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Summary  

Pattern recognition receptors (PRRs) are commonly known as sensor proteins 

crucial for the early detection of microbial or host-derived stress signals by innate 

immune cells. Interestingly, some PRRs are also expressed and functional in cells of 

the adaptive immune system. These receptors provide lymphocytes with innate 

sensing abilities; for example B cells express Toll-like receptors, which are important 

for the humoral response. Strikingly, certain other NOD-like receptors are not only 

highly expressed in adaptive immune cells, but also exert functions related 

specifically to adaptive immune system pathways, such as regulating antigen 

presentation. In this review, we will focus particularly on the current understanding 

of PRR functions intrinsic to B and T lymphocytes; a developing aspect of PRR 

biology. 

 

 

 

Highlights  

- PRRs are expressed by cells of the innate, but also of the adaptive immune 

system 

- Certain PRRs endow B and T cells with innate sensing abilities  

- Other PRRs evolved to fulfill functions related to the adaptive immune 

system  

 

 

 

Keywords 

 T cell; B cell; TLR; NLR; RLR 

 
  



	
   3	
  

Introduction  

Pattern recognition receptors (PRRs) are defined as key sensors involved in 

detecting pathogens or danger signals and initiating inflammatory processes. The 

engagement of PRRs in innate immune cells, such as dendritic cells, is also crucial 

for indirect instruction of adaptive immune responses. While these aspects of PRR 

signaling are well understood, less is known about PRRs that are expressed by 

adaptive immune cells. Here, we will discuss evidence supporting a function of Toll-

like, retinoic acid-inducible gene I (RIG-I)-like, or NOD-like receptors (TLRs, RLRs, 

and NLRs, respectively) intrinsic to B lymphocytes, conventional and regulatory T 

cells. 

 

TOLL-LIKE RECEPTORS IN B AND T CELLS 

The TLR family was the first identified among PRRs and is therefore the most 

characterized. TLRs are transmembrane glycoproteins that bind to a wide range of 

pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). Thirteen 

mammalian TLRs have been identified; ten functional receptors in humans and 

twelve in mice [1]. While TLR10 and TLR11-13 are exclusively expressed in 

humans and mice, respectively, TLR1-9 are shared by both species [2]. These 

receptors are typically expressed in innate immune cells, but analyses at the mRNA 

level in human and mouse have demonstrated TLR expression in all peripheral blood 

leukocytes including B and T cells [3-7]. Such studies have provided a rationale for 

examining a cell-intrinsic function of TLRs in adaptive immune cells. 

 

TLRs in B cells  

The current understanding as to how TLRs modulate B lymphocyte activation, 

antigen presentation, proliferation, class switch recombination, and antibody 

production is comprehensively reviewed elsewhere [8,9]. Therefore, we will focus on 

a few selected studies investigating these aspects.  

Several reports have described the expression of TLRs in different mouse and 

human B cell subsets and their regulation by cytokines as well as signaling from the 

B cell receptor [6-8,10,11]. TLR1, TLR2, TLR4, TLR6, TLR7 and TLR9 are 

expressed in most murine B cell subsets, including naïve B cells, but at varying levels 

[10], suggesting a subset-specific sensitivity to diverse TLR agonists. Similar data 

were obtained in human B cells, although constitutive TLR expression in humans is 
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most prominent among memory B cells, which has been suggested to play an 

important role in the maintenance of serological memory [7,12,13].  

The first in vivo evidence for a B cell-autonomous role of TLRs in the regulation 

of humoral responses came from Pasare and Medzhitov [14]. Performing transfer 

experiments of B cells deficient for the TLR signaling adaptor Myd88 or for Tlr4, 

they showed that TLR signaling in B cells is mandatory for the generation of optimal 

T cell-dependent antibody responses. Notably, the role of TLRs in B cells has been 

corroborated in B cell-specific Myd88-deficient mice, which showed impaired 

humoral response upon immunization with virus-like particles delivering TLR9 

ligands [15]. However, as MyD88 is an adaptor shared also by the IL-1 receptor 

family, the use of conditional TLR-deficient animals would further strengthen these 

results.  

The implications of these studies are highly relevant not only in the context of 

antiviral antibody-mediated responses, but also for vaccine development and 

understanding autoimmunity more broadly [8,16].  

 

TLRs in T cells 

Murine and human T cells express several functional TLRs, which are regulated 

depending on T cell activation status [6,11]. The first evidence of a functional effect 

of TLR ligands on T cell physiology was on clonal expansion. Bendigs and 

collaborators demonstrated that CpG-DNA treatment enhanced antigen-mediated 

proliferation of murine T cells, whereas no effect was observed on naive cells [17]. 

Furthermore, in murine CD4+ T cells, TLR9 engagement was shown to be important 

for cell survival through the activation of mitogen-activated protein kinases 
(MAPKs) and NF-κB [18,19].  

Several studies demonstrated a costimulatory effect of TLR2 ligands on antigen-

mediated proliferation of CD4+ and CD8+ T cells of human and murine origin [20-23]. 

TLR2 is well expressed on mouse cytotoxic CD8+ T cells and human memory CD4+ 

T cells [20,22]. Cooperation of TLR2 and TLR5 engagement was also described to 

enhance activated CD8+ T cell expansion [24]. Furthermore, homeostatic 

proliferation of memory CD4+ T cells was increased by ligands of TLR2, TLR5 or 

TLR7/8, suggesting a role for TLR engagement in long-term maintenance of memory 

T cells [20,25].  
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Concerning effector functions and cytokine production, TLR2 signaling was 

shown to be essential for promoting the production of interleukin (IL)-17 and 

interferon (IFN)-γ by effector CD4+ T cells [26,27], but also chemokine (C-C motif) 

ligand 3 (CCL3), and CCL4 [28]. TLR2 or TLR3 engagement on T cell receptor 

(TCR)-activated CD8+ T cells also enhanced IFN-γ secretion [21,22,29].  

Finally, a dual effect of TLR ligands was described on the regulatory T cell (Treg) 

compartment. TLR8 ligands were shown to reverse the suppressive function of 

human T regulatory cells [30], while it was reported that LPS might induce 

proliferation and enhance suppressive activity of murine regulatory cells [31].  

Given the high expression of many TLRs among APCs, and the sensitivity of T 

cells to APC-derived activating signals, it is important to remember that a small 

number of contaminating APCs could confound the analysis. Nonetheless, an effect 

of TLRs on T cell physiology at the intrinsic level is nowadays supported by several 

independently conducted and well-controlled experiments, clearly demonstrating that 

TLR agonists affect expansion, differentiation, or activity of effector/memory T cells 

as well as the regulatory T cell population. However, the impact of TLR ligands on 

other T-cell subsets, as for instance Th17 or Th22, still awaits further investigation in 

vitro and particularly in vivo. Such studies may open up potential therapeutic 

applications in vaccination or autoimmune diseases [32]. 

 

RIG-I-LIKE RECEPTORS IN T LYMPHOCYTES 

The RLR family members RIG-I and melanoma differentiation-associated gene 5 

(MDA5) act as cytoplasmic RNA sensors inducing type I IFN responses. The third 

family member, laboratory of genetics and physiology 2 (LGP2), is instead a positive 

regulator of their signaling (see Table 1) [33]. RLR signaling is mediated by the 

downstream adaptor mitochondrial antiviral-signaling protein (MAVS), which is 

required for IFN induction.  

Both, RIG-I and MDA5, are highly expressed in T lymphocytes [6]. Interestingly, 

stimulation of Tregs with Encephalomyocarditis virus has been shown to decrease 

Treg inhibitory function in an MDA5-dependent manner, as demonstrated by the use 

of knockout cells [34]. However, no additional insights were provided on the 

mechanism underlying this phenomenon.  
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A recent paper showed the involvement of LGP2 in cytotoxic T cell survival upon 

West Nile virus infection, an outcome that was surprisingly independent of MAVS. 

[35]. This was achieved by down-modulating sensitivity to Fas-mediated apoptosis. 

Given that RLRs specifically detect RNAs, it is however still unclear whether LGP2 

mediates T cell survival only upon infection by RNA viruses [35]. 

Despite the expression of RLRs in T cells, there is little evidence that these 

lymphocytes efficiently produce type I IFN in response to RNA. Accordingly, 

emerging data show that RLRs in T cells can fulfill functions unrelated to classical 

MAVS-mediated signaling; a novel aspect that deserves further investigation.  

 

NLRs IN ADAPTIVE IMMUNE CELLS 

NLRs are intracellular proteins involved in diverse immune processes [36-40]. In 

this review, we will focus on family members that are expressed by adaptive immune 

cells (Table 2).  

 

Inflammasome-forming NLRs  

Upon detection of stress signals, certain NLRs assemble into complexes called 

“inflammasomes” [37]. Inflammasomes trigger the cleavage of caspase-1, which 

proteolytically activates interleukin (IL)-1β and mediates an inflammatory cell death 

called “pyroptosis” [37].  

Although inflammasomes have mainly been described in myeloid cells, caspase-1 

and the adaptor protein ASC (apoptosis speck protein with CARD) are also expressed 

in lymphocytes [6,11]. This supports the possibility that these multiprotein platforms 

can also be formed in adaptive immune cells. Indeed, a very interesting study 

suggested formation of an inflammasome in T cells upon abortive HIV infection, with 

viral DNA being the trigger [41], though the sensor inducing inflammasome assembly 

has not been identified.  

Indeed, certain inflammasome-forming NLRs are expressed in lymphoid cells. For 

instance, NLR family, pyrin domain containing 1a (NLRP1a) is expressed in 

common myeloid and lymphoid progenitors [6,36,37,42-45]. This NLR has recently 

been shown to induce pyroptosis upon stresses such as chemotherapy or infection, 

prolonging cytopenia in both myeloid and lymphoid compartments, therefore 

supporting the possibility that an inflammasome is formed in lymphoid precursor 
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cells [42]. In addition, human NLRP1 is highly expressed in T and B cells, though its 

function in lymphocytes remains unexplored [6,43,46-48].  

The prototypical inflammasome-forming NLR, NLRP3, is however barely 

detectable in T cells at the steady-state [6,43,44,49,50], although it could be 

upregulated upon activation, which is the case in B cells, particularly following C-

type lectin stimulation [51]. In B cells, Nlrp3 is involved in activation and 

immunoglobulin production downstream of C-type lectin stimulation. Though the 

molecular details of this phenomenon remain elusive, it was found to be independent 

of MyD88, suggesting that it was not mediated by IL-1 receptor signaling [51].  

 

NOD1 and NOD2 

NOD1 and NOD2 activate NF-κB and MAPK pathways upon sensing 

peptidoglycans [36,38]. Whilst the function of NOD1 and NOD2 has largely been 

explored in innate immune and mucosal epithelial cells, NOD1 and, to a lesser extent, 

NOD2 are expressed by cells of the adaptive immune system [6,43,44,47,50,52]. 

Stimulation of B and CD8+ T cells with a NOD1 agonist improved antigen receptor-

driven proliferation, and the use of Nod1-/- T cells nicely demonstrated the specificity 

of this effect [44,47].  

Similar to the LGP2 effect in T cells, NOD2 stimulation increased survival of 

Tregs by decreasing sensitivity to Fas-mediated apoptosis [50]. Furthermore, Nod2-/- 

conventional T cells produced less IL-2, effector cytokines, and showed reduced 

nuclear accumulation of the NF-κB family member c-Rel in the context of 

Toxoplasma gondii infection [53]. However, these data were not substantiated in a 

later study [52], reminiscent of the debated T cell-autonomous role of receptor-

interacting serine/threonine-protein kinase 2, the kinase acting downstream of NOD1 

and NOD2 [44,54]. Therefore, future work is required to clarify these discrepancies.  
 

Signaling and transcription regulatory NLRs  

NLR family, CARD domain containing 3 (NLRC3) is a poorly studied NLR, 

predominantly expressed in T and NK lymphocytes [6,55]. An early study suggested a 

negative role in T cell activation because NLCR3 transcript abundance decreased 

upon TCR triggering and NLRC3 overexpression impaired TCR-induced NF-κB 

signaling [55]. However, a recent report demonstrated experimental artifacts can be 

generated using NLRC3 overexpression assays, suggesting caution should be taken 
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when interpreting such overexpression studies [56]. Nonetheless, an increase in TLR-

driven NF-κB activation was shown in macrophages derived from Nlrc3-deficient 

mice, though T lymphocytes were not investigated in this study [57].  

One of the most exciting areas of PRR function in adaptive immunity is in 

transcriptional regulation. Whilst they belong to NLRs, CIITA and NLRC5 act as 

transcriptional regulators of major-histocompatibility complex class II (MHCII) and 

class I (MHCI), respectively [39,40,58]. In humans and in mouse, CIITA deficiency 

causes a lack of MHCII, leading to severe immunodeficiency [39]. CIITA expression 

is virtually restricted to antigen-presenting cells (APCs) and in humans also to 

recently activated CD4+ T cells [6,39]. MHCII expression is crucial for the 

homeostasis and the activity of helper T cells, and its expression specifically by B 

lymphocytes is essential for the maturation of the humoral response.  

Under homeostatic conditions, NLRC5 is highly expressed in lymphocytes, 

predominantly in T cells [6,40,58]. Accordingly, Nlrc5 deficiency caused a dramatic 

defect in MHCI expression in T cells and an intermediate phenotype in B cells, and a 

milder defect was observed in innate APCs. Notably, reduced MHCI levels on Nlrc5-

/- lymphocytes facilitated evasion from cytotoxic T cell-mediated surveillance, while 

Nlrc5-/- B cells were defective in priming CD8+ T cell responses [40,58]. 

A prerequisite for the activation of several NLRs, as well as for RLRs, is the 

internalization of their specific stimuli. It is currently unclear how this is achieved by 

T lymphocytes, which are considered non-phagocytic cells. However, NLRs such as 

CIITA and NLRC5 acquired regulatory functions that are independent from a DAMP 

or PAMP type of ligand, delineating a novel and fascinating evolution of their 

activity (as schematically illustrated in Figure 1). 

 

Concluding Remarks 

Although detailed studies into the role of PRRs in adaptive immunity are relatively 

few, there is growing evidence to suggest an important function for innate receptors 

in adaptive immunity. On the one hand, B and T lymphocytes can be clearly endowed 

with innate immune-sensing properties, often integrating antigen-receptor signaling. 

This is illustrated by the example of B cells, where TLR engagement is important for 

the development of antibody responses, or by emerging data supporting formation of 

an inflammasome platform in lymphoid cells. 
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On the other hand, the dependency on a ligand and the signaling pathways 

activated downstream of PRRs in lymphoid cells can differ from what we have 

learned from innate immune cells (Figure 1). Some PRRs even fulfill their functions 

constitutively, as in the case of CIITA and NLRC5. In this evolution from 

PAMP/DAMP-inducible to constitutive function, several questions remain to be 

answered. Is a ligand required for the function of these NLRs or for LGP2 in T cells? 

The former of these are active even in the absence of infectious or inflammatory 

signals, so what could be the nature of the ligand or ‘activator’? Indeed, the 

inaptitude of T cells to phagocytose suggests that an agonist, if existing, would be of 

endogenous origin. Could there be a ‘modern surrogate’ that has evolved in place of 

the innate pathogen- or danger-associated pattern? To some extent, this is reminiscent 

of the intensively investigated mechanism leading to the activation of NLRP3 [45]. 

Though NLRP3 activity depends on DAMPs or PAMPs, the wide spectrum of 

activating stimuli suggests that NLRP3 itself is unlikely to interact directly with them, 

leading to the hypothesis that a secondary ‘event’ or ‘messenger’ is mediating 

inflammasome assembly.  

With regard to this idea, the study of PRRs in B and T cells might unveil aspects 

of their activity, which could inform studies on PRRs in the innate immune system, 

and vice versa. Further understanding of classical and novel roles of PRRs in 

lymphocytes could ultimately open new avenues for therapeutic targeting of the 

adaptive immune system. 
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Tables and Figure Legends 

 

Table 1. RLRs in adaptive immune cells 

The current knowledge on RLR expression in adaptive immune cells, their accepted 

function, and their specific role in T or B cells are summarized.  

symbol expression in  
B/T cells refs  role refs  

RIG-I 
Ddx58 well expressed 

6;11; 
34;35;

48 
detects viral RNA inducing type I IFN 33 

MDA5 
Ifih1 expressed  

6;11; 
34;35;

48 

detects viral RNA inducing type I IFN; 
stimulation in Tregs reverts their suppressive 

effect 
33;34 

LGP2 
Dhx58  expressed  6;35; 

48 

enhances RIG-I/MDA5 signaling; MAVS-
independent, CD8+ T cell-intrinsic role in 
promoting survival upon viral challenge 

33;35 

 
 
Table 2. NLRs in adaptive immune cells 

This table focuses on NLRs, which have been reported to be expressed in T or B cells. 

Their established function and their adaptive cell-intrinsic roles are summarized. 

symbol expression in  
B/T cells refs  role refs  

NLRP1
Nlrp1a-c 

NLRP1: well 
expressed  

Nlrp1a: reported in 
lymphoid progenitors  

6;42; 
43;44; 
46;47 

inflammasome activation and pyroptosis 37;38;
42 

NLRP3
Nlrp3 

inducible in B cells, 
barely detectable in 

T cells  

43;44;
47;49; 
50;51 

 inflammasome formation upon different 
stimuli; supports B cell activation upon C-type 

lectin stimulation  

37;38;
51 

NOD1 
Nod1  expressed  

6;11; 
43;44;
47;48 

activates NF-kB and MAPK upon  
peptidoglycan detection; integrates antigen 

receptor-driven T and B cell activation 

36;38; 
44;47 

NOD2 
Nod2 weakly expressed 

44;47;
48;50; 

52 

activates NF-kB and MAPK upon  
peptidoglycan detection; integrates antigen 

receptor-driven T cell activation and 
increases Treg survival  

36;38;
50;53 

CIITA 
Ciita 

highly expressed in 
B cells                                               

CIITA: expressed in 
TCR-triggered CD4+ 

T cells 

6;11; 
39 

master trancriptional regulator of MHCII in 
myeloid and lymphoid APCs 39 

NLRC3
Nlrc3 

highly expressed in 
T, intermediately in B 

cells 

6;11; 
55 

 negative regulator of NF-κB activation in 
myeloid and T cells 55;57  

NLRC5
Nlrc5 highly expressed  6;11; 

40;58 
 transcriptional regulator of MHCI, mainly in 

lymphocytes 40;58 
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Figure 1. PRRs in adaptive immune cells: from microbial sensing to constitutive 

functions 

This figure covers the spectrum of possible activities played by PRRs in B and T 

lymphocytes, referring to their mode of activation and downstream signaling cascade.  

As depicted on the left-hand side, PRRs can act in their canonical way in cells of the 

adaptive immune system; that is, their activity is induced by PAMPs or DAMPs, and 

triggers innate signaling pathways such as NF-κB. This is well exemplified by TLRs 

in B cells.  

Conversely, the NLRs CIITA and NLRC5 fulfill an ‘atypical’ function, acting as 

transcriptional regulators of MHCs, the key molecules for adaptive immune 

responses. Moreover, these NLRs transactivate MHC expression also constitutively, 

indicating that they evolved activities, which are independent of pathogen-derived or 

danger signals. Moving from innate to adaptive, from inducible to constitutive, the 

function of PRRs reveals exciting evolutionary paths.  
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