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Résumé grand public 

ASPECTS INTERCELLULAIRES ET DE RESEAUX DES INTERACTIONS 
METABOLIQUES ENTRE NEURONES ET CELLULES GLIALES 

Luigi Bozzo 

Université de Lausanne, Département des Neurosciences Fondamentales 

Quand on parle de l’acide lactique (aussi connu sous le nom de lactate) une des premières 

choses qui vient à l’esprit, c’est son implication en cas d’intense activité musculaire. Sa 

production pendant une activité physique prolongée est associée avec la sensation de 

fatigue. Il n’est donc pas étonnant que cette molécule ait été longtemps considérée comme 

un résidu du métabolisme, possiblement toxique et donc à éliminer. En fait, il a été découvert 

que le lactate joue un rôle prépondérant dans le métabolisme grâce à son fort potentiel 

énergétique. Le cerveau, en particulier les neurones qui le composent, est un organe très 

gourmand en énergie. Récemment, il a été démontré que les astrocytes, cellules  du cerveau 

faisant partie de la famille des cellules gliales, utilisent le glucose pour produire du lactate 

comme source d’énergie et le distribue aux neurones de manière adaptée à leur activité. 

Cette découverte a renouvelé l’intérêt scientifique pour le lactate. Aujourd’hui, plusieurs 

études ont démontré l’implication du lactate dans d’autres fonctions de la physiologie 

cérébrale. Dans le cadre de notre étude, nous nous sommes intéressés au rapport entre 

neurones et astrocytes avec une attention particulière pour le rôle du lactate. Nous avons 

découvert que le lactate possède la capacité de modifier la communication entre les 

neurones. Nous avons aussi décrypté le mécanisme grâce auquel le lactate agit, qui est 

basé sur un récepteur présent à la surface des neurones. Cette étude montre une fonction 

jusque-là insoupçonnée du lactate qui a un fort impact sur la compréhension de la relation 

entre neurones et astrocytes.   
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Abstract 

INTERCELLULAR AND SYSTEM-LEVEL ASPECTS OF THE METABOLIC 
INTERACTION BETWEEN NEURONS AND GLIA 

Luigi Bozzo 

University of Lausanne, Department of Fundamental Neurosciences 

Relatively to its volume, the brain uses a large amount of glucose as energy source. Furthermore, 

a tight link exists between the level of synaptic activity and the consumption of energy 

equivalents. Astrocytes have been shown to play a central role in the regulation of this so-called 

neurometabolic coupling. They are thought to deliver the metabolic substrate lactate to neurons in 

register to glutamatergic activity. The astrocytic uptake of glutamate, released in the synaptic 

cleft, is the trigger signal that activates an intracellular cascade of events that leads to the 

production and release of lactate from astrocytes. The main goal of this thesis work was to obtain 

detailed information on the metabolic and functional interplay between neurons and astrocytes, in 

particular on the influence of lactate besides its metabolic effects. To gain access to both spatial 

and temporal aspects of these dynamic interactions, we used optical microscopy associated with 

specific fluorescent indicators, as well as electrophysiology.  

In the first part of this thesis, we show that lactate decreases spontaneous neuronal activity in 

a concentration-dependent manner and independently of its metabolism. We further identified a 

receptor-mediated pathway underlying this modulatory action of lactate. This finding constituted a 

novel mechanism for the modulation of neuronal transmission by lactate.  

In the second part, we have undergone a characterization of a new pharmacological tool, a 

high affinity glutamate transporter inhibitor. The finality of this study was to investigate the 

detailed pharmacological properties of the compound to optimize its use as a suppressor of 

glutamate signal from neuron to astrocytes.  

In conclusion, both studies have implications not only for the understanding of the metabolic 

cooperation between neurons and astrocytes, but also in the context of the glial modulation of 

neuronal activity. 
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Résumé 

ASPECTS INTERCELLULAIRES ET DE RESEAUX DES INTERACTIONS 
METABOLIQUES ENTRE NEURONES ET CELLULES GLIALES 

Luigi Bozzo 

Université de Lausanne, Département des Neurosciences Fondamentales 

Par rapport à son volume, le cerveau utilise une quantité massive de glucose comme source 

d’énergie. De plus, la consommation d’équivalents énergétiques est étroitement liée au niveau 

d’activité synaptique. Il a été montré que dans ce couplage neurométabolique, un rôle central  est 

joué par les astrocytes. Ces cellules fournissent le lactate, un substrat métabolique, aux 

neurones de manière adaptée à leur activité glutamatergique. Plus précisément, le glutamate 

libéré dans la fente synaptique par les neurones, est récupéré par les astrocytes et déclenche 

ainsi une cascade d’événements intracellulaires qui conduit à la production et libération de 

lactate. Les travaux de cette thèse ont visé à étudier la relation métabolique et fonctionnelle entre 

neurones et astrocytes, avec une attention particulière pour des rôles que pourrait avoir le lactate 

au-delà de sa fonction métabolique. Pour étudier les aspects spatio-temporels de ces interactions 

dynamiques, nous avons utilisé à la fois la microscopie optique associée à des indicateurs 

fluorescents spécifiques, ainsi que l’électrophysiologie.  

Dans la première partie de cette thèse, nous montrons que le lactate diminue l’activité 

neuronale spontanée de façon concentration-dépendante et indépendamment de son 

métabolisme. Nous avons identifié l’implication d’un récepteur neuronal au lactate qui sous-tend 

ce mécanisme de régulation. La découverte de cette signalisation via le lactate constitue un 

mode d’interaction supplémentaire et nouveau entre neurones et astrocytes.  

Dans la deuxième partie, nous avons caractérisé un outil pharmacologique, un inhibiteur des 

transporteurs du glutamate à haute affinité. Le but de cette étude était d’obtenir un agent 

pharmacologique capable d’interrompre spécifiquement le signal médié par le glutamate entre 

neurones et astrocytes pouvant permettre de mieux comprendre leur relation.  

En conclusion, ces études ont une implication non seulement pour la compréhension de la 

coopération entre neurones et astrocytes mais aussi dans le contexte de la modulation de 

l’activité neuronale par les cellules gliales.  
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1 Introduction 

We have a glutton under our cranium, named brain. The headquarter of our thinking is one of 

the most energy demanding organs. The human brain, although it constitutes only 2% of 

body weight, can reach the consumption of 20% of total body glucose, the main energy 

substrate for the brain (Magistretti, 2006). Large amount of energy is required to maintain 

neural activity in the central nervous system and prolonged deprivation of glucose leads to 

irreversible cell damage.  

The relationship between neuronal activity and glucose consumption is of prime 

importance and has been matter of debate within the scientific community. Many clinical and 

experimental studies have yielded the unquestioned evidence that glucose, in the brain, is 

fully converted into CO2 and H2O in an oxygen-dependent process. However, observations 

made with functional brain imaging techniques have highlighted some discrepancies 

between this notion and the apparent way the active brain handles glucose. In active brain 

regions, the increase in glucose consumption was not mirrored by an enhancement oxygen 

utilization meaning that glucose was not totally catabolized. In order to explain this 

particularity from a cellular point of view Luc Pellerin and Pierre Magistretti proposed a model 

to explain how the brain handles glucose. This hypothesis was called astrocyte-neuron 

lactate shuttle hypothesis (ANLS). Since its introduction 18 years ago (Pellerin and 

Magistretti, 1994), the validity of this hypothesis has been debated. Nevertheless, several 

pieces of experimental evidence that support the lactate shuttle hypothesis have been found 

in vivo and this model remains a valuable paradigm that needs further exploration.  

During this thesis work, we focused our attention on the astrocytic output and input signals 

involved in the ANLS. In particular, we looked more closely at the possibility of a non-

conventional role of lactate released by astrocytes and at the mechanisms that trigger the 
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ANLS. In this introductory part, we provide the basis for a better understanding of the 

processes involved.  

1.1 Cellular and physiological bases of cerebral metabolism 

In order to provide energy for its own functioning, the brain receives approximately 10% of 

glucose and 50% of O2 from the arterial blood (Zauner and Muizelaar, 1997). Most of the 

brain's energy consumption goes into sustaining neuronal activity. It was estimated in the 

grey matter that 75% of the total adenosine-5'-triphosphate (ATP), the major energy currency 

molecule, available is used for mechanisms that mediate the neuronal signaling (including 

the maintenance of resting potential)  and 25% is consumed  for basal activity like organelles 

transport and turnover of macromolecules (Attwell and Laughlin, 2001).  

The purpose of this chapter is to review the main features of brain energy metabolism with 

a particular focus on the cellular and molecular aspects of it. 

1.1.1 Organization of the central nervous system 

Neurons are the key elements for the transmission of signals throughout the brain and they 

represent the principal consumers of energy. With their variety of size and shapes they are 

the basic elements that constitute the neural tissue, the core element of the central nervous 

system (CNS). Neurons are not the only cells present in the CNS, they are largely 

outnumbered by various non-neuronal cellular components. These cells include astrocytes, 

oligodendrocytes, microglia and endothelial cells. They provide an essential support to 

neurons in terms of structure, isolation, protection, and many other functions. Among them, 

astrocytes and blood vessels are essential to provide energy to neurons. The cells that are 

involved in brain metabolism are described below.  
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1.1.1.1 Neurons 

Neurons are specialized type of cells with peculiar electrochemical properties (fig.1 

representative neurons). They are able to receive, integrate, and transmit neural signals. 

Two processes mediate signaling between neurons: action potentials that carry electrical 

signals along the axon, and postsynaptic currents, which are generated by neurotransmitters 

that are released at the synapses and acts on the target neurons. Both processes require 

energy for its own functioning.  

 

 

 

The excitability of neural cells is dependent from the ionic gradient, particularly Na+ and 

K+, across the plasma membrane. The maintenance of the electro-chemical gradients is the 

main energy-consuming process in neurons. It is achieved by pumping ions against their 

gradient, via the Na+/K+-ATPase, that consumes ATP in the process (Attwell and Laughlin, 

2001). During the glutamatergic excitatory signaling in rat cerebral cortex, the pump was 

estimated to spend 92% of the available ATP excluding the housekeeping functions (Harris 

et al., 2012). This consumption of energy was predicted to be distributed as follows: 54% for 

the signaling cascade consecutive to post synaptic effects, 24% for generating action 

Figure 1: Comparative images of neurons and astrocytes in the brain  
A) Neuron and astrocyte stained with the Golgi method. Inset: astrocyte 
magnification. From (Perea et al., 2009). B) Immunostaining of a neuron (red) 
and an astrocyte (green). From (Allen and Barres, 2009). Scale bars, 10 μm. 
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potential, and 22% for maintaining resting potential (percentages recalculated from Harris et 

al., 2012, excluding the ATP consumed by glutamate recycle and reversal of presynaptic 

Ca2+ entry).   

It is necessary to keep in mind that the values indicated above are only estimates based 

on a number of assumptions. For instance, they use an average cell size, a fixed firing rate 

(4Hz), or assume that all neurons are glutamatergic. In the real brain, neurons are a 

heterogeneous population made of cells with a variety of sizes, number of synapses, rate of 

activity and kind of neurotransmitters released, thus it is conceivable that the energy 

consumption is not equivalent for each of them. For example, pyramidal neurons with a 

regular firing that have a large soma, extended processes and use glutamate as principal 

neurotransmitter might need a different amount of energy than small local signaling 

interneurons with a fast firing that use GABA as main neurotransmitter.   

Overall, we see that neurons are extremely avid energy consumers; nevertheless, the 

consuming processes involved are highly optimized to maximize the efficiency with minimum 

energy cost (Attwell and Laughlin, 2001).  
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1.1.1.2 Vascular endothelial cells   

Vascular endothelial cells, together with connective tissue and smooth muscle, form a 

network of blood vessels that supply the brain. The cerebral blood flow circulating inside the 

system delivers oxygen, glucose and other essentials substrates for brain functions. The 

vascular system is well organized and subdivided in arteries, arterioles, capillaries, venules 

and veins to distribute and collect the blood through the whole brain (fig. 2). The circulating 

blood is separated from the cerebral extracellular fluid by the blood-brain barrier (BBB). BBB 

is formed by endothelial cells connected with tight junction, pericytes, basal lamina, and end-

feet of astrocytes (fig. 3). This particular interface between blood and neurons allows the 

diffusion of small molecules such as O2 and CO2 or the selective transport of metabolic 

substrates like glucose (Abbott et al., 2006).  

 

 

 

The cerebral-blood flow must be maintained in a safeguard range, since the brain is a 

particularly vulnerable organ. For example, an excess in perfusion rate can increase the 

blood pressure and damage the neural tissue or an insufficient perfusion rate can lead to 

neuronal death, due to deprivation of essential elements such as O2 or glucose.  

Figure 3: Schematic representation of the blood 
brain barrier. Adapted from (Chen and Liu, 2012). 

Figure 2: Plastination of the cerebral vascular 
system. From (Zlokovic and Apuzzo, 1998). 
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Beside these pathological conditions, the brain blood flow is carefully regulated in 

correspondence with the brain activity. It has been demonstrated, using both positron 

emission tomography (PET) and functional magnetic resonance imaging (fMRI), that in 

patients involved in a specific task, such as calculation or visual stimulation, the regional 

blood brain circulation is increased in corresponding activated areas (Raichle and Mintun, 

2006).  

Intuitively, the reason of this correlation could be that blood-flow changes serve to adjust 

the glucose-oxygen concentration to match the energy demand. However, this explication 

can be inexact because it was found that in the human brain monitored with PET, the 

increase of blood flow induced by the brain activity is accompanied with a high glucose 

consumption but with a minimal utilization of oxygen (fig. 4) (Fox et al., 1988). This 

uncoupling between glucose and oxygen consumption has particular implications in the 

relationship between neuronal activity and the metabolism of glucose and is discussed in the 

next chapter.  

 

 
Figure 4: Stimulation of the human visual cortex with a visual stimulus 
(a) produces an increase in blood flow and glucose utilization but not in 
oxygen consumption (b). From (Raichle and Mintun, 2006). 
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1.1.1.3 Astrocytes 

As the name suggests, astrocytes (Greek etymology: astron = star, cyte = cell) in the intact 

brain has a star morphology (see fig. 1). They account for 20 to 50% of the volume of 

different brain areas (Barres, 2008). Astrocytes are positioned in a way that gives them the 

potential to interact with neurons, other astrocytes, and/or blood vessels. In addition, with 

their processes they can enwrap synapses or surround capillaries (fig. 5).  

 

 

This situation gives them the ability to physically form a bridge between neurons and cerebral 

blood. For a long time, this strategic position between the different components of the brain 

was interpreted as an isolation and astrocytes were considered as mere brain glue (Volterra 

and Meldolesi, 2005). With the discovery of the numerous functions of astrocytes, this point 

of view has now radically changed. Some of these functions are listed below: 

 Blood brain barrier: As seen in the previous subchapter, the end-feet of astrocyte 

contribute to form the BBB allowing the metabolism inside the brain to operate 

differently from the rest of the body. 

Figure 5: A) Electron microscopy picture showing the process of astrocyte (blue) enwrapping the 
pre- and post-synapse (green and yellow respectively). Scale bar 200nM. From (Eroglu and 
Barres, 2010). B) Confocal image of immuno-fluorescent staining of blood vessels (green) and 
astrocytes (red). White arrows indicate examples of contact between astrocytic processes and 
vessel. Scale bar 10µM. From (Rajkowska et al., 2013). 
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 Control of the extracellular fluid: Astrocytes express a variety of transporters for 

neurotransmitters and ion channels to regulate the extracellular fluid composition. For 

example, near the synaptic cleft, they have the capacity to rapidly clear up glutamate 

and K+ ensuring the fidelity of the neurotransmission and avoiding excitotoxicity.  

 Energy support to neurons: They furnish metabolic substrates to neurons such as 

lactate. Lactate can be derived via glycolysis from glucose or from the glucose store 

constituted by glycogen.  

 Modulation of synaptic transmission: Astrocytes release transmitter molecules, 

named gliotransmitters, able to influence the neural activity such as glutamate, ATP, 

D-serine (Volterra and Meldolesi, 2005).   

Some of these functions will be discussed in more details in following chapters.  

1.1.2 Glucose metabolism 

The brain typically gets most of its energy, in the form of ATP, from glucose. In normal 

circumstances glucose is considered as the main energy substrate for the brain and it is 

substantially converted to CO2 and H2O.  

The enzymatic reactions for the metabolism of glucose in the brain are the same as in the 

rest of the body and consist of glycolysis, tri-carboxylic acid (TCA) cycle, and oxidative 

phosphorylation. These pathways are the principal source of energy, when oxygen is 

available. With the complete oxidization of glucose, 30-36 molecules of ATP are generated. 

The pentose phosphate pathway is also involved in the metabolism of glucose. Despite its 

essential role in the generation of nicotinamide adenine dinucleotide phosphate (NADPH) 

and pentose, it is not directly producing ATP then it will be not discussed below. 

In this chapter, the fundamental bases of the energy production in the nervous tissue, with 

a particular emphasis on lactate, will be discussed together with the ANLS hypothesis.   
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1.1.2.1 Glycolysis 

In the cytosol, glycolysis is the metabolic pathway that converts glucose in two molecules of 

pyruvate or lactate. The energy released in this process is used to produce of ATP and 

NADH. The whole glycolytic process is composed by 10 enzymatic sequences (fig. 6).  From 

one molecule of glucose, four molecules of ATP are formed but an initial investment of two 

ATP is needed to start the process. Therefore, the overall reactions result in the net 

production of two molecules of ATP.  

 

 Figure 6: Glycolytic pathway. 
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To be active, the enzyme glyceraldehyde-3-phosphate dehydrogenase needs NAD+ as a 

cofactor for the reaction. This represents a limiting step for the process, if NAD+ is not 

available, glycolysis risks to stop at this phase. The regeneration of NAD+, essential to 

continue the glycolytic flux, is primarily achieved in the mitochondrion. Under aerobic 

conditions NADH is oxidized to NAD+ by electron respiratory chain. Alternatively NADH can 

be converted in NAD+ by the ubiquitous lactic acid dehydrogenase (LDH) that catalyzes the 

conversion of pyruvate in lactate. In this case, the stoichiometry of the glycolysis is: 

Glucose + 2 ADP + 2 Pi → 2 lactate + 2 ATP + 2 H2O 

In certain situations, when oxygen availability is absent or in short supply, glucose is not 

completely oxidized to CO2 and H2O. The process stops before entering the TCA cycle and 

the end product of glycolysis becomes lactate. This is well known during intense muscular 

activity but a transient mismatch between glucose and oxygen consumption has been also 

observed during sustained cerebral activity (fig. 4) (Raichle and Mintun, 2006). An increase 

in neuronal activity is followed by an increase in glucose consumption but with a minimal 

oxygen utilization, meaning that during this phase lactate could be produced in the brain. A 

temporal increase of extracellular concentration of lactate was indeed seen in different brain 

regions after stimulation of neuronal activity in rats (Hu and Wilson, 1997). 

Glycolysis is the first step for the complete oxidation of glucose. It provides the substrates 

for the next steps, the TCA cycle and the oxidative phosphorylation.  

1.1.2.2 Tricarboxylic acid cycle and oxidative phosphorylation 

The TCA cycle and the oxidative phosphorylation are a series of oxygen-dependent 

reactions that lead to the production of energy. These catabolic pathways represent the last 

phase for the degradation of carbohydrate, lipids and proteins into CO2. In addition, the 

oxidative phosphorylation is responsible for the regeneration of NADH into NAD+, a cofactor 
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used in the catalysis of numerous reactions. The whole process occurs in the mitochondrial 

matrix and is represented in figure 7. 

 

 

Pyruvate, produced via glycolysis, enters the mitochondria through the monocarboxylate 

transporters (MCT) expressed in the inner membrane of mitochondria. Once inside the 

organelle, it is converted by the enzyme pyruvate dehydrogenase into acetyl coenzyme A 

(Acetyl-CoA). The acetyl unit enters the TCA cycle and is then completely oxidized into CO2. 

The whole process leads to the production of GTP, NADH, FADH2, and coenzyme A with the 

following stoichiometry: 

Acetyl-CoA + 3 NAD+ + FAD + GDP + Pi + 2 H2O → 

2 CO2 + 3 NADH + FADH2 + GTP + 2 H+ + coenzyme A 

Figure 7: Tricarboxylic acid cycle and the oxidative phosphorylation. 
From (Squire et al., 2008). 
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In this phase, the net production of energy is low, only one GTP per molecule of pyruvate, 

but the NADH and FADH2 formed have a high energetic potential. In the last process the 

oxidative phosphorylation, NADH and FADH2 donate their electrons to molecular oxygen 

through the electron transfer chain. The resulting energy liberated is used to generate ATP. 

The amount of energy produced in this last step, around 15 ATP, is largely the major source 

of energy of the metabolism of glucose.  

1.1.3 Alternative energy substrates  

Glucose is the mandatory energy substrate for the brain. Other substitutes can be used as 

energy metabolites in absence of glucose. All of these alternative substrates are molecules 

that can enter the glycolysis and TCA cycle at different steps.  

Mannose and fructose can be converted, in one or two enzymatic steps, into fructose 6-

phosphate and can be further metabolized by the glycolysis. These sugars are able to 

maintain the production of neuronal ATP (Yamane et al., 2000). Both molecules can pass the 

blood brain barrier, mannose via glucose transporters and fructose, most likely, via passive 

diffusion (Sapolsky, 1986). Once inside the cytoplasm, the enzymatic machinery is 

responsible to convert them into fructose-6-phosphate, an initial substrate of the glycolysis. 

However, the normal concentration of both molecules found in the blood is low, meaning that 

they should be considered as not physiological (Pitkanen and Kanninen, 1994).  

Lactate and pyruvate are direct products of glycolysis. These intermediate of glucose 

metabolism can reach the TCA cycle and maintain the ATP production. It has been found 

that lactate and pyruvate support the synaptic transmission in vitro (Izumi et al., 1997, 

Rouach et al., 2008). In addition, a growing body of evidence has also confirmed lactate 

utilization in vivo (Gallagher et al., 2009, Boumezbeur et al., 2010, Wyss et al., 2011). 

Experiments, done with carbon-13 labeled lactate, suggested that blood lactate is able to 
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reach the neuronal compartment (Hassel and Brathe, 2000). In addition, monocarboxylate 

transporters were found at the level of the BBB (Pierre and Pellerin, 2005).  

This body of information indicates that plasma lactate can be an adequate substitute for 

glucose. Moreover, if formed inside the brain, lactate and pyruvate can be useful metabolic 

substrates for neural cells.  

The ketone bodies, such as acetoacetate and D-3-hydroxybutyrate, can be processed to 

Acetyl-CoA, the substrate for TCA cycle. The brain is also able to utilize these alternative 

molecules. During the suckling period, starvation or diabetes, the blood concentration of 

ketone bodies is increased (Owen et al 1967). This means that in these conditions, ketone 

bodies can be used as neuronal metabolic substrates. 

1.1.4 The astrocyte-neuron lactate shuttle (ANLS) hypothesis  

Experiments performed with PET and fMRI evidenced that an increase of the brain activity is 

accompanied with a non-oxidative consumption of glucose (see fig. 4) (Raichle and Mintun, 

2006). This leads to a production of lactate (Bonvento et al., 2005). This brought up the 

question of why and how lactate is produced in this condition. Around 18 years ago, Pierre 

Magistretti and Luc Pellerin attempted to answer these questions, from a cellular and 

mechanistic point of view, proposing a new model for the handling of glucose in the brain. 

The proposed mechanism, coupling neuronal activity to glucose utilization, is called 

astrocyte-neuron lactate shuttle hypothesis and introduces astrocytes as pivotal element. In 

summary, this hypothesis proposes that glutamatergic activity can be sensed by astrocytes. 

Accordingly, astrocytes are able to increase their glycolysis, leading to the production of 

lactate. Subsequently, lactate can be delivered by astrocytes to neuron and serve as 

metabolic substrate. A description of the whole process is reported below and represented in 

fig. 8. 
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1. During the glutamatergic activity, glutamate released in the synaptic cleft by neurons 

is rapidly taken up by astrocytes that express efficient glutamate transporters, named 

GLAST and GLT-1 (Anderson and Swanson, 2000). The glutamate carriers use the 

electrochemical gradient of Na+ as main driving force.  

2. The resulting increase of intracellular Na+ concentration is followed by the activation 

of the Na+/K+-ATPase that recovers the normal Na+ levels (Chatton et al., 2000). 

During this phase, the Na+/K+-ATPase double or even triple its activity resulting in an 

augmentation of the metabolic cost.  

3. The increased energy demand stimulates glucose utilization. Astrocytes express the 

glucose transporters GLUT1 (Danbolt, 2001) that facilitate the diffusion of glucose 

from the capillaries. Glucose in the astrocytic cytosol is converted by glycolysis into 

lactate (Pellerin and Magistretti, 1994).  

4. Once produced in the astrocytes, lactate is delivered to neurons. The transfer is 

carried out by different isoforms of MCTs: MCT1, expressed by astrocytes are 

Figure 8: Schematic representation of the astrocyte-neuron lactate shuttle hypothesis. The 

circled numbers correspond to the key steps of the model explained below.  
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responsible for the release of lactate in the extracellular fluid and MCT2, primarily 

expressed by neurons for uptake (Pierre and Pellerin, 2005). Interestingly, in 

neurons, part of MCT2 are distributed at postsynaptic site where the major amount of 

energy was estimated to be needed during neuronal activity (Harris et al., 2012). 

Once inside the neurons, lactate can be used as a metabolic substrate to sustain 

neuronal activity.  

The ANLS hypothesis represents one of the best model of cellular pathway that can 

explain what is observed in the active brain with PET and fMRI (Bonvento et al., 2005). In 

this model the brain imaging signal based on glucose utilization could reflect the astrocytic 

metabolism that is mainly glycolytic. This could explain why we have a glucose consumption 

with a minimal oxygen utilization. Lactate released by astrocytes is subsequently catabolized 

by neurons that are mainly oxidative.  

1.1.4.1 Controversies on the ANLS hypothesis 

Since its introduction, the ANLS model has generated numerous discussions and 

controversies (Hertz et al., 2007, Dienel, 2012). One of the main points at the center of the 

debate is the ability of glutamate to induce an increase in astrocyte glycolysis. It was for 

instance argued that astrocytes have actually high oxidative rates in vivo and that glutamate 

taken up by astrocytes could be metabolized in the Krebs cycle following its degradation into 

α-ketoglutarate (Yu et al., 1982). The consequence would be to stimulate astrocyte 

mitochondrial oxidative metabolism instead of the proposed stimulation of glycolysis. It was 

also argued that lactate could originate from different cell types than astrocytes, including 

neurons, questioning the existence of a net flux of lactate from astrocytes to neurons (Dienel 

and Hertz, 2001). In addition, when the model was originally proposed, critiques have been 

raised because the arguments were largely based on in vitro data coming from primary 

cultures of astrocytes and neurons.  
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Evidence for stimulation of astrocytic glycolysis after neuronal activity has been brought 

by studies performed using more complex preparations. In hippocampal slices the neuronal 

activity was evoked by the stimulation of the Schaffer collaterals, and the NADH 

autofluorescence was monitored as an indicator of the glycolytic and oxidative metabolism 

(Kasischke et al., 2004). After the stimulation, a strong increase of NADH fluorescence in 

astrocytes was observed indicating that an increase of glycolysis occurred. Another in vivo 

demonstration was obtained using knockout mice for the glial glutamate transporters GLT1 

or GLAST (Voutsinos-Porche et al., 2003). The authors found that the enhancement of 

glucose utilization after synaptic activation present in wild type mice was decreased in 

mutant mice lacking glutamate transporters, suggesting that glutamate uptake is responsible 

of the increase in astrocytic glycolysis. 

It should be finally added that the mechanisms, the applicability, and the regulation of 

neurometabolic coupling based on the ANSL model are still evolving and being refined. The 

results presented in the present thesis work are a good example of the evolution of these 

concepts. 

 

In our laboratory, the metabolic coupling between neuron and astrocytes represents one of 

the main lines of research. Previous studies performed by my colleagues, contributed to 

elucidate several aspects of the ANLS hypothesis (Chatton et al., 2003, Morgenthaler et al., 

2006, Azarias et al., 2011). For my thesis project, we focused our attention at two different 

levels of the neurometabolic coupling. In one project, we studied the inhibitors that can block 

glial glutamate transporters; these pharmacological tools are crucial to refine our 

understanding of the implication of glutamate transporters in the context of our studies. In the 

other project that constituted the main work of my thesis, we studied the effects of lactate on 

neurons beside its role as substrate of the energy metabolism.  
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Each subject constituted an independent study. The aim of the remaining part of the 

introduction is to give an overview of the knowledge to better understand the two studies. 

Chapters 1.2 is for the first project and chapter 1.3 for the second one.  
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1.2 Focus on the mechanisms that trigger the ANLS 

One of the key points of the neurometabolic coupling is the fact that astrocytes are able to 

sense the level of activity of a majority of neurons as ~85% of neurons are considered to be 

glutamatergic (Harris et al., 2012). To do so, they need to be in close contact with each 

other. With their processes astrocytes enwrap the glutamatergic synapses of neurons. The 

extracellular space that separates the membrane of both cells is very narrow, only few 

nanometers (see fig. 5A). In addition, the surface of astrocytes is equipped with efficient 

excitatory amino acid transporters that transport glutamate in a Na+ dependent manner. The 

glutamate transport and the subsequent intracellular increase of Na+ in astrocytes are the 

pivotal elements of the system that trigger the neurometabolic coupling. Beside these carrier 

proteins, astrocytes express also a variety of other membrane structures such as ion 

channels, receptors, and transporters that are sensitive to the substances released in the 

synaptic cleft. With this set of properties, astrocytes are able to control the composition of the 

intercellular fluid also near the synapses.  

Here, we discuss the potential involvement of these structures in enhancing glycolysis. 

Because the increase in glucose consumption is one of the first steps of the neurometabolic 

coupling, a special attention is put on those that are related to glutamate or induce an influx 

of Na+ in astrocytes. Moreover, for each element, the pharmacological available tools, such 

as inhibitors or agonists used to demonstrate their involvements, are reported (part of these 

compounds were used in experiments reported in the results about the TFB-TBOA 

characterization).  

This chapter will be useful to understand parts of my work, as during the thesis we 

characterized the effects of TFB-TBOA, a novel high affinity glutamate transporter inhibitor. 

The aim of this study was to characterize an appropriate pharmacological tool that could be 
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useful to dissect the neuron-astrocyte interactions especially in the context of the 

neurometabolic coupling.  

1.2.1 Excitatory amino acid transporters (EAAT) 

EAATs are glutamate transporters that are dependent of the electrochemical gradient of Na+ 

to operate the transport. The uptake of glutamate plays a pivotal role for two important 

functions: first, it clears up the glutamate to avoid excitotoxic effects, and secondly, it triggers 

the neurometabolic coupling. In humans, the glutamate transporters are termed excitatory 

amino acid transporters (EAAT) and they are subdivided in five types present in different 

cells of the CNS. Astrocytes express EAAT1 and EAAT2, for historical reasons their murine 

homologues are also called GLAST and GLT-1 respectively (Danbolt, 2001). The isoform 

EAAT3 (also named EAAC in rodent) is present in both the soma and the dendrites of 

neurons, but the concentration is in a low amount compared to EAAT1 and EAAT2 (Arriza et 

al., 1994). The other members of the family are the EAAT4 located in the cerebellum in 

Purkinje neurons and the EAAT5 that appears to be retina specific (Danbolt, 2001).  

The majority of the glutamate uptake in the brain is mediated by astrocytic EAAT1 and 

EAAT2. Both isoforms have a high affinity for glutamate with a half-maximal activity in the 

range of 20 to 90 µM (Arriza et al., 1994). In the early stage of development, EAAT1 is more 

strongly expressed than EAAT2. Throughout maturation, this proportion is inverted, the 

EAAT2 progressively increases and EAAT1 tends to decrease. In adult, EAAT2 is dominant 

in the CNS and EAAT1 is less concentrated however it is diffusely present in the brain. 

These different timed expressions of EAATs can explain why in vitro only EAAT1 is 

expressed (Danbolt, 2001), since primary astrocytes cultures are typically prepared from new 

born animal.  

EAATs, use the electrochemical gradient of Na+ as driving force to transport glutamate. 

One glutamate is transported with three Na+ and one H+ in with a counterpart of one K+ (Levy 
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et al., 1998). The subsequent reequilibration of these gradients by the Na+/K+-ATPase 

causes ATP hydrolysis. In addition to glutamate, they can also transport other molecules 

such as aspartate.  

Without the continuous activity of glutamate transporters, neurons risk an increase in 

excitability and to ultimately encounter a particular type of cellular damage called excitotoxity 

that can lead to neuronal death. It was demonstrated in rats that the induction of knockout of 

EAAT1 and EAAT2, using chronic antisense oligonucleotide administration, led to 

neurodegeneration characteristic of excitotoxicity (Rothstein et al., 1996).   

1.2.2 Ion channels 

1.2.2.1 K+ homeostasis  

Excitatory synaptic activity releases glutamate in the synaptic cleft and, a few milliseconds 

later, K+ is released from the postsynaptic terminal via ionotropic glutamate receptors (Bittner 

et al., 2011). The resulting excess of interstitial K+ can interfere with the neuronal activity. 

Thus, extracellular K+ composition around synapses have to be maintained at low levels. For 

this purpose, astrocytes express inward rectifier K+ (Kir) channels at high density (Butt and 

Kalsi, 2006). These conductances are essential to ensure the neurotransmission fidelity.  

It was suggested that exposure of astrocytes to high K+ led to an increase in the glycolysis 

(Brookes and Yarowsky, 1985). Thus, K+ could be a signal for the neurometabolic coupling. 

This issue has been investigated by the group of Felipe Barros. Using a glucose sensor 

based on Förster resonance energy transfer (FRET) to measure the glycolytic rate. They 

found that K+ applied extracellularly, was able to increase the glucose consumption likely via 

the stimulation of Na+/K+-ATPase (Bittner et al., 2011). However, a weak point of the study 

consisted in the fact that they had to use a bulk perfusion of K+ to induce a metabolic 

response, not equivalent of local K+ release that would be mimicking more closely the 

increase of K+ in the synaptic cleft. Nevertheless, we can consider that K+ could have a 
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concomitant role with glutamate in the coupling between neuronal activity and glucose 

consumption.   

1.2.2.2 Ionotropic glutamate receptors 

AMPA, kainate and NMDA receptors are permeable to Na+ when they open concomitantly to 

glutamate binding, the resulting sodium influx could induce an increase in the glycolysis. 

These receptors are generally known for their critical roles in the synaptic transmission, 

learning and memory when they are expressed by neurons. However, some classes of 

ionotropic glutamate receptors are also found in astrocytes.  

Many groups have demonstrated that astrocytes in vitro and in vivo express 

AMPA/kainate receptors (Verkhratsky and Steinhauser, 2000). However, in the continued 

presence of glutamate the AMPA/kainate current evoked is rapidly inactivated, because of a 

prominent receptor desensitization process (desensitization time constant 1-10 ms) 

(Dingledine et al., 1999). This has the consequence that the time window of action is too 

short to induce a large rise in Na+ concentration  and precludes a significant stimulation of 

the sodium pump in astrocytes (Chatton et al., 2000). Moreover, the use of the specific 

AMPA/kainate inhibitor CNQX revealed the minor contribution of AMPA/kainate receptors in 

the glutamate induced Na+ rise (Chatton et al., 2000), which is primarily transporter 

mediated.  

NMDA receptors are expressed in astrocytes in vivo but this receptor is not expressed on 

astrocytes in culture. This receptor permits both Na+ and Ca2+ influx and K+ efflux at opening. 

In primary astrocytes, the perfusion of NMDA can induce a Ca2+ elevation but not Na+ (Bezzi 

et al., 1998, Chatton et al., 2000). To dissect the involvement of NMDA receptors in the 

whole brain, it is possible to use the selective inhibitor D-AP5.  

In conclusion, it appears that neither NMDA nor AMPA/kainate receptors are involved in 

the process of neurometabolic coupling.  

35

Bozzo Luigi PhD Thesis



 

 

36 

1.2.3 Metabotropic glutamate receptors 

Metabotropic glutamate receptors (mGluR) are G proteins-coupled receptors that bind the 

neurotransmitter glutamate. The family of mGluRs includes eight different subtypes, sub-

divided into three groups. mGluR5 (group 1) and mGluR3 (group 2) are mainly expressed in 

astrocytes whereas mGluR1 (Group 1) has been shown to be present in hippocampal 

astrocytes (Condorelli et al., 1999, Schools and Kimelberg, 1999).  

Group 1 mGluRs are coupled to Gq proteins. The binding with glutamate activate a 

cascade of events that lead to the increase of inositol trisphosphate (IP3). In turn, IP3 induce 

the release of calcium from the endoplasmic reticulum (Petravicz et al., 2008). It has been 

shown that the stimulation of both mGluRs and AMPA/kainate receptors, is causing an 

increase in intracellular Ca2+ that induced a release of glutamate from astrocytes (Bezzi et 

al., 1998).    

Group 2 mGluRs are associated to Gi protein. This G protein is negatively coupled to 

adenylate cyclase and lead to a depletion of cyclic adenosine monophosphate (cAMP). One 

potential effect of such a decrease in cAMP is the reduction of activity of the cAMP-

dependent protein kinase A (PKA), an enzyme well known to be associated  with exocytosis 

(Seino and Shibasaki, 2005).  

It was argued that the contribution of mGluRs in the neurometabolic coupling is of minor 

importance because the glutamate transporter substrate D-aspartate, is able to stimulate the 

metabolic response but does not activate AMPA/kainate receptors of astrocytes (Pellerin and 

Magistretti, 1994).  

In addition, their involvement can be directly investigated with two useful compounds. The 

trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) that stimulates all mGluRs 

subtypes  and the α-methyl-4-carboxyphenylglycine (MCPG) that inhibits all of them.  
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1.2.4 GABA transporters 

γ-Aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the CNS. It is 

released at the level of inhibitory synapses. The clearance of GABA released in the synaptic 

cleft is achieved by high affinity GABA transporters (GAT). GATs are expressed in 

GABAergic neurons and surrounding glial cells (Gadea and Lopez-Colome, 2001). GAT1 

and GAT3 are exclusively present in the CNS, whereas GAT2 and the low affinity subtype 

BGT1 are also found in the peripheral tissues. All these transporters are present also in 

astrocytes. The strategic position of the astrocytic process around the synapses and the 

presence of GAT suggest that astrocytes can contribute to the cleaning of GABA, helping to 

terminate the neurotransmission. 

GATs belong to the family of Na+- and Cl--coupled neurotransmitter transporters. The 

transport cycle stoichiometry is one GABA, two Na+, and one Cl- transported in the same 

direction. The resulting intracellular influx of Na+ could, in principle, be followed by an 

increase in ATP consumption by the Na+/K+ -ATPase.   

The presence of a GABA uptake system in astrocytes means that the inhibitory neuronal 

activity could be coupled to glucose utilization as it occurs in the glutamatergic metabolic 

coupling. This question was tackled in a study performed on primary culture of astrocytes, in 

which the metabolic cost induced by Na+ increase, induced by GABA, was compared to that 

associated with glutamate uptake. The results showed that GABA application at millimolar 

concentration induced a significant influx of Na+ however without being able to cause an 

augmentation of the glycolysis (Chatton et al., 2003). Thus, the inhibitory system is not able 

to directly increase the consumption of glucose by astrocytes.  

1.2.5 Purinergic receptors 

ATP can be stored in the synaptic vesicle and released in the synaptic cleft in concomitance 

with glutamate. Specific receptors for ATP, belonging to the category of purinergic receptors, 

37

Bozzo Luigi PhD Thesis



 

 

38 

exist in the brain. These characteristics lead to consider ATP as a neurotransmitter 

(Burnstock, 2006).    

Purinergic receptors for ATP are divided in ionotropic (P2X) receptors, which are ligand-

gated non-selective ion channel and metabotropic (P2Y) receptors. Both categories are 

expressed in astrocytes (King et al., 1996) and if adequately activated they can lead to an 

increase of Ca2+ with a subsequent release of glutamate (Fellin et al., 2006).  

To inhibit their activity it is possible to use suramin, a broad-spectrum antagonist of P2 

receptors.  

1.2.6 Glutamate transporter inhibitors 

The majority of glutamate uptake in the adult brain is principally mediated by EAAT2 (GLT-1 

in mouse) and EAAT1 (GLAST in mouse) expressed by astrocytes (Danbolt, 2001). As 

already discussed at the beginning of this chapter, this function is crucial for the central 

nervous system. 

To elucidate in detail the physiological significances of these transporters, 

pharmacological tools are needed. For this purpose, inhibitors of Na+-dependent glutamate 

transporters have been synthetized. The ideal characteristics for these blockers are that they 

have to be: selective for the EAATs; potent inhibitor with a high affinity, meaning that they 

have to work at low concentration; and non-transportable because competitive substrates 

cause the same flux as glutamate. Several compounds have traditionally been used to inhibit 

glutamate transporters, such as threo-β-hydroxyaspartate (THA) and trans-pyrrolidine-2,4-

dicarboxylic acid (t-PDC). However, both of them are competitive inhibitors with the side 

effect to induce a Na+ increase (Chatton et al., 2001). Dihydrokainate (DHK) is a non-

transported inhibitor but has the limitation to selectively acts on EAAT2 only. After a series of 

possible candidate molecules DL-threo-β-benzyloxyaspartate (TBOA) has been synthetized. 

TBOA is a non-transported competitive inhibitor of glutamate transporters without EAAT 
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subtype selectivity (Chatton et al., 2001, Shimamoto, 2008). From then, TBOA has been 

widely used in numerous studies but the compound suffers of a relative low affinity in the 

micromolar range (Chatton et al., 2001). More recently, a derivative of TBOA has been 

produced called (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-

TBOA). It conserves the same positive characteristics of TBOA but in addition it has as a 

much higher affinity for the transporters (Shimamoto et al., 2004). This would make it an 

extremely valuable tool to study glutamate transport and neuron-glia interactions. For this 

reason, one of the projects of my thesis was to characterize the effects of TFB-TBOA on 

glutamate transport in live astrocytes, as well as its effects on neurons. The results are 

reported in the chapter 2.3.   

 Nevertheless, it has to be kept in mind that the inhibition of glutamate transport in the 

intact tissue causes the accumulation of extracellular glutamate. The enhanced neuronal 

excitability can lead to epileptic activity or excitotoxicity (Tsukada et al., 2005), making the 

study of transporters difficult in the intact tissue.  
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1.3 Lactate beyond its metabolic role 

Despite the fact that lactate is an oxidative substrate with a high potential as energy source, 

it has been considered as a useless and toxic compound that must be eliminated from the 

brain. Nowadays, evidence indicates that cerebral lactate does play a major role in aerobic 

energy metabolism. Its utilization, in the human brain and more specifically by neurons, has 

been confirmed in vivo (Boumezbeur et al., 2010). As seen above, lactate is produced by 

astrocytes and delivered to neurons in response to neuronal activity (Pellerin and Magistretti, 

2012). For this reason, the interest in lactate has been renewed.  

Beside its function of energy substrate in the neurometabolic coupling, lactate can have 

other roles. It is implicated in several other physiological situations. Here, we present some 

of them, in order to have a broader picture of the general effects of lactate.   

1.3.1 Biological characteristics of lactate 

Lactate (more specifically lactic acid) is a carboxylic acid with the chemical formula C3H6O3. It 

is soluble in H2O. Its proton dissociation constant (pKa) is 3.9, meaning that, in H2O, it can be 

considered as a weak acid. When lactate is dissolved, the carboxylic group -COOH can lose 

a proton and produce the lactate ion CH3CHOHCOO-. In function of the pH of solutions, the 

proportion of lactate in basic or acid state can vary. 

Lactate is commonly known to be responsible for the sour flavour of the old milk that 

acidifies, leading to the coagulation of the casein, and to be a by-product of the intense and 

prolonged muscular effort. While the first concept has no impact on the neurophysiological 

implications (besides the stimulation of the brain’s pleasure center, for those who like 

cheese!) for the second one, a neurological implication cannot be excluded.  

During muscular exercise, when glucose consumption is not matched by the oxygen 

availability, lactate is produced and the excess is released into the blood flow. Following the 
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blood circulation, it reaches the heart, liver, and other inactive muscles, where it is either 

metabolized or reconverted into glucose.  

The serum concentration at rest is 1-2 mM/L, but during strong muscular activity, such as 

in competitive sports, it can reach to 30 mM/L (Dalsgaard, 2006).  

Lactate transport across the blood–brain barrier is facilitated by the MCT1s that have a Km 

of 3.5 mM (Pierre and Pellerin, 2005). Together with this information and the fact that lactate 

is an energy substrate, lactate might be considered during vigorous activity as an extra 

energetic stimulus for the brain. 

1.3.2 D-lactate 

The tridimensional atomic structure of lactate is chiral and has two enantiomers, the L- and 

D-lactate. In humans, both stereoisomers are produced during normal metabolism with 

different processes. As we already review, L-lactate is obtained from the conversion of 

pyruvate, via the enzyme L-lactic acid dehydrogenase whereas D-lactate is produced from 

methylglyoxal via the glyoxalase pathway.  

Small amounts of methylglyoxal are produced from the catabolism of carbohydrates, fats, 

and proteins. Due to its reactive and toxic nature, it must be eliminated from the body 

(Kalapos, 1999). The glyoxalase pathway is a biochemical process that catalyses the 

conversion of methylglyoxal to D-lactate and glutathione in two enzymatic steps, using the 

glyoxalase I and glyoxalase II (Belanger et al., 2011). This enzymatic pathway, ubiquitously 

present in the body including the brain, is active in the cell cytosol and in organelles, 

especially the mitochondria (Thornalley, 1990).  

In the normal serum, lactate composition is considered to be entirely L-lactate, with the 

exception of nanomolar concentration of D-lactate (McLellan et al., 1992). D-lactate is 

thought to be poorly metabolized by neuron because they lack the appropriate enzymes to 

convert it into energy (Belanger et al., 2011). As done in several other neural studies, in our 
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work we have used D-lactate to substitute L-lactate to separate the metabolic implications of 

lactate.  

1.3.3 Lactate and hemodynamic regulation 

The neuronal activity is followed by an increase in the cerebral blood flow, which delivers 

glucose and oxygen to the neural tissue. Although this neurovascular coupling was found 

more than 100 years ago, the intrinsic mechanisms are not yet definitely established (Attwell 

and Iadecola, 2002). Different theories were proposed to explain how the vascular supply 

can be adjusted in correspondence with the neural activity. One proposal is that the regional 

blood flow is regulated by a mechanism that is directly sensitive to the concentration of the 

metabolic by-products: CO2, the final product of the glycolysis; K+, released during action 

potentials; nitric oxide and arachidonic acid, both neuronal signaling molecules, are all well-

known vasoactive compounds that can be candidate to influence the blood flow. However, 

this possibility was questioned (Attwell and Iadecola, 2002), based on the fact that the blood 

flow response after neural activation is typically delayed by 1-2 seconds (Raichle and Mintun, 

2006) and that most of the energy consumed for synaptic transmission is used at the 

postsynaptic level (Attwell and Laughlin, 2001). Thus, the metabolic processes at this level 

are not fast enough to match the fast response of the neurovascular coupling.  

Another theory is that neurons control the blood flow by a dedicated neuronal circuit. In 

the cerebral cortex, there are neurons that directly innervate the smooth muscle cells around 

capillaries and induce vasoconstriction (Attwell and Iadecola, 2002).  

Finally, the last proposal is that glutamate, released during synaptic transmission, induces 

an intracellular signaling in another cell that can control the local blood flow (Lauritzen, 

2005). Different studies have suggested that astrocytes can be involved in the neurovascular 

coupling (Raichle and Mintun, 2006). With their strategic position between neurons and 

capillaries, they can be considered as perfect candidates to carry a signal from neurons to 
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vasculature. We have seen that in the neurometabolic coupling, astrocytes can respond to 

glutamatergic activity with a production and release of lactate. In the retina, the delivery of 

lactate dynamically alters the vascular tone of capillaries (Hein et al., 2006). In addition it has 

been shown in an experiment, performed in rat brain slices, that the direct stimulation of 

astrocytic glycolysis induced a contraction of arterioles, via lactate release (Gordon et al., 

2008).  

The neurovascular coupling is of prime importance for normal brain function. It appears 

that multiple mechanisms are involved in precisely tuning the local cerebral blood flow. 

1.3.4 Lactate involvement in glucose sensing  

A few studies have indicated that lactate could modify the neuronal excitability in selected 

neuron types (Song and Routh, 2005, Shimizu et al., 2007). These findings constituted the 

starting point of the main study of my thesis about the effects of lactate on neuronal 

excitability. This chapter presents the most relevant information about the possible 

mechanisms that could be involved in the neuronal lactate sensitivity.  

The availability of energy substrates, in the brain, is of prime importance to ensure the 

physiological activity and integrity, i.e. even a transient deprivation can lead to cerebral 

damage. Since glucose is the most important source of ATP, the brain is equipped with 

efficient glucose sensors. These elements are able to monitor and control the glucose 

concentration to ensure that the brain has an adequate level of energy substrates. Glucose 

sensors are specialized neurons that can change their firing rate in function of glucose 

fluctuations (Song et al., 2001). In general, they are located in specific brain regions related 

to food intake and glucose homeostasis, such as hypothalamus and brainstem (Ainscow et 

al., 2002, Balfour et al., 2006). Two kinds of these cells exist: the glucose-excited (or 

glucose-responsive) and glucose-inhibited (or glucose-sensitive) neurons. As their name 
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suggests, they increase or decrease their firing rate in response of glucose concentration 

changes.  

Because of the importance of lactate as energy source, it is possible that, similar 

mechanisms of sensing would also be available for it. For this reason, we need to go 

somewhat deeper in describing intracellular mechanisms that drive the changes in the 

glucose sensing neurons.  

In glucose-excited neurons, the sensing system is reminiscent of the glucose-dependent 

insulin release of pancreatic β-cells. It is essentially based on special K+ channels sensitive 

to the ATP/ADP ratio, called KATP channels. The glucose-excited model is represented in fig. 

9. Briefly: glucose enters neurons via glucose transporters (GLUT), where it is metabolized 

and gives a rise in ATP. This increase in the ATP/ADP ratio triggers the closure of the KATP 

channels. The subsequent depolarization of the membrane stimulates the electrical activity 

(Routh, 2002).  

The mechanism is less clear in glucose-inhibited neurons. Among several models 

proposed to explain the glucose inhibition, two are represented in fig. 9. In the first one, an 

increase in glucose leads to an enhancement of ATP production leading to a decrease of the 

AMP/ATP ratio. This deactivates the AMP-activated protein kinase that normally induces the 

closure of Cl- channels, presumably of the cystic fibrosis transmembrane regulator (CFTR) 

family. This results in an opening of the Cl- channel inducing a hyperpolarization of the 

membrane (Murphy et al., 2009) and inhibition of neuronal firing.  

In the second one, an ATP independent mechanism has been proposed. Glucose could 

bind to an unknown receptor. Its activation leads to the opening of a K+ leak channel that 

hyperpolarizes the neuron reducing its excitability (Gonzalez et al., 2008). 
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Thus, the ways to alter the neuronal excitability are divided into ATP dependent or 

independent mechanisms. Lactate, with its demonstrated ability to impact ATP, should be a 

suitable substrate able to influence the neuronal activity with similar mechanisms. This topic 

constituted the main project of my thesis and the main questions that we asked were if 

lactate application in primary cortical neurons could influence their excitability. If it were the 

case, we need to determine whether it is due to an ATP dependent or independent 

mechanism. In addition, it was reported that KATP channel are preferentially expressed by 

GABAergic interneurons (Zawar et al., 1999). For this reason we also investigated if there 

were any differences in lactate sensitivity between glutamatergic and GABAergic neurons.  

The answers to these questions are discussed in the results section of this manuscript.    

  

Figure 9: Glucose-sensing mechanisms in neurons. The left part (green) represents 
mechanisms involved in glucose-excited neurons. The right part (red) depicts some 
commonly proposed mechanisms for glucose-inhibited neurons. In addition, a possible 
connection to lactate has been introduced. Lactate, taken up intracellularly, may be 
transformed into pyruvate, an intermediate step of the mechanisms mediating the glucose 
sensitivity. 
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2 Results 

2.1 Preamble 

The main goal of my research was to obtain detailed information on the metabolic and 

functional interplay between neurons and astrocytes, with a special attention given to the 

astrocytic input and output elements involved in neurometabolic coupling.  

The present result section, that constituted my thesis work, is composed of two parts.   

In the first part, we investigated if energy metabolites, in particular lactate, could influence 

the spontaneous electrical activity of cultured cortical neurons. The study constituted the 

main subject of my thesis work. This section is composed of results that were recently 

published (Bozzo L, Puyal J, Chatton JY (2013). Plos One, in press).  

In the second part we focused on the characterization of a new pharmacological tool, the 

high affinity glutamate transporter inhibitor TFB-TBOA that could be useful to study 

glutamate transport and neuron-glia interactions. This work has been published in Brain 

Research (Bozzo & Chatton. Brain Res 2010).  

The two studies are independent and do not need to be read in particular sequence. 
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2.2 Lactate modulates the activity of primary cortical neurons through a 

receptor-mediated pathway 

2.2.1 Aim of the study 

In the neurometabolic coupling lactate is released form astrocytes in response to 

glutamatergic activity. The principal function of lactate is to sustain the neuronal metabolism. 

Whether lactate can have a neuromodulatory function, beside energy substrate, it is not 

known. The aim of this study was to investigate the influence of lactate on 

neurotransmission.    

2.2.2 Personal contribution 

This study is co-authored by Jean-Yves Chatton and Julien Puyal. I performed and analyzed 

all the experiments in this study except for the Western blot experiment. Moreover, I 

substantially contributed in the experimental design and wrote the manuscript together with 

Jean-Yves Chatton.  
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Lactate modulates the activity of primary cortical neurons 
through a receptor-mediated pathway 

 
by 

Luigi Bozzo1, Julien Puyal1, and Jean-Yves Chatton1,2* 

Abstract 

Lactate is increasingly accepted as a major energy substrate of the brain. Beside its 

metabolic effects, it may have others roles. Here, we demonstrate that lactate can behave 

like a volume transmitter able to influence the neuronal activity. Neuronal excitability of 

mouse primary cortical neurons was monitored by calcium imaging. When applied in 

conjunction with glucose, lactate induced a decrease of the spontaneous calcium spiking 

frequency of neurons. The effect was reversible and concentration dependent (IC50 ~4.2mM). 

To test whether lactate effects are dependent on metabolism, we applied the closely related 

substrate pyruvate (5mM) or switched to different glucose concentrations (0.5 or 10mM). 

None of these conditions reproduced the effect of lactate. In addition, the neuronal activity 

was also decreased by the stereoisomer D-lactate in the same concentration range as L-

lactate (IC50 ~4.6mM). We determined that D-lactate, poorly metabolized by neurons, was 

taken up by neurons, however more than two-fold less efficiently than L-lactate. Recently, a 

Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this 

receptor is implicated in the lactate sensitivity, we incubated cells with pertussis toxin (PTX) 

an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. 

Moreover 3,5-dyhydroxybenzoic acid reported to be a specific agonist of the receptor, 

modulated the neuronal activity in the same manner as lactate. This study indicates that 

lactate modulates neuronal activity by a receptor-mediated mechanism, independent from its 

metabolism. 
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Introduction 

The regulation of adequate energy supply is of prime importance for normal brain function. 

For this reason, the brain is equipped with efficient systems to sense and regulate the 

concentration of key energy substrates both centrally and peripherally. Lactate is increasingly 

accepted as a major energy substrate of the brain (Rouach et al., 2008; Wyss et al., 2011). A 

few studies have documented that lactate can influence the excitability of selected neurons 

via different metabolic pathways. In glucose-sensing neurons of the ventromedial 

hypothalamic nucleus (VHN), lactate was found to stimulate the action potential firing 

frequency (Song and Routh, 2005). In the subfornical organ, center for the control of salt-

intake behavior, the firing of GABAergic neurons is regulated by lactate (Shimizu et al., 

2007). Lactate and glucose can share common mechanisms for neuronal modulation. Both 

molecules lead to the production of mitochondrial ATP, which influences selected membrane 

conductances such as KATP channels in glucose-excited neurons (Song et al., 2001; Evans et 

al., 2004), or hyperpolarizing chloride channels in glucose-inhibited neurons (Murphy et al., 

2009). Studies have also demonstrated that, in some neurons, lactate and glucose effects 

are dissociated, such as in VHN glucose-inhibited neurons, where they have opposite effects 

(Song and Routh, 2005), or in orexin neurons, where only lactate influences the firing 

frequency (Parsons and Hirasawa, 2010). It is therefore conceivable that energy substrate-

sensing systems are able to discriminate between different substrates, or that glucose and 

lactate do not encompass identical functions.  

Recent studies in glucose-excited (Ainscow et al., 2002) and glucose-inhibited neurons 

(Venner et al., 2011) have found that glucose sensitivity is not always mediated by 

intracellular variations of ATP. It has even been proposed that a membrane receptor for 

glucose underlie its effects in glucose-inhibited neurons (Gonzalez et al., 2008).  
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The composition of extracellular fluid in glucose and lactate differs depending on the brain 

region. In the hippocampus, lactate concentration was found to be higher than that of 

glucose and even twice as high in the cortex (Zilberter et al., 2010). 

These considerations brought up the question of whether neurons of the cortex can also 

selectively sense or respond to lactate. This would confer additional roles on lactate such as 

that of a signaling molecule of metabolic states of the brain, as has been recently proposed 

(Bergersen and Gjedde, 2012). In support of this hypothesis, a family of G-coupled receptors 

has been recently identified (Blad et al., 2011) and called hydroxycarboxylic acid receptor 

(HCA, formerly named GPR81). Among them, HCA1 is considered to be a sensor for lactate 

in peripheral organs such as the adipose tissue (Cai et al., 2008; Liu et al., 2009). The 

potential involvement of lactate receptors has to be considered in the lactate sensitivity of 

neurons in the brain. 

To explore these aspects, we investigated the influence of lactate application on the 

spiking output of mouse primary cortical neurons using rapid calcium imaging. Our results 

show that lactate can modulate neuronal network activity likely through receptor-mediated 

mechanisms. 

 

 

Lactate paper page 3 of 26

51

Bozzo Luigi PhD Thesis



Materials and Methods 

Cell culture 

All the procedure used to prepare living cells have been approved by the Swiss legislation 

and follows their guidelines. Mouse cortical neurons in primary cultures were obtained from 

17-day-old GAD67 EGFP knock-in C57bl6 or wild type C57bl6 mouse embryos. After 

removing meninges, entire cortices were first incubated with 180 U/ml trypsin for 20 min at 

37°C and then mechanically dissociated in Neurobasal (Invitrogen, Basel, Switzerland) 

culture medium plus 10% FCS by successive aspiration through sterile glass pipettes. The 

dissociated cells were filtered using a cell strainer with 40µm nylon mesh and re-suspended 

in Neurobasal culture medium complemented with 2% B27 and 500 μM glutamax 

(Invitrogen). Cells were then plated at a density of 20,000 cells per cm2 on glass coverslips 

coated with poly-D-lysine and laminin (Invitrogen). Cells were used, for all kind of 

experiments, at DIV 14-21. 

Live microscopy 

Experiments were carried out on the stage of an upright epifluorescence microscope (Nikon, 

Tokyo, Japan) using a 40 × 0.8 N.A. water-immersion objective lens (Nikon). Fluorescence 

excitation wavelengths were selected using a fast filter wheel (Sutter Instr., Novato, CA) and 

fluorescence was detected using an Evolve EMCCD camera (Photometrics, Tucson, AZ). 

Digital image acquisition as well as time series were computer-controlled using the software 

Metafluor (Universal Imaging, West Chester, PA, USA). Up to 8 individual neurons were 

simultaneously analyzed in the selected field of view. 

pH Measurements  

Intracellular pH (pHi) was measured in single cells on glass coverslips after loading the cells 

with the pH sensitive fluorescent dye 2′,7′-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF-

AM; Teflabs, Austin, TX) as described previously (Chatton et al., 2001). Cell loading was 
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performed at room temperature for 10min using 1μM BCECF-AM in a HEPES-buffered 

balanced solution (see composition below). Fluorescence was sequentially excited at 440 

and 490nm and detected through a 535nm (35nm bandwidth) emission interference filter. 

Fluorescence excitation ratios (F490nm/F440nm) were computed for each image pixel and 

produced ratio images of cells that were proportional with pHi. In situ calibration was 

performed after each experiment using a nigericin technique as described before (Chatton et 

al., 2001). 

Calcium Measurements  

Intracellular calcium was measured using the indicator Fluo-4 AM 5µM (Teflabs Austin, TX) 

loaded for 15 min at 37°C. Experiments were performed in CO2/bicarbonate-buffered 

solutions (see composition below). Fluorescence was excited at 490nm and detected at 

>515nm. Acquisition rate of images was varied between 10 and 0.1 Hz to avoid 

photobleaching. Fluorescence intensity was measured in regions of interest delineating the 

neuronal soma using Metafluor. Subsequently calcium transient extraction was performed 

using Minianalysis 6.0.3 (Synaptosoft Inc). The software includes an algorithm for the 

detection of complex and multiple events giving the possibility to detect overlapping or 

closely occurring peaks. 

In a subset of experiments, to distinguish principal and GABAergic neurons, we used 

cultures obtained from GAD67 EGFP knock-in mouse. Because green fluorescent protein 

(GFP) expressed by GABAergic cells and the calcium fluorescent dye Fluo-4 AM have 

overlapping excitation and emission spectra, we elaborated a strategy to distinguish them. 

The microscope was equipped with a motorized XY moving stage (Sutter) driven by custom-

made software that allowed us to rapidly switch between selected XY positions. Before cells 

loading, a series of images were recorded in different fields of view in the same culture and 

their coordinates were stored. Cells were subsequentially loaded with the Fluo-4 AM. By 
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superimposing images at same XY positions, we were able to distinguish GFP positive and 

negative cells loaded with Fluo-4. 

Electrophysiological recordings  

Patch-clamp recordings were made with borosilicate glass pipettes with a resistance of 5.5–8 

MΩ. The pipette solution contained (in mM): K-gluconate 130, NaCl 5, Na-phosphocreatine 

10, MgCl2 1, EGTA 0.02, HEPES 10, Mg-ATP 2, and Na3-GTP 0.5, pH 7.3 (adjusted with 

KOH).Recordings were made with an Multiclamp 700B amplifier (Molecular Devices). Data 

were acquired with a Digidata 1440A (Molecular Devices), at 10kHz sampling rate, controlled 

with Pclamp 10 software and analyzed with Clampfit software (Molecular Devices). A period 

of 5 min was routinely allowed after establishment of the whole-cell configuration. 

Experiments were performed using an open perfusion chamber. Control extracellular 

solutions and solutions containing the tested drugs were gravity fed at 600μl/min and at 35°C 

on the cultured cells.  

Solutions 

CO2/bicarbonate-buffered experimental solutions contained (mM): NaCl 135, KCl 5.4, 

NaHCO3 25, CaCl2 1.3, MgSO4 0.8, NaH2PO4 0.78, glucose 5, bubbled with 5% CO2/95% air. 

Glucose 5mM was maintained in all solutions (unless otherwise specified). HEPES-buffered 

solutions contained (mM): NaCl 160, KCl 5.4, HEPES 20, CaCl2 1.3, MgSO4 0.8, NaH2PO4 

0.78, glucose 5, pH 7,3. For dye loading, this saline solution was supplemented with 0.1% 

Pluronic F127 (Molecular Probes, Eugene; OR) and glucose was increased to 20mM. pH 

calibration solutions contained (mM): NaCl 20, KCl 120, HEPES 10, CaCl2 1.3, MgSO4 0.8, 

and NaH2PO4 0.78 and were adjusted to their respective pH by addition of NaOH.  

Pertussis toxin was from Tocris Bioscience (Zurich). Unless otherwise stated, all other 

compounds were from Sigma-Aldrich (Buchs, Switzerland). 
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Immunocytochemistry 

Primary mouse cortical cultures grown on coverslips were fixed with 4% paraformaldehyde in 

phosphate-buffered solution (PBS) for 15 minutes on ice. Cells were pre-incubated in PBS 

containing 15% serum and 0.05% Triton X-100 and subsequently incubated overnight with 

the primary mouse anti-NeuN antibody (1:200, Millipore, Temecula, CA, USA) and rabbit 

anti-Gpr81 (Gpr81 is also known as HCA1) (1:100, GPR81-S-296, Sigma). Cells were 

washed in PBS and incubated with the appropriate secondary antibodies (Alexa Fluor 488-

conjugated donkey anti-mouse IgG and Alexa Fluor 594-conjugated donkey anti-rabbit IgG 

(Invitrogen). Negative controls were performed in the absence of primary antibodies. 

Coverslips were mounted in Fluorsave mounting medium (Calbiochem) and analyzed using a 

Leica SP5 confocal microscope and a 63x PlanApochromat objective lens with fluorescence 

excitation at 488nm and 543nm. 

Western blot 

Western blot was performed as described previously (Grishchuk et al., 2011). Briefly, protein 

samples were harvested in lysis buffer (20 mmol/L HEPES, pH 7.4, 10mM NaCl, 3mM 

MgCl2, 2.5mM EGTA, 0.1mM dithiothreitol, 50mM NaF, 1mM Na3VO4, 1% Triton X-100), and 

a protease inhibitor cocktail (Roche, 11873580001). Lysates were sonicated and protein 

concentration was determined using a Bradford assay. Proteins (25μg) were separated by 

SDS-PAGE on a 12% polyacrylamide gel, incubated with an anti-Grp81-s296 primary 

antibody (Sigma) and then with a polyclonal goat anti-rabbit IgG conjugated with IRDye 800 

(LI-COR, 926-32210). Protein bands were visualized using the Odyssey Infrared Imaging 

System (LI-COR).  
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Data analysis 

Data are means ± SEM and are represented as percentage of spiking activity or ΔpH change 

measured during the control condition. Paired Student's t-tests were performed to assess the 

statistical significance in the same experiments (*P < 0.05). In experiments, were groups 

were compared non-paired Student’s t-test was used. The half-maximum inhibitory 

concentration (IC50) of L- or D- lactate was determined by non-linear curve fitting using the 

Levenberg–Marquardt algorithm implemented in the Kaleidagraph software package 

(Synergy Software, Reading, PA, USA). The concentration-response analysis experiments 

were fitted using the following equation: 

 Robs=Rmax[I]/(K+[I])+Rmin      (1) 

where Robs is the observed response and Rmax, Rmin are maximum and minimum parameters 

of the response. [I] is the concentration of the inhibitor compound and K is the concentration 

that yields its half-maximum inhibition (i.e. IC50).  
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Results  

L-lactate influences the calcium transient frequency in the presence of glucose 

The electrical activity of primary cortical neurons was monitored by rapid calcium imaging. 

We took advantage of the fact that the membrane depolarization that accompanies action 

potentials leads to an intracellular increase of calcium concentration via the opening of 

voltage gated calcium channels (Cossart et al., 2005; Sasaki et al., 2008). During the time 

window of utilization of cells (DIV14-21), spontaneous calcium transients were detected in 

more than 50% of neurons. To assess to what extent the calcium transients correlate with 

action potentials in these cells we performed simultaneous recordings in patch clamp and 

somatic calcium fluorescence. Fig. 1 shows in parallel example traces of the spiking output 

recorded in whole-cell current clamp configuration and the corresponding intracellular 

variation of fluorescence that reflects the calcium variation. Careful visual inspection 

comparison of electrophysiological and optic recordings indicates an excellent match 

between both kinds of signals. The main advantage of the calcium imaging method for this 

study is that it allows monitoring a large number of cells in parallel and avoids altering the 

cellular solute composition. We therefore used calcium imaging in the following experiments 

as the main method for monitoring the electrical activity of neuronal population.  

  

Figure 1. Neuronal activity monitored with calcium 
imaging 
Comparison between simultaneous intracellular 
calcium imaging sampled at a frame rate of 10Hz 
and whole-cell patch clamp recordings. A 
representative experiment out of 15 is shown with 
the upper trace representing calcium transients 
(arbitrary fluorescence units, AFU) and lower trace 
action potentials recorded in current-clamp 
configuration from the same neuron. 
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In the context of neurometabolic coupling, lactate is generally considered as an energy 

source for activated neurons. Recent studies have indicated that in addition lactate could 

play a role as neuromodulator of certain glutamatergic and GABAergic neurons (Ainscow et 

al., 2002; Song and Routh, 2005; Shimizu et al., 2007). For this reason, we investigated the 

effect of L-lactate application on primary cortical neurons obtained from wild-type and GAD67 

EGFP knock-in mice, which allowed us to distinguish principal from GABAergic neurons. In 

order to evidence only a modulatory effect of lactate and not its mere ability to sustain 

neuronal energy metabolism, experiments were carried out in the presence of 5mM glucose. 

Recordings were obtained from the same target cells first in control solution, then following 

5min of L-lactate or other compounds application and ultimately after 5min washout. Fig. 2a 

shows a typical experimental trace of the calcium transients in control or in the presence of 

L-lactate in a single cortical principal neuron. Application of L-lactate 5mM reversibly 

diminished the calcium transient frequency by more than 50% in both principal and 

GABAergic neurons. Fig. 2b summarizes the results obtained in this series of experiments.  

  

Figure 2. Effects of L-lactate on calcium spiking 
frequency 
(a) Original traces of calcium transients in control 
or 5mM L-lactate containing solution. (b) Spiking 
frequency for principal neurons and GABAergic 
interneurons are shown as percent of activity 
measured during control solution. Data are 
obtained from 9 experiments and 35 cells. 
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In order to understand if the effect was proportional to the concentration, an inhibitory curve 

of L-lactate was then established (Fig. 3). The graph shows that L-lactate decreased the 

calcium transient frequency in a concentration dependent manner in both cell types 

(apparent IC50: principal neurons 4.23±1.9mM; GABAergic neurons 4.18±2.8mM). As the 

sensitivity to lactate was found identical between principal and GABAergic neurons, cell 

types were not studied separately in the rest of the study. 

 

 

 

Related energy metabolites do not influence neuronal activity 

Once inside neurons, L-lactate is converted into pyruvate by lactic dehydrogenase and then 

can enter the tricarboxylic acid cycle that leads to the production of mitochondrial ATP. The 

ability of lactate to influence the neuronal activity could arise from the variation of intracellular 

ATP that influences directly or indirectly membrane conductances such as KATP or chloride 

channels We therefore examined whether related energy substrates cause a similar effect as 

L-lactate. We applied the same experimental protocol using the closely related molecule 

pyruvate or different concentrations of glucose (0.5 or 10mM). Pyruvate 5mM (in the 

presence of 5mM glucose) marginally (~7%) influenced the calcium transient frequency (Fig. 

Figure 3. Concentration dependency of L-lactate effects  
The decrease in spiking frequency was concentration dependent. Apparent IC

50
 

values obtained by nonlinear curve fitting yielded 4.23±1.9mM for principal 
neurons (n=175 cells, 56 exp) and 4.18±2.8mM for GABAergic neurons (n=83 
cells, 35 exp).  
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4a). Glucose at high concentration (10mM) did not replicate the effects of L-lactate, whereas 

low glucose (0.5mM) tended to somewhat increase the frequency (Fig. 4b). These 

experiments provided a first indication of the specific nature of lactate effects on neuronal 

activity.  

 

 

 

 

Effect of the stereoisomer D-lactate 

The above results suggest that in our experimental conditions intracellular ATP increase is 

not involved in the observed modulation of neuronal activity. We further investigated the 

involvement of metabolism in the lactate effects by applying the stereoisomer D-lactate that 

is described to be poorly metabolized by neurons (Ewaschuk et al., 2005). Fig. 5a&b show 

that D-lactate application substantially decreased the calcium transient frequency in a 

reversible manner. This effect was found to be concentration dependent with an IC50 of 

4.58±1.2mM, i.e. approximately the same potency as the L-isomer (see Fig. 3).  

Figure 4. Energy metabolite dependency of calcium spiking frequency 
Calcium spikes frequency shown as percent of activity measured during control 
solution. (a) Effects of pyruvate on calcium spiking frequency (n=188 cells, 24 
exp). Glucose (5mM) was present throughout the experiments. (b) Effects of 
glucose concentration on spiking frequency (n=68 cells, 10 exp). 
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Both L-lactate and pyruvate are efficiently transported across the cell membrane of 

cortical neurons by monocarboxylate transporters (MCTs) (Chatton et al., 2001). It has been 

reported that neuronal MCTs transport D-lactate less efficiently (Nedergaard and Goldman, 

1993). To test to what extent, in our experimental conditions, D-lactate is transported into 

neurons, we took advantage of the fact that MCTs co-transport lactate with one proton with a 

stoichiometry of 1:1 (Chatton et al., 2001). The resulting cellular acidification can be used to 

monitor the transport. The intracellular pH was monitored by loading neurons with the pH 

sensitive indicator BCECF and we used L-lactate application as control of the transport 

activity. Fig. 6 shows that L-lactate application (5mM) resulted in a small and reversible 

acidification (<-0.1 pH units). The figure shows that the acidification caused by D-lactate was 

significantly weaker than that caused by L-lactate at the same concentration, indicating that 

D-lactate is transported less efficiently into neurons than L-lactate as observed before 

(Nedergaard and Goldman, 1993). These results strengthened the notions that lactate 

effects on spiking are not solely related to its transport  or intracellular metabolism.  

Figure 5. D-lactate effects on neuronal activity 
(a) Sample trace of calcium transients in control or 
5mM D-lactate containing solution. D-lactate 
substantially decreased calcium transient frequency. 
(b) The concentration-response analysis yielded an 
apparent IC

50
 of 4.58±1.2mM (n=127 cells; 21exp).  
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Receptor mediated effect of lactate 

Recently, a G-protein coupled family of receptors has been identified from a pool of 

orphan receptors and called hydroxycarboxylic acid receptor (HCA) (Blad et al., 2011). 

Among them HCA1 (previously known as GPR81) was reported to be activated by lactate in 

adipocytes (Cai et al., 2008). To determine if this receptor is expressed by mouse primary 

cortical neurons, we performed an immunohistochemistry analysis using anti-HCA1 antibody. 

We found that all cells positive for the neuronal marker NeuN show HCA1 immunoreactivity 

in our primary cortical cultures (Fig. 7a). We also verified the antibody specificity and confirm 

that HCA1 is expressed in mouse cortical neuronal cultures by Western blot (Fig.7b).  

HCA receptors are reported to be coupled to Gi proteins (Liu et al., 2009). To investigate 

whether a Gi coupled receptor is implicated in the observed lactate sensitivity we incubated 

cells with pertussis toxin (PTX), a Gi protein inactivator. Neuronal cultures coming from the 

same preparation were divided into two equal groups, one used as control and the other 

incubated with PTX (500ng/ml, 24h). Experiments were performed in parallel on the same 

day. Importantly, no significant differences in th e spontaneous frequency were found 

between the two groups (n=123 cells from 16 experiments). In control condition, L-lactate 

Figure 6. Intracellular pH effects of lactate isomers on cortical neurons  
Intracellular pH measured using BCECF and calibrated in situ in cortical neurons. (a) Original pH 
trace during sequences of L- and D-lactate application. (b) Summary of acidification (pH 
amplitude) measured during L- and D-lactate application. (n=39 cells; 7exp). 
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induced the previously observed reduction of the calcium transient frequency by 46%. 

However, in the presence of PTX, the effects of lactate were almost abolished (90.8±6% of 

the initial frequency was maintained, Fig. 7c).  

 

 

 

 

 

 

 

 

Figure 7. HCA1 receptor involvement in the lactate sensitivity. 
(a) Confocal images showing immunostaining for NeuN (green), HCA1 (red) and the 
merged image in mouse primary cortical neurons. Scale bar, 20µm. (b) Representative 
Western blot showing that HCA1 is expressed in mouse primary cortical neuronal 
cultures. (c) Comparison of lactate effect on calcium spiking frequency in cells 
incubated or not with pertussis toxin (PTX). PTX incubation strongly reduced the 
effects of lactate on neuronal activity. Data are obtained from 8 experiments and 61 
cells for non-treated group and 8 experiments and 62 cells for PTX treated group.  
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To further investigate the involvement of HCA receptors, we tested the effects of 3,5-

dyhydroxybenzoic acid (3,5-DHBA) recently identified as a specific agonist of the lactate 

receptor HCA1 (Liu et al., 2012) as well as 3-hydroxybenzoic acid (3-HBA) an agonist of 

HCA1 and HCA2, a receptor highly homologous to HCA1. Both agonists have been reported 

to have a higher affinity than lactate for these receptors, and were applied at a concentration 

of 1mM. Fig. 8 shows that, like L-lactate, both 3,5-DHBA (a) and 3-HBA (b) decreased in a 

reversible manner the neuronal activity by ~33%.  

 
Figure 8. Reduction by 3,5-DHBA and 3-HBA of the calcium transient 
frequency 
Calcium spiking frequency shown as percent of activity measured during 
control solution. (a) Effects of 3,5-DHBA on calcium spiking frequency 
(n=155 from 22 experiments). (b) Effects of 3-HBA on spiking frequency 
(n=10 from 79 experiments).  
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Discussion  

This study shows for the first time that lactate is more than a metabolic substrate for the brain 

and may be considered as a modulator of cortical neurons. Lactate administration to neurons 

was found to induce a distinct modulation in a way and magnitude that was not shared by 

other energy substrates. The observed modulation is driven by a mechanism independent of 

the production of ATP, likely involving membrane receptors for lactate.  

Lactate is produced by aerobic glycolysis in astrocytes and released in register with 

neuronal activity (Pellerin et al., 2007). It is estimated to be in the low millimolar range in the 

extracellular fluid (Zilberter et al., 2010). Glucose and lactate are found in different 

proportions according to brain region, in the hippocampus, lactate concentration was found 

to be higher than that of glucose and even twice as high in the cortex (Zilberter et al., 2010). 

We found that L-lactate application decreased the network activity of neurons in a 

concentration dependent manner in presence of glucose. Interestingly, modulation of 

neuronal activity by lactate has been found in GABAergic neurons of the subfornical organ 

(Shimizu et al., 2007). L-lactate in the concentration range 0-1mM promoted the firing rate 

whereas in the range 1-10mM the firing rate was progressively suppressed. In that study, the 

authors highlighted the stimulatory phase that they found to be ATP dependent; however, 

they did not attempt to explain the suppression of activity by higher lactate concentration, 

leaving the question open.  

Among the different energy substrates used in our study that should bring about a rise in 

intracellular ATP, L-lactate was the only one able to strongly reduce neuronal firing 

frequency. High levels of glucose, or pyruvate applied at the same concentration as L-

lactate, did not reproduce the effect. It should be noted that pyruvate is not only closely 

related to lactate but also transported as efficiently in neurons by the same carriers (Chatton 

et al., 2001). The ability of L-lactate to single-handedly influence neuronal activity was 

already found in orexin neurons where L-lactate—but not glucose—increased the firing 
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activity of neurons (Parsons and Hirasawa, 2010). The effects of energy substrates are 

usually assumed to be mediated by the intracellular variation of ATP. However, the disparity 

in the effect of these energy substrates led us to consider the possibility that the mechanism 

involved in the L-lactate sensitivity is not dependent on the levels of ATP produced. A 

growing body of evidence indicates that mechanisms underlying energy substrate sensitivity 

are not all dependent on the intracellular ATP concentration changes (Ainscow et al., 2002; 

Gonzalez et al., 2009). We found that D-lactate, the stereoisomer of lactate that is poorly 

metabolized by neurons (Flick and Konieczny, 2002), induced the same effect as L-lactate 

with a very similar IC50. These results suggest that the mechanism of L-lactate sensitivity 

does not involve cellular energy metabolism. 

An interesting parallel can be drawn with a study performed on glucose-inhibited neurons 

in the lateral hypothalamus (Venner et al., 2011), where only glucose–but not lactate or 

pyruvate–suppressed the firing activity. Moreover, the non-metabolized glucose analogue 2-

deoxyglucose mimicked the effect of glucose, indicating that the glucose-induced 

hyperpolarization does not require glucose metabolism. In a previous study of the same 

group on the mechanisms involved in glucose-inhibited neurons (Gonzalez et al., 2008), it 

was shown that glucose induced a K+ hyperpolarizing current that was caused only by its 

extracellular and not intracellular application. To explain this puzzling observation, the 

authors proposed the involvement of an extracellular glucose receptor. 

An alternative mechanism that should be considered for the effects of lactate is 

intracellular acidification. Lactate is taken up by neuronal MCTs, which co-transport one 

proton together with lactate, and therefore can bring about cytosolic acidification. In our 

experiments, the addition of L- or D-lactate (5mM) caused only a minimal acidification of 

0.05-0.1 pH units. These pH changes are in agreement with published values of acidification 

by L-lactate (Chatton et al., 2001) and by D-lactate (Nedergaard and Goldman, 1993) and 

appear unlikely to affect the spiking activity. The fact that D-lactate decreased neuronal 

Lactate paper page 18 of 26

66

Bozzo Luigi PhD Thesis



activity with the same extent and potency than L-lactate but with a two-fold lower acidification 

indicates that the observed effect is not proportional to the intracellular pH variation. In 

addition, pyruvate was reported in a previous study on the same cells (Chatton et al., 2001), 

to induce a larger acidification than L-lactate, whereas on the contrary we found it not to 

influence neuronal network activity as L-lactate. 

Besides being poorly metabolized, D-lactate is less internalized in neurons than L-lactate, 

which was demonstrated by the lower acidification induced by the monocarboxylate 

transporter activation. This is consistent with the reported lower affinity of MCTs for D-lactate 

compared to L-lactate (Nedergaard and Goldman, 1993; Poole and Halestrap, 1993). 

Inasmuch as both isomers reduced the frequency of spiking to the same extent and with the 

same potency, it is plausible that L-and D-lactate do not need to enter neurons to induce 

their effects nor rely on MCT activity, and therefore act as an extracellular ligand. 

Recently, a new class of Gi protein-coupled receptors has been identified (Blad et al., 

2011) with affinity for several intermediates of energy metabolism. The ligands being all 

hydroxyl-carboxylic acids (HCA), these receptors have been named HCA receptors. Of 

particular interest for the present study, the HCA1 isoform (previously known as GPR81) is 

described as a receptor for lactate with half-maximal affinity of 4.8mM (Liu et al., 2009), very 

close to our measured IC50 value of 4.2mM. The receptor is predominantly expressed in 

adipose tissue (Liu et al., 2009), but we found that it is also expressed in primary cortical 

neurons. This finding is in agreement with evidence from in situ hybridization that shows 

HCA1 mRNA expression in neurons in different regions of the brain such as cortex, 

hippocampus and cerebellum (Bergersen and Gjedde, 2012). To test if such a receptor is 

implicated in the lactate sensitivity of neurons, we used 3,5-DHBA a specific agonist for the 

receptor recently discovered (Liu et al., 2012). We found that the application of this agonist 

decreased the calcium transient frequency by 33% at a concentration of 1mM. In addition, 

the application of 3-HBA an agonist that has a similar affinity for HCA1 but in addition can 
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also bind to HCA2 receptor, highly homologous to HCA1, produced the same intensity of 

effect at equal concentration. These compounds induced a stronger inhibition of activity than 

lactate at the same concentration, which is consistent with their reported higher affinity for 

the receptor. Also, these receptors do not bind pyruvate, consistent with our observed lack of 

effect of pyruvate on spiking activity (Cai et al., 2008; Liu et al., 2009). Another indication of 

their involvement, in absence of a specific inhibitor currently available, came from PTX 

experiments. This inhibitor of Gi proteins almost abolished the decrease of neuronal network 

activity caused by L-lactate without altering the basal rate of spontaneous spiking activity. 

Taken together, this body of evidence strongly points to the involvement of HCA receptors in 

the described lactate sensitivity of neurons. Lactate binding to these Gi-coupled receptors 

reduces the formation of cAMP via inhibition of the adenylate cyclase. A possible 

downstream effect of decreased cAMP is the reduction of exocytosis via a protein kinase A 

dependent pathway (Seino and Shibasaki, 2005). Another possible effector for the inhibition 

is based on the activation of the associated Gβα subunits that could induce an 

hyperpolarization by the opening of K+ conductances or reduce the exocytosis as was 

reported for the activation of GABAB receptor, another Gi protein-coupled receptor (Bettler et 

al., 2004). 

The inhibitory activity of lactate could play several roles in the regulation of neuronal 

activity, and act as a paracrine element that prevents an excess of activity of neurons. In the 

context of neurometabolic coupling, glutamate released by neurons during activity stimulates 

the production and the release of lactate in astrocytes (Pellerin et al., 2007). Lactate can be 

used by neurons to sustain the metabolic activity (Bouzier-Sore et al., 2003). In case of 

excessive activity, e.g. as it occurs during epileptic seizures, the increased levels of lactate 

may have the beneficial effects of calming down the network. In support of this hypothesis, it 

has been demonstrated that L-lactate reduced the size of lesion induced by glutamate in rat 

cortex (Ros et al., 2001). Lactate application has been investigated in several brain 
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disturbances and induced variable degrees of benefit, e.g. in cerebral ischemia (Schurr et al., 

2001; Berthet et al., 2009; Berthet et al., 2012), hypoxia (Schurr et al., 1988; Schurr et al., 

1997), traumatic brain injury (Alessandri et al., 2012) and hypoglycemia (Maran et al., 1994). 

It is plausible that the new neuromodulatory role of lactate described in the present study 

could underlie some of its positive effects.  

In conclusion, the results of this study allow us to propose a new role of lactate, besides 

its role as metabolic substrate, as a cellular signaling element. This signal could act as a 

metabolic feedback control of neuronal activity. 
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2.3 Inhibitory effects of (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy] 

aspartate (TFB-TBOA) on the astrocytic sodium responses to glutamate 

2.3.1 Aim of the study 

Removal of neurotransmitters from the extracellular space is crucial for normal functioning of 

the central nervous system. This task is mainly managed by astrocytes that are equipped 

with efficient glutamate transporters. In this study the effects of a recently synthetized 

inhibitor of glutamate transport, the TFB-TBOA, were characterized in astrocytes maintained 

in culture.  

2.3.2 Personal contribution 

This study is co-authored by Jean-Yves Chatton. I performed and analyzed all the 

experiments in this study. Moreover I substantially participated to the experimental design, as 

well as to the redaction of the manuscript with Jean-Yves Chatton.  
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Astrocytes are responsible for the majority of the clearance of extracellular glutamate
released during neuronal activity. DL-threo-β-benzyloxyaspartate (TBOA) is extensively used
as inhibitor of glutamate transport activity, but suffers from relatively low affinity for the
transporter. Here, we characterized the effects of (2S, 3S)-3-[3-[4-(trifluoromethyl)
benzoylamino]benzyloxy]aspartate (TFB-TBOA), a recently developed inhibitor of the
glutamate transporter on mouse cortical astrocytes in primary culture. The glial Na+-
glutamate transport system is very efficient and its activation by glutamate causes rapid
intracellular Na+ concentration (Na+i) changes that enable real time monitoring of
transporter activity. Na+i was monitored by fluorescence microscopy in single astrocytes
using the fluorescent Na+-sensitive probe sodium-binding benzofuran isophtalate. When
applied alone, TFB-TBOA, at a concentration of 1 μM, caused small alterations of Na+i. TFB-
TBOA inhibited the Na+i response evoked by 200 μM glutamate in a concentration-
dependent manner with IC50 value of 43±9 nM, as measured on the amplitude of the Na+i
response. The maximum inhibition of glutamate-evoked Na+i increase by TFB-TBOA was
>80%, but was only partly reversible. The residual response persisted in the presence of the
AMPA/kainate receptor antagonist CNQX. TFB-TBOA also efficiently inhibited Na+i
elevations caused by the application of D-aspartate, a transporter substrate that does not
activate non-NMDA ionotropic receptors. TFB-TBOA was found not to influence the
membrane properties of cultured cortical neurons recorded in whole-cell patch clamp.
Thus, TFB-TBOA, with its high potency and its apparent lack of neuronal effects, appears to
be one of the most useful pharmacological tools available so far for studying glial glutamate
transporters.
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1. Introduction

By rapidly taking up extracellular glutamate, astroglial cells
play the critical role of protecting neurons from the excitotoxic
buildup of glutamate, thereby ensuring the fidelity of gluta-
matergic transmission at high frequency (Danbolt, 2001).
Astrocytic glutamate uptake also plays an important role in
the coupling between synaptic activity and glucose utilization,
i.e. neurometabolic coupling (Pellerin et al., 2007). Astrocytes
are equipped with efficient glutamate transporters that
surround the synaptic cleft and use the electrochemical
gradient of Na+ to take up glutamate against its electrochem-
ical gradient. In these cells, the Na+-coupled glutamate
transport system is so efficient that the astrocytic intracellular
Na+ concentration (Na+i) undergoes rapid and large elevations
when glutamate is applied extracellularly, even at low
micromolar concentration (Chatton et al., 2000). The bulk of
glutamate uptake in the adult brain is mediated by astroglia
that express mostly the excitatory amino acid transporter
(EAAT) isoforms 1 and 2, whereas EAAT3 and EAAT4 are
considered to be neuronal transporters, and EAAT5 is retina-
specific (Danbolt, 2001).

Inhibitors of Na+-dependent glutamate transporters are
therefore invaluable tools for elucidating the physiological
roles of these transporters in detail. Earlier inhibitors of
glutamate transporters, such as threo-β-hydroxyaspartate
(THA) and trans-pyrrolidine-2,4-dicarboxylic acid (t-PDC), are
transported competitive inhibitors that lead to astrocytic
coupled Na+ influx (Chatton et al., 2001). A more recently
synthesized compound, DL- threo-β-benzyloxyaspartate
(TBOA), has been introduced and since then widely used as a
non-transported competitive inhibitor of glutamate transpor-
ters (Shimamoto et al., 1998). This compound is a non-
selective inhibitor of all EAATs subtypes with activity in the
micromolar range. While this compound was a real break-
through for the study of glutamate transport, its relatively low
potency imposes the use of fairly high concentrations,
increasing the risk of unwanted effects in particular when
used in situ (Bernardinelli and Chatton, 2008), or when in vivo
use is envisaged for instance as a possible treatment for mood
disorder pathologies (Lee et al., 2007; Sanacora et al., 2003).

Recently, a series of analogues of TBOA have been reported
with both improved potency and selectivity (Shimamoto et al.,
2004). Among them, the most promising one appears to be
TFB-TBOA with nanomolar affinity for EAATs. In the present
study, we characterized the effects of TFB-TBOA on the Na+i
response to glutamate in primarymouse astrocytes and on the
electrical properties of pure cortical neurons in primary
culture.

2. Results

Glutamate evokes a robust elevation of Na+i in mouse
astrocytes in primary culture (Chatton et al., 2000) that is
primarily due to Na+/glutamate cotransport activity. The first
set of experiments was aimed at determining whether the
new inhibitor of the glutamate transporter TFB-TBOA applied
alone influenced baseline Na+i levels and at characterizing its

inhibitory properties on the Na+i responses to glutamate
application.

Fig. 1A shows an original experimental trace of the Na+i
response to 200 μM glutamate superfusion in a single
astrocyte. In these experiments, Na+i went from a typical
resting value of 12 to 33 mM. The baseline Na+i as well as the
amplitude and kinetics of the response to glutamate in this
series of experiments corresponds to what was described in
previous studies (Chatton et al., 2000).

TFB-TBOA 1 μM was then applied alone leading to a small
change in Na+i. When co-applied with glutamate, TFB-TBOA
inhibited 83±1% of the glutamate response. After washout of
TFB-TBOA, the Na+i response to glutamate was restored

Fig. 1 – Inhibition by TFB-TBOA of the glutamate-evoked Na+i
response. (A) Representative experimental trace depicting
the Na+i increase caused by application of 200 μM glutamate
followed by the application of TFB-TBOA 1 μM alone and
subsequently applied with glutamate. A final application of
glutamate shows the reversibility of the response. (B)
TFB-TBOA effects on the glutamate-evoked Na+i response.
Results are expressed as maximum amplitude of Na+i and
presented as percent of those observed with 200 μM
glutamate. Data are means±SEM of 40 cells from 5
independent experiments.
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however, with a slower kinetics and lower amplitude. Fig. 1B
summarizes the results obtained in this series of experiments.

An inhibition curve of TFB-TBOA on the astrocyte response
to 200 μM glutamate was then established (Fig. 2). The graph
shows that TFB-TBOA inhibited the Na+i response with high
affinity, with an apparent IC50 of 43±9 nM when measured on
themaximal amplitude of the response. In the presence of this
maximally effective concentration of TFB-TBOA, about 17% of
the Na+i response to glutamate subsisted (Figs. 1 and 2). We
thus tested whether this residual response was due to AMPA/
kainate receptor activation, which also leads to Na+i increase
in astrocytes (Chatton et al., 2000) rather than to incomplete
transporter blockade. Fig. 3 indicates that co-application of
TFB-TBOA and CNQX did not further inhibit the Na+i response
to 200 μM glutamate.

As seen in Fig. 1, TFB-TBOA caused a small Na+i response in
the absence of glutamate. We thus tested for the potential
involvement of three major classes of astrocytic receptors in
this response. Fig. 3 shows that addition of the AMPA/kainate
receptor antagonist CNQX (50 μM) did not abolish the Na+i
change caused by 1 μM TFB-TBOA. Application of the
metabotropic glutamate receptor antagonist (S)-α-Methyl-4-
carboxyphenylglycine (MCPG, 1 mM) or the P2 purinergic
receptor antagonist suramin (100 μM) did not influence the
response to TFB-TBOA alone, excluding the contribution of
these classes of receptors.

In order to have a more direct assessment of the ability of
TFB-TBOA to interfere with transport activity, we tested D-
aspartate, a substrate of the glutamate transporter that is not
metabolized nor activates ionotropic receptors. TFB-TBOA
inhibited ∼90% of the Na+i response to 200 μM D-aspartate in
astrocytes (Fig. 4). The reversibility of the inhibition on the
response to D-aspartate was of 60±2%, i.e. somewhat lower
than was observed with glutamate (see Fig. 1).

We then tested whether the incomplete reversibility of the
response to glutamate after TFB-TBOA washout was persis-
tent with time. Fig. 5 indicates that the reversibility improved

with time, without however being complete 1 h after washout
of the compound. Interestingly, both the amplitude and the
initial rate of Na+i rise recovered with a similar time course.

Fig. 2 – Concentration dependency of the inhibitory effects of
TFB-TBOA. Inhibitory curve on the maximum amplitude of
Na+i response to 200 μM glutamate. Non-linear least square
fits using 135 cells from 17 experiments yielded IC50 values of
43±9 nM. The maximum inhibition was observed at 1 μM
TFB-TBOA.

Fig. 3 – Residual Na+i increase in the presence of TFB-TBOA.
The TFB-TBOA-insensitive residual Na+i response to 200 μM
glutamate was not altered by the non-NMDA receptor
inhibitor CNQX (50 μM, means±SEM of 40 cells from 5
independent experiments). The Na+i increases observed
upon TFB-TBOA (1 μM) application alone were not abolished
by the non-NMDA receptor inhibitor CNQX (50 μM, 52 cells
from 7 independent experiments), the metabotropic
glutamate receptor antagonist MCPG (1 mM, 40 cells from 5
experiments), or the P2 purinergic receptor antagonist
suramin (100 μM, 23 cells from 3 experiments). Results are
expressed as maximum amplitude of Na+i and presented
as percent of those observed with 200 μM glutamate used as
a control.

Fig. 4 – Inhibition by TFB-TBOA of the D-aspartate-evoked
Na+i response. Results are expressed as maximum
amplitude of Na+i and presented as percent of those observed
with 200 μM D-aspartate. Data are means±SEM of 56 cells
from 7 independent experiments.
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In order to investigate the mode of action of TFB-TBOA, a
Schild analysis was performed (Fig. 6). The Na+i responses to
application of glutamate at different concentrations were
measured in the absence or in the presence of TFB-TBOA
applied at 10, 50 and 100 nM. From a family of three-point
dose–response curves, the apparent EC50 of glutamate was
estimated and used to build the Schild plot (Fig. 6B), which
yielded a linear slope of 1.6 (R2=0.96), different from unity and
thus not compatible with pure competitive antagonism.

Finally, we investigated the effect of TFB-TBOA on the
membrane properties of cortical neurons in pure primary
cultures. Neurons were recorded in whole-cell patch clamp in
voltage-clamp configuration and the current-to-voltage rela-
tionship was analyzed in the presence and in the absence of
1 μM TFB-TBOA. The current–voltage plot shown in Fig. 7
shows that the resting membrane potential was −80 mV
regardless of the presence or absence of TFB-TBOA and that
the inhibitor did not influence the input resistance. In some
recorded neurons, spontaneous or network-induced firing of
action potentials was observed and did not appear to be
influenced by the presence of TFB-TBOA (not shown).

3. Discussion

The aim of this report was to characterize the effects of the
new glutamate transporter inhibitor TFB-TBOA on astrocytes
in primary culture. As astrocytes are equipped with a high
density of Na+-coupled glutamate transporter, Na+i concen-

tration undergoes rapid and robust increases in these cells,
which can be measured by microspectrofluorimetric methods
(see e.g. Chatton et al., 2000; Rose et al., 1997). This Na+i
increase is almost entirely attributable to the activity of the
Na+-glutamate cotransporters. Glial glutamate transporters
use a complex stoichiometry of 3 Na+ plus 1 H+ cotransported
(or 1 OH− exchanged) with 1 glutamate and exchanged against
1 K+ (Levy et al., 1998). As the transport cycle is electrogenic,
glutamate transport leads to a net inward current that can be
measured by electrophysiological means. Transport activity

Fig. 5 – Reversibility of TFB-TBOA inhibitory effects. The
recovery of the response to 200 μM glutamate was tested
consecutively 5, 15, 30, and 60 min after washout of
TFB-TBOA (1 μM). Results are expressed as amplitude
(hatched bars) or initial rate of rise of Na+i responses (open
bars) and presented as percent of the response recorded for
the first control application of 200 μM glutamate. The
significance of recovery was tested against the initial control
glutamate application. § not measurable with accuracy. Data
aremeans±SEM of 46 cells from 6 independent experiments.

Fig. 6 – Schild analysis of inhibitory action of TFB-TBOA. (A)
The Na+i responses to applications of glutamate at different
concentrations were measured in the absence or in the
presence of TFB-TBOA present at three different
concentrations indicated in the graph. Data are means±SEM
of 16–24 cells from 13 experiments. (B) Schild plot of the data
in panel A. Dose ratio is the ratio of the apparent EC50 of
glutamate obtained from the family of three-point
dose–response curves in panel A in the presence of a given
concentration of TFB-TBOA over the EC50 of glutamate in the
absence of TFB-TBOA. The linear regression yielded a slope
of 1.6 (R2=0.96).
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can also be measured by radioactive tracers of transporter
substrates, e.g. glutamate or D-aspartate. Measuring Na+i
changes, as performed in the present study, offers the
advantages of assessing transport activity in real time and at
the single cell level.

The first non-transported inhibitors of glutamate trans-
porters were dihydrokainate, with selectivity for EAAT2 (GLT-
1), andmore recently TBOA, acting on all EAAT subtypes. Both
compounds have been widely used but suffer from a relatively
low affinity on glutamate transporters and are accompanied
with complex unwanted effects (Bernardinelli and Chatton,
2008). The newly released compound TFB-TBOA offers the
promise of a high potency of inhibition in the nanomolar
range.

The original report characterizing TFB-TBOA (Shimamoto
et al., 2004) described the inhibition glutamate transport
measured by 14C-glutamate uptake in COS cells expressing
EAATs or measured by transporter currents in Xenopus laevis
oocytes expressing EAATs. The reported IC50 vales were 22, 17
and 300 nM for EAAT1, EAAT2, and EAAT3, respectively.

In the present study, TFB-TBOA was tested on mouse
astrocytes. The only glutamate transporter functionally
expressed in primary mouse astrocytes is the EAAT1 (GLAST)
subtype, as the GLT-1 inhibitor dihydrokainate fails to inhibit

the Na+i response to glutamate (Chatton et al., 2001). We found
that TFB-TBOA inhibited Na+i responses evoked by 200 μM
glutamate in a concentration-dependent manner with an
apparent IC50 of 43 nM. Previous measurements of inhibition
of synaptically activated transporter currents in astrocytes in
the hippocampus yielded an IC50 value of 13 nM (Tsukada et
al., 2005). We found a maximal inhibition of ∼80% on the Na+i
response to glutamate, whereas the inhibition was more
pronounced (∼90%) when D-aspartate was used as a transport
substrate.

TFB-TBOA showed, however, incomplete reversibility of
inhibition. Whereas the amplitude of the Na+i responses to
glutamate measured 5 min after washout of the compound
was overall 69% of the original amplitude, the rise-time was
significantly slower (∼4-fold), possibly because some fraction
of the compound remains bound because of its high affinity
for the transporter. It is plausible that TFB-TBOA does not only
act as a pure competitive inhibitor of transport, but also
displays some non-competitive component. Schild analysis of
the inhibition of glutamate-mediated Na+i responses by TFB-
TBOA indeed supported this conclusion. In addition, we
observed that reversibility of responses was gradually im-
proving with time after washout of the drug. This result is
consistent with observations made on EAAT transporter

Fig. 7 – Effects of TFB-TBOA on the passive membrane properties of cultured cortical neurons in whole-cell configuration. (A)
Representative whole-cell current responses of a neuron to 20 mV voltage steps (−140 to −60 mV, see inset). The cell was
clamped at −70mV andmeasurements were donewith andwithout 1μMTFB-TBOA. (B) Current–voltage relationship recorded
in the absence and in the presence of TFB-TBOA, as well as after washout of the compound. Input resistances were not
significantly different among groups. Data are means±SEM from nine individually recorded neurons.
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currents measured in oocytes (Shimamoto et al., 2004), for
which the recovery was incomplete even 1 h after washout of
TFB-TBOA. We found that not only did the amplitude
gradually recovered, but also the initial rate of Na+i rise with
a similar time course. Our previous mathematical modeling of
the Na+i response to glutamate has shown that this parameter
best reflects the kinetics properties of the transporter (Chatton
et al., 2000). This indicates that TFB-TBOA causes an alteration
of transporter function, which persists after washout of the
drug. This incomplete reversibility of inhibition is a limitation
for the use of TFB-TBOA that has to be taken into account in
experimental designs.

Whereas TFB-TBOA applied alone was shown not to elicit
detectable currents in oocytes expressing glutamate transpor-
ters (Shimamoto et al., 2004), we found, however, that in
primary mouse astrocytes, a small but significant Na+i
increase was evoked by TFB-TBOA, as was found to be the
case for TBOA (Chatton et al., 2001). As NMDA receptors are
not found in cultured astrocytes (Verkhratsky and Kirchhoff,
2007) and as the AMPA/kainate receptor antagonist CNQX did
not prevent this Na+i increase, the mechanism of the TFB-
TBOA evoked Na+i rise does not involve ionotropic glutamate
receptors. Metabotropic glutamate and P2 purinergic receptors
could also be excluded. Thus, this response to TFB-TBOA could
be related to interference with other Na+ carrier proteins such
as the Na,K-ATPase. The observation would also be compat-
ible with TFB-TBOA being a low efficacy transporter substrate,
which could elicit a small Na+i response.

In previous studies performed under the same experimen-
tal conditions, we had found that the maximum inhibition
caused by TBOA on the Na+i response to 200 μMglutamatewas
∼70% (Chatton et al., 2001). We show here that the maximal
inhibition caused by TFB-TBOA on the response to glutamate
was somewhat larger (>80%). As was found for TBOA, the TFB-
TBOA-insensitive residual Na+i response to glutamate was not
mediated by non-NMDA receptors and it is currently unclear
what pathways is responsible for this residual signal. By
contrast, the EAAT transporter currents measured in oocytes
were reported to be fully inhibited by TFB-TBOA (Shimamoto
et al., 2004).

It is generally accepted that astroglial cells in situ express
mostly the EAAT2 (GLT-1) subtype of transporter (Dunlop,
2006), whereas when studied in primary cultures, EAAT1
(GLAST) becomes the almost exclusively functional isoform
expressed. As was the case with TBOA, TFB-TBOA has almost
identical affinity for both isoforms of the transporter (Shima-
moto et al., 2004). However, TFB-TBOAwas reported to have an
approximately 15-fold lower affinity for EAAT3, a mostly
neuronal transporter isoform, which means that this com-
pound could potentially be used to discriminate between the
contribution of glial and neuronal glutamate transport in the
intact tissue. In addition, we found that TFB-TBOA at its
maximally effective concentration did not influence the
passive membrane electrical properties of cortical neurons
and apparently did not alter their excitability.

Selective inhibition of the EAAT2 (GLT-1) subtype is
classically achieved with dihydrokainate, which, however,
possesses a fairly low affinity for the transporter (Bridges and
Esslinger, 2005) and causes complex effects on astrocytes in
situ (Bernardinelli and Chatton, 2008). A very recent report

described the first selective inhibitor of EAAT1, UCPH-101,
with an IC50 of∼1 μMand >400-fold selectivity over EAAT2 and
EAAT3 (Jensen et al., 2009).With TFB-TBOA acting on both glial
isoforms, the latter pharmacological tool could represent an
interesting complement for the functional studies of gluta-
mate transport.

Taken together, the present study showed that TFB-TBOA is
able to inhibit Na+-dependent glutamate transport in astrocytes
with high potency. Despite a partial reversibility of inhibitory
effects that have to be taken into account in experimental
designs, TFB-TBOA is to be considered as an extremely valuable
tool to study glutamate transport and neuron–glia interactions.

4. Experimental procedures

4.1. Cell culture and solutions

Every effort was made to minimize suffering and the number
of animals used in all experiments. In addition, all the
procedures used to prepare living cells have been approved
by the Swiss legislation and follows their guidelines. Primary
cultures of mouse astrocytes were prepared as previously
described (Chatton et al., 2000). After microdissection of
cortices from 1 to 4 day-old C57bl6 mice, tissue was
mechanically dissociated by successive aspirations through
sterile syringes. The isolated astrocytes were then plated on
glass coverslips and cultured in DME medium (D7777, Sigma,
Buchs, Switzerland) supplemented with 10% FCS penicillin,
streptomycin and amphotericin. Astrocytes were used after 2–
3 weeks of culture.

Mouse cortical neurons in primary cultures were obtained
from 17-day C57bl6 mouse embryos. After removing
meninges, entire cortices were first incubated with 20 U/ml
papain for 30 min at 34 °C and then mechanically dissociated
in MEM medium plus glucose, glutamine and 10% FCS, by
successive aspiration through sterile plastic 2ml pipettes. The
dissociated cells were centrifuged at 1300 rpm for 2 min and
then re-suspended at a density of 80–85,0000 cells per cm2 in
Neurobasal (Invitrogen, Basel, Switzerland) culture medium
complemented with 2% B27 solution (Invitrogen), 500 μM
glutamine according to Brewer et al. (Brewer et al., 1993). Cells
were then plated on glass coverslips coated with poly-L-
Ornithine (Sigma, Buchs, Switzerland). Cells were used after 7–
14 days of culture.

Experimental solutions used during experiments with
astrocytes and neurons contained (mM) NaCl 135, KCl 5.4,
NaHCO3 25, CaCl2 1.3, MgSO4 0.8, NaH2PO4 0.78, glucose 5,
bubbled with 5% CO2/95% air.

TBOA and TFB-TBOA were from Tocris-Anawa Trading
(Zürich). Unless otherwise state, all other compounds were
from Sigma.

4.2. Na+i fluorescence imaging

Na+i measurements were performed as previously described
(Chatton et al., 2000). Briefly, experiments were carried out on
the stage of an inverted epifluorescence microscope (Nikon,
Tokyo, Japan)andobserved througha40×1.3N.A. oil-immersion
objective lens (Nikon). Fluorescence excitation wavelengths
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were selected using fast filter wheel (Sutter Instr., Novato, CA)
and fluorescence was detected using a Gen III+ intensified CCD
camera (VideoScope Intl., Washington D.C.). Acquisition and
digitization of video images, as well as time series were
computer-controlled using the software Metafluor (Universal
Imaging, West Chester, PA, USA) running on a Pentium
computer. Four video frameswere averaged at eachwavelength
and the acquisition rate of ratio images was varied between
0.5 and 0.1 Hz. Up to 10 individual astrocytes were simulta-
neously analyzed in the selected field of view.

Na+i wasmeasured in single cells grown on glass coverslips
after loading the cells with the Na+-sensitive fluorescent dye
sodium-binding benzofuran isophthalate (SBFI-AM, Teflabs,
Austin, TX). Cell loading was performed at 37 °C using 15 μM
SBFI-AM in a HEPES-buffered balanced solution containing
(mM) NaCl 160, KCl 5.4, HEPES 20, CaCl2 1.3, MgSO4 0.8,
NaH2PO4 0.78, and glucose 20 and was supplemented with 0.1
% Pluronic F-127 (Molecular Probes, Eugene, OR).

Once loaded with SBFI, cells were placed in a thermostated
perfusion chamber designed for rapid exchange of perfusion
solutions and superfused at 35 °C. Fluorescence was sequen-
tially excited at 340 and 380 nm and detected at >520 nm.
Fluorescence excitation ratios (F340nm/F380nm) were computed
for each image pixel and produced ratio images of cells that
were proportional with Na+i. In situ calibration was performed
after each experiment by permeabilization of the cell mem-
brane for monovalent cations using 6 μg/ml gramicidin and
10 μM monensin with simultaneous inhibition the Na+/K+-
ATPase using 1 mM ouabain. Cells were then sequentially
perfused with solutions buffered at pH 7.2 with 20 mM HEPES
and containing 0, 10, 20 and 50 mM Na+, respectively, and
30 mM Cl−, 136 mM gluconate with a constant total concen-
tration of Na+ and K+ of 165mM. A four-point calibration curve
was computed for each selected cell in the field of view and
used to convert fluorescence ratio values (F340nm/F380nm) into
Na+ concentrations.

4.3. Whole-cell electrophysiological recordings in neurons

Whole-cell voltage-clamp recordings were made with borosil-
icate glass pipettes with a resistance of 5.5–8 MΩ. In voltage-
clampmode, the clamppotential was set at −70mV. Recordings
were made with an Axopatch 200A amplifier (Axon Instru-
ments).Currentwere filteredat1 kHz.Datawereacquiredwitha
Digidata 1440A (Axon), at 10 kHz sampling rate, controlled with
Pclamp 10 software and analyzed with Clampfit software
(Axon). A period of 5 min was routinely allowed after establish-
ment of the whole-cell configuration. The patch-clamp intra-
cellular solution contained (inmM) K-gluconate 130, NaCl 5, Na-
phosphocreatine 10, MgCl2 1, EGTA 0.02, HEPES 10, Mg-ATP 2,
and Na3-GTP 0.5, pH 7.3 (adjusted with KOH).

Experiments were performed using an open perfusion
chamber. Control extracellular solutions and solutions con-
taining the tested drugs were gravity fed at 600 μl/min and
35 °C on the cultured cells.

4.4. Data analysis

Data are means±SEM and are represented as percentage of
the control current or voltage amplitude. Paired Student's

t-tests or ANOVA tests were performed to assess the statistical
significance (⁎P<0.05; ⁎⁎P≤0.01). The half-maximum inhibitory
concentration (IC50) of TFB-TBOA on the response to glutamate
was determined by non-linear curve fitting performed using
the Levenberg–Marquardt algorithm implemented in the
Kaleidagraph software package (Synergy Software, Reading,
PA, USA). The dose–response analysis experiments were fitted
using the following equation:

Robs = Rmax I½ �= K + I½ �ð Þ + Rmin ð1Þ

where Robs is the observed response and Rmax, Rmin are
maximum and minimum parameters of the response. [I] is
the concentration of the inhibitor compound and K is the
concentration that yields its half-maximum inhibition (i.e.
IC50).
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3 Discussion and perspectives 

3.1 Lactate modulation of cortical neuron activity 

3.1.1 Use of dynamic calcium imaging to monitor neuronal activity  

In the first phase of this study, we validated the imaging technique aimed at monitoring the 

spontaneous neuronal firing activity. Taking advantage of the fact that action potentials 

induce a strong depolarization, triggering the opening of voltage gated calcium channels, we 

monitored the intracellular calcium transients as indicators of neuronal activity. Simultaneous 

measurements of membrane potential recorded in whole-cell patch clamp configuration and 

somatic calcium fluorescence of the clamped neuron were performed to assess the 

relationship between the two parameters, similar approaches were presented in several 

studies (Cossart et al., 2005, Sasaki et al., 2008). We confirmed that action potentials 

occurred in temporal synchronization with the intracellular calcium transients.  

 

Figure 10: Focus on action potential and calcium transients mechanism. Red arrow 
indicates an example of two action potentials that are not correctly detected with 
calcium imaging. 
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In order to assess the robustness of the technique, we observed calcium transients 

evoked by relatively regular bursts of action potentials at different frequencies (see fig. 10). 

Single action potentials evoked clearly identifiable calcium transients up to ~5 Hz. Beyond 

this frequency, the individual calcium spikes were  substantially overlapped, which is 

primarily due to the slow decay of the calcium transients and a narrow interspike interval, 

rendering the detection of individual spikes unrealizable. Bearing this technical limitation in 

mind and considering that in our cultures the spontaneous spiking frequency was around 0.1-

1 Hz, we considered this calcium imaging method as suitable for our experiments to monitor 

the spiking activity in the neuronal population.  

One of the main advantages obtained from the optical imaging method is to offer the 

possibility of simultaneous measurements from many neurons. Another benefit brought by 

this approach is that we can keep the cytosol structure and composition undisturbed, except 

for the incorporation of the dye. As for other fluorescent ion indicators, Ca2+ dye itself can 

chelate the ions to be monitored. However, if a buffering effect may occur, this will affect the 

general rate of neuronal activity during all phases of the experiment. 

In the context of the energy substrate sensing, the response brought about by the 

specialized cell such as glucose-excited or glucose-inhibited, involves several intracellular 

steps. Usually, the electrophysiological recording in perforated patch configuration is a 

preferred approach rather than conventional whole-cell techniques. Calcium imaging 

constitutes an additional noninvasive way to carry out this type of investigations, with the 

benefit of higher throughput.  

3.1.2 ATP-independent modulation of the neuronal activity by lactate 

In this study, we describe a novel mechanism for the modulation of cortical neuron activity by 

lactate. Generally, lactate is considered as an important energy substrate of the brain but 

beside its metabolic function it has an additional modulatory role. We showed that lactate is 
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able to decrease the spontaneous neuronal activity in a concentration-dependent manner 

and independently of its metabolism.  

The independence of lactate effect from the ATP production, is an important finding of our 

study, that distinguishes it from lactate effects previously reported in glucose sensing 

neurons. Here, we comment on selected aspects and results, coming from our experiments, 

not extensively addressed in the discussion of the manuscript, that indicated the separation 

between ATP production and neuromodulation by lactate.  

- The first set of experiments was carried with a maintained concentration of glucose. 

The advantage of this condition is that glucose provides neurons with the necessary 

ATP to sustain their activity, allowing to single-out a neuromodutalory role of lactate.  

- The effect of lactate was compared with that of pyruvate that has a quasi-equivalent 

capacity of ATP production. Once inside the cytosol of neurons, lactate is converted 

into pyruvate by the LDH with the production of NADH. Pyruvate can enter the TCA 

cycle and lead to the production of energy. From that point, the formation of ATP is 

equal for both compounds (lactate and pyruvate) but the NADH produced in the 

cytosol can be re-oxidized under aerobic conditions by the respiratory chain. NADH is 

not directly entering mitochondria because the inner membrane is impermeable to it. 

NADH introduces its electron indirectly to the electron transport chain transferring it to 

different compounds that are able to shuttle it. Then cytosolic NADH is indirectly 

oxidized by the respiratory chain and 1.5-2.5 ATP are produced. Considering that, 

from the degradation of one molecule of pyruvate we obtain ~15 ATP, this means that 

for one molecule of lactate we can have ~16.5-17.5 ATP, i.e. a slightly higher ATP 

yield.  

In our experiments, we found a profound different intensity in the effect of these 

compounds. Pyruvate 5mM induced only ~7% of decrease of neuronal activity 

whereas lactate 5mM more than 50%. Therefore, these effects cannot be explained 
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based on ATP production, suggesting that the lactate response acts via an ATP-

independent pathway. 

- Another way that we used to augment the ATP production was to increase the 

glucose concentration in the medium. Glucose, via glycolysis and oxidative 

phosphorylation, can supply twice as much energy equivalents per molecule as 

lactate. However, it is possible that the real rate of catabolism of glucose does not 

correspond to the theoretical stoichiometry because at some point, the enzymatic 

machinery could saturate. For example, the hexokinase responsible for the 

conversion of glucose into glucose-6-P is auto-limited by its product, meaning that the 

production is regulated by the rate of consumption. Some glucose sensing neurons, 

as pancreatic β cells, express a special hexokinase, called glucokinase, that is not 

inhibited by glucose-6-P (Kang et al., 2004). This allows them to produce ATP in 

register with the extracellular glucose concentration, in a way that is not limited by the 

end products.  

The expression of glucokinase was not assessed in our neuronal cultures. However, 

such expression is not expected from cortical neurons but only from specialized 

neurons of the hypothalamus and brain stem. In our experiments increasing the 

glucose concentration did not reduce neuronal activity. 

- The last way to assess the metabolic independence, was to use a compound similar 

to lactate but that do not give the same production of ATP. D-lactate is described to 

be poorly metabolized by neurons because it was reported that mammals lack the D-

lactic acid dehydrogenase necessary for its conversion into pyruvate (Ewaschuk et 

al., 2005). It was nevertheless proposed that the enzyme D-α-hydroxy acid 

dehydrogenases catalyze at low rate (about fivefold lower than L-isomer) the 

conversion of D-lactate into pyruvate (Halperin and Kamel, 1996). This means that a 

small part of D-lactate could possibly lead to some ATP formation but considering 
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that both isomers induced the same intensity of response, the proportionality of 

effects does not match. 

3.1.3 Receptor-mediated effect 

In this study, we identified a receptor-mediated pathway underlying the modulatory action of 

lactate. Hydroxycarboxylic acid (HCA) receptor-1 is a recently deorphanized G-coupled 

receptor for which the natural agonist is lactate. This receptor was found to be highly 

expressed in adipocytes. Compared to the high HCA1 receptor concentration in white and 

brown fat, the other organs such as liver, muscle and brain showed a limited presence of 

HCA1 receptors (Liu et al., 2009). However, using anti HCA1 receptor antibody associated 

with immunostaining and Western blot, we found that this receptor is expressed in primary 

cortical neurons. In the Western blot experiments, the proportion between the concentration 

of protein used and the intensity of the signal detected from the sample, indicated that the 

receptor is not expressed at high levels, confirming the above cited findings (quantification of 

the expression was not performed). Nevertheless, a high expression of HCA1 is not essential 

to produce an evident effect, since the signal amplification is one of the main advantages of 

the metabotropic G protein-coupled receptors. 

The functional implication in our cultures of HCA1, a Gi coupled receptor, was confirmed 

by the action of the agonists 3,5-dihydroxybenzoic acid (3,5-DHBA) and 3-hydroxybenzoic 

acid (3-HBA). Both compounds have a similar affinity for the receptor. 3,5-DHBA is a specific 

agonist for only HCA1 whereas 3-HBA is an agonist for HCA1 and HCA2 a receptor 

belonging to the same family (Liu et al., 2012). The same intensity of effect, deserved with 

either 3,5-DHBA or 3-HBA, suggested that HCA1 rather than HCA2, is implicated in the 

lactate associated neuromodulation. These compounds are not substrates of the TCA cycle 

and cannot produce ATP. They are natural products, present in green tea, grapefruit and 
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olive oil (Liu et al., 2012). 3,5-DHBA and 3-HBA can represent useful tools to study the HCA1 

receptor implications in the intact brain. 

 

Another indication of the functional implication of HCA1 was the reduced effect of lactate 

on neuronal activity after incubation with pertussis toxin (PTX), an inactivator of Gi protein. 

This indicated that the lactate neuromodulation works via the activation of the Gi protein. 

Several mechanisms could explain the reduction of activity. A series of potential pathways 

and targets are represented in fig 11. Lactate binding the HCA1 activates the Gαi subunit, 

this inhibits the adenylate cyclase, resulting in a reduction of cAMP concentration. cAMP is 

well known to serve as a signal that modulates the neuronal exocytosis by coordinating PKA-

dependent and PKA-independent mechanisms (Seino and Shibasaki, 2005). Another 

possible mechanism involves the Gβα subunits. This part of the complex triggers the opening 

of K+ channels that induce a hyperpolarization of the membrane. This represses the Ca2+ 

influx via the closure of voltage-dependent calcium channels, leading to a decrease of the 

exocytosis (Bettler et al., 2004). 

Figure 11: Possible models of the functions of HCA1 receptor in cortical neurons. 
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3.1.4 Pathophysiological implications 

In the discussion of the paper, we proposed that the effect of lactate could be implicated in a 

physiological mechanism that protects neurons against an excess of activity. In the ANLS 

hypothesis, glutamate liberated during neuronal activity stimulates the production and the 

release of lactate from astrocytes. During an abnormal neuronal hyperexcitability, the risk of 

cell damage due to excitotoxicity is increased, e.g. in epileptic seizures. In these situations, 

the concentration of lactate could reach a level that limits network activity and prevent 

cellular damage. It was recently shown using a mouse model of Alzheimer’s disease (AD), 

that the early AD-related epileptic activity was strongly reduced by the preincubation of brain 

slices with oxidative energy substrates such as pyruvate or D-3-hydroxybutyrate (Zilberter et 

al., 2012). In this particular case, the positive effect was obtained just restoring the correct 

support in energy but with lactate and its inhibitory component we could have an increased 

efficacy. 

3.1.5 D-lactate encephalopathy 

We have used D-lactate in the course of our studies as a substitute to L-lactate. Under 

normal circumstances D-lactate is present only at nanomolar concentration in blood due to 

the wide distribution of the methylglyoxal pathway. However, D-lactate can have another 

origin due to the activity of bacteria present in the gastrointestinal tract. Indeed, an abnormal 

production of D-lactate occurs in patients with short-bowel syndrome or gastric bypass as the 

bacteria population increases. This increase in D-lactate concentration can cause D-lactate 

encephalopathy with neurological manifestations such as altered mental status, dysarthria, 

ataxia, gait disturbance (Uribarri et al., 1998). Until now, the mechanisms of D-lactate 

encephalopathy are largely unknown. It was proposed that the effects are associated with an 

interference with the supply of energy metabolites, as D-lactate can compete with L-lactate 

for the transport into the neurons. Alternatively, D-lactate itself may be neurotoxic. In our 
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experiments, we found that D-lactate induced a decrease of the spiking frequency with an 

apparent IC50 of ~4.6mM, quite similar to the IC50 of L-lactate (~4.2mM). In D-lactate 

acidosis, serum D-lactate increases to more than 3mM and is capable of crossing the brain 

blood barrier (Uribarri et al., 1998). Considering that the basal level of L-lactate in the serum  

is around 1-2mM, it is possible that the resulting sum of L- and D-lactate concentrations 

could induce a modification of the excitability of neuronal network, thereby leading to the 

neurological symptoms observed.  

3.1.6 Relevance of results 

The finding that lactate induces a receptor-mediated neuromodulation confers a new role to 

this molecule which goes beyond the energy metabolic support. An increase in the neuronal 

activity is accompanied by an increase in lactate concentration in the extracellular space (Hu 

and Wilson, 1997). The main cellular source of lactate is thought to be astroglia. Therefore, 

the results of our study allow us to propose a novel mechanism used by astrocytes to 

modulate neuronal activity. The notion that astrocytes represent an active partner of synaptic 

function, is a discussed topic. The existence of a bidirectional communication between 

neurons and astrocytes is the base of the so-called “tripartite synapse”. This concept 

includes in addition to the pre- and post- synaptic terminal the surrounding astrocyte 

processes. We already have seen that there is a tight physical relation between the three 

elements (fig. 5a). Evidence has demonstrated that astrocytes integrate and process 

synaptic information and are able to release gliotransmitters (neuroactive molecules) such as 

glutamate, ATP, and D-serine (Volterra and Meldolesi, 2005). The lactate sensitivity that was 

found in the present study represents a different mechanism than those described in the 

tripartite synapse field. In general, the gliotransmitter produce an effect at the synaptic level. 

In our case, lactate could act across wide distances and affect larger volumes of tissue. 
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However, one has to keep in mind that the cellular source of lactate, its metabolic use, or its 

role in physiological situations are still debated. 

Our study can have also implications in the treatment of the dyslipidemia. We found that 

the HCA1 receptor mediates the lactate sensitivity of neurons. HCA1, with HCA2 and HCA3, 

constitutes the family of HCA receptors. They are mainly expressed in adipose tissue and 

their principal function is to inhibit the lipolysis (Cai et al., 2008). HCA2 is the target for the 

drug nicotinic acid (also known as niacin), widely used for the treatment of the dyslipidemia. 

The drug has the positive effects to modify the composition of lipids that results in the 

reduction of the mortality (Wise et al., 2003). However, this substance induces unwanted 

side effects, such as cutaneous flushing due to activation of HCA2 receptor in the skin cells 

(Ahmed, 2011). For this reason HCA1 and HCA3 represent alternative drug targets and 

several synthetic ligands have been developed. For future research in the field of 

dyslipidemia, it will be necessary to keep in mind that HCA1 receptor is also expressed in the 

brain and that candidates could produce unwanted CNS side-effect if they are able to cross 

the BBB. 

3.1.7 Future direction of research 

In this study, we found an inhibitory role of lactate mediated by the HCA1 receptor in primary 

neuronal culture. This finding, as it often happens in science, raised more questions than 

answers. In this section a series of experiments are proposed in order to drive the future line 

of research:  

- As our entire work was performed using dissociated neuronal culture, the first obvious 

step is to verify if the lactate sensitivity is also present in the intact brain. 

Immunostaining, using anti-HCA1 antibody, of the whole brain seems to be an 

appropriate start. The expression of HCA1 can be verified in different regions and at 

different stages of maturity. This could help to give an indication of which brain region 
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and what age to select for functional experiments. In a second phase, in 

correspondence of the expression of the receptors, the functional implication can be 

tested on brain slices with either patch clamp techniques or dynamic calcium imaging. 

- The intracellular pathway leading to the lactate sensitivity remains to be solved. A 

series of mechanisms, involving the HCA1 activation, were proposed above. To 

determine which elements are involved, we can separate the pathways in two main 

groups, one increasing the cAMP and the other one opening membrane 

conductances. The cAMP implication can be investigated using an adenylate cyclase 

inhibitor, such as the SQ-22536, that could mimic the effect of lactate or, in the other 

way, use forskolin to raise the level of cAMP. In case of the implication a specific 

conductances, this can be investigated with electrophysiological techniques using the 

perforated patch configuration to maintain the cytosol intact.  

- If the cAMP-PKA signaling is involved in downstream pathways following the 

activation of HCA1 receptor in neurons, this could have a potential impact on the 

synaptic plasticity. It has been shown that cAMP-PKA is required for long-term 

potentiation (LTP) at the hippocampal mossy fibers and for long-term depression at 

the Schaffer collateral in the CA1 region in the hippocampus (Seino and Shibasaki, 

2005). It will be interesting to see if lactate could affect LTP or LTD in those regions. If 

so, this mechanism could link lactate with learning and memory.  

- In the absence of a specific inhibitor for the HCA1, one available way to inhibit its 

activity was to inactivate the Gi protein incubating cells with PTX. Unfortunately, the 

effect of PTX is not direct and needs a cascade of intracellular reactions to be 

effective. The necessity to incubate neurons with PTX for at least 18 hours could 

constitute a major pitfall for its use in acute brain slices which typically can be kept 

functional for 6 to 10 hours. This obstacle could be circumvented by using a mouse 
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model knockout for the HCA1 receptor. This model has been recently produced in 

another laboratory and will be tested in future studies (Liu et al., 2009).  

- Last but not least, it will be interesting to check the effect of lactate in epileptic 

conditions to see if it is able to decrease the abnormal activity of neurons. Such aim 

could be achieved by inducing an epileptic condition in primary neuronal culture, 

simply by incubating them for 1-2h in a Mg2+ free solution as described in a previous 

study (Sombati and Delorenzo, 1995). In this case, to monitor the activity patch clamp 

technique is recommended, due to high frequency of spiking (not quantifiable with 

calcium imaging if frequency > 5 Hz). The natural presence of lactate in the brain and 

even more importantly the development of selective potent agonists could represent 

an interesting alternative tool for the anti-epileptic treatment, different from currently 

used therapeutic approaches.  

3.2 TFB-TBOA characterization 

The presence of glutamate transporters is of primary importance for normal brain function. 

They actively clear up glutamate from the extracellular space maintaining it at low levels. 

Removal of such transporters leads to epilepsy, increased glutamate levels and excitotoxic 

neuronal injury (Tanaka et al., 1997). The majority of the glutamate uptake in the brain is 

mediated by astrocytic EAAT1 and EAAT2. Glutamate transporters are also involved in the 

coupling between neurons and astrocytes in the ANLS. The physiological relevance of these 

carriers highlights the importance to have adequate tools to study their implications. The 

effort invested in the search for potent and selective inhibitors of glutamate transporter has 

been substantial over the past years. That research led to the development of TBOA, the 

most widely used inhibitor. However, this compound suffers from drawbacks such as 

relatively low affinity increasing the risk to have side-effects. Here we comment the particular 

characteristics of a new TBOA derivative the TFB-TBOA, highlighted in our study.   
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The ideal qualities for a useful blocker are: high potency, high affinity, lack of side-effects, 

and specificity. Different experiments were performed to see if TFB-TBOA fulfills these 

criteria. We found that TFB-TBOA blocks glutamate-induced changes in intracellular Na+. 

This effect was concentration dependent with an IC50 ~50nM (TBOA affinity is ~114µM). 

However, TFB-TBOA did not completely block the change in Na+ and induced by itself a 

small Na+ influx (as also present with TBOA) (Chatton et al., 2001). The source of the 

residual Na+ signal remained unclear. The selective action of TFB-TBOA was demonstrated 

by the block of the D-aspartate-induced increase in intracellular Na+. We also examined the 

effect of TFB-TBOA on currents in neurons, and it appeared that TFB-TBOA does not alter 

neuronal function. This selectivity contrast with other transport inhibitors such as DHK that 

have electrophysiological effects that are not related to the inhibition of transport 

(Bernardinelli and Chatton, 2008). 

All together this study indicated that TFB-TBOA is a potentially valuable tool to study the 

implication of glutamate transporters in the relationship between neuron and astrocyte in 

vivo. Experiments performed in our laboratory later on confirmed that TFB-TBOA induced 

significantly less side-effects in acute slices than TBOA allowing its use in brain slices (Lamy 

and Chatton, 2011). 

It is possible to envisage a use of TFB-TBOA also for our studies about the effects of 

lactate on neuronal excitability. With the application of the compound one could interrupt the 

metabolic connection between neurons and astrocytes preventing the release of lactate from 

astrocytes. However, the appropriate compounds should be added to avoid excitotoxicity 

caused by the built-up of extracellular glutamate. 

3.2.1 Relevance of results 

The study indicated that TFB-TBOA has distinct advantages over other inhibitors and is 

therefore the likely successor of TBOA, extensively used in studies investigating neuron-glia 
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interactions. Compared to its predecessor, TFB-TBOA has a higher potency and has no 

obvious side-effect on neurons. These qualities render it a more appropriate compound to 

use for in vivo studies. 

At the time of this study, the effects of TFB-TBOA were not tested in intact tissue. This 

was due to the fact that the most commonly used Na+ fluorescent dye the sodium-binding 

benzofuran isophthalate (SBFI) requires UV excitation not ideal for imaging thick living 

tissues. In addition, the intensity of the signal emitted by SBFI is much weaker compared to 

some Ca2+ indicator e.g. Fluo-4. Recently, a new Na+ dye has been introduced named 

Asante Natrium Green (ANG) (Lamy and Chatton, 2011).This indicator is excited in the 

visible spectrum and has a bright fluorescent signal. To push forward the characterization of 

TFB-TBOA, it could be interesting to test its effect in acute brain slices loaded with ANG.  
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