of this approach, problems arise when many

realizations have to be considered and a large number of expensive flow and transport sim-

ulations have to be performed: computational cost quickly becomes prohibitive. To avoid

this computational bottleneck, the problem is approximated either by coarsening the descrip-

tion of aquifer properties (standard upscaling techniques can be used to this end (Wen and

Gómez-Hernández, 1996; Renard and de Marsiliy, 1997; Christie, 1996; Durlofsky, 2005)) or

by simplifying the description of the physical processes, thus employing an approximate model

or proxy (e.f., Scheidt and Caers (2009a)).

The price to pay for these simplifications is that inference based on the computed re-

sponses could lead to a wrong uncertainty quantification. If the approximation is physically

motivated, the bias can be safely ignored. Effective computational gains, however, usually

require very crude approximations whose effects on the uncertainty quantification is difficult

to assess beforehand. To avoid this problem, the proxies are typically employed only to iden-

tify a representative subset of realizations for which the exact model is solved. This is the

strategy of ranking methods (McLennan and Deutsch, 2005; Ballin et al., 1992), or distance

kernel methods (Scheidt and Caers, 2009a). In such case, it is crucial to evaluate to which

extent the proxy is informative of the exact model response.

While it is generally acknowledged that an error analysis is necessary (Christie et al.,

2005), it is rarely performed. Although approaches that entail a systematic analysis and the

construction of error models have been applied to flow in porous media (e.g., to correct fluid-

properties approximations (O’Sullivan and Christie, 2006a,b) or approximate numerical solvers

(Josset and Lunati, 2013)), in most cases the appraisal of approximate methods is performed

for a very limited number of test cases, and it is assumed that they behave similarly for a wider

range of applications. This approach is not exempt from problems because the informativeness

of the proxy also depends on flow regimes and on the specific quantities of interest.

In this paper, we propose a novel methodology to systematically build statistical error

models that describe the discrepancy between exact and approximate responses. Once the

error model is constructed, it is used to correct the approximate responses and predict the

responses expected from the exact model for all realizations. A characteristic of our approach

is that the error model is purpose oriented, that is, it is established directly for the quantities

of interest (in our case the breakthrough curve of a contaminant) and not for the state of

the system (for instance, the full saturation -or concentration- and pressure fields). This

reduces the complexity of the data to be handled (e.g., time-dependent curves rather than
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time-dependent fields) while retaining all the relevant information.

Despite some similarities with the error models proposed by Josset and Lunati (2013), two

additional key features characterize the present approach: the description of sparse data as

continuous variables (time-dependent breakthrough curves), and the reduced dimensionality

of the problem that is solved to construct the error model. To this end we employ Functional

Principal Component Analysis (FPCA (Henderson, 2006)), which is a functional extension of

PCA. The theoretical background is provided by Functional Data Analysis (FDA), a discipline

that gathers mathematical tools to construct and treat continuous data. The description of

continuous variables from sparse data is a problem faced in many fields of research and not

only in environmental applications. While functional analysis is well established, FDA has

been integrated as a whole only recently and promoted by Ramsay (2006); Ramsay et al.

(2009). It has since been applied in various areas such as biomedical science, biomechanics,

medicine or linguistic among others. We refer to Ullah et al. (2013) for a recent review of the

application of FDA over the last 20 years. More specifically to the domain of groundwater

protection problem, FPCA has been applied to interpret various contaminant concentrations

in river quality (Henderson, 2006).

The paper is organized as follows. After a general problem statement (Sec. 3.3), we in-

troduce the formalism used and describe the methodology in detail (Sec. 3.4). Then, the

methodology is evaluated for a synthetic test case that represents a typical groundwater prob-

lem (Sec. 3.5). The paper ends with a discussion of the performance and of prospective

applications (Sec. 3.6).

3.3 Problem statement

We consider a contamination problem in which a non-aqueous phase liquid (NAPL) is acci-

dentally released and forms a plume that contaminates the fresh water. We are interested in

predicting the breakthrough curve of the pollutant at a given location (typically a drinking

well or a river that can be contaminated). Examples of NAPL contamination are hydrocarbons

spills, or leakage of chlorinated solvents such as TCE. As the NAPL is not miscible with water

and forms a separate phase, the evolution of the contamination plume is governed by a set

of nonlinear transport equations (Appendix 3.7.1), which complicates both the contaminant

behaviour and the numerical resolution of the equations.

Due to sparse measurements, the properties of the aquifer are only partially known. Their
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uncertainty is represented by a set of Nr geostatistical realizations of the permeability and

porosity fields {Ri}i=1,...,Nr . In brute force Monte Carlo approaches, this uncertainty is prop-

agated by solving the nonlinear multiphase transport model (hereafter “exact model”) and

computing the NAPL breakthrough curve in each realization. Here it is assumed that the

resulting set of curves, {yi(t)}i=1,...,Nr , provides an accurate representation of the uncertainty

on the travel time.

Our goal is to find an approximation of the uncertainty without computing the full set

of exact curves {yi(t)}i=1,...,Nr . To this end we use a simplified model based on the linear

single-phase transport equations (hereafter “approximate model” or “proxy”), which allows

a relatively inexpensive calculation of the approximate breakthrough curves, {xi(t)}i=1,...,Nr .

To provide an accurate approximation of the uncertainty, we need to learn the relationship

between the proxy and the exact responses, such that an exact response can be predicted from

each proxy response.

We formulate this step in a standard machine learning framework: a statistical model

relating the exact response curves (treated as outputs of the statistical model) to the proxy

response curves (treated as inputs of the statistical model) is postulated. The parameters are

estimated based on a learning set (or training set), i.e., a collection of pairs of response curves

obtained with the two models for Nl < Nr geostatistical realizations, {(xi(t), yi(t))}i=1,...,Nl .

The statistical model relating the two sets of response curves (exact and proxy) is here

restricted to the class of functional linear models (Ramsay, 2006), in which the relationships

between the responses is

yi = T (xi) + εi i ∈ [1, . . . , Nr], (3.1)

where T is a bounded linear operator from the Hilbert space L2 to itself, and the error func-

tions εi are centered, independent, and typically assumed to meet further technical conditions

(Cuevas et al., 2002).

Since the identification of such statistical model is ill-posed, in practice further restrictions

on the form of T are introduced to enable inferring T from the learning set. Two methods

are suggested by Ramsay (2006); Ramsay et al. (2009): the full functional regression model

and the Concurrent model. The full functional regression model allows capturing complex

behaviours, but it is costly and requires the fine tuning of several smoothing parameters. The

Concurrent model consists of a simpler functional linear regression. This method is fast, but
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quite rudimentary because the model uses only concurrent features of the curves (additional

details about the two models can be found in Appendix 3.7.2).

In this paper, we follow a slightly different strategy: we appeal to a spectral approach and

decompose the elements of the learning set on two ad hoc bases, one for the proxy and one

for the exact responses. The response curves are then described in two spaces of dimensions

Dex < Nl for the exact responses and Dapp < Nl for the proxy responses. A statistical model

is constructed to relate the coefficients of the elements of one space, yi(t), to the coefficients

of the elements of the other space, xi(t), as illustrated in Fig. 3.1.

Once the approximation T̂ of T is obtained from the learning-set, it is used to predict the

exact responses of all realizations from of the approximate responses, i.e.,

{ŷi = T̂ (xi)}i=1,...,Nr , (3.2)

and the uncertainty is quantified from the ensemble of predicted curves.

a) Proxy space b) Exact space 

error model 

Training set 
Proxy responses 
Exact responses 

Learning set 
Proxy responses 
Exact responses 

Figure 3.1: A statistical model is built on the learning set to relate the coefficients of the
elements xi(t) in the proxy-response space to the coefficients of the elements yi(t) in the
exact-response space. It is used as error model to predict the exact response from the proxy
response.

3.4 Methodology

The construction of the error model consists of four steps: first, functional objects are built

from the data in the learning set; second, the dimensionality of the problem is reduced by

decreasing the dimensions of the two functional spaces; third, the relationship between the

approximate and exact responses is constructed; fourth, the error model is used to predict the

exact responses from the proxy responses. These steps are illustrated in the flowchart in Fig.
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3.2.

learning set of
realisations

construction of the
regression model

run approx. flow
simulations

construction of
functional object

dimension reduc-
tion using fPCA

run exact flow
simulations

construction of
functional object

dimension reduc-
tion using fPCA

new realisation

4. Prediction

3. Evaluation

1. Construction

2. Reduction

run approx.
flow simulation

prediction of the
exact response

Figure 3.2: Flowchart of the methodology. After a learning set of realization has been
constructed by selecting a subset of realizations and calculating pairs of proxy- and exact-
response curves, the exact responses for the realizations that are not in the learning set can be
predicted in four steps: 1. first, the functional objects are constructed by spline interpolation,
2. then, the dimensions of the subspaces of exact and proxy responses are reduced by means
of FPCA, 3. next, a regression model is constructed between the proxy and the exact scores;
4. finally, the regression model is used to predict the exact responses of the realizations that
are not in the learning set.

3.4.1 Recasting discretized curves as functional data

Both exact and proxy responses are obtained from numerical simulations and are represented

by contaminant breakthourgh curves defined at discrete times. Therefore, we recast the time-

discrete curves into time-continuous functions. This has two practical advantages: first, it

allows us to use the formalism of functional data analysis and the tools that have been de-

veloped in this context; second, it permits to work with asynchronous information about the

curves, i.e., curves that have been sampled at different times. Note that this step is essential
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in applications in which analytic solutions are used as proxies or if the exact responses are pro-

vided by field measurements, which are typically acquired with different temporal resolution.

Many functional bases are available to recast discretized curves into functional data. Here,

we use a K-dimensional B-spline basis denoted by {ϕk(t)}k∈[1,K]. To determine the coefficients,

a linear combination of the elements of this basis is fitted to the data, which are represented

as time dependent functions of the form

f(t) =
K∑
k=1

ckϕk(t) (3.3)

Ramsay (2006) suggests two strategies to choose the basis and fit the coefficients to data:

either a low-dimension basis is used and the data are plainly projected (e.g., by ordinary least

squares), or a high-dimension basis is used with a roughness penalty to mitigate overfitting.

Both strategies allow not only to distinguish noise from information but also to impose var-

ious constraints on the functional objects, e.g. positivity and/or monotonicity. As our data

(contaminant breakthrough curves) are typically fairly smooth, a standard B-spline basis of

small dimension can be used. We refer the readers to (Ramsay, 2006; Ramsay et al., 2009) for

more details about the notions of roughness penalty and incorporation of constraints.

3.4.2 Functional reduction of the dimensionality

The previous step allows representing each exact response and each proxy response as a con-

tinuous function, i.e., yi(t) and xi(t), respectively. To decrease the dimension of the response

spaces and the size of the regression problem, we employ Functional Principal Component

Analysis, which is a functional extension of standard PCA and allows highlighting the main

modes of variability in a sample of functions. Beside a small computational advantage, using

spaces of lower dimension reduces the risk of over-fitting and allows us to visualize the data

to assess the informativeness of the proxy response with respect to the exact response.

We apply FPCA to the exact and proxy responses in the learning set. Given the sample

of proxy functions in the learning set, {xi(t)}i=1,...,Nl , with average x̄(t) = 1
Nl

∑Nl
i=1 xi(t) and

estimated covariance function

ν(t′, t) =
1

Nl − 1

Nl∑
i=1

[xi(t
′)− x̄i(t′)][xi(t)− x̄i(t)], (3.4)
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FPCA constructs a non increasing sequence of eigenvalues of the estimated covariance

function, µ◦1 ≥ µ◦2 ≥ · · · ≥ µ◦Nl−1, by solving the functional eigenequation

∫
ν(t′, t)ζ◦i (t)dt = µ◦i ζ

◦
i (t′). (3.5)

The sequence of eigenfunctions (or harmonics) of the covariance function, {ζ◦1 , . . . , ζ◦Nl−1},
satisfies the condition ∫

ζ◦i (t)ζ◦j (t)dt = δij , (3.6)

(where δij is the Kronecker delta), and, together with the average x̄(t), form an orthonormal

basis for the space of the sampled approximate responses. The eigenvalue µi is also denoted as

the probe score variance and the eigenfunction ζ◦i (t) as harmonic (Ramsay et al., 2009). The

dimensionality of the response space can be optimally reduced considering only the first Dex

and Dapp for the exact response space and the proxy response space, respectively. The fact that

the sequence of eigenvalues is non increasing guarantees that no other basis of size Dapp can

describe better the data; the total squared error introduced by discarding the eigenfuncions

(ζ◦i (t))i>Dapp is
∑Nl−1

i=Dapp+1 µ
◦
i .

The basis allows us to approximate each proxy response as

xi(t) ≈ x̃i(t) = x̄(t) +

Dapp∑
j=1

b◦ijζ
◦
j (t) (3.7)

where

b◦ij =

∫
[x̄(t)− xi(t)]ζ◦j (t)dt (3.8)

is the projection of the deviation from the mean of the ith approximate curve on the jth

harmonic (x̃i(t) denotes the approximation of xi(t) in terms of the first Dapp harmonics). As

in standard PCA, these coefficients are typically referred to as scores.

Although it offers an optimal dimensionality reduction with respect to the total mean

squared error, the orthonormal basis might not be ideal to represent the information. The

varimax algorithm (Kaiser, 1958) can be applied to find a suitable rotation that improve data

interpretation while preserving the optimality of the result in terms of explained variance

(Richman, 1986; Ramsay et al., 2009). Therefore, without any further loss of information, the
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approximate curves can be written as

x̃i(t) = x̄(t) +

Dapp∑
j

bijζj(t), (3.9)

where

bij =

∫
[x̄(t)− xi(t)]ζj(t)dt (3.10)

is the projection of the deviation from the mean of the ith curves on the rotated harmonic

ζj(t).

An analogous procedure is applied to the sample of exact responses in the learning set,

{yi(t)}i=1,...,Nl , which is approximated as

ỹi(t) = ȳ(t) +

Dex∑
j

cijηj(t), (3.11)

where ȳ(t) is the average, ηj(t) the jth harmonic of the (varimax) rotated orthonormal

basis {ηi(t)}i=1,...,Dex , and

cij =

∫
[yi(t)− ȳ(t)]ηj(t)dt (3.12)

the score with respect to ηj(t). (As for the proxy curve, the tilde denotes the restriction

to the first Dex harmonics).

3.4.3 Regression and error model

Once the problem dimensionality has been reduced by FPCA, we investigate the relationships

between the two sets of curves in the learning set approximated by considering the first Dapp

and Dex harmonics, {x̃i(t), ỹi(t)}i=1,...,Nl . The goal is to find a transformation between the

spaces of exact and proxy responses. (Notice that the varimax rotation does not affect the

representation of the curves, but might affect the quality of the transformation).

Here, we restrict ourselves to functional linear regression models of the form given in

Eq. 4.6. Training such a functional linear model in full generality is not straightforward. A

simple choice to restrict the class of linear regression models is to postulate that, at any time

t, ỹi(t) depends on x̃i(t) solely through its value at that time t. This assumption leads to the

Concurrent model

ỹi(t) = β0(t) + x̃i(t)βi(t) + εi(t), (3.13)
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which is a particular case of the functional linear model in Eq. 4.6 and corresponds to

T (xi)(t) = β0(t) + xi(t)βi(t). The Concurrent model will be used as baseline in our numerical

application, and compared to our FPCA-based prediction approach.

To simplify the exposition, in the following we assume that the same number of harmonics

is retained for the two spaces, i.e., D = Dex = Dapp. However, the number of harmonics

depends on the inherent variability of the learning set, which can be different for the exact

and proxy responses. Ultimately, the number of harmonics to be employed depends on how

rapidly the eigenvalues of the FPCA decomposition decrease for the specific problem. It has

to be chosen large enough to guarantee an exhaustive representation of the variability of the

response curves, but small enough with respect to the number of elements in the learning set

to avoid over-fitting when the regression model is constructed.

Given Nl ≤ Nr pairs of accurate and proxy responses, {(x̃i(t), ỹi(t))}i=1,...,Nl , we postulate

that there exists a (D + 1) ×D matrix of real-valued coefficients β (with line index starting

at 0, by convention) and a Nl ×D error matrix E, such that for any (i, j) ∈ [1, Nl]× [1, D],

cij = β0j +
D∑
`=1

bi`β`j + eij , (3.14)

where βij and eij are the components of β and E, respectively. The errors, eij , are implicitly

assumed to be Gaussian with zero mean and variance σ2
j , which depends only on j. In matrix

notation, the statistical model reads

C = Bβ + E, (3.15)

where C is the Nl ×D matrix containing the scores of the exact responses, cij , and B is

the Nl × (D + 1) with elements of the first column bi0 = 1 by convention, and containing the

scores of the proxy responses bi(j−1).

In the statistics literature, solving Eq. 3.15 for the coefficient matrix β is referred to as

a multivariate multiple regression problem (Hastie et al., 2009; Fox and Weisberg, 2011). A

simpler regression problem can be obtained by separating the regression models for the D

responses, hence solving D independent regression problems

C(j) = Bβ′(j) + E′(j) (1 ≤ j ≤ D), (3.16)
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where C(j) is the jth column of the score matrix C. A very convenient fact is that the

columns of the Ordinary Least Squares (OLS) estimator of β coincides with the concatenated

OLS estimators of β′(j) (Hastie et al., 2009), that is

β̂(j) = β̂′(j) (1 ≤ j ≤ D), (3.17)

where β̂(j) are the columns of the OLS estimator β̂ (hereafter, the hat denotes the OLS

estimator of the quantity). However, test statistics and confidence bands of the multivariate

regression model cannot be directly derived from those obtained for the multiple linear regres-

sions in Eq. 3.16 and have to be computed for the general regression model in Eq. 3.15. The

formula of the simultaneous confidence bands is given in appendix 3.7.3, together with a brief

outline of the derivation.

3.4.4 Prediction of the exact response from the proxy response

Once the OLS estimator β̂ has been obtained, the regression model is used to predict the exact

response for all Nr geostatistical realizations on the basis of the corresponding proxy responses

x̃i(t). The predicted exact response for the ith realization is

ŷi(t) = ȳ(t) +
D∑
j=1

ĉijηj(t). (3.18)

where

ĉij = β̂0j +
D∑
`=1

β̂j`bi`, (3.19)

are the estimates of the scores with respect to the rotated harmonics.

The estimator of the linear regression model allows us to predict the ĉij scores solely

from the scores bij of the proxy responses, hence predicting ỹi(t) without solving the exact

model. We emphasize the difference between the proxy response xi(t) (or x̃i(t), which is the

projection onto the lower dimensional space defined by the first D harmonics, {ζj}j=1,...,D),

and the predicted exact response ŷi(t): they both approximate the “true” response yi(t), but,

while xi(t) is simply the result of the proxy model and lives in the space defined by the basis of

the proxy curves, ŷi(t) results from applying the error models to the proxy response and lives

in the space of the exact responses (more precisely: in the subspace defined by the orthonormal

basis formed by the first D harmonics, {ηj}j=1,...,D).
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Surrogating y(t) by ŷ(t) is prone to errors: first, {ηi(t)}i=1,...,Nl depends on the quality

of the learning set; second, the subspace of the prediction is further reduced by considering

only the first D harmonics; third, the coefficients ĉij are predicted through the OLS estimator

of a linear regression model, and thus entails statistical uncertainties and possibly systematic

errors due to the choice of a simple linear model.

3.5 Numerical test case: An idealized NAPL pollution prob-

lem

We consider an idealized groundwater pollution problem in which the fate of a NAPL plume

has to be predicted. We model a portion of aquifer as a vertical 2D domain of length 10.8m

and depth 5.1m discretized into cells of size 10cm × 10cm. Gravity effects are neglected,

which implies that the density of the NAPL phase is equal to the water density. No-flow

boundary conditions are imposed at the upper and lower boundaries, whereas the pressure is

fixed at the right boundary. The contaminant is released at the left boundary (a constant

influx is assigned) and displaces the water initially present in aquifer. We are interested in the

time evolution of NAPL saturation at the right boundary. Two cases are investigated; first,

we estimate the uncertainty on the contaminant breakthrough curve computed by averaging

the saturation along the right boundary; then, we consider a single-point breakthrough curve

obtained by sampling the saturation in a single cell (Sec. 3.5.5). As the NAPL is immiscible

with water, the exact model solves the multiphase flow and transport equations, which require

solving a pressure equation and a highly nonlinear phase-transport equation (see, e.g., Marle,

1981; Helmig et al., 1997). The two equations are highly coupled and characterized by fluxes

that exhibit a non-linear dependence on NAPL saturation. (The full system of equations is

described in Appendix 3.7.1.)

The uncertainty on the transport properties of the aquifer (permeability and porosity) is

represented by a set of Nr = 1000 geostatistical realizations that are generated by a multipoint

geostatistical method (DeeSse) (Mariethoz et al., 2010) with a training image obtained from

data of facies-distribution collected at the Herten site (Germany) (Bayer et al., 2011). As an

example, three realizations are shown in Fig. 3.3.
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Hydraulic conductivity in m/s Porosity
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IV 2.4 · 10−4 0.16
V 8.4 · 10−2 0.25

d) 

Figure 3.3: (a), (b) and (c): three examples of geostatistical realizations generated by a
multipoint methods (DeeSSe, (Mariethoz et al., 2010)) with training image from the Herten
site (Germany) (Bayer et al., 2011). The different colors correspond to 5 different facies, whose
properties are reported in (d). The three realizations belong to the set of realizations used to
construct the learning set; the corresponding NAPL breakthrough curves obtained with the
exact and with the approximate models are highlighted in Fig. 3.4.

3.5.1 The proxy model

The proxy model simplifies the physics of the problem by treating the NAPL as an ideal tracer,

thus solving a linear transport problem. Although it is possible to further improve the compu-

tational efficiency by simplifying the description of the heterogeneity (e.g., by some upscaling

or multiscale methods (see, e.g., Josset and Lunati, 2013)), here we do not approximate the

aquifer properties.

In practical situations, replacing a multiphase flow problem by a single-phase (tracer-

transport) problem considerably reduces the computational costs. Indeed, a large part of

the cost of solving the flow and transport system stems from the solution of the elliptic (or

parabolic) equation that governs the pressure. Due to the effects of the saturation on the

fluxes, this equation has to be solved at every time step in multiphase problems. In contrast,

if the pollutant is considered as an ideal tracer, the saturation does not impact the velocity,

and the pressure equation has to be solved only once. The NAPL transport equation becomes

linear and can be solved very efficiently by streamline methods (here, we use a Finite-Volume

upwind scheme that can be seen, in some sense, as a very rudimentary streamline method

without sub-grid interpolation of the velocity field).
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3.5.2 The learning dataset

After the proxy responses have been obtained by solving the ideal transport problem and

computing the contaminant breakthrough curves for the whole sample of 1000 realizations, we

construct the learning set by identifying a subset of Nl = 20 realizations. The realizations

can be selected in several ways, including a simple random choice. Here, we use a clustering

technique to group the proxy responses based on their l2-distance, and we choose the k-medoid

curves as representative of the clusters (Distance Kernel Method (Scheidt and Caers, 2009a)).

The medoids define the subset of realizations, {Ri}i=1,...,Nl=20, for which the exact responses are

computed by solving the multiphase transport problem. Additional tests (not reported here)

with learning sets consisting of Nl = 50 and Nl = 100 realizations did not show a significant

improvement of the quality of the learning set. This suggests that only 20 realizations are

sufficient to obtain a satisfactory error model for the present test case. Cross validation tests

can be performed to identify the optimal size of the learning set.

As the numerical NAPL breakthrough curves are discrete in time, a spline basis is defined to

interpolate the discrete data and construct the functional objects. In the present test case, data

points are fairly smooth and a rather small number of basis functions is necessary for an accu-

rate representation of the data (here, only 50 splines are used as basis functions). The 20 pairs

of spline-interpolated proxy and exact curves in the learning set, {(xi(t), yi(t))}i=1,...,Nl=20, are

shown in Fig. 3.4.

3.5.3 Understanding the data using FPCA

To extract the relevant information from the data and to reduce the problem dimensionality, we

apply FPCA independently to both sets of approximate and exact curves in the learning set. As

in standard PCA, if all the components (harmonics) are considered, no approximation is made

and the data are represented exactly. However, the eigenvalues of higher order harmonics

decrease so fast that the first three components describe more than 97% and 99% of the

variability of proxy and exact curves, respectively. In the subspaces defined by the first three

harmonics, each curve is described by the corresponding three scores and by the sample means.

To improve the interpretability of the data, a rotation is sought with the varimax algorithm

(Ramsay et al., 2012). The rotated harmonics for both sets of curves are shown in Fig. 3.5.

In the subset of the exact responses, the first rotated component explains the deviation

from the mean behavior measured at late time. The second rotated component describes
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Figure 3.4: The learning set: (a) proxy curves and (b) exact curves recast as functional
objects for the Nl = 20 realizations in the learning set. The thicker blue curves correspond to
the realization in Fig. 3.3a), the red curves to 3.3b), and the green curves to 3.3c).

the variation at the beginning of the breakthrough curve, thus enlightening high-connectivity

paths. The third component explains the variation observed at intermediate time. In the proxy

subset, the first rotated component describes the initial variability; the second component

highlights the variation at high saturation; and the third component explains the variation

observed at intermediate time. By analyzing the projection of the curves on these components,

it is possible to gain information about the data, for instance about the link between the early-

time responses and the late-time variations. We refer to Henderson (2006) for an example in

hydrology.

3.5.4 Regression model and evaluation of the proxy

The linear regression model is built between the scores of proxy and exact curves, which

represent their coordinates with respect to the two orthonormal bases formed by the first three

harmonics. Three linear regression problems (one for each exact-response score, j = 1, 2, 3)

are solved to establish a relationship with the three proxy-response scores. The resulting
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Figure 3.5: The three first rotated functional principal components (harmonics) extracted
from the learning set are plotted for the proxy curves (top) and for the exact curves (bottom).
The solid line is the mean curve and the dotted lines represent the variability around the mean
described by the corresponding harmonic.

coefficients of the three regression models are

β0j β1j β2j β3j R2 p-value

j = 1 −2.3 · 10−16 0.42 0.18 −0.37 0.99 < 2 · 10−16

j = 2 4.4 · 10−17 0.82 −0.02 0.37 0.99 < 2 · 10−16

j = 3 1.6 · 10−16 0.51 0.03 0.08 0.97 1.3 · 10−12

(3.20)

Notice that the R2 values are quite high and that β0j ≈ 0, which suggests that the linear

regression model preserves the mean. The dependency among scores is illustrated in Fig.

3.6. The relationships between the scores of the three harmonics of the exact curves and the

scores of the first harmonic of the proxy curves are rather well approximated by the linear

regression. The scores of the second harmonic of the proxy curves are less important as it

is indicated by the low values of β22 and β23. This might be due to the fact that the proxy

second harmonic explains the variability of the curves for saturations close to one, a situation

that is not observed in the two-phase responses.
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Figure 3.6: The scores, with respect to the first three harmonics {ηi(t)}i=1,2,3, of the exact
curves are plotted as functions of the scores for the approximate curves with respect to the
harmonics {ζi(t)}i=1,2,3. The filled (black) circles correspond to the exact score, the empty
circles (green) to the prediction of the scores by the OSL linear regression. The visualization is
helpful to assess whether the linear regression model describes the relationship between proxy
and exact curves in the learning set.

3.5.5 Performance of the regression model as error model

In general, the proxy-curve scores are informative of the exact-curve scores, at least for the

curves pairs in the learning set. This suggests that, despite the rather primitive physical model

employed, the regression model can be effectively used to predict the exact responses of the

realizations for which only the proxy solution is available. The exact response is predicted on

Eqs. 4.9 and 4.10.
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Prediction of the average breakthrough curve at the outlet

We start by considering the prediction of the breakthrough curve calculated by averaging the

saturation at the right-hand boundary. Examples of two predicted curves are shown in Fig.

3.7a and b. Despite the fact that the curves are very different for the two realizations, both

predictions are in good agreement with the exact responses. In general, the behaviour of the

exact response is well predicted, with the exception of some fluctuations at early times. The

error model greatly improves the proxy solution and provides a much better prediction than

the Concurrent model, which is unable to significantly modify the shape of the curves due to

the use of only concurrent information.

The differences between predicted and exact curves are illustrated in Fig. 3.7c for all Nr =

1000 realizations, together with the mean error. The maximum differences in the saturation

are observed at early time and are about 10%; later, the saturation discrepancy remains below

±1.8% for 68% of the realizations and below ±4% in the worst cases. The mean error is very

close to zero, which shows that the predicted curves conserve the mean behaviour of the exact

curves, and that the subset of 20 realizations selected in the learning set is representative of

the whole sample to describe the mean behaviour.

Fig. 3.8a shows the histograms for the l2-norm and the l∞-norm of the errors. We compare

the performance of the error model based on FPCA with the Concurrent functional linear

regression model. The histogram of the l∞-norm shows that on average the maximum deviation

is 4.5% for FPCA, and about 8% for the Concurrent model. The l2-error is on average more

than three times lower for the FPCA-based model.

In many applications, the uncertainty is quantified in terms of the quantiles of the responses.

Fig. 3.7d displays the quantile curves obtained using the different models. The Concurrent

model fails to reproduce the 90th percentiles, because it is unable to modify the plateau of the

proxy curves close to saturation one; it performs better for the other quantiles. The quantiles

curves computed using only the learning set of exact responses (as suggested by (Scheidt and

Caers, 2009a,b)), are slightly biased estimates of the exact quantiles. An excellent estimate is

obtained with the functional error model, which is able to correct the approximate responses

and predicts quantiles close to the exact ones.
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Figure 3.7: (a and b) the predicted responses (with 2σ-confidence intervals) of two realizations
that are not in the learning set. (c) Prediction error of all Nr = 1000 realizations (gray curves),
the mean error (continuous line), and the mean ± one standard deviation (dotted lines) are
represented. (d) P10, P50 and P90 quantiles curves obtained with the different models and
compared to the reference quantile curves computed using the whole set of exact responses
(solid black line).

Prediction of single-point breakthrough curve

In this second test case, we are interested in predicting the breakthrough curve of the con-

taminant at a precise location, defined by a single cell of the numerical grid, which is located

at mid-depth at the outlet. In contrast to the breakthrough curves averaged over the whole

outlet, in which the effects of extreme permeability structures (flow barriers or preferential

pathways) are smoothed, the single-point breakthrough curves display a variety of shapes.

The large contrast in permeability and in connectivity at the sampling location leads to im-

portant differences, particularly in the first arrival time.

In this case, it is useful to apply a translation in time to redefine the origin, which is chosen

to be the first arrival time. This procedure is referred to as registration in the FDA literature

Ramsay (2006); Ramsay et al. (2009). For the translated responses in the learning set FPCA
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Figure 3.8: Histograms of the distribution of the l2 error (left) and l∞ error (right), (a) for
the predictions of the FPCA model and (b) for the predictions of the concurrent model. The
mean (continuous line) together with the mean ± one standard deviation (dotted lines) are
represented.

is then applied and the dimensionality is reduced as described above. Again, we use the first

three harmonics, which describe more than 98% of the variability of the shape of the curves

after the registration. An example of proxy, predicted and exact curves after registration is

shown in Fig. 3.9a for a realization that does not belong to the learning set.

Beside the prediction of the shape, it is now necessary to predict the first arrival time and

translate back the predicted curves. The first arrival time is predicted jointly to the scores of

the harmonics by solving a 4× 4 regression model, where the 4th dimension is the first arrival

times of the proxy responses, which have been used for the registration. Fig. 3.9b compares

the proxy and exact curves with the predicted curve after translation by the predicted arrival

time (these curves correspond to the registered curves in Fig. 3.9a). For the whole sample

of realizations, the mean saturation error is close to zero and with a standard deviation that
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remains below 0.04 (Fig. 3.9c).

The predicted quantile curves (shown in Fig. 3.9d) are in good agreement with the exact

quantile curves for P50 and P90, but P10 is biased. As the concurrent model would perform

very poorly in this case because it is unable to deal with curves characterized by different

arrival times, we compare our methodology with the quantile curves obtained directly from

the exact response in the learning set (this procedure corresponds to the classical DKM). As

both the functional error model and the DKM estimates depend on the clustering, we have

applied both methodologies 200 times. The example shown in Fig. 3.9 is representative of the

typical behaviors of the methods (i.e., the quantiles are close to the average quantiles obtained

form the 200 applications of the methods shown in Fig. 3.9e and d. In average, the functional

error model is more robust than DKM and provides a better prediction of the P10 quantile

curve.

Effects of the number of harmonics

Here, we investigate the effects of the number of harmonics on the prediction of single-point

breakthrough curves. In order to increase the difficulty of the problem, we do not apply the

registration as in the previous section (i.e., the breakthrough curves are not translated by their

first arrival times). On one hand this requires more harmonics to describe the variability of

the curves; on the other hand it allows us to demonstrate that the functional error model is

able to correct for different arrival times also without registration.

We consider 200 different learning sets, which are selected by DKM clustering with dif-

ferent initialization. For each learning set we apply FPCA and then construct the functional

error models by employing a different number of harmonics. The quality of the prediction is

measured by the l2 distance between the predicted and exact responses for all 1000 realizations.

The performance of the method (expressed as median error and confidence interval of the

responses of the 200 learning sets) is presented in Fig. 3.10 as a function of the number of

harmonics. The error exhibits a minimum around 5-7 harmonics. Indeed, when the number

of harmonics is increased from 2 to 5, the variability of the learning set represented increases

from 92% to 99%, leading to an improved error model. If the number of harmonics is increased

further, the error increases quite rapidly. For 12 harmonics errors are very large and fluctuate

greatly depending on the choice of the learning set. This behavior is a clear signature of

over-fitting, as the large number of harmonics is not balanced by the size of the learning set
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Figure 3.9: (a and b) predicted responses (before and after translation) of a realization that
is not in the learning set. (c) Prediction error of all Nr = 1000 realizations (grey curves),
the mean error (continuous line), and the mean ± one standard deviation (dotted lines) are
represented. (d) P10, P50 and P90 quantiles curves obtained with the different models and
compared to the reference quantile curves computed using the whole set of exact responses
(solid black line). (e), respectively (f), shows the P10 FPCA, respectively DKM, predictions
of the P10 quantile for the 200 clusterings.
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(consisting of 20 pairs of curves) and the parameters of the regression model are not constrained

enough by the data.
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Figure 3.10: Boxplots of the prediction error (calculated as mean l2 norm of the error of
the predicted curves) as a function of the number of harmonics used to describe the proxy
and exact curves in the learning set. The boxplots represent the statistics of the prediction
errors over 200 clusterings in function of the number of harmonics. The thick line indicates
the median error; the box the 1σ interval; the bars the 2σ interval; and the circles are the
outliers (for 12 harmonics they are out of scale).
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3.6 Conclusions

We have presented a novel methodology that combines elements of Functional Data Analysis

and Machine Learning to construct error models that improve uncertainty quantification. The

approach is purpose-oriented as it is formulated directly on the quantity of interest (in the case

considered here, the contaminant breakthrough curve) rather than on the state of the system

(e.g., the entire saturation and pressure fields).

The core idea of the method is to construct an error model from a learning set containing

pairs of proxy and exact responses of a subset of realizations, and to predict the exact responses

of the entire sample without solving the exact model for all realizations. FPCA is employed to

separately reduce the dimensionality of the spaces of exact and proxy responses in the learning

set. The advantage is twofold: on one hand, the small dimension allows a diagnostic of the

regression model on scores to assess the informativeness of the proxy for the application at

hand; on the other hand, using spaces of lower dimension reduces the risk of over-fitting when

the regression model is constructed.

The method has been tested for a synthetic contamination problem, in which the break-

through curve of a NAPL contaminant is predicted with the help of a tracer transport simula-

tion (as proxy model). We have obtained excellent results with a learning set consisting of 20

pairs of curves (corresponding to 20 realizations out of a sample of 1000) and considering only

the first three harmonics, which describe more than 97% of the variability. Visual inspection of

the score scatter plots shows that the proxy is indeed potentially very informative of the exact

response (this is confirmed by a linear determination coefficient R2 = 0.97). Notice that this

is not necessarily an indication of the quality of the predictions as the size of the learning set

and the number of harmonics also influence the accuracy of the prediction. For both test case,

the error model allows us to solve a two-phase problem only for the 20 realizations, whereas a

simple tracer transport problem is solved for all realizations in the sample. The gain in com-

putational efficiency is evident as multiphase transport requires solving the pressure problem

at every time step, in contrast to ideal tracer transport, which requires solving the pressure

equation only once.

In comparison to the Concurrent model (an existing methodology used to correct proxy

responses), we have demonstrated an error reduction by a factor 3 when the functional error

model is employed. Also, the error model improves the uncertainty quantification with respect

to the estimate obtained solely on the basis of the 20 exact responses in the learning set
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(this approach corresponds to the DKM, which uses the proxy responses only to cluster the

realizations). Beside an increase in accuracy, the methodology presents two advantages over the

DKM. First, the error model allows us to use the proxy response to predict the exact response

for any new geostatistical realization that might be successively generated; this clearly opens

new possibilities to use the model beyond the context of uncertainty quantification, and in

particular for Bayesian inference, model calibration and optimization. Second, simultaneous

confidence bands of the predicted curves can be defined by propagating the errors of the

multivariate regression model. Notice that the residual uncertainty due to the size of the

learning set and to the truncation of the basis should be taken into account.

Combining FPCA and machine learning can be seen as a general framework in which

each component can be modified and improved, if it is required to improve accuracy. For

instance, the rather crude linear regression model between the three-dimensional spaces of

exact and proxy responses can be made more complex by increasing the dimensions (possibly

with different truncations for the proxy and the exact model) or by refining the mathematical

form of the statistical model to predict the scores. Possible enhancements include linear

regression models with more complex basis functions (polynomials or others), but may also

entail kernel methods like co-kriging. Almost any multivariate prediction may be adapted to

this problem once the dimensionality reduction is performed. Another potential improvement

is to perform the dimensionality reduction jointly for the proxy and the exact spaces, in order to

optimize the informativeness of the proxy rather than the description of the variability of each

response space independently. Indeed, in very complex test cases, it might occur that some

small-eigenvalue harmonics of the proxy response might explain large-eigenvalue characteristics

of the exact curves. This can be done by replacing FPCA by Functional Canonical Correlation

Analysis (Ramsay, 2006) or by Functional Partial Least Squares (Cuevas, 2014).

Finally, we observe that the proposed framework can be applied far beyond the contami-

nation example that we have presented. It can be useful in virtually any situation in which

the most reliable technique has to be surrogated by an approximate method. Applications are

not limited to the case in which evaluating exact response involves the solution of a complex

numerical model, but also to situations in which the proxy or the exact responses consist of

experimental data. The FDA framework would be then important to compare information

with different temporal resolutions. Also, the error model can potentially be very useful in the

context of Bayesian inference, when the number of responses that have to be evaluated (e.g.,

in Metropolis-Hastings algorithms and alike) is typically of the order of 105. In this case, a
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functional error model capable to predict the exact responses only on the basis of the proxy

responses can substantially speed up MCMC algorithms, as it reduces the cost of likelihood

estimation. This would improve the efficiency of the calibration and optimization algorithms,

which are often used in hydrogeological applications.
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3.7 Appendix

3.7.1 Multiphase and single-phase transport equations

Assuming that both phases are incompressible and neglecting gravity and capillary effects, the

saturation of the NAPL, S, is governed by the following system of equations:

∇ ·
[(

kn(S)
µn

+ kw(1−S)
µw

)
k∇p

]
= 0, (3.21)

∂

∂t
(φS)−∇ ·

(
kn(S)
µn

k∇p
)

= 0, (3.22)

where the absolute permeability, k, and the porosity, φ, are aquifer properties; p is the pres-

sure; µn and µw are the viscosities of NAPL and water, respectively; and kn and kw are

the relative permeabilities of NAPL and water, respectively, which are nonlinear functions

of the saturation. Together with the constitutive relationships for the permeabilities (here,

they are assumed quadratic i.e., kn(S) = S2 and kw(S) = (1− S)2), the two equations above

form a complete system of equations that can be solved for p and S to calculate the NAPL

breakthrough curves. These curves are the responses of the exact (multiphase) model.

Due to the nonlinearity of the relative permeability, the system above is computationally

expensive because the two equations are coupled and the pressure equation has to be solved at

any time step. This problem can be avoided by neglecting the nonlinearity of the permeabilities,

hence approximating the system above as

∇ ·
(
k
µw
∇p
)

= 0, (3.23)

∂

∂t
(φS)−∇ ·

(
S k
µw
∇p
)

= 0, (3.24)

which corresponds to a simple tracer transport problem without mechanical dispersion.

3.7.2 Linear models for functional responses with functional predictors

A simple class of linear models is the Concurrent model (Ramsay, 2006). The value of the

response variable y(t) is predicted solely by the value of the functional covariate at the same

time t

yi(t) = α(t) + xi(t)β(t) + εi(t), (3.25)

where εi(t) are the functional errors and the functions α(t) and β(t) are estimated by
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minimizing the sum of squares under some penalty on the roughness of the functions to avoid

overfitting and loose predictability power. Despite the rather arbitrary choice of the degree

of smoothness of the functional parameters, this method is quite fast but also rudimentary

because there is a priori no reason to assume that only concurrent features of the curves are

relevant (this is well illustrated by the synthetic test to predict the single-point breakthrough

curve in Sec. 4.5.2).

A generalized formulation is when the functional variable contributes to the prediction for

all possible time values

yi(t) = α(t) +

∫
xi(s)β(s, t)ds+ εi(t) (3.26)

which allows the predicted response to depend on the functional covariate at all times, but

β(s, t) is now bivariate. The application of this model is known to be particularly challenging

as the smoothing constraints to be imposed is of paramount importance.

3.7.3 Simultaneous confidence bands for multiple multivariate linear regres-

sion

To take into account the uncertainty stemming from the linear regression, we derive simultane-

ous confidence bands for the predicted curve ŷ = b′β̂η(t), where 1−α is the level of confidence

that the exact curve ỹ(t) = b′βη(t) is within the confidence bands for all t, that is

Pr
(
ỹ(t) ∈ [ŷ(t)− wα(t), ŷ(t) + wα(t)] for all t

)
= 1− α (3.27)

and, following the sketch of proof below, where Dex +Dapp < Nl is assumed,

wα(t) =
√

Dex(Nl−Dapp−1)
Nl−Dex−Dapp FDex,Nl−Dex−Dapp(α)

×
√

(1 + b′(B′B)−1b) Nl
Nl−Dapp−1η

′(t)Σ̂η(t), (3.28)

where η(t) the values of the exact harmonics; F (α) Fisher’s α-quantile; and Σ̂ the covari-

ance matrix of the errors estimated on the learning set.

The key step of the derivation is the use of Scheffe’s Lemma that states that, for a symmetric

and positive definite matrix Γ ∈ Rp×p, the following statements are equivalent for any vector
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v ∈ Rp and constant c > 0

(
v′Γv 6 c2

)
⇐⇒

(
|ψ′v| 6 c

√
ψ′Γ−1ψ ∀ψ ∈ Rp

)
(3.29)

Sketch of proof

The residuals Ê = Ĉ − C are centred and with covariance E[Ê′Ê] = (Nl − Dapp − 1)Σ,

where (Σ)jk = σjk. Assuming that E is Gaussian entails that β̂ is Gaussian, whereof c ∼
NDex

(
b′β, (1 + b′(B′B)−1b′)Σ

)
. Then

(
b′β̂−b′β√

1+b′(B′B)−1b

)′(
1

Nl−Dapp−1Σ
)−1(

b′β̂−b′β√
1+b′(B′B)−1b

)′
follows a Chi-squared distribution χ2

Dex
. On the other hand, the usual estimator Σ̂ of Σ follows

a Wishart distribution independently from β̂. We then obtain the following

t2 =

(
b′β̂ − b′β√

1 + b′(B′B)−1b

)′( Nl

Nl −Dapp − 1
Σ̂
)−1

(
b′β̂ − b′β√

1 + b′(B′B)−1b

)
∼ T 2

Dex,Nl−Dapp−1.

(3.30)

As the Hotelling T 2-distribution can be expressed in term of the F -distribution, we can write

that, with probability 1− α,

t2 6
Dex(Nl −Dapp − 1)

Nl −Dex −Dapp
FDex,Nl−Dex−Dapp(α), (3.31)

where Fp,q(α) stands for the α-quantile of the Fisher-Snedecor distribution with parameters p

and q.

Using Scheffe’s Lemma (eq. 3.29) for v = b′β̂ the vector of predicted scores and ψ the

vector of the exact harmonics values η(t), the second statement gives us the simultaneous

confidence bands on the prediction.
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4.1 Abstract

In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to

calibrate aquifer parameters and propagate the uncertainty to the quantity of interest (e.g.,

pollutant concentration). However, this approach requires a large number of flow simulations

and incurs high computational cost, which prevents a systematic evaluation of the uncertainty

in presence of complex physical processes. To avoid this computational bottleneck, we propose

to use an approximate model (proxy) to predict the response of the exact model. Here, we use

a proxy that entails a very simplified description of the physics with respect to the detailed

physics described by the “exact” model. The error model accounts for the simplification of the

physical process; and it is trained on a learning set of realizations, for which both the proxy and

exact responses are computed. First, the key features of the set of curves are extracted using

functional principal component analysis; then, a regression model is built to characterize the

relationship between the curves. The performance of the proposed approach is evaluated on the

Imperial College Fault model. We show that the joint use of the proxy and the error model to

infer the model parameters in a two-stage MCMC set-up allows longer chains at a comparable

computational cost. Unnecessary evaluations of the exact responses are avoided through a

preliminary evaluation of the proposal made on the basis of the corrected proxy response. The

error model trained on the learning set is crucial to provide a sufficiently accurate prediction of

the exact response and guide the chains to the low misfit regions. The proposed methodology

can be extended to multiple-chain algorithms or other Bayesian inference methods. Moreover,

FPCA is not limited to the specific presented application and offers a general framework to

build error models.

4.2 Introduction

Simulations of subsurface flow is important in many applications, such as groundwater protec-

tion and remediation, water prospection, exploration of hydrocarbon resources, and nuclear

waste disposal. One of the main challenges is to estimate a continuous distribution of the un-

derground model parameters from a sparse set of observational sites. This lack of information

on model input propagates to the quantities of interest (for instance, the concentration of a

pollutant in a drinking well), whose exact values remain uncertain. Model calibration using

historical integrated data (for example, time series of concentration or pressure at observation
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wells) is often used to reduce the uncertainty on model parameters by relying on Bayes the-

orem. A widespread approach for numerical application of Bayes rule is to use Monte-Carlo

Markov-Chain (MCMC) simulations (Robert and Casella, 2004) to sample the posterior prob-

ability density function. While MCMC is theoretically robust and ensures convergence to the

true posterior distribution under mild constraints, in practice it is subject to several limitations

due to the cost of the large number of required flow simulations, which can become prohibited

in presence of limited computational resources. Indeed, the finite length chains should be able

to explore all areas of the prior space in order to provide samples from the posterior distri-

bution. To achieve this goal, it is tempting to increase the step length of the chains, but this

would result in a drastic reduction of the acceptance rate (which should ideally remain around

20-50% in multidimensional space) and subsequently in a high number of wasted simulations

(Roberts et al., 1997).

To avoid these issues, Efendiev et al. (2005, 2006) and Christen and Fox (2005) have intro-

duced a two-stage MCMC, which employs a less computationally expensive solver to obtain a

first evaluation of the proposal and decide whether it is useful to run the exact solver. This

allows them to reduce the number of exact simulations that will be rejected and thus increase

the acceptance rate. This methodology has been first explored by Christen and Fox (2005) to

recover resistor values of an electrical network from measurements performed at the network

boundary. They have obtained an increase in acceptance rate (the number of exact simulations

accepted over the number of exact simulations run; first-stage simulations are not taken into

account as their cost is assumed to be negligible). Both Efendiev et al. (2006) and Chris-

ten and Fox (2005) have shown that, under certain hypotheses, the solution converges to the

posterior distribution. Efendiev et al. (2005, 2006); Dostert et al. (2008) have applied this

methodology in the context of flow in porous media. As first-stage solver they have used a

multiscale method, which combines a global coarse solution with a number of local fine solu-

tions. If the coarse solution is accepted, local solutions are employed to reconstruct a finer

solution on the original grid, based on which the second-stage evaluation is performed. While

this allows for the necessary convergence assumptions to be satisfied (namely, smoothness and

strong correlation), the computational gain of the two-stage set-up is limited. Indeed, the

reconstruction step (necessary for the second-stage evaluation) is cheap with respect to the

cost of constructing and solving the coarse problem used at the first-stage. Other applications

of two-stage MCMC have used polynomial chaos response surfaces (Zeng et al., 2012; Elsheikh
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et al., 2014; Laloy et al., 2013) as first-stage model. The computational gain is much higher,

despite some additional cost required to set up the polynomial chaos model.

The use of inexact solvers requires designing error models to account for the discrepancy be-

tween approximate and exact responses. In the context of multiscale approaches, Kennedy and

O’Hagan (2001) used a Gaussian-process method to represent model inadequacy. O’Sullivan

et al. (2005); O’Sullivan and Christie (2006a) employed error modeling to reduce the bias in

history matching resulting from the use of upscaled reservoir models. Efendiev et al. (2009)

proposed non-linear error models in the context of ensemble-level upscaling. Scheidt et al.

(2010), for instance, used a distance metric to account for upscaling errors in ensemble history

matching. More specifically to two-stage MCMC, Cui et al. (2011) proposed to adapt the

error model at each iteration: they used information on the discrepancy between the exact

and approximate models at the previous iteration to correct the result of the successive itera-

tion. However, this approach works and provides a good correction only for problems that are

smooth enough.

Here, we propose a different strategy that combines a two-stage MCMC set-up with a

methodology recently presented by Josset et al. (2015). We use an approximate model (proxy)

that assumes a very simplified physics with respect to the problem under consideration, and we

construct an error model to account for the approximation errors. The error model is purpose

oriented as it is tailored directly for the quantities of interest following an approach typical of

machine learning. For a subset of realizations, the responses of both the proxy and the exact

models are evaluated and the mapping between the two is learned by means of tools from

functional data analysis (Ramsay, 2006; Ramsay et al., 2009). Josset et al. (2015) applied this

methodology to propagate the uncertainty on the permeability field to the concentration of a

pollutant in the observational well. Here, the methodology is tested on a complex problem of

Bayesian inference, the Imperial College Fault (ICF) test case, which is a benchmark problem

first published by Tavassoli et al. (2004) and repeatedly explored in many studies (e.g., De-

myanov et al. 2010; Mohamed et al. 2011, 2012).

The paper is structured as follows: we first describe the ICF test case and review the

literature about the calibration of this model (Section 2). Next, we present the novel method-

ology, which uses a purpose-oriented error model within a two-stage MCMC set-up (Section
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3). Then, we specifically construct and evaluate the error-model approach for the ICF problem

(Section 4.1). Finally, we compare and discuss the results of the two-stage MCMC with the

classic Metropolis-Hastings algorithm (Section 4.2).

4.3 The Imperial College Fault (ICF) test case

The ICF test case was first published by Tavassoli et al. (2004, 2005) as a simple yet challenging

example of history matching in petroleum engineering applications. Since then, ICF has proved

a difficult test for optimization techniques due to numerous local minima. The ICF model

consists of a layered reservoir disrupted by a fault (figure 4.1), in which water is injected at

the left-hand boundary while the displaced fluids are recovered at the right-hand boundary.

The layer-cake model of the reservoir permeability is described by three parameters: the

conductivity of the high permeability facies, Khigh, the conductivity of the low permeability

facies, Klow, and the fault throw, h. The true parameters are Khigh = 131.6 md, Klow = 1.3

md and h = 10.4 ft. A uniform distribution U[a,b] (where a and b are the bounds of the

distribution) is attributed to each parameter as prior.

Injection!
of water!

Production!
well!

de
pt

h!

Permeability map!

Fault throw = 10.4 ft!

Observed data!

Klow = 1.3 md!
Khigh = 131.6 md  !

-  Oil production rate!
-  Water production rate!

days!

Figure 4.1: The permeability map of the ICF test case and the observed data used for
the history matching. As prior, a uniform distribution is attributed to each parameter, i.e.,
P (h) = U[0,60] for the fault throw h, P (Khigh) = U[100,200] for the permeability of the most
permeable facies Khigh, and P (Klow) = U[0,50] for the permeability of the least permeable facies
Klow.
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The calibration of the parameters to the observational data (oil and water production rates)

appeared to be a challenging history matching problem. Due to the nature of the permeabil-

ity field, several parameter combinations, corresponding to narrow regions of the parameter

space, can reproduce the observational data with satisfactory accuracy. Between these regions

of good quality, the misfit is very high due to the very irregular response surface that results

from the strong fluctuations of the connectivity across the fault when h is varied. We refer

to figure 4.9 for a 1D cross-section cut of the complex misfit surface that characterizes this

problem.

Many optimizations and inference techniques have been applied to the ICF problem over

the years. The first studies of this test case (Tavassoli et al., 2004, 2005; Carter et al., 2006)

have employed a pure Monte Carlo approach, which required nearly 160’000 samples of the

parameter space. Christie et al. (2006) demonstrated that a good representation of the un-

certainty can be inferred from a few thousand samples using Genetic Algorithm Important

Sampling with artificial neural network proxy. More recently, Demyanov et al. (2010) have

used Support Vector Machines (SVM) with a small number of flow simulations (about 700);

and Mohamed et al. (2011) have employed Particle Swarm Optimization (PSO) using 2050 flow

simulations. A Bayesian inference approach close to two-stage MCMC has been presented by

Mohamed et al. (2012), who used a population MCMC method with 45’000 simulations. We

refer to Mohamed et al. (2011) for a more detailed review of the literature on the ICF problem.

4.4 Methodology

Our objective is to sample the geostatistical parameter space conditioned on some flow obser-

vations. Using Bayes theorem, this can be written as

P (k|d) ∝ P (d|k)P (k) (4.1)

where P (k|d) the is probability of the realization with the parameters, k, conditioned on the

data, d, and P (d|k) the likelihood distribution. The most common technique to tackle this

problem uses the Metropolis-Hasting (MH) algorithm (Robert and Casella, 2004), which is very

demanding in terms of CPU time. We propose to employ a two-stage MCMC algorithm in
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which the first stage allows us to reject samples from low likelihood regions of the parameter

space based only on the responses of an approximate model. The latter is constructed by

combining a proxy model with an error model that permits the reduction of the proxy bias.

This approach is illustrated in figure 4.2.

4.4.1 Error modeling based on Functional Principal Component Analysis

(FPCA)

The number of flow simulations required for MCMC or two-stage MCMC can become pro-

hibitive in case of very complex physical processes that requires performing computationally

expensive simulations. An inexpensive proxy that relies on a very simplified physical descrip-

tion can be used to reduce the computation cost. However, direct inference from the proxy

response is extremely dangerous, because the proxy model neglects important physical cou-

plings inherent to the system, which likely bias the predictions. However, if we are able to

devise an effective model of the errors arising from the use of the proxy, we can account for

the neglected complexity and correct the bias of the prediction.

A purpose-oriented error model can be constructed directly on the quantity of interests by

training a regression model on a subset of response pairs obtained by evaluating the proxy and

the exact model for a selected subset of realizations (Josset et al., 2015). The flowchart of the

regression-model construction is detailed hereafter and illustrated in figure 4.2.

Construction of the learning set of curves

The first step consists in constructing the learning set from pairs of proxy and exact response

curves corresponding to the same realizations. To obtain a learning sample of N realizations,

which is assumed representative of most plausible solutions, we use the Latin Hypercube Sam-

pling (Carnell, 2009). Other sampling methods (e.g., basic random sampling of the prior or

stratified sampling) could be successfully employed as long as the various regions of the prior

are sampled.

Once the learning realizations are identified, the proxy and the exact solutions are com-

puted to get the time-dependent response curves. The functional proxy curves, {xi(t)}i=1,...,N ,

and functional exact curves, {yi(t)}i=1,...,N , are obtained by interpolating the responses pro-

duced by the numerical models, which are discrete in time, by means of a basis of spline
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learning set of
realisations

construction of the
regression model

run proxy flow
simulations

construction of
functional object

dimension reduc-
tion using fPCA

run exact flow
simulations

construction of
functional object

dimension reduc-
tion using fPCA

new realisation

4. Prediction

3. Evaluation

1. Construction

2. Reduction

run proxy flow
simulation

prediction of the
exact response

Figure 4.2: Flowchart of the construction of the error model as proposed in Josset et al.
(2015). Numbering refers to the sub-sections in section 5.2

sample
parameters

initialisation

prediction
model

evaluate
predicted
likelihood

1st stage
acc/reject

2nd stage
acc/reject

exact flow
simulation

evaluate exact
likelihood

set current
state reject

accept

accept

reject

Figure 4.3: Flowchart of the two-stage MCMC algorithm.
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functions.

Notice that a functional representation of the curves is necessary to deal with data acquired

with different time resolution, as it is always the case when the numerical solvers employ

adaptive time stepping techniques. The drawback is that a functional full-regression model

between continuous curves is difficult to implement and requires introducing and fine-tuning

additional parameters. To avoid these problems we proceed to a functional reduction of the

problem dimensionality.

Functional reduction of the dimensionality

We reduce the dimension of the response spaces by means of Functional Principal Component

Analysis (FPCA, Henderson 2006), which is a rather straightforward functional extension of

standard PCA. Beside the indubitable computational advantages, low-dimensional spaces al-

low us to visualize the most relevant modes that describe data variability and help us to

evaluate the suitability of the proxy model for the quantities of interest. FPCA is applied

separately to the two sets of exact and proxy responses. The dimensionality of the response

spaces is reduced considering only the first D harmonics, where D is chosen to achieve the

desired degree of accuracy.

Although FPCA offers an optimal dimensionality reduction with respect to the total mean

squared error, any rotation of the basis preserves the accuracy. The choice of a proper rotation

of the basis might allow a better interpretation of the data (Richman, 1986; Ramsay et al.,

2009). Therefore, we use the varimax algorithm (Kaiser, 1958) to find an appropriate rotation.

As a results, each proxy response is approximated by projection on the rotated FPCA basis as

xi(t) ≈ x̃i(t) = x̄(t) +
D∑
j

bijζj(t), (4.2)

where x̄(t) is the mean curve, and

bij =

∫
[x̄(t)− xi(t)]ζj(t)dt (4.3)

is the projection of the deviation from the mean of the ith proxy curve on the jth rotated

harmonic ζj(t). Following the same procedure, the N exact responses in the learning set are
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approximated as

yi(t) ≈ ỹi(t) = ȳ(t) +
D∑
j

cijηj(t), (4.4)

where ȳ(t) is the mean exact response, ηj(t) the jth harmonic of the (varimax) rotated or-

thonormal basis {ηj(t)}j=1,...,D, and

cij =

∫
[yi(t)− ȳ(t)]ηj(t)dt (4.5)

the score with respect to ηj(t).

Regression and error model

The relationships between the two sets of curves in the learning set approximated is investigated

by considering the first D harmonics, {x̃i(t), ỹi(t)}i=1,...,N . As sketched in figure 4.4, the goal

is to find a mapping from the space of proxy responses onto the space of exact responses

that allows us to predict the exact responses for the realizations that do not belong to the

learning set (hence, without actually solving the exact model). This is commonly referred to

the model’s predictive ability.

a) Proxy space b) Exact space 

error model 

Training set 
Proxy responses 
Exact responses 

Figure 4.4: A statistical model is built on the learning set to relate the coefficients of the
elements xi(t) in the proxy space to the coefficients of the elements yi(t) in the exact-model
space. It is used as an error model to predict the exact response from the proxy response.

Here, we restrict ourselves to functional linear regression models that minimize the l2-norm

of the residuals

εi = yi − T̂ (xi) i ∈ [1, . . . , N ], (4.6)

where T̂ is the estimator on the learning set. Training such a functional linear model in full
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generality is not straightforward, but we can take advantage of the FPCA basis to define a

multivariate multiple regression problem of the form (Hastie et al., 2009; Fox and Weisberg,

2011; Weisberg, 2014)

cij = β0j +
D∑
l=1

bilβlj + eij (i, j) ∈ [1, N ]× [1, D], (4.7)

where βlj are the coefficients of the regression, and eij are the errors, which we assume to be

Gaussian with variance σ2
j .

A further simplification is obtained by splitting the regression model into D independent

problems of the form

c
(j)
i = β

(j)
0 +

D∑
l=1

bilβ
(j)
l + e

(j)
i . (4.8)

This simplification does not affect the operator estimators, which are identical for the problems

in Eqs. 4.7 and 4.8, i.e., β̂jl = β̂
(j)
l . However, confidence bands of the multivariate regression

model cannot be directly derived from those obtained for the regressions in equation 4.8, which

complicates their derivation (Josset et al., 2015).

Prediction of exact response from the proxy response

The regression model can be used to predict the exact response of any new realization r for

which the proxy response x̃r(t) is known. Indeed, the estimator of the linear regression model

allows us to predict the scores of exact response curve, ĉrj , without solving the exact model.

Therefore, solely on the basis of the scores of the proxy responses, brl, we can estimate the

exact response as

ŷr(t) = ȳ(t) +

D∑
j=1

ĉrjηj(t), (4.9)

where

ĉrj = β̂0j +
D∑
`=1

β̂j`br`, (4.10)

are the estimates of the exact scores predicted by the error model.
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4.4.2 Two-stage MCMC

Two-stage MCMC has been introduced by (Christen and Fox, 2005; Efendiev et al., 2005,

2006) to improve the acceptance rate of the Metropolis-Hastings algorithm (MH). For optimal

convergence conditions of standard MCMC algorithms it is necessary to tune the random-

walk step of the chain in order to obtain an acceptance rate between 20% and 50%. As flow

simulations are performed at each step to compute the likelihood L of the proposed sample

φ, the low acceptance rate implies that 50% to 80% of the flow simulations are performed on

rejected samples and do not contribute to the posterior distribution.

Moreover, in order to satisfactorily explore the prior space under the constraint of limited

computer resources, the length of the random-walk step is often increased with the result that

the acceptance rate is drastically reduced (for instance, an acceptance rate around 10−5 is

reported by Efendiev et al. (2005)).

The goal of two-stage MCMC is to decrease the computational cost by reducing the number

of full-physics flow simulations that are performed on rejected samples. This is achieved by

employing an approximate model to identify samples in low likelihood regions that might

be rejected and avoid running the exact simulator on these samples and at the same time to

identify the samples that are more likely to be accepted by the exact model. Proposing samples

that are more likely to be accepted at the second stage will eventually boost the acceptance

rate. In other words, the approximate likelihood L̃ of the proposed sample φ is estimated by

using the approximate model response, ŷφ(t), from which the first-stage acceptance,

α̃ = min

{
1,
L̃(ŷφ(t))

L̃(ŷθ(t))

}
, (4.11)

is computed. If the sample is accepted, the response of the exact model, yφ(t), is calculated

to compute the exact likelihood L(yφ(t)) and the proposal is tested again using a modified

acceptance/rejection condition

α̃ = min

{
1,
L(yφ(t))

L(yθ(t))

L̃(ŷθ(t))

L̃(ŷφ(t))

}
. (4.12)

A schematic diagram of the two-stage MCMC algorithm is depicted in Figure 4.3.

Efendiev et al. (2006) demonstrated that the two-stage MCMC converges to the true pos-

terior distribution under two mild assumptions: first, the proposal distribution has to satisfy

q(φ, ψ) > 0 for any (φ, ψ) in the posterior distribution; second, the support of the exact pos-
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terior distribution belongs to the support of the approximate distribution (see theorem 3.2 in

(Efendiev et al., 2006)).

The first condition is easily satisfied when a Gaussian random walk is used as proposal

distribution: a step size sampled from a normal distribution guaranties that q(φ, ψ) > 0 for

any (φ, ψ). The second condition is met assuming a Gaussian error model for the likelihoods

for both proxy, ŷφ, and exact, yφ, solutions, i.e.,

L̃ ∝ exp(−||yobs − ŷφ||
2

σ2
app

) and L ∝ exp(−||yobs − yφ||
2

σ2
ex

), (4.13)

respectively. The likelihoods distributions are non-compact, and thus the supports of both

posterior distributions are identical to the one of the prior distribution.

Numerically, it is probable that the likelihood values are very close to zero, which prevents

the chain to reach all regions of the parameter space. However, under the condition that

the exact and approximate misfits are correlated, Efendiev et al. (2006) have shown that it

is possible to choose σapp such that the second assumption is verified and that the optimal

acceptance rate can be obtained by setting σ2
app to σ2

ex/αo, if the correlation can be described

by a linear relationship

||yobs − yφ||2 ≈ α0 · ||yobs − ŷφ||2 + α1. (4.14)

4.5 Application to the IC Fault test case

In this section, we first assess the performance of the functional error model to satisfactorily

describe the misfit between the proxy and the exact models for the ICF test case. Then, the

proxy (corrected by the error model) is used as first-stage solver in two-stage MCMC, and

the results are compared with a pure Metropolis-Hastings approach in order to illustrate the

potential of error modeling in the context of Bayesian inference.

4.5.1 Error model

The objective of functional error modeling is to correct the proxy response to estimate an

unbiased exact response. The first step is to choose an appropriate proxy that is sufficiently

informative of the behavior of the exact model but considerably cheaper in terms of computa-

tional cost.
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Choice of proxy model

Here, we are interested in sampling the space of the parameters that describe the permeability

field, while the properties of the fluids and the physical processes are known. We consider

the simultaneous flow of two immiscible liquids that form two separate phases (oil and water)

and we are interested in the production rates of both fluids. Under these conditions, the fluid

transport is governed by a set of coupled nonlinear equations, which complicates the numerical

solution of the equations. The high degree of coupling between the pressure and the saturation

equations renders the transport problem computationally expensive.

A natural choice of proxy is to neglect the nonlinearity of the permeabilities and the two-

way coupling between the equations by solving a simple tracer transport problem. This means

using a single phase solver as a proxy for a two-phase solver. Further simplifications are

introduced by neglecting capillarity and gravity, so that the pressure equation has to be solved

only once per proxy simulation.

Construction of the learning set

The construction of the learning set requires making choices on the method of selection and on

the size of the set. Here, we train the error model on a subset of 100 realizations selected by

performing a Latin hypercube sampling in the 3D parameter space. The learning set consists

of two pairs of curves par realization: water and oil production rates obtained with the proxy

and the exact models. Comparison with other sampling techniques and learning-set sizes has

indicated that the effects of these variables on the error model is limited. Additional tests (not

reported here) have suggested that 20 realizations might be sufficient to obtain a satisfactory

error model, but with such few realizations the performances would vary greatly from one

learning set to another. The choice of a subset of 100 realizations has been made for the sake

of robustness. The proxy and exact curves in the learning set are plotted in figure 4.5.a.

Dimensionality reduction and interpretation of the information

For each realization in the learning set we have four subspaces of response curves: the spaces

of the proxy and exact production rates of water and oil. For each subspace, we subtract

the average response from each response curve and then apply FPCA to obtain a basis of the

subspace. To reduce the dimensionality of the problem we truncate the basis by considering

only the first three functional principal components, which capture more than 96% of the
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Figure 4.5: a) The learning set of curves is constructed by running both proxy (top) and
exact (bottom) models on the sampled geostatistical realizations. The production rates of oil
(full lines) and water (dashed lines) are plotted in bbl/day in function of time. b) The three
first rotated functional principal components (harmonics) extracted from the learning set are
represented here for the two sets of pairs of production rate curves. The solid lines are the
mean curves and the dotted lines represent the variability around the mean described by the
corresponding harmonic. The legends report the percentage of the total variability, which is
explained by each harmonic.

variability within the learning set.

By close inspection of the rotated harmonics (figure 4.5.b), we notice that the first principal

component captures the variability of the initial plateau of oil production rate (i.e. prior to

the water breakthrough, figure 4.5.a bottom). The second harmonic of the proxy and the

third harmonic of the exact model describe the production drop after water breakthrough.

The third harmonic of the proxy and the second harmonic of the exact model capture the

remaining late-time variability. A similar analysis can be done for the harmonics of the water

production rate curves. The first harmonics (both of the exact and proxy models) explain the

variability at the end of the simulation time, the second harmonics capture small variabilities
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at the water breakthrough time, and the third harmonics describe most of the variabilities

occurring at intermediate time between the water breakthrough and the end of the simulation.

Evaluation of the informativeness of the proxy and self-consistency of the error

model

After the dimensionality reduction, each functional space has a six-dimensional basis (three

harmonics for the water production and three harmonics for the oil production). In addition

to decreasing the computational cost of constructing the error model, the reduction to six

dimensions facilitates a visual inspection of the relationships between proxy and exact curves,

providing insight into whether the proxy response is informative of the full-physics response.

Figure 4.6.a) plots the one-to-one relationship between the scores (i.e., the projections

on the harmonics) in the proxy space versus the scores in the exact space. A clear linear

relationship can be observed in the upper-left plot, which illustrates the relationship between

the first harmonics of the oil production. This indicates that the height of the plateau of the

exact oil-production curves is well explained by the proxy plateau. On the other hand, the

second harmonic of the proxy oil curves (plots in the second column) does not display a simple

relationship with any harmonic of the exact curves. Also, the second and third harmonics

of the exact oil-production curves do not display a simple relationship with any of the proxy

harmonics (second and third rows). This indicates that the proxy is not very informative of

the features described by the second and third harmonics of the exact oil curves and one can

expect that the error model will be less accurate in predicting those harmonics.

The error model maps the space of the proxy responses onto the space of the exact responses

and it is constructed by solving six independent linear regression models as explained in section

4.4.1. Figure 4.6.b) shows the correlation between exact scores and the scores predicted by the

error model (in the space of the exact curves) for all the 100 realizations of the learning set. As

expected, the projection on the first oil-production harmonic, which describes the plateau at

early time, is well predicted with an R2 value of 0.91. The projections on the second and third

harmonics are predicted with lower accuracy (R2 = 0.77 and 0.79, respectively). The water-

production scores are rather well predicted with R2 values around 0.9. The underestimation

of the largest score values for the first and the second harmonics of the water production rates

(figure 4.6.b) demonstrates the limitation of the linear model. Indeed, as the proxy curves

are always positive, not all scores values are possible. In particular, for the second water
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harmonic (figure 4.6.a), a clear lower bound in the exact scores is displayed and biases the

linear regression.
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Figure 4.6: a) Dependency between exact and proxy scores. The scores of the first three har-
monics of the exact oil production rate {ηoi (t)}i=1,2,3 and water production rate {ηwi (t)}i=1,2,3,
are plotted as function of the scores of the proxy curves with respect to the harmonics
{ζoi (t)}i=1,2,3 and {ζwi (t)}i=1,2,3. b) Results of the linear model: the exact scores are plotted
as function of the predicted scores; also shown is the identity line. Both plots are helpful to
assess whether the linear regression model is appropriate to describe the relationship between
proxy and exact scores, thus the level of informativeness of the learning set.

Evaluation of predictive power of the error model

For a new point in the parameter space, the corresponding realization is built and the proxy

model is run. Then, from the output of the proxy model (i.e., the time-discrete recovery

rates resulting from the numerical simulations), continuous oil and water production rates are

reconstructed and projected on the harmonics. The proxy scores are used as input of the error

model, which allows prediction of the corresponding exact scores that are used to reconstruct

the two-phase response curves.

In order to evaluate the performance of the error model, proxy and exact simulations were

run for a test set of 1000 realizations sampled in the entire parameter space by means of Latin

Hyper Cube sampling. Figure 4.7 compares the exact responses with the predicted responses

for four points sampled in the parameter space. Figure 4.8.a) plots the error of the prediction

as a function of time. The error of the mean of the predicted curves is very close to zero for
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Figure 4.7: Four predictions that are representative in term of l2 error norms: a) and b)
have errors close to the median, c) to the 25% percentile, and d) to the 75% percentile. The
continuous lines are the oil production rates, the dashed lines the water production rate. The
proxy curves (blue) are effectively corrected by the error model and the predicted curves (green)
match well the exact curves (black).

both the oil and the water production rates, which indicates that the predicted mean is not

biased. The histograms in figure 4.8.b) show the distribution of the l2 and l∞ error norms.

On average, the maximum error made is around 80bbl/day for oil and 180bbl/day for water,

respectively.

In the context of Bayesian inference, a correct prediction of the misfit to the observed

data is crucial. Figure 4.8.c) illustrates the correlation between the misfit computed from the

predicted curves and the misfit computed from the exact curves for the observational data

shown in figure 4.1. The overall correlation between the exact and predicted misfits is good as

indicated by the high correlation coefficients in R2. Therefore, the prediction model is expected

to be efficient at rejecting realizations. However, for small misfits (i.e., for realizations whose

responses deviate less from data) the error model is less accurate and tends to overestimate the

misfit. This explains the lower Kendall correlation coefficient (a measure of rank correlation)
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with respect to the Pearson coefficient (a measure of the degree of linear dependence).
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Figure 4.8: The quality of the error model is evaluated on a test set of 1000 new realizations.
a) Difference between production rates predicted with the error model and the exact production
rates (grey curves) for the oil (top) and the water (bottom). b) Histograms of the l2 and l∞
error. c) Exact misfit versus predicted misfit with respect to the observations (the identity line
is plotted in red); the R2, Pearson and Kendall correlation coefficients are reported to indicate
the quality of the prediction.

4.5.2 Two-stage MCMC

In this section, we first introduce the definition of the misfit necessary to compute the like-

lihoods in Eq. 4.13; then we investigate the fidelity of the response surface predicted by the

error model; and finally we show that a two-stage MCMC set-up is able to explore a larger

portion of the parameter space than MH at the same computational cost, which can be a

substantial advantage for challenging problems as the ICF test case.

Definition of the misfit and response surfaces

Here we employ the definition of the misfit that is commonly used to investigate the ICF test

case, i.e.,

Mj =

36∑
i=1

(Cjo(ti)− Crefo (ti))
2

σ2
o(i)

+

36∑
i=27

(Cjw(t)− Crefw (t))2

σ2
w(i)

(4.15)

where σo(i) = 0.03 ·Crefo (ti) and σw(i) = 0.03 ·Crefw (ti). The likelihood is then obtained from

the misfit as L = exp(Mj). Notice that only the water production rate at later time (i ≥ 27)

87



Chapter 4

contributes to the misfit.

The three first original papers on ICF (Tavassoli et al., 2004, 2005; Carter et al., 2006)

have employed a slightly different definition of the misfit, which considers the contribution of

the water production rate at any time (i.e., with i = 1 instead of i = 27 in the second sum-

mation in Eq. 4.15). However, this choice leads to a very discontinuous response surface, for

which hardly any method beside classical Monte Carlo would be able to provide a reasonable

solution. The modified misfit function defined in equation 4.15 has been introduced to make

the problem more tractable and is commonly used in all investigations of the ICF test case.

Comparison of the response surfaces

To further assess the performance of the error model, figure 4.9 compares the 1D response

surface of the misfit of both the exact model and the prediction given by the error model, as

a function of the fault-throw value. The response surface of the exact model exhibits several

local minima separated by large misfit regions. This situation is particularly challenging for

any MCMC approach because many realizations are required to cross large misfit regions with

small random-walk steps.

Figure 4.9: The 1D response surface of the ICF problem for the misfit definition given
in equation 4.15. Khigh and Klow are set to the reference values, while the fault throw varies
between 0 and 60 feet. Shown are the response surfaces obtained from the exact model (black),
from the responses predicted by the error model (green), and from the proxy curves alone
(blue).

The predicted response surface (which provides the basis of the first-stage rejection deci-
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sion) is in excellent agreement with the exact response surface for h > 48ft. For a fault throw

between 8 and 48ft, the discrepancies between the two curves are more important, but the

main features of the curves are reproduced. We can expect that the low misfit values of the

predicted response curve will be able to guide the chain into this region. For values between

0 and 8 feet, the misfit is greatly overestimated but the shape of the curve is reproduced. If

inference is made only based on the prediction model, the minimum around 7ft would not be

identified. However, in a two-stage set-up the relative values of the misfit are more relevant

than the absolute values.

An error model that predicts a response surface that roughly preserves the shape of the

exact surface may be sufficient to drive the chain to minimum misfit regions at a lower compu-

tational cost than it would be possible with the exact model alone. Sharp misfit contrasts, as

the one observed around 8ft, might impair the mobility of the chain, preventing the exploration

of the entire parameter space. Note, however, that in multidimensional spaces (e.g., in the full

3D parameter space of the ICF test case) sharp contrast might be less problematic than in

1D, because the higher dimension might allow the chain to bypass the misfit peak.

MCMC results

In a MCMC set-up the choice of proposal distribution is crucial. To obtain optimal convergence

of the chain, the acceptance rate should be in the range between 20% and 50% (see Sec. 4.4.2).

This is achieved by tuning the standard deviation of the random walk, which is defined as

h(i+1) = h(i) + sh · δh(i), δh ∼ N (0, σ2)

K
(i+1)
h = K

(i)
h + sKh · δKh (i), δKh ∼ N (0, σ2)

K
(i+1)
l = K

(i)
l + sKl · δKl (i), δKl ∼ N (0, σ2) (4.16)

where σ is the standard deviation of the random walk; and sh, sKh , and sKl are the scaling

factors ensuring that each prior is visited at the same rate. To determine the standard deviation

that corresponds to the optimal acceptance rate for Metropolis-Hastings algorithm we have

launched several chains of 1’000 iterations with different standard deviations, and found an

optimal value σ = 5 · 10−3.

First, we compare three MH chains with three two-stage MCMC chains. All chains are

launched with the optimal value σ = 5 · 10−3 and have a length of 10’000 iterations. The

statistics of the chains are reported in table 4.1. A representative example of chain is plotted

89



Chapter 4

for each of the two methods in figure 4.10 (first and fourth columns). The acceptance rate of

MH is approximately in the optimal interval, ranging from 14% to 36%, whereas for two-stage

MCMC we obtain a slightly suboptimal acceptance rate, which ranges from 8% to 23%. In

all cases the chains have been able to explore only a limited portion of the parameter space,

despite a length of 10’000 iterations.

In order to enlarge the portion of the parameter space that is explored, we multiply the

standard deviation of the random walk by a factor 5 (σ = 1 · 10−2) and 10 (σ = 5 · 10−2),

we launch again three chains for both values of σ. The length of the MH chains remains

fixed to 10’000 iterations, whereas the length of the two-stage MCMC chains is chosen to

approximately match the computational cost of the MH chains. (This is done assuming that

the computational gain of the proxy with respect to the exact model is equal to the number

of time steps per simulation, which is about 43). The statistics of MH and two-stage MCMC

chains with the modified parameters are reported in table 4.1, and two examples of chains

are shown in figure 4.10. The MH chains acceptance rate drops from an average 23% for

σ = 5 · 10−3 to 11% and 1% for σ = 1 · 10−2 and σ = 5 · 10−2, respectively.

In addition to the fact that these values are not optimal for convergence, the low accep-

tance rate implies that many of the full-physics simulations are run without providing any

information gain, thus wasting computational resources. One of the main results of the work

is that, at approximately the same computational cost, the two-stage MCMC set-up allows us

to increase the acceptance rate by a factor 1.5 to 4 (the average acceptance is 16% and 4.5%

for σ = 1 · 10−2 and σ = 5 · 10−2, respectively, see table 4.1). Moreover, as the proxy model

is much cheaper than the exact model, two-stage MCMC chains reach lenghts of about 15’000

and 30’000 iterations (which corresponds to an increase in length of a factor 1.5 to 3) and

allows a larger portion of the parameter space to be sampled.

While those results are very promising, none of the two-stage MCMC chains visited the

reference point. The reference point was visited only by one of the MH chains, which was

randomly initialized very close. Overall, this test case remains very challenging for single chain

MCMC set-up and multiple chains solutions (Mohamed et al., 2012) should be considered.
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Figure 4.10: The chains are represented by their movements in the parameter space (vertically
h, Khigh and Klow) in function of iterations. For each of the three values of the random walk
step length σ, one Metropolis-Hasting chain and one two-stage MCMC are plotted. The
acceptance rates indicated in the legends are improved for the two-stage MCMC chains when
σ is increased, allowing for much longer chains at the same computational cost.
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random number of number of accepted simulations acceptance
walk iterations 1st stage 2nd stage rate
σ C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 mean

Metropolis-Hasting
5 · 10−3 10’000 10’000 10’000 1’631 3’247 1’291 18.1% 36.1% 14.3% 22.8%
1 · 10−2 10’000 10’000 10’000 1’683 755 628 18.7% 8.4% 7.0% 11.4%
5 · 10−2 10’000 10’000 10’000 179 65 48 2.0% 0.7% 0.5% 1.1%

Two-stage MCMC
5 · 10−3 10’000 10’000 10’000 4’760 5’299 176 367 789 41 7.7% 14.9% 23.3% 15.3%
1 · 10−2 14’372 14’815 31’738 9’666 9’656 7’820 2’060 2’075 331 23.3% 21.5% 4.2% 16.3%
5 · 10−2 28’337 31’777 27’108 9’341 9’261 9’370 393 518 337 4.2% 5.6% 3.6% 4.5%

Table 4.1: Results of Metropolis-Hasting and two-stage MCMC algorithms for three chains
(C1, C2, and C3): the standard deviation of the random walk, σ; number of iterations (i.e.
total length of the chain); the number of accepted simulations at the first-stage; the number of
accepted simulations at the second-stage; and the acceptance rate (i.e., the ratio of accepted
exact simulations to the number of exact simulations that have been performed).

4.6 Conclusions

We have investigated the potential of using error models in the context of Bayesian infer-

ence. The error model is used to map a proxy model response into the response of the exact

model, which can be predicted without actually solving the exact model, thus reducing the

computational costs. This methodology was applied to the ICF benchmark test case, which

is geometrically simple yet very challenging. The ICF problem is particularly arduous for

MCMC methods, because the very intricate surface response, characterized by sharp misfit

contrasts, makes it very difficult, if not impossible, to explore the whole space by a single

chain at tractable computational costs.

We have compared the performance of classic Metropolis-Hasting chains with a method

that couples our error model with a two-stage MCMC algorithm. The use of the error model

has increased the acceptance rate of the realizations for which the exact model was run (from

11% to 16% and 1% to 4% for σ = 1 · 10−2 and σ = 5 · 10−2, respectively). This has allowed

the chain length to be increased up to a factor three with respect to MH at comparable com-

putational costs, potentially permitting us to explore a larger portion of the response space.

Based on the results of the few chains reported, it remains unclear whether the decreased

computational costs might be sufficient to guide the chain out of areas of local minima, in

which MCMC chains remain systematically trapped regardless of the random walk standard

deviation σ that is employed. Most likely, this problem will not be solved for irregular response

surfaces as the one of the ICF test case. However, the use of an error model can be greatly
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beneficial also for multiple-chain algorithms that can be set up to overcome this issue.

We have demonstrated that the relationship trained on the learning set is quite effective in

predicting the exact responses, as it is indicated by the correlation indices and by the linear

relationships between the exact and predicted misfits. The error model has been very successful

to reject bad samples, but slightly less informative to predict the response of the best samples

(i.e., for realizations in regions of low misfit).

Notice that the use of the proxy without error model would be very inefficient as first-stage

selection criterion. This is evident from simple inspection of the proxy misfit in figure 4.9: the

regions of good-quality parameters cannot be identified on the basis of the proxy misfit alone.

The error model is thus critical to guide the simulations in the correct regions of the parameter

space, avoiding that the two-stage MCMC approach results in a counter-productive increase

of simulations in poor quality regions, thus heavily increasing the computational effort.

The question that arises naturally is whether the quality of the proxy is relevant in pres-

ence of such an effective error model. To investigate this, we used the input parameters of

the model (i.e., the permeabilities of the two facies and the fault throw) as proxy, that is, we

directly constructed a regression model between the input parameters and the scores of the

exact responses on a learning set. In this case, we have observed a total absence of relation-

ship. This demonstrates that, despite its simplicity, the single-phase proxy provides important

information on the connectivity that results from the combined effect of the parameters.

Several improvements can be devised within the framework proposed here. In particular,

more complex (nonlinear) regression models could be considered (e.g., by using of kernels)

and appropriate data transformations could be employed to avoid unphysical results after

correction of the proxy responses, as proposed in Josset and Lunati (2013). In terms of

computational cost, a major improvement could be achieved by taking advantage of all the

simulations performed along the MCMC chains and iteratively updating the error model as

soon as new samples are evaluated (Cui et al., 2011). This option, however, would require

overcoming the problem that the likelihood is modified and convergence is not guaranteed.

Several alternative approaches to MCMC could also be considered jointly with the error model,

e.g., the Nested Sampling (Skilling et al., 2006; Elsheikh et al., 2014) in which resampling is

performed at the prior level. In such approaches, the error model would be useful to reject

sampled points and the Nested Sampling would avoid entrapments in the inherent structure
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of the ICF while allowing an iterative update of the regression model.
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5.1 Introduction

Stochastic approaches are common practice to represent the uncertainty in the many subsur-

face properties (Kennedy and O’Hagan, 2001; Wu and Zeng, 2013). Once a set of property

realizations is defined, the uncertainty on the quantity of interest is estimated by performing

flow simulations, and summary statistics (e.g., point-wise quantiles such as P10, P50 and P90)

are used to facilitate interpretation. This process is called uncertainty propagation. While sim-

ple in concept, the approach is heavily limited by the associated computational cost (Dagan,

2002; Rubin, 2004; Renard, 2007; Wu and Zeng, 2013). An accurate description of the sub-

surface uncertainties requires a large number of realizations, and thus many flow simulations

have to be performed.

This computational issue was first addressed by resorting to ranking methods (Ballin et al.,

1992), where an estimate of the uncertainty is provided by solving the flow for a few realiza-

tions that are close to the quantiles that need to be calculated. The performance of ranking

methods depends greatly on their ability to identify the relevant realizations. This led to the

development of dynamic ranking methods (McLennan and Deutsch, 2005), where a simplified

flow solver (or “proxy”) is first used to sort the realizations and thus help selecting of the

realizations.

More recently, Scheidt and Caers (2009a) have introduced the Distance Kernel Method,

where a simplified solver is used to identify a subset of realizations, representative of the

ensemble, by using a k-medoids clustering algorithm (Hastie et al., 2009). The point-wise

quantile curves are computed based on the exact responses weighted by the size of the clusters

(see section 2.4.2 for a detailed description).

The quality of the estimates obtained by dynamic ranking methods and DKM is determined

by the choice of the simplified solver, which should balance reduction of computer costs and

accuracy of the estimate of the exact simulation. The methodologies proposed in chapters 2

and 3 follow the same approach as DKM but use the subset of exact responses to construct an

error model and correct the proxy responses. The predicted curves are then used to compute

the corresponding quantiles. Beside an increase in robustness, the error model described in

chapter 3 offers an additional advantage : the informativeness of the proxy is evaluated during

the construction of the error model.

In the present paper, we propose to combine the concept of error model with an iterative

scheme to improve the estimation of the quantile curves. At each iteration, the current error
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model is constructed and the predicted responses are used to identify the realizations that

are of interest to compute the summary statistics. The realization that is the closest to the

computed quantile is added to the learning set of realizations, then the exact simulation is

performed for this realization and is used to update the error model. This allows the iterative

refinement of the error model around the quantile curves. The proposed methodology is useful

beyond the context of uncertainty propagation. In a model calibration procedure, for instance,

one is interested in sampling realizations that match the observation data. In this context, the

error model is used to identify the realizations that are the closest to the observed curve. As

realizations are added, the error model becomes more accurate around the data.

The paper is structured as follows. We start by presenting the proposed methodology

(section 5.2). Two applications are then explored: first, we consider the problem of the

prediction of an hydrocarbon plume potentially polluting a drinking source as in chapter 3

(section 5.3), then, we investigate the challenge of predicting saline intrusion in a coastal aquifer

(section 5.4). For both applications, two problems are considered: uncertainty propagation

and model calibration.

5.2 Methodology

In the present paper, we propose a rather naive methodology illustrated in figure 5.1 and

detailed hereafter. The initialisation phases starts with the evaluation of the proxy on all Ntot

realizations to obtain the proxy responses {xi(t)}i=1,...,Ntot . FPCA is then used to define a

basis of limited dimension, and a Partitioning Around Medoids algorithm (Maechler et al.,

2015) identifies NLS realizations that cover quite uniformly the FPCA proxy space. The exact

flow simulations are then performed for the NLS realizations and the resulting NLS pairs of

proxy and exact curves form the learning set.

Follows the iteration phase. A Leave-One-Out Cross Validation (LOOCV) procedure is

used to find the appropriate number of harmonics: for each sub-learning set of size N it
LS − 1,

the FPCA decomposition and the regression are performed, and the left out curve is predicted.

Indeed, a high number of harmonics allows a finer reproduction of the curves, but also increases

the dimensionality of the regression problem. When the number of realizations in the learning

set is limited, an overfitting of the error model may then occur if nharm is too large. The

appropriate number of harmonics is determined by choosing nharm such that the median of

the prediction errors is minimized. The full error model is constructed using the N it
LS curves
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and for nharm, then the Ntot exact responses are predicted. Based on these predictions, the

next realization, Rnew, to be used to enlarge the learning set is chosen with a criterion tailored

to the quantity of interest. In the case of model calibration, for instance, one is interested in

refining the error model for curves close to the observation. The iteration loop starts over at

the LOOCV procedure and is repeated until the maximum number of exact flow simulations

is reached (N it
LS = Nmax

LS ).

!!

LOOCV to 
determine nharm 

Construction of 
the error model 

with nharm 

Prediction of the 
Ntot responses 

Identification of 
Rnew wrt the 
quantity of 

interest 

Run exact 
solver for Rnew;  
NLS = NLS +1 

Until 
NLS = NLS

max 

Leave-One-Out Cross-Validation 
to determine nharm (LOOCV) 
 
1.  FPCA 
2.  Build regression between scores 
3.  Prediction of left out realization 
4.  Measure prediction error 
 
! Choose nharm based on min(error) 

Uncertainty in K 
Ntot realizations!

Evaluate proxy Ntot 
responses!

Construction of  
proxy space using 

FPCA 

Figure 5.1: Flowchart of the methodology

5.3 Application to a hydrocarbon pollution problem

In the first application we consider the problem of an aquifer contamination by a non-aqueous

phase liquid (NAPL). This test case was first explored in section 3.5. A set of 1000 realizations

inspired from the Herten test case describes the uncertainty in subsurface permeability and

porosity. The contaminant is accidentally released on the left-hand side of the aquifer and
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the quantity of interest is the breakthrough curve of the pollutant at a point location (i.e.

described by a single cell of the discretization grid) representing, for instance, a drinking well

(section 3.5.5). The exact model requires solving the two-phase transport equations as the

NAPL is not miscible with water and forms a separate phase, whereas the proxy considers a

single-phase transport problem. We refer to section 1.2 and appendix 3.7.1 for more details

on flow equations and solvers.

5.3.1 Uncertainty propagation

In the context of uncertainty propagation, a set of Ntot geostatistical realizations of the per-

meability fields {Ri}i=1,...,Ntot is identified to represent the uncertainty in the subsurface prop-

erties. The objective is to compute the uncertainty associated with this set for the quantity

of interest (here, the saturation in NAPL). To represent the uncertainty on the travel time,

it is customary to use as summary statistic the point-wise quantiles curves. The exact solver

is computed for each realization {yi(t)}i=1,...,Ntot and the resulting quantiles are computed

Q10,50,90
ref , to be used as references.

Figure 5.2: Comparison of the quantile curves prediction obtained without iteration (brown
curves) and with an iterative scheme (purple curves). The reference quantile curves are indi-
cated in black.
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We iteratively construct the error model starting with 10 realizations in the learning set

and adding a new realization around the predicted quantiles until NLS = 20. The results of

the iterative scheme are compared with the predicted quantiles obtained with the error model

constructed directly with NLS = 20, which are identified by a PAM algorithm (Maechler et al.,

2015). In figure 5.2.a), the prediction of the quantiles matches quite well the reference for the

second half of the measurement time. On the other hand, the first part of the curves exhibits

oscillations. The problem is most likely due to the difficulty of finding a basis that represents

this set of curves and its large variability at early time. The iterative scheme, in which one

curve close to P10 is added in alternation with one curve close to P90, improves greatly

the prediction of P90 quantile curves. The new curve pairs add to the learning set improve

the representation with the FPCA basis and allow a finer representation. P10 is only slightly

improved between the 50 and 100th timesteps and deteriorates at later times. The lower density

of curves around P10, together with the difficulty of representing late first breakthrough times

by a low dimensional space, renders the description of P10 more challenging.

In figure 5.3, the error of the predicted quantiles is reported as a function of the iterations

for the test case of a learning set of size increasing up to NLS = 60. The P90 prediction error

remains rather constant with some oscillatory behavior as the number of iterations grows.

Bootstrap techniques might be used to quantify the stability of the prediction. Indeed, while

the prediction of P90 with 10 curves in the learning set is just as good as with 50 curves, the

confidence bounds around the prediction are much smaller.

In comparison with P90, P10 error is much larger at the beginning but decreases as the

size of the learning set increases. This illustrates that the prediction of the quantiles can be im-

proved by the iterative resampling strategy. The fact that the error seems to converge suggests

that a stability (or stagnation) measure, together with a quantification of the uncertainty on

the prediction (e.g., using bootstrap techniques), could be used to define a stopping criterion.

5.3.2 Model calibration

Next we consider the challenge of model calibration. One geostatistical realization is randomly

chosen as the reference from the ensemble and taken out. The period of observation is defined

as the first 60 time steps. The goal is to predict the breakthrough curves at the following

time steps. As mean of comparison, model calibration is first done over the ensemble of

exact responses by computing the misfit with respect to the reference curve over the period
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Figure 5.3: Evolution of the l2-error between the predicted and reference quantile with the
iterations. The error for P10 is indicated by a continuous line, P90 by a dotted line.

of observation and by selecting the ones that are under a certain threshold. The “exact”

prediction of the curves are shown in figure 5.4.a). The error model performance without any

iterative scheme and built directly with 20 realizations in the learning set is shown in figure

5.4.b). The threshold on the l2-error has to be doubled so that a predicted curve could meet

the misfit threshold. While the one identified realization provides a close to perfect prediction,

the error model is not capable of reproducing the water breakthrough time. On the other

hand, the iterative scheme allows us to fix this issue and improve the prediction of the early

time of the curves (figure 5.4.c).

5.4 Application to a saline intrusion in a coastal aquifer prob-

lem

We consider a two-dimensional confined aquifer of 10m depth and 40m length. It is assumed

that the aquifer is saturated with freshwater with a density of 1000 kg/m3 and that saline

intrusion occurs on the right-hand side of the aquifer. A hydrostatic gradient is assigned on

both vertical sides, assuming fresh water density (1000 kg/m3) on the left-hand, and saline

water density of 1025 kg/m3 on the right-hand side. The heterogeneity is described by 1000

realizations, with the logarithm of the permeability field that follows a multi-Gaussian distri-

bution and a constant porosity of 20%. The breakthrough curves are computed by vertically

averaging the concentration 10m away from the sea.
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When simulating saline intrusion in an aquifer, the density difference between saline and

fresh water requires the explicit description of gravity effects in Darcy’s law (see section 1.2).

The “exact model” yields a heavy computational cost as the elliptic pressure equation as to

be solved at each time step. As proxy model, we choose to perform single-phase transport

simulation with the same boundary conditions, which leads to drastic computational savings

because the pressure is solved only once. The responses of exact and proxy solvers vary greatly:

the absence of coupling between the pressure and the transport equations (which neglects

gravity effects) leads to a fully saturated aquifer (with concentration equal to the saline water)

and to monotone breakthrough curves. Using the exact model, instead, the saline intrusion is

driven to the bottom of the aquifer and the streamlines change dynamically; nothing enforces

the monotonicity of the breakthrough curves.

5.4.1 Uncertainty propagation

The reference quantile curves are computed from the 1000 exact responses. In figure 5.2, we

compare the prediction of the point-wise quantiles by an error model without (c) and with

an iterative scheme (d). No appreciable improvement is provided by the iterative scheme.

Prediction of the quantile curves may even deteriorate. Both error models fail to reproduce

the P90 quantile by 3 to 4 kg/m3 and P10 is overestimated by 1 to 2 kg/m3.

Additional tests (not reported here) have been run for different learning set size, and

showed no improvement of the description of the quantile curves. This is due to the poor

informativeness of the proxy for later times (the R2 coefficient of the linear regression is as low

as 0.3). More complex regression models (polynomial and kernel regression models (Hayfield

and Racine, 2008)), have been also tested with no success. If the proxy is not informative, the

choice of regression model is not relevant and the individual predictions of the curves are of

poor quality.

5.4.2 Model calibration

We have arbitrarily chosen to define the period of observation over the 60 first time steps.

The model calibration is first performed on the set of exact responses for a given threshold on

the l2-error. The identified curves are shown in figure 5.4.d) and depict quite a wide range of

variability, with a mean curve overestimating the salt concentration by 1 or 2 kg/m3. Using

the error model constructed using 20 curves at once, the predictions are in agreement with
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the truth but provide a much more limited range of variability (figure 5.4.e). The iterative

scheme (figure 5.4.f), in which 10 curves are first used to construct an error model and the

next ten are then chosen iteratively by finding the realization that predicts the curve closest

to the observations, provides a wider estimate of the uncertainty, but it still underestimate the

uncertainty in comparison with the reference.
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Figure 5.4: Comparison of the model calibration results obtained using the complete set of
exact responses (i.e., the reference, in blue), using an error model without iteration (brown
curves), and with an iterative scheme (purple curves). The reference calibration curve is
indicated in black.

5.5 Conclusions

An iterative approach has been tested to identify the next realization and improve the quality

of the error model. Two applications have been investigated. The first example concerns the
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case of predicting the point-wise curves of hydrocarbon plume. As shown in section 3.5.5, this

test case is particularly challenging due to the great variability of the response curves. The

iterative construction of the error model allowed a successful model calibration, but in the

context of uncertainty propagation the improvement was modest for the case and the iterative

scheme considered. An alternative would be to modify the selection scheme. Instead of focusing

equitably on both quantiles, the procedure should preferably sample the region around P10

where the density of curve is lower and the variability harder to describe. A solution could be

to define a criterion to resample, for instance the Expected Improvement criterion proposed

in Ginsbourger et al. (2013). However, the adaptation of this criterion in a functional context

is not straightforward. Another missing element is the definition of a stopping rule in the

iterative construction of the learning set. Figure 5.3 indicates that the error model converges

when a certain number iterations are performed. A measure of stability could be used to stop

the iterative procedure.

Arguably, the application to the saline intrusion problem, does not allow for a conclusive

illustration of the relevance of this approach. The difficulties resides in the use of a rather crude

proxy. More refined proxy models could be used instead the single-phase transport solver. One

could imagine, for instance, to compute the effect of gravity for a limited number of time steps

during the simulation.

Despite the limitations of the strategy explored here, we stress that an iterative scheme is

crucial to increase the applicability of the approach. The combination of a proxy model with

an error model is useful beyond uncertainty propagation or the rather simplistic calibration

problem explored here, such as in a Bayesian inference context. In chapter 4, an error model

devised a priori is used within a two-stage MCMC to reduce the number of wasted exact

simulations. The construction of the error model requires that some computational resources

are devoted to it, in this particular case 100 exact simulations were performed for the 100

identified points in the parameter space. We advocate that an iterative scheme would have

been helpful not only to determine the appropriate size of the learning set, but also to identify

the relevant realizations to be used to optimize the error model.
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Conclusions and Outlook

In the present work, we have introduced a novel methodology to devise error models and to

correct the results of proxy simulations. Following a machine learning approach, a learning set

is used to construct a mapping between pairs of proxy and exact responses. The mapping relies

on a dimensionality reduction of the problem using FPCA. A linear regression model is then

built, so that for any new realization a prediction of the exact response can be obtained based

solely on its proxy response. The proposed methodology was applied for several subsurface

flow problems (i.e. single-phase transport, multi-phase simulation and density driven flow) and

in various contexts (i.e. uncertainty propagation, model calibration, history matching). Other

applications could be explored such as reactive transport or reactive two-phase simulation, for

instance.

Based on the results of our work, several areas of research appear as promising. To improve

the quality of the predictions of the error model, methods should be developed that satisfy

the physical constraints of the exact responses. In the examples in chapters 2 and 3, for in-

stance, the exact curves are monotonous and constrained between 0 and 1. In chapter 2, a

sigmoid transformation was used to constrain the predicted curves in the (0, 1) interval. The

procedure works for the open interval, however, the transformation is not defined when the

saturation is 0 or 1. Also, this procedure is not sufficient to enforce monotonicity. The FDA

framework allows enforcing monotonicity by using smoothness functions (Ramsay, 2006), but

do not guarantee the monotonicity of the predictions, as the curves are reconstructed using

the FPCA basis. A simple solution would be to smooth the predicted curves using Bernstein

Polynomials as proposed in Menafoglio et al. (2014) hence enforcing both monotonicity and
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interval constraints. An alternative would be to enforce the constraints at the level of the

regression model, which suggests to go beyond linear regression models.

In chapters 3 to 5, a linear regression model between the scores is used. There are several

reasons for that, the most evident being to keep the approach as simple as possible. A lin-

ear model requires fewer data points, owing to the low number of parameters, and allows the

derivation of simultaneous confidence bands around the prediction (see appendix 3.7.3). There

is no reason, however, to assume a-priori a linear relationship between approximate and exact

scores. Any type of regression model is conceivable, ranging from a polynomial regression

model to more sophisticated kernel techniques. Also, other types of regression models might

enable us to meet the physical constraints on the predicted curves.

Chapter 3 raises the question of how to use FPCA. The complexity of the responses ob-

tained in several tests has led us to consider increasing the number of harmonics to control

the loss of information when projecting on the basis (7 instead of 3 harmonics are considered

there), and performing a registration of the curves before applying FPCA. More sophisticated

techniques, such as a warping of the curves (Sangalli et al., 2009), could be explored in place of

a simple translation in time. However, we should keep in mind that any additional parameter

required by the transformation will need to be predicted, hence adding a dimension to the

regression model.

Another possibility would be to look for alternatives to FPCA. A natural solution would

be to consider a Canonical Correlation Analysis (Ramsay, 2006; Satija and Caers, 2015), to

find the shared modes of variation. Despite some advantages, CCA necessitates the definition

of additional parameters (e.g. smoothness parameters) that may greatly impact the quality of

the prediction.

The aforementioned potential improvements are fairly technical and their listing could be

prolonged endlessly in function of the considered test cases. Indeed, the success of the pro-

posed procedure ultimately depends on the quality of the proxy model and on the degree of

information that it carries about the exact model. A potential extension of the work would be

to devise a multi-level approach, in which several proxies of different qualities could be used

in series, each having its own error model. Investigating if and how “intermediate” proxies
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might help is an intriguing field of research, and it would be particularly relevant within a

Multi-Level Monte Carlo algorithm (or any Bayseian inference procedure).

Our objective has been to develop a framework in broad generality and not problem specific.

We believe that this philosophy has indeed been explored throughout the thesis and that the

proposed methodology may be helpful in any context where a mapping between two sets of

functional responses is required. Independently of the specific choice, all techniques introduce

parameters that have to be set. Ideally, those parameters should be “user-defined” depending

on the specific needs, for instance in terms of the desired level of accuracy. In chapter 5, a

Leave-One-Out Cross-Validation procedure is used to identify the number of harmonics htat

have to be used. Quite similarly, bootstrap techniques could be used to quantify the accuracy

of the prediction and define a stopping criteria for the iterative procedure. Future work in

this area must explore the possibility of an iterative and fully automated procedure for the

construction of the error model.
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Köpke, C., Irving, J., and Roubinet, D. (2014). Assessing and accounting for the effects of

model error in Bayesian solutions to hydrogeophysical inverse problems. American Geo-

physics Union Fall Conference.

Künze, R. and Lunati, I. (2012a). An adaptive multiscale method for density-driven instabili-

ties. Journal of Computational Physics, 231(17), 5557–5570.

113



Bibliography

Künze, R. and Lunati, I. (2012b). MaFloT - Matlab Flow and Transport . Published under the

GNU license agreement.

Laloy, E., Rogiers, B., Vrugt, J. A., Mallants, D., and Jacques, D. (2013). Efficient posterior

exploration of a high-dimensional groundwater model from two-stage Markov chain Monte

Carlo simulation and polynomial chaos expansion. Water Resources Research, 49(5), 2664–

2682.
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