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Abstract.—Models have always been central to inferring molecular evolution and to reconstructing phylogenetic trees.
Their use typically involves the development of a mechanistic framework reflecting our understanding of the underlying
biological processes, such as nucleotide substitutions, and the estimation of model parameters by maximum likelihood
or Bayesian inference. However, deriving and optimizing the likelihood of the data is not always possible under com‑
plex evolutionary scenarios or even tractable for large datasets, often leading to unrealistic simplifying assumptions in
the fitted models. To overcome this issue, we coupled stochastic simulations of genome evolution with a new supervised
deep‑learning model to infer key parameters of molecular evolution. Our model is designed to directly analyze multiple
sequence alignments and estimate per‑site evolutionary rates and divergence without requiring a known phylogenetic tree.
The accuracy of our predictions matched that of likelihood‑based phylogenetic inference when rate heterogeneity followed
a simple gamma distribution, but it strongly exceeded it under more complex patterns of rate variation, such as codon mod‑
els. Our approach is highly scalable and can be efficiently applied to genomic data, as we showed on a dataset of 26 million
nucleotides from the clownfish clade. Our simulations also showed that the integration of per‑site rates obtained by deep
learning within a Bayesian framework led to significantly more accurate phylogenetic inference, particularly with respect
to the estimated branch lengths. We thus propose that future advancements in phylogenetic analysis will benefit from a
semi‑supervised learning approach that combines deep‑learning estimation of substitution rates, which allows for more
flexible models of rate variation, and probabilistic inference of the phylogenetic tree, which guarantees interpretability
and a rigorous assessment of statistical support. [Molecular evolution; phylogenetic inference; recurrent neural networks;
simulations; substitution rates.]

Since the seminal work by Felsenstein (1973) to infer
phylogenetic trees by maximum likelihood, evolution‑
ary models based on probabilistic approaches have been
the central modeling framework in phylogenetics. This
has led to a tremendous increase in our ability to infer
evolutionary relationships, to investigate the dynamics
of molecular evolution, to model the evolution of com‑
plex traits across lineages, and to test evolutionary hy‑
potheses to advance our understanding of the factors
shaping the tree of life (Felsenstein 2003; Lemey et al.
2009). While other methods based on genetic distances
or parsimony criteria are still employed, for instance,
to initialize phylogenetic tree inference, or to provide a
fast preliminary description of evolutionary processes,
probabilistic approaches are widely seen as the best
practice in the field.

One of the main challenges with the development of
probabilistic models of evolution is ensuring that the
parameters incorporated in the models are valid and
identifiable when applied to real biological data. Yet,

it is difficult, and in most cases even impossible, to
experimentally generate data that would allow us to
observe evolution in action and validate the estimates
of the model parameters inferred from the outcome of
such experiments. Indeed, while experimental evolu‑
tion is applicable to some organisms with short gen‑
eration times (e.g., for viruses or bacteria; Hillis et al.
1992; Bull et al. 1997; Lenski 2017), simultaneously cap‑
turing the evolutionary dynamics that result in genome
evolution and the traits involved in adaptation remains
impossible for the most part. This means that validat‑
ing evolutionary models is challenging and when ana‑
lyzing these evolutionary dynamics, we are inherently
unable to test the accuracy of model predictions based
on empirical measurements.

To overcome this limitation, most methods to infer
evolutionary processes use simulations to assess the
identifiability of model parameters and/or the robust‑
ness of the estimation. These simulations are synthetic
realizations of evolutionary processes that are obtained
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through stochastic simulations. In a phylogenetic frame‑
work, we can use birth–death processes to generate
phylogenetic trees and apply Markov models of nu‑
cleotide substitutions to simulate the evolution of a
DNA sequence along the tree. Then, the same stochastic
processes are typically used to also derive a likelihood‑
based model to estimate the generating parameter val‑
ues from the simulation outcomes. For instance, we can
derive the likelihood of a phylogenetic tree under a
birth–death process and use it to estimate the speciation
and extinction rates (Nee et al. 1994; Gernhard 2008).
We can also derive the likelihood of a DNA sequence
alignment under a Markov process of evolution and use
it to infer the underlying tree (Felsenstein 1981). Com‑
parisons between simulated and estimated parameter
values (e.g., the true vs inferred phylogenetic tree) are
then used to assess the accuracy of likelihood‑based in‑
ference. This approach is routinely used for molecular
evolution (e.g., Zaheri et al. 2014), phenotypic evolution
of quantitative and discrete traits (e.g., Harmon et al.
2010; Maddison and FitzJohn 2015), phylogenetic infer‑
ence (e.g., Salamin et al. 2005), species diversification
(Rabosky 2006; Stadler 2011), fossil preservation (Heath
et al. 2014; Silvestro et al. 2019), and biogeographic
inference (Landis et al. 2013; Hauffe et al. 2022).

Despite its apparent circularity, this is a robust ap‑
proach to validate the ability of a likelihood‑based
model to recover the parameters of the generative pro‑
cess correctly and can be used to verify their identi‑
fiability (e.g., Ree and Sanmartín 2018; Silvestro et al.
2018; Louca and Pennell 2020). Further, simulations gen‑
erated while violating model assumptions can help to
quantify the limits of our models and the conditions
where the models will fail. A potential limitation of this
use of simulations is that they tend to be oversimplified
realizations of the biological process, which can impact
our assessments of model accuracy (Nute et al. 2019).

Besides the use of likelihood‑based models to infer
the biological processes of interest, there is a growing
interest in machine learning approaches to detect pat‑
terns associated with evolutionary processes. The use of
deep learning (DL) has quickly expanded into a wealth
of applications across scientific fields (e.g., Jumper et al.
2021). In evolutionary biology, deep neural networks
have been used in population genetics (Chan et al. 2018;
Flagel et al. 2019), to infer species diversification dy‑
namics (Silvestro et al. 2020; Lambert et al. 2023; Cooper
et al. 2024), to study coevolution (see Sapoval et al. 2022,
for a review), but also, for example, to infer phyloge‑
netic trees using quartets (Zou et al. 2019; Suvorov et al.
2019; Kulikov et al. 2023), perform substitution model
testing (Abadi et al. 2020) or place new samples on an ex‑
isting phylogenetic tree (Jiang et al. 2023). However, the
development of DL in phylogenetics and evolutionary
models is restricted because empirical training datasets
are scarce or cannot be generated unless we limit our
focus to fast‑evolving organisms or short‑term evolu‑
tionary processes. Further, DL approaches often con‑
sist of (or are viewed as) over‑parameterized black‑box

models that do not allow a direct interpretation of the
parameters, contrary to probabilistic approaches (Sapo‑
val et al. 2022).

Although probabilistic inference and DL can be
seen as very different methodologies to analyze data,
there are analogies in how model validation is per‑
formed. Indeed, generative models of evolution based
on stochastic simulations can be coupled with super‑
vised DL models, just like the same simulations are used
to benchmark likelihood‑based models (Fig. 1a,b).

In this paper, we developed a DL model to infer the
rates of molecular evolution from a multiple‑species
alignment of DNA sequences. We coupled stochas‑
tic simulations with a new supervised learning model
based on recurrent neural networks and sparse net‑
works with parameter sharing. Our model and re‑
sults showed that the conceptual differences between
standard unsupervised likelihood‑based models and
supervised DL are smaller than generally assumed in
the context of molecular evolution. Predictions of site‑
specific substitution rates were robust across a range
of evolutionary scenarios, with accuracy matching or
exceeding that of state‑of‑the‑art likelihood estima‑
tions. Our approach can efficiently analyze millions of
sites to compare evolutionary rates at genomic scales.
We showed that the predicted rates can improve the
likelihood‑based estimation of phylogenetic trees, indi‑
cating that the application of this approach might have
broader implications in phylogenetic inference. We il‑
lustrated this by implementing a semi‑supervised ap‑
proach to use per‑site rates estimated by DL within
likelihood‑based and Bayesian inference of tree topol‑
ogy and branch lengths. Our results showed that DL
methods can be integrated within unsupervised like‑
lihood approaches to help incorporate more realistic
evolutionary scenarios in phylogenetic inference.

METHODS

A Deep Learning Model to Infer Molecular Evolution
We developed a DL framework to estimate the to‑

tal amount of divergence across a set of nucleotide
sequences and site‑specific substitution rates. The se‑
quences are assumed to be part of an alignment of
orthologous genes or genomic regions sampled across
multiple species.

Our implementation includes 2 modules: a simulator
that can efficiently generate realistic datasets of aligned
nucleotide sequences and a DL module that can be
trained on these datasets to make predictions from em‑
pirical data. Although we employed standard substitu‑
tion models for generating nucleotide alignments, we
incorporated a diverse array of modes of rate hetero‑
geneity across sites, only a few of which are currently
available in likelihood‑based phylogenetic software. We
used this to show that our framework can help identify
patterns that would otherwise be difficult to parameter‑
ize in a likelihood context.
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FIGURE 1. Schematic representation of the workflow used to estimate parameters of interest within an unsupervised model used within
a likelihood framework a) and a supervised model used with a DL framework b). Both models use alignments of orthologous sequences of
nucleotides (empirical or simulated data) to infer substitution rates and genetic distances. The simulations are used differently in the 2 cases, to
either validate the model in a likelihood framework or to simulate training datasets in the DL framework. In panel c), we illustrate the imple‑
mentation of a semi‑supervised model to infer phylogenetic trees combining per‑site rates obtained from our phyloRNN DL model and Bayesian
phylogenetic inference as implemented in RevBayes (Höhna et al. 2016).

Simulating molecular evolution.—We simulated the evo‑
lution of orthologous sequences within a phylogenetic
framework assuming an independent Markov process
of substitution at each site. We first generated a phy‑
logenetic tree with a random topology and assigned
exponentially distributed branch lengths sampled from
𝜈 ∼ Exp(𝜆) with scale parameter 𝜆 randomly drawn
for each tree and log(𝜆) ∼ 𝒰(log(0.0002), log(0.2)).
This sampling approach allowed us to generate a sim‑
ilar number of simulations across trees despite different
orders of magnitudes of branch lengths (i.e., as many
trees will be simulated with mean branch lengths be‑
tween 0.0002–0.002 and 0.002–0.02). The total length of
the phylogenetic tree was, therefore, 𝑇 = ∑𝑖(𝜈𝑖), where
𝑖 ∈ {1, ...2𝑁 − 1} was the index of each branch in a
tree of 𝑁 species. We simulated the evolution of nu‑
cleotides based on 3 substitution models (JC, HKY, GTR;

Jukes and Cantor 1969; Hasegawa et al. 1985; Tavaré
1986) using the program Seq‑Gen (Rambaut and Grass
1997) through its Python interface implemented in Den‑
dropy (v.4.5.2; Sukumaran and Holder 2010). Across
simulations, we varied the model parameters, that is,
base frequencies and instantaneous substitution rates,
by sampling them from distributions chosen to reflect a
broad range of evolutionary scenarios (Supplementary
Table S1). We chose these parameter values to reflect
general expectations, for instance, the fact that transi‑
tions are likely to be more common than transversions,
but our Python implementation is flexible and easily
allows for user‑defined variations.

Since we focused our DL model on the inference
of site‑specific evolutionary rates, we implemented
different distributions of rate heterogeneity across
sites. Regardless of the mode of rate heterogeneity
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(Supplementary Figs. S1 and S2), site‑specific evolution‑
ary rates were always rescaled to relative rates, such
that their mean across all sites was equal to 1 (Yang
1994). First, we implemented a gamma mode, where
site‑specific relative rates were drawn from a gamma
distribution, 𝑟𝑖 ∼ Γ(𝛼, 𝛽) with the shape and rate pa‑
rameters set equal and drawn from log(𝛼) = log(𝛽) ∼
𝒰(log(0.1), log(2)). This setting generated rates with an
average value of 1, with increasing heterogeneity when
the shape and rate parameters were small (Yang 1993).
This mode of rate heterogeneity reflects the standard
gamma model of rate heterogeneity, which is, how‑
ever, typically discretized in 4 or more rate classes (Yang
1994), and which is almost ubiquitously used in phylo‑
genetic inference. Second, we implemented a bimodal
mode of rate heterogeneity where sites are randomly
assigned a high or a low rate based on log(𝑟𝑖) ∼
{−𝑚, 𝑚} with 𝑚 sampled from an exponential distribu‑
tion Exp(1). Third, we implemented a spike‑and‑slab
mode of rate heterogeneity as a variation of the bi‑
modal model, in which most sites evolve under low
rates and few sites evolve under high rates. The low
background rates were drawn from a log‑normal dis‑
tribution such that log(𝑟𝑖) ∼ 𝒩(0, 0.1), wheras high
rates were obtained by multiplying the background
rates by a factor 𝑚 ∼ 𝒰(2, 10). Sites were assigned to
a high rate randomly with probability 𝑟, with log(𝑟) ∼
𝒰(log(0.01), log(0.1)). Fourth, we simulated rates based
on a non‑stationary distribution obtained through a ge‑
ometric Brownian motion process. In this case, a vec‑
tor of rates was sampled from a geometric Brownian
process such that log(𝑟𝑖+1) ∼ 𝒩(log(𝑟𝑖), 𝜎), with 𝜎 ∼
𝒰(0.02, 0.2). Fifth, we implemented a codon mode of
rate heterogeneity, in which triplets of nucleotides were
assigned low, very low, and high rates, for the first,
second, and third positions, respectively (Nielsen and
Yang 1998). We sampled the rate of the second posi‑
tion from a log‑normal distribution, such that for triplet
𝑖, log(𝑟(2)

𝑖 ) ∼ 𝒩(0, 0.1). Rates for the first and third
positions were then obtained as 𝑟(1)

𝑖 = 𝑚 × 𝑟(2)
𝑖 , with

𝑚 ∼ 𝒰(1, 5) and 𝑟(3)
𝑖 = 𝑛 × 𝑟(2)

𝑖 , with 𝑛 ∼ 𝒰(5, 15),
respectively.

We additionally simulated datasets with rates vary‑
ing among a variable number of blocks of adjacent
sites, thus introducing auto‑correlation in rate hetero‑
geneity (Supplementary Fig. S2). We drew the number
of blocks from a geometric distribution with a mean
of 100 and truncated at 1000 (i.e., the number of sites
in the alignments) and randomly sampled the sizes
of the blocks. We then applied rate variation among
blocks using the gamma, bimodal, spike‑and‑slab, and
geometric Brownian modes described above. Finally,
we included datasets generated under mixed modes of
rate heterogeneity (Supplementary Fig. S2), in which
the alignment was split into 2 blocks of random size,
each with its own randomly selected rate heterogeneity
mode.

Architecture and training of the deep learning model.—We
implemented a DL model (hereafter called phyloRNN)
that takes an alignment of nucleotides as input and re‑
turns two outputs: site‑specific relative rates of evolu‑
tion and the expected number of substitutions per site,
which is equivalent to the sum of all branch lengths in a
phylogenetic inference framework. For simplicity, here‑
after, we will refer to this second output as total tree
length, even though our model does not use any tree
representation. We built our model based on a recurrent
neural network (RNN) to capture the sequential nature
of the input data. Specifically, we used a bidirectional
long short‑term memory architecture (bLSTM; Hochre‑
iter and Schmidhuber 1997; Gers et al. 2000; Graves and
Schmidhuber 2005), with a site‑specific output, which is
a multidimensional representation of the initial align‑
ment. Each site‑specific output of the bLSTM layer is
fed into 2 individual, fully connected deep neural net‑
works with parameters shared across all sites. The first
network returned a site‑specific relative rate. The out‑
put of the second network was instead concatenated
across all sites and fed into a fully connected layer to
return a prediction of the total tree length. The model is
based on a specific number of sequences and a number
of sites, although it can be applied as a sliding window
to longer alignments, as demonstrated in our empirical
analyses described later (see Supplementary Fig. S3 for
a schematic representation of the model).

After preliminary testing based on validation accu‑
racy, we chose the following architecture for our ex‑
periments: 2 bLSTM layers of 128 and 64 nodes, re‑
spectively, with a tanh activation function and sigmoid
recurrent activation. The output of the second bLSTM
layer, for each alignment, was thus of shape (n. sites
× 64) and served as input to the 2 deep neural net‑
works that output site‑specific rates and tree length. For
the site‑specific rates, we used a neural network with
2 hidden layers of 64 and 32 nodes and a swish acti‑
vation function (Ramachandran et al. 2017), followed
by an output layer with 1 node and a softplus out‑
put function (Szandała 2021), reflecting a distribution of
rates constrained to positive values. The concatenated
output (one value for each site) was then subjected to
a rescaling function, dividing each value by the mean
across all sites. This rescaling ensures that the estimated
rates had a mean equal to 1, thus transforming them
into relative rates. The output of the second bLSTM
layer was also used to infer the log‑transformed total
tree length, by feeding into site‑specific deep neural net‑
works with 2 hidden layers of 64 and 1 nodes and swish
activation functions. As for the site‑specific rates, all net‑
works shared the same parameter values. Their output
(of size 1 for each site) was then concatenated across
sites and fed into a fully connected hidden layer with
8 nodes and swish activation function. The output layer
had 1 node and a linear activation function reflecting
the negative‑to‑positive plausible range of values for the
log‑transformed tree length.
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We trained our model based on 10,000 simulated
alignments of 50 species and 1000 sites, each with a ran‑
domly selected mode of rate heterogeneity, of which
80% were used as training and 20% as a validation
set. We used the same phyloRNN model trained on an
equal mix of simulated datasets for all the compar‑
isons outlined below. Each alignment was transformed
into a series of two‑dimensional arrays of numbers af‑
ter one‑hot‑encoding the sequence of nucleotides. The
data fed to the model was thus composed of 1000 two‑
dimensional arrays (one per site in the alignment) with
each a size defined by the number of species times
the one‑hot encoding of each nucleotide present at a
single site (i.e., 50 species × 4 states = 200). These two‑
dimensional arrays were then stacked on a third dimen‑
sion representing the number of instances (i.e., batches
used in the training or datasets used for testing) an‑
alyzed to create the final input for our model (n. in‑
stances, n. sites, n. species × n. bases).

The training and validation losses were calculated
as the sum of the mean squared errors (MSE) com‑
puted across per‑site rates and total tree length. We
log‑transformed tree lengths to reduce the range of
loss values and improve the efficiency of the optimiza‑
tion. We trained the model over multiple epochs with
a batch size of 100 and monitored the validation loss
with a patience parameter set to 20 epochs. The model
was calibrated in fewer than 100 epochs, after reach‑
ing the lowest validation accuracy combining the loss
functions assigned to the per‑site relative substitution
rates and the log‑transformed tree length (Supplemen‑
tary Fig. S4). We kept the model parameters inferred
from the epoch with the lowest validation loss. We im‑
plemented our model based on the Functional API of
the Tensorflow module (Abadi et al. 2015) and trained
it using the RMSprop optimizer with a learning rate set
to 1𝑒 − 3.

Accuracy of rate and tree length estimates.—We validated
the performance of our model based on a test set of 600
alignments simulated under the different modes of rate
heterogeneity described above. We compared the accu‑
racy of the estimated per‑site relative rates and num‑
ber of substitutions based on our phyloRNN model with
those obtained through maximum likelihood phyloge‑
netic inference. Specifically, we analyzed each align‑
ment with PhyML (v.3.3) (Guindon et al. 2010) running a
maximum likelihood optimization. In a typical phyloge‑
netic analysis, model testing is carried out first to select
the best‑fitting substitution model (Abadi et al. 2019).
Here, we assumed that the true substitution model (here
one among JC, HKY, and GTR; Supplementary Table S1)
was known and we used it in the PhyML optimization
to reduce computing time and removed the potential
effect of incorrect model testing. We repeated the phy‑
logenetic analyses under 2 rate heterogeneity models:
i) the discrete gamma model (Yang 1994)—by far the
most commonly used in phylogenetic inference—and

ii) the more flexible—but less frequently used—free‑
rates model, which allows for a number of rates to be
inferred without making a specific assumption about
their distribution (Soubrier et al. 2012). We obtained
the marginal per‑site rates using the -print_site_lnl
command in PhyML (column Posterior mean in the out‑
put file). We quantified the average number of substitu‑
tions per site as the sum of all branch lengths from the
inferred phylogenetic tree.

After obtaining the relative rates and average num‑
ber of substitutions per site under both phyloRNN and
the 2 likelihood models (discrete gamma and free‑rates),
we compared them against the respective true values to
quantify their accuracy. We used MSE across all sites
and all simulations to quantify the performance of the
different models and additionally computed the coef‑
ficient of determination 𝑅2 for each alignment to com‑
pare the estimated pattern of rate variation across sites
against the true rates. To further explore the results, we
divided the test set into subsets based on the rate hetero‑
geneity model that was used to generate them (Supple‑
mentary Figs. S1 and S2) and calculated MSE and 𝑅2 for
each subset. We calculated similar summary statistics to
evaluate the accuracy of the estimated tree length, but
replacing the MSE with the mean absolute percentage
error, which we calculated as |𝑇true − 𝑇est|/𝑇true, where
𝑇true is the true tree length and 𝑇est is the estimated
one.

To assess whether the accuracy of likelihood esti‑
mates of rates and tree length was affected by poten‑
tial errors in the inferred tree topology, we repeated
the PhyML analyses of the test set alignments while con‑
straining the tree topology to be the true one. In these
analyses, the maximum likelihood algorithm only opti‑
mized the parameters of the substitution model and the
branch lengths.

Impact of Rate Estimated by phyloRNN on Tree Inference
We evaluated the potential effects of using phyloRNN

estimates of rate heterogeneity in phylogenetic infer‑
ence. Since standard phylogenetic software does not
readily allow tree inference with predefined per‑site
rates, we first used 2 indirect approaches to approximate
the impact of using phyloRNN rates as opposed to the 2
existing models implemented in PhyML (discrete gamma
and free‑rates).

First, we compared the likelihood obtained on the
true tree using the estimated rates and the true simu‑
lated per‑site rates. We computed the likelihood while
fixing the topology and branch lengths to their true
values (i.e., the simulated tree) and using 1) the true
simulated per‑site rates, 2) the marginal per‑site rates
estimated by PhyML under the discrete gamma and free‑
rates models, and 3) the per‑site rates estimated with
phyloRNN. We recomputed the likelihood of the true
tree based on the fixed rates per site and the true pa‑
rameters for the substitution model (script available at
github.com/phyloRNN). For each simulated alignment,
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we compared the likelihood obtained by the true versus
estimated rates by calculating the difference in log likeli‑
hood. We summarized these comparisons by computing
the proportion of datasets in which the likelihood of the
true tree substantially decreased (i.e., more than 2 log‑
likelihood unit differences) using estimated versus true
rates and interpreted them as a measure of the potential
impact of the gamma, free‑rates, and phyloRNN models
on the accuracy of tree inference.

Second, we compared, for each model used to esti‑
mate rates per site, the likelihood of the true tree against
the likelihoods of a posterior sample of trees obtained
from a Bayesian analysis. We first obtained a poste‑
rior sample of 50 trees for each test dataset using Mr‑
Bayes (Ronquist et al. 2012) under a GTR + gamma
model and default prior settings. We then recomputed
the likelihood of both the set of sampled trees and the
true tree based on the rates inferred under the gamma
and free‑rates models (as inferred with PhyML) and un‑
der the phyloRNN model. Finally, we ranked all trees by
their likelihood to assess whether the likelihood of the
true tree falls within the range of sampled values in the
posterior set of trees.

If the estimated rates adequately reflected the true
rate variation in the data, we expected the likelihood of
the true tree to rank somewhere within the range of like‑
lihoods of the sampled trees, as this would indicate that
the true tree is likely to be included in the posterior dis‑
tribution obtained under a gamma model. In contrast, if
in a substantial proportion of simulations, the likelihood
of the true tree was lower than that of the sampled trees,
then the estimated rates might be inadequate by assign‑
ing significantly higher likelihood to solutions that dif‑
fer from the truth. Finally, if in a substantial proportion
of simulations, the likelihood of the true tree is higher
than that of the sampled trees, then the rates, for exam‑
ple, estimated through a free‑rates or phyloRNN model,
would favor sampling the true tree over alternatives
sampled under a discrete gamma model.

Since the trees were obtained under a gamma model,
we expected the likelihood of the true tree based on rates
from the gamma model to be found within the sampled
range or lower (if the rates are inadequate). A higher
likelihood is still possible, however, if the subset of 50
trees does not capture the actual upper boundary of the
posterior distribution of likelihood values. With rates
inferred from the free‑rates or phyloRNN models, we
instead expected a larger proportion of simulations in
which the true tree returned a higher likelihood than the
sampled ones because of the better fit to the underlying
true mode of rate heterogeneity.

Phylogenetic inference with per‑site rates.—We evaluated
the impact of applying per‑site rates in phylogenetic in‑
ference to assess if phyloRNN‑estimated rates could af‑
fect the accuracy of the trees estimated in a Bayesian
framework. We developed an analytical pipeline to
first estimate per‑site rates using our trained phyloRNN
model and then applying them in a Bayesian analysis

performed in RevBayes (v. 1.2.1; Höhna et al. 2016). As
a substitution model with fixed per‑site rate is currently
not available in RevBayes, we created per‑site data par‑
titions to assign phyloRNN‑estimated rates to each site
in the alignment (the RevBayes script can be generated
through a utility function in phyloRNN). All partitions
shared the same GTR substitution matrix and state fre‑
quencies, thus differing only in the relative rate applied
to each.

Even though the model requires the estimation of
fewer parameters compared to a standard model with
gamma heterogeneity across sites, the creation of many
partitions drastically increased the computing time and
we opted to run these simulations on smaller datasets
with 20 and 50 tips and 100 sites only. We simu‑
lated 20,000 datasets to train 2 phyloRNN models based
on either 20 or 50 tips, with parameter settings as de‑
scribed above and mean branch lengths drawn from
an exponential distribution 𝜈 ∼ Exp(𝜆) with log(𝜆) ∼
𝒰(log(0.01), log(0.2)). We increased the lower thresh‑
old on the mean branch lengths in these simulations to
ensure a sufficient number of substitutions occurred in
these smaller datasets.

We then generated 2 test sets of 200 datasets with
either 20 or 50 tips, respectively, and 100 simulated
DNA sites. On each alignment, we performed phyloge‑
netic inference using RevBayes with a GTR substitution
model. The analyses assumed either a gamma model of
rate heterogeneity with invariant sites or a model with
fixed relative per‑site rates, as predicted by our trained
models. Note that although phyloRNN models predict
both per‑site rates and total tree length, we only used
the per‑site rates in the phylogenetic inference. We ran
10,000 MCMC iterations, which we found to be suffi‑
cient to achieve convergence in our datasets, and sum‑
marized the resulting posterior sample of trees using the
mapTree function in RevBayes.

To compare the results of phylogenetic inference
based on a standard gamma model with invariant sites
against one using phyloRNN‑estimated per‑site rates,
we 1) compared the mean sampled likelihood of the
data as an approximation of model fit, 2) calculated
the weighted Robinson–Fould distance (hereafter R–F
distance) as implemented in the R package phangorn
(Robinson and Foulds 1981; Schliep 2011) between the
true tree and the estimated tree, and 3) calculated the
squared difference between the true and the estimated
log‑transformed tree lengths.

To improve the scalability of this approach, we imple‑
mented a model in which a pre‑defined number of rate
categories are used to approximate the per‑site rates in‑
ferred by phyloRNN. We first grouped the per‑site rates
obtained with phyloRNN in a number of classes equally
distributed in log space. We then created one partition
for each rate class and assigned all sites within this par‑
tition to the average rate for that class. This procedure
allowed us to run RevBayes analyses on larger align‑
ments. To test this approach, we simulated 100 datasets
of 50 tips and 1000 sites and obtained per‑site rates
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using the phyloRNN model trained for the simulations
described in previous sections. We then estimated phy‑
logenetic trees based on 1) a gamma model with invari‑
ant sites and 2) models with phyloRNN rates discretized
into 4, 10, 20, or 50 classes. We summarized the results
with the simulations described above and evaluated the
effect of using pre‑estimated site rates and the impact of
increasing the number of classes on the accuracy of the
resulting trees.

Analysis of the Clownfish Genomes
We applied our model to a genomic dataset of 28

species of clownfish, representing the first chromo‑
some (Marcionetti and Salamin 2023). Even though
phyloRNN does allow for gaps in an alignment, we
decided for simplicity to filter out positions in the
alignment containing gaps and ambiguities reducing
the initial dataset of over 46 million nucleotides to a to‑
tal of 26,294,222 aligned nucleotides. We trained a new
model containing 10,000 simulated datasets to match
the input of 28 taxa and 1000 nucleotides. We used it
to predict per‑site relative substitution rates and total
tree length (as a measure of overall divergence across
the chromosome) through non‑overlapping sliding win‑
dows of 1000 sites. We generated histograms of the rate
heterogeneity across a random subset of exons (filter‑
ing out those of lengths smaller than 500 nucleotides)
to visually assess whether a gamma distribution ad‑
equately approximates the empirical distribution of
rates. Finally, we tested whether protein‑coding regions
showed consistently lower substitution rates compared
with neighboring non‑coding regions as expected if they
are functionally constrained. We estimated the mean
substitution rate for each exon (filtering out those of
length smaller than 250 nucleotides; results did not
change if the limit was set to 100 nucleotides) as well
as the mean rates of the directly adjacent non‑coding
regions selecting 250 nucleotides before and after the

start or end of each exon selected. We performed
paired t‑tests to test whether the rates were signifi‑
cantly different between exons and directly adjacent
regions.

We estimated the total number of substitutions
across blocks of 10, 100, 500, and 1000 sites along
the 26 species phylogenetic tree of clownfish, assum‑
ing site‑specific estimates obtained with the PHAST
software package (v. 1.6; Hubisz et al. 2010, ac‑
cessed at github.com/cshlsiepellab/phast). We first ran
phyloFit (option -subst-mod REV) using the clown‑
fish tree topology and the fasta alignment to ob‑
tain branch lengths and the nucleotide matrix, and
then phyloP (options -base-by-base -mode CONACC
-method GERP) to obtain site‑specific estimates of the
number of substitutions. We note, however, that we ran
the phyloFit estimation assuming a single category of
site rates (ncat=1) as a model with rate heterogeneity
(gamma ncat=4) applied to the clownfish chromosome 1
dataset did not converge in our experiments.

RESULTS

Performance of the phyloRNN Model

We measured MSE and R2 values for the rate predic‑
tions obtained from the trained model on the test set
and the rates estimated by PhyML with the gamma and
free‑rates models. The results showed that our model
provided substantially more accurate estimations of the
per‑site rates compared with maximum likelihood es‑
timates obtained through a gamma model of rate het‑
erogeneity (lower MSE and higher 𝑅2 values; Table 1).
The phyloRNN model also outperformed maximum like‑
lihood estimations based on the more flexible free‑rates
model under most scenarios, especially the more com‑
plex heterogeneity modes (Table 1), although the dif‑
ference was smaller than with the gamma model. After

TABLE 1. Accuracy of site‑specific rates estimated under different models calculated across a test set of 600 datasets generated under different
modes of rate heterogeneity.

Heterogeneity model Gamma model Free‑rates phyloRNN

All combined 0.833 (0.175) 0.705 (0.206) 0.614 (0.347)

Gamma 1.869 (0.409) 1.311 (0.598) 1.64 (0.446)
Bimodal 0.454 (0.143) 0.28 (0.139) 0.332 (0.063)
Spike‑and‑slab 0.538 (0.161) 0.32 (0.484) 0.517 (0.08)
Geometric Brownian 1.469 (0.337) 1.408 (0.387) 1.387 (0.268)
Codon 0.379 (0.341) 0.405 (0.316) 0.076 (0.942)

Gamma autocorrelated 1.578 (0.465) 1.613 (0.584) 0.755 (0.798)
Bimodal autocorrelated 0.329 (0.133) 0.25 (0.112) 0.178 (0.294)
Spike‑and‑slab autocorrelated 0.387 (0.032) 0.323 (0.03) 0.271 (0.109)
Geometric Brownian autocorrelated 0.276 (0.034) 0.27 (0.028) 0.113 (0.457)
Mixed 1.882 (0) 1.656 (0) 1.689 (0)

Notes: The accuracy is quantified as mean squared error and as R2 (in parenthesis), comparing the true rates with those predicted through
2 maximum likelihood models (gamma and free‑rates) and through phyloRNN. phyloRNN rate estimates consistently outperform those from
a gamma model, in most cases matching or slightly exceeding the accuracy of the free‑rates model. DL substantially outperforms likelihood
methods in simulations with autocorrelated rates or based on codon models.
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breaking down the results by the simulated mode of
rate heterogeneity, we found that the improvement in
rate estimation is particularly strong in the case of codon
mode of rate heterogeneity (MSE values decreasing by
one order of magnitude when using phyloRNN) and in
the case of autocorrelated rates (Fig. 2). The phyloRNN

estimates appeared to consistently outperform max‑
imum likelihood estimates particularly in their abil‑
ity to recover multimodal distributions of rates across
sites (Fig. 2 and Supplementary Figs. S5–S10). Analyses
of datasets simulated under mixed rate heterogeneity
models yielded substantially less accurate estimations
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FIGURE 2. Example of simulated and estimated per‑site rates based on phyloRNN. Plots on the left show per‑site rates (note that the esti‑
mated rates are shifted slightly to the right for clarity). Histograms show the true distribution of rates across 1000 sites in an alignment (the
bottom right is in log space for clarity) and the distribution of estimated rates. The simulations show an example of different modes of rate
heterogeneity: gamma a), codon b), and spike‑and‑slab autocorrelated c).
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of the per‑site rates (Table 1). The lower accuracy was
consistent across models indicating that these patterns
of rate variation remain difficult to predict under a sin‑
gle model, whether probabilistic or based on DL (Sup‑
plementary Figs. S7–S9). Analyses based on a phyloRNN
model re‑trained with a larger proportion of data gen‑
erated under the mixed model (increased from 5% to
20%) yielded only limited improvements in accuracy to
estimate the rate and tree length in this subset of the
test set. The improvement was however sufficient for
phyloRNN estimates to become more accurate than max‑
imum likelihood estimations (Supplementary Tables S4
and S5).

Although the phyloRNN model did not use (or attempt
to estimate) a phylogenetic tree, its estimation of the
total tree length is unbiased (Fig. 3) and showed compa‑
rable accuracy with the estimates obtained from a max‑
imum likelihood analysis based on a gamma model of
rate heterogeneity, while the free‑rates model generally
produced the most accurate estimations. The accuracy
of tree length estimation was high in most simulations
with mean absolute percentage errors generally below
15% (Table 2). Tree lengths were inferred with higher
error for simulations based on mixed modes of rate het‑
erogeneity and this was the case across all 3 inference
methods.

Fixing the tree topology to the true tree in max‑
imum likelihood analyses had a negligible effect on
the estimated per‑site rates, with MSE equal to 0.833
for the gamma model and 0.709 for the free‑rates
model (Supplementary Table S2). Removing any poten‑
tial topological errors from the analyses did not substan‑
tially change the accuracy in the estimated rates, which
remained more accurately predicted by the phyloRNN
model. Similarly, fixing the tree topology to the true
tree led to minimal changes in the estimated tree length
with a mean absolute percentage error of 0.106 un‑
der the gamma model and 0.077 under the free‑rates
model (Supplementary Table S3). Topological errors did

not, therefore, affect strongly the accuracy of the es‑
timated tree length, which remained comparable be‑
tween phyloRNN and maximum likelihood phylogenetic
inference.

Impact on Tree Likelihood
In our simulations, the likelihood of the true tree

based on the true per‑site rates substantially exceeded
(Δ log 𝐿 > 2) the likelihood of the same tree using a dis‑
crete gamma model of rate heterogeneity in 90.2% of the
datasets. This means that, in a large fraction of the sim‑
ulations, a gamma model decreased the likelihood of
the correct underlying phylogenetic tree (Supplemen‑
tary Table S7). We observed a similar outcome under
the free‑rates model, where the likelihood of the true
tree decreased in 89.6% of the simulations. In contrast,
phyloRNN rates resulted in a substantially lower likeli‑
hood for the true tree only in 29.7% of the simulations,
suggesting that the use of these rates in phylogenetic
inference might result in more accurate estimated trees
(Supplementary Table S7).

A change in absolute likelihood does not necessarily
imply that a model is less likely to sample the true tree in
phylogenetic inference because it could simply reflect a
homogeneous shift in the likelihood surface. We, there‑
fore, also evaluated the ranking of the true tree within
a posterior sample of trees for each testing dataset de‑
scribed above. We sampled 50 trees from the posterior
samples of MrBayes and ranked them in decreasing or‑
der based on their likelihood recomputed under pre‑
dicted rates from the gamma, free‑rates, and phyloRNN
models as above. We then compared the likelihood of
the true tree obtained with the same models with the
ranked sampled trees. Under the gamma model, the
likelihood of the true tree was found within the range
of sampled trees in 86.0% of the simulations and ranked
first in 1.8% of the cases. In the latter case, the mean
difference in log‑likelihood between the true tree and
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FIGURE 3. Estimated total tree length (log‑transformed) under maximum likelihood models assuming a gamma heterogeneity model a) and
a free‑rates model b), and through phyloRNN c). The results are shown for a test set of 600 datasets generated under different modes of rate
heterogeneity (more details in Table 2).
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TABLE 2. Accuracy of total tree length estimated under different models was calculated across a test set of 600 datasets generated under
different modes of rate heterogeneity.

Heterogeneity model Gamma model Free‑rates phyloRNN

All combined 0.106 (0.933) 0.075 (0.955) 0.152 (0.902)

Gamma 0.147 (0.977) 0.083 (0.987) 0.158 (0.902)
Bimodal 0.105 (0.936) 0.047 (0.999) 0.115 (0.953)
Spike‑and‑slab 0.066 (0.993) 0.055 (0.998) 0.117 (0.986)
Geometric Brownian 0.118 (0.955) 0.102 (0.929) 0.150 (0.934)
Codon 0.056 (0.999) 0.051 (0.999) 0.103 (0.971)

Gamma autocorrelated 0.156 (0.952) 0.085 (0.921) 0.173 (0.791)
Bimodal autocorrelated 0.091 (0.925) 0.057 (0.996) 0.161 (0.957)
Spike‑and‑slab autocorrelated 0.057 (0.995) 0.053 (0.976) 0.103 (0.971)
Geometric Brownian autocorrelated 0.055 (0.999) 0.052 (0.999) 0.177 (0.98)
Mixed 0.471 (0.605) 0.459 (0.681) 0.493 (0.60)

Notes: The accuracy is quantified a mean absolute percentage error and as R2 (in parentheses), comparing the true rates with those predicted
through 2 maximum likelihood models (gamma and free‑rates) and through phyloRNN. The accuracy of phyloRNN tree length estimates is gen‑
erally similar to that obtained from maximum likelihood methods, notably outperforming the gamma model when the underlying data are
simulated with gamma‑distributed rate heterogeneity model. Maximum likelihood inference outperforms phyloRNN in simulations based on
bimodal, codon, and geometric Brownian autocorrelated models.

the best tree from the posterior samples was small (rang‑
ing from −0.130 to −7.757, median of −1.857), which
suggests that the true tree would in fact be included
in a more extensive posterior sample including more
than the 50 trees considered here. However, the true tree
ranked last, and thus was outside the sampled range, in
12.2% of the simulations, with a range of log‑likelihood
differences between the true tree and the worst tree from
the posterior samples ranging from 0.146 to 2129.506
(median of 24.137). This indicates that, for most of these
cases, the true tree was unlikely to be sampled by the
Bayesian algorithm, and thus excluded from the esti‑
mated posterior distribution of trees.

In contrast, under the rates estimated with phyloRNN,
the true tree ranked last in only 3.7% of the simula‑
tions (log‑likelihood difference ranging from 0.309 to
3602.207 with a median of 16.141), while it ranked first
in 13.5% (log‑likelihood difference ranging from −0.006
to −1841.836 with a median of −38.206). This sug‑
gests that in a substantial proportion of datasets, the
phyloRNN rates would favor the true tree over the trees
sampled under a gamma model. For comparison, the
free‑rates model performed similarly to phyloRNN, with
3.2% of simulations with the true tree ranking last (log‑
likelihood difference ranging from 0.033 to 2806.083
with a median of 10.348) and 12.2% of the simulations
with the true tree ranking first (log‑likelihood differ‑
ence ranging from −0.125 to −1341.208 with a median
of −20.146).

The rank of the true tree in all these comparisons did
not depend strongly on the mode of rate heterogene‑
ity, the model of substitution, or the tree length used in
the simulations that were not significant when analyzed
with a linear model. However, we did find that instances
where the true tree ranked last under a gamma model
(therefore being excluded from the sampled posterior
distribution of tree) were associated with significantly
higher errors in both estimated per‑site rates and tree

length (Supplementary Fig. S11). This corroborates the
idea that an improved estimation of these parameters
can lead to a more accurate tree estimation, which we
explored further in the next section.

Impact on Tree Estimation
RevBayes analyses comparing a gamma model with

phyloRNN‑estimated site‑specific rates showed that the
latter can lead to a significant improvement in the ac‑
curacy of phylogenetic inference. The mean sampled
log‑likelihood was higher using phyloRNN rates com‑
pared with rates under a gamma model in all datasets
with 20 tips, with a median difference of 22.5 log units
(95% interval: 7.2, 88.1) and in almost all the datasets
with 50 tips (median difference of 41.1 log units; 95%
interval: 7.9, 108.0 log units; Fig. 4a and Supplementary
Fig. S12a).

The maximum a posteriori tree topologies were sim‑
ilarly accurate with median normalized R‑F distances
between estimated and true trees of 0.27 (20 tips) and
0.31 (50 tips) for both phyloRNN rates and gamma rate
heterogeneity (Fig. 4b, Supplementary Fig. S12b). How‑
ever, when taking into account branch lengths, using
the weighted R‑F distance, we found that trees inferred
using phyloRNN rates were substantially more accurate.
The weighted R‑F distances between true and estimated
trees were on average 48.4% lower in analyses using
phyloRNN rates (95% interval: −9.9%, 310.8%) compared
with estimates obtained from a gamma model for 20‑tip
simulations. The weighted R–F distances for 50‑tip sim‑
ulations were on average 40.0% lower using phyloRNN
rates (95% interval: −8.4%, 222.9%) compared with rates
estimated under a gamma model. In both sets of sim‑
ulations, the weighted R‑F distances were lower for
the inference using phyloRNN rates than the rates un‑
der the gamma model in 82% of the datasets (Fig. 4c,
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FIGURE 4. Comparison between phylogenetic inference using a
gamma model of across site rate heterogeneity and fixed phyloRNN‑
estimated per‑site rates. Boxplots summarize the results of 200 sim‑
ulated datasets with 50 tips and 100 nucleotides (the outliers are not
shown but are plotted in Supplementary Fig. S13). All analyses were
carried out using RevBayes. Positive values indicate improvements
in analyses using phyloRNN rates compared with gamma rates (i.e.,
higher sampled likelihood a), lower distance or error between true and
estimated trees b–d).

Supplementary Fig. S12c). The difference in the accu‑
racy of branch length estimations was also reflected in
the error to estimate the total tree length (mean squared
difference between true and estimated log tree length),
which was on average more than 5 times lower for
the analyses using phyloRNN rates compared to those
using rates under the gamma model. Across simula‑
tions, the tree length was more accurately estimated us‑
ing phyloRNN rates in 85.5% of the 20‑tip simulations and
in 93% of the 50‑tip simulations (Fig. 4d, Supplementary
Fig. S12d).

Phylogenetic inference carried out in RevBayes un‑
der the gamma model of rate heterogeneity involved
the estimation of 2 additional free parameters compared
with inference based on phyloRNN‑estimated per‑site
rates, namely the shape of the gamma distribution and
the proportion of invariant sites. This difference in pa‑
rameterization possibly led to the observation that the
MCMC sampling was on average more efficient when
using phyloRNN rates. Specifically, the effective sample
sizes of the posterior computed across the last 500 sam‑
ples were higher with phyloRNN rates than with rates
under the gamma model in 75.5% of the 20‑tip simu‑
lations with a median increase of 62.5 effective sam‑
ples. Similarly, the effective sample sizes were higher
with phyloRNN rates than with rates under the gamma
model in 77.5% of the 50‑tip simulations (median in‑
crease of 56.8 effective samples). These results suggested
that the use of phyloRNN‑estimated per‑site rates can re‑
duce the number of MCMC iterations required to reach
convergence.

Discrete phyloRNN‑rate classes.—The analysis of larger
datasets (50 taxa, 1000 sites) using rate classes to ap‑
proximate phyloRNN rates resulted in higher mean sam‑
pled log‑likelihood values compared with rates under
a gamma model in 97–99% of the simulations, and
the mean log‑likelihood improvement increased with
the number of rate classes (Supplementary Table S6;
Supplementary Fig. S14a). The accuracy of the esti‑
mated topology computed through R‑F distances did
not change substantially among models. However, the
weighted R‑F distances between the true and esti‑
mated trees were lower in 63–69% of the analyses us‑
ing phyloRNN rates than with rates under a gamma
model, decreasing on average by 23–27% (Supplemen‑
tary Table S6; Supplementary Fig. S14). Similarly, the
error in total tree length (mean squared difference be‑
tween true and estimated log tree length) was lower in
71–73 of the analyses using phyloRNN rates, improving
between 3‑ and 4‑fold compared with analyses using
rates estimated under a gamma model.

Evolutionary Rates and Divergence in Clownfish
The estimated substitution rates along chromo‑

some 1 in clownfish showed a substantial degree of
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FIGURE 5. Estimated rate heterogeneity across sites plotted for all sites in chromosome 1 in the clownfish genome a) and across a random
sample of 8 exons b–i). The lines show gamma distributions fitted to the data shown in the histogram. The rates match well a gamma distribution
of rate heterogeneity across all 26 million sites a), consistently to the heterogeneity models typically used in likelihood‑based phylogenetic anal‑
yses. However, at the exon level, the rate distribution often diverges substantially from that of a gamma distribution, displaying multimodal
or heavy‑tailed distributions. For improved visualization, rates > 3 (N = 53,061, or ∼0.2%) are not shown in panel a).

heterogeneity across sites, with 99% of the values rang‑
ing between 0.016 and 0.222, thus encompassing a ∼14‑
fold rate variation (Fig. 5a). The overall distribution of
rate heterogeneity across all ∼26 million sites followed
quite closely a gamma distribution (Fig. 5a), indicat‑
ing that a gamma model should approximate well the
true rate variation at a broad genomic scale. However,
the distributions of substitution rates across smaller
genomic regions showed that across‑site rate hetero‑
geneity often diverged substantially from a gamma
distribution, showing multimodal patterns and heavy‑
tailed distributions (Fig. 5b–i).

The degree of clownfish divergence (the total tree
length) estimated within blocks of 1000 sites revealed
up to ∼4‑fold variation in the estimated number of sub‑
stitutions across the chromosome. The distribution of
substitution rates per site also highlighted regions in the
chromosome spanning several thousands of sites that
are more conserved (i.e., low average rates) and others
characterized by much higher rates (Fig. 6).

When comparing the substitution rates between cod‑
ing and non‑coding regions, we found substitution rates
in exons to be lower than the rates in adjacent regions
in the chromosome in 82% of the 854 exons analyzed.
The mean rate in exons was on average ∼15% lower
than in the adjacent non‑coding regions (Fig. 6). Paired
t‑tests showed that this rate difference was overall sig‑
nificant (P value < 9.4e−74, 𝑇 < −20.08, 95% con‑
fidence interval: [−0.02, −0.01]) , while the left and
right adjacent regions did not differ from one an‑
other (P value = 0.35, 𝑇 < −0.94, 95% confidence
interval: [−0.01, 0]).

The estimated number of substitutions, inferred from
phyloRNN‑estimated rates, were comparable with those
calculated using phyloP (Supplementary Fig. S15). Our
results indicate a stronger correlation between the 2
types of estimates as we increase the number of sites
considered, with a correlation coefficient raising from
𝑅2 = 0.24, based on blocks of 10 sites, to 𝑅2 = 0.79, based
on blocks of 1000 sites.
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FIGURE 6. Estimated number of substitutions per site inferred through our phyloRNN model across the first 10 million nucleotides of the
clownfish genomes (28 species, chromosome 1). a) Substitutions per site as a function of chromosomic position, rates are averaged across
blocks of 1000 nucleotides. b) Box plots of substitutions per site for exonic regions (random sample of 854 exons, minimum of 250 nucleotides)
and adjacent non‑exonic regions (250 nucleotides before and after the start or end of each exon). Rates in exonic regions are on average 15%
lower than in the adjacent regions (P value < 9.4e−74).

DISCUSSION
A deep learning model to infer molecular evolutionary rates
We presented a framework using stochastic simulations
to train a DL model and estimate site‑specific rates of
evolution and total tree length from an alignment of
nucleotide sequences. We specifically designed the ar‑
chitecture of our model to reflect the characteristics of
molecular data and assumptions behind the evolution
of DNA sequences. Indeed, the bLSTM layers capture
the sequential nature of DNA data, while the use of site‑
specific networks with parameter sharing reflects the
fact that each feature in the input layer is an instance
of the same nature (i.e., a nucleotide).

Our implementation allowed us to accurately esti‑
mate the evolutionary rates for each site of an align‑
ment together with the total evolutionary divergence
in the alignment, which, in a phylogenetic context, is
quantified by the tree length. This was done using
solely the information from the alignment and with‑
out the addition of a defined phylogenetic tree in the
input to our phyloRNN model. We showed that our
model outperforms likelihood estimations based on the
standard gamma distribution of rate heterogeneity and
that it matched or outperformed, depending on the
rate heterogeneity mode used, the estimates from the
more parameter‑rich and less frequently used free‑rates
model. The computational efficiency of our approach
makes it highly scalable, allowing for the analysis of
large‑scale genomic data.

Evolutionary inference using phyloRNN.—While rate het‑
erogeneity is generally considered as a nuance param‑
eter in phylogenetic inference (Yang 1994), an accurate
estimation of substitution rates per site can be used to
identify genomic regions that are under evolutionary
constraints or deviate from the average pattern across

genomic regions (Mayrose et al. 2005). It can also be
used to identify protein‑coding genes because of the
significantly reduced rate of evolution compared with
adjacent genomic regions, as we found in the clown‑
fish dataset (Fig. 6). These results could be coupled
with other approaches (e.g., Cooper et al. 2005; Siepel
et al. 2005) used in genomics to help annotate de novo
genome assemblies or to identify regions of interest that
show unexpected levels of conservation outside of the
protein‑coding genes.

The analyses of the genomic data for clownfish al‑
lowed us to look at the distribution of rates across a
large empirical dataset. Although the distribution of
rates appears to match a gamma distribution when the
full set of ca. 26 million sites are considered, the distri‑
butions for individual exons can drastically differ from
a gamma distribution (Fig. 5). A similar pattern had
been previously shown in the distribution of average
rates across genes (Bevan et al. 2007) instead of indi‑
vidual sites like in our study, or in datasets with low
levels of variation (Jia et al. 2014). To tackle such cases
in a likelihood framework, a complex mixture of gamma
distributions can be used to model this distribution of
rate heterogeneity (Mayrose et al. 2005), but at the cost
of additional complexity during the optimization pro‑
cess (Bevan et al. 2007). In contrast, our phyloRNN model
can easily account for complex distributions through the
simulation of various types of rate heterogeneity.

The gamma distribution to model rate heterogene‑
ity was introduced in a landmark paper (Yang 1994)
and led to a substantial improvement in likelihood‑
based tree inference across most empirical datasets. Al‑
though the fit of models of evolution including a gamma
distribution is drastically better compared to models
without rate heterogeneity, the use of a gamma dis‑
tribution is not based on a biological assumption. In
addition, our results showed that deviations from the
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gamma distribution can have a large impact on the ba‑
sic estimates of rates per site or tree length (Tables 1
and 2). Alternative models have been proposed to
include more biological realism (Heaps et al. 2020),
and allow for more flexible distributions, like the free‑
rates model, which is implemented in some phylo‑
genetic software (e.g., the PhyML program used here
and IQTREE (Minh et al. 2020)). Other programs use a
discrete‑rates CAT model, implemented in RAxML (Sta‑
matakis 2014) and FastTree2 (Price et al. 2010), which
is more efficient computationally than fitting a gamma
distribution. Finally, a full Bayesian method to simul‑
taneously estimate the substitution model and rate at
each site has also been proposed (Wu et al. 2013), but
it involves a large number of parameters with unclear
effects on tree inference. The model developed here
represents an alternative, potentially more efficient, ap‑
proach, where rates per site are inferred prior to phy‑
logenetic inference and without assuming any specific
distribution. This approach reduces the number of free
parameters in a phylogenetic inference model and our
experiments showed that it can have a beneficial impact
on its accuracy.

Impact on phylogenetic inference.—Including rate hetero‑
geneity has been shown to have a large impact on phy‑
logenetic inference (Yang 1994; Sullivan and Swofford
1997; Abadi et al. 2019). Our simulations further demon‑
strated that an accurate modeling of the rate variation
across site will also affect, sometimes drastically, the es‑
timation of the tree likelihood. The effect is not simply
a monotonic increase or decrease of the whole likeli‑
hood surface, but affects the ranking of a sample of trees.
We showed it indirectly by comparing the likelihood
of sampled trees computed by assigning rates per site
estimated using the gamma, free‑rates, and phyloRNN
models. The changes in log‑likelihood values demon‑
strate that an inaccurate estimation of the rates per
site can bias tree inference and result in a significantly
lower likelihood of the true tree relative to alternative
hypotheses.

In likelihood‑based phylogenetic inference, nucleotide
frequencies are routinely set equal to their empirical
values calculated from the alignment, rather than esti‑
mated in the analysis. This is done to reduce the number
of free parameters in likelihood optimization or poste‑
rior sampling algorithms. Similarly, per‑site rates could
be estimated from the alignment using our phyloRNN
model before fixing them during the likelihood search.
This is what we showed using the flexibility of the
RevBayes program to incorporate pre‑estimated per‑
site rates directly in phylogenetic inference. Our results
showed that this approach can improve the estima‑
tion of the tree, with substantial improvements in the
estimated branch lengths. Our results also suggested
that this approach might facilitate the convergence of
Bayesian phylogenetic inference as it reduces the num‑
ber of free parameters.

Performance of phyloRNN on big data.—Our application
of the phyloRNN model to chromosome 1 of 28 clown‑
fish species showed that a trained model can rapidly
estimate per‑site substitution rates across large genomic
datasets with a relatively small computational footprint.
For instance, the analysis of the clownfish dataset on a
64‑CPU workstation required 122 min: 14 min used to
simulate the training data, 83 min to train the model,
and 25 min to parse the empirical dataset and gener‑
ate predicted rates across the 26 million sites. For com‑
parison, tests on 100 simulated datasets with 28 species
and 1000 sites using PhyML showed that a comparable
analysis, with fixed topology and optimization lim‑
ited to branch lengths and model parameters on the
same machine, would take about 793 min (6.5 times
longer than using phyloRNN) under a gamma model
and about 1794 min under a free‑rates model (almost
15 times longer). Given the short prediction times us‑
ing phyloRNN once the models were trained, the com‑
putational benefit of our deep learning model increased
further with the increasing size of the datasets. If, for
instance, we used our model to predict rates across an‑
other clownfish chromosome of comparable size, this
would only add another ≈25 min of computing time,
while it would bring computing time in a maximum
likelihood framework above 26 h with a gamma model
and around 60 h with a free‑rates model.

Our implementation also allows the use of GPU for
model training, which, in the case of the clownfish
dataset using an RTX 4080, reduced the time for train‑
ing to 33 min, that is, 2.5 times faster than on 64 CPUs.
The full analysis including simulations and predictions,
thus achieves speedups of 11‑fold compared to a gamma
model and 26‑fold compared to a free‑rate model.

Effects of violations of model assumptions.—A common cri‑
tique of supervised DL models over their unsupervised
likelihood‑based alternatives in regression and other in‑
ference tasks is their unpredictably erroneous behavior
when presented with data that differ from the training
data (Marcus 2018). In the case in which the training
data were simulated under a generative model, like in
our study, differences between training and empirical
data could be driven by violations of the assumptions
of the generative model in real‑world evolution. How‑
ever, violations of the model assumptions have also
been shown to lead to wrong estimations in likelihood‑
based inference of evolutionary models. For instance,
simplistic substitution models assuming equal substi‑
tution rates among nucleotides (an assumption violated
by the real evolutionary process), have long been known
to lead to wrong tree topologies (D’Erchia et al. 1996;
Sullivan and Swofford 1997). More recently, Meyer et al.
(2019) found that the presence of co‑evolving sites in
an alignment, which violates the common assumption
of site independence, can bias in unpredictable ways
phylogenetic inference, affecting the accuracy of both
tree topology and branch lengths. Similar misbehavior
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in likelihood‑based inference has been shown in the con‑
text of models of trait evolution (Duchen et al. 2021) and
species diversification (Louca and Pennell 2020). Thus,
phylogenetic and macroevolutionary analyses are likely
to be generally sensitive to model violations.

Recent research has shown that the current models of
nucleotide evolution might be inadequately reproduc‑
ing realistic nucleotide sequence alignments (Trost et al.
2023), although the effects of this inadequacy on phy‑
logenetic inference remain to be fully explored. While
in likelihood‑based models the assumptions about how
evolutionary mechanisms play out are built directly
into the likelihood function itself, in our phyloRNN
framework, the same assumptions are encoded in the
simulation module (Fig. 1). This architectural difference
makes it substantially easier to relax these assumptions
in a model like phyloRNN that couples stochastic sim‑
ulations with DL. We have demonstrated this through
the implementation and training of a single model able
to account for a range of heterogeneity patterns, in‑
cluding auto‑correlated rates and codon models, each
of which would require a specific parameterization in
a likelihood framework. In the phyloRNN framework,
the inclusion of additional heterogeneity patterns is
straightforward as long as such patterns can be sim‑
ulated, thus facilitating its extension to more diverse
evolutionary scenarios.

Why we still need likelihood‑based evolutionary models.—
While DL is now permeating many research fields in bi‑
ology (Sapoval et al. 2022), we think that well‑principled
and fully interpretable likelihood models will continue
to play a key role in evolutionary biology, for several
reasons. First, likelihood‑based methods are (arguably)
more suitable for the estimation of complex parameters.
In contrast, most DL models are designed to infer sim‑
ple output parameters (e.g., continuous values in regres‑
sion tasks or categorical variables in classification tasks).
Their application to more complex parameters such as
the phylogenetic tree topology is instead less straight‑
forward to implement in a standard output layer be‑
yond small‑scale implementations (e.g., Zou et al. 2019;
Sapoval et al. 2022), although recent developments in‑
dicate that this will improve in the future (Nesterenko
et al. 2022; Smith and Hahn 2023).

Second, likelihood‑based methods provide a more di‑
rect and robust assessment of parameter uncertainty, for
example, through bootstrap values, confidence interval
estimates or posterior probabilities (e.g., in phylogenetic
inference, Felsenstein 1985; Yang and Rannala 1997;
Huelsenbeck and Ronquist 2001; Heled and Drummond
2009; Lemoine et al. 2018; Meyer et al. 2019). Credible
intervals can also be obtained through marginal distri‑
butions from Bayesian analyses to account for param‑
eter uncertainties. In contrast DL models are generally
trained to achieve the best predictive accuracy, with lim‑
ited focus on the quantification of uncertainties. Part
of the reason for this stems from the fact that artifi‑
cial intelligence research, unlike evolutionary biology,

has for the most part focused on accuracy scores rather
than on the estimation uncertainty (Koch et al. 2021).
Class probabilities, as quantified by a softMax output
layer have been successfully used as proxies for confi‑
dence in evolutionary biology models (Suvorov et al.
2019; Silvestro et al. 2020), even though they have been
shown to perform poorly in other classification tasks
(Gal and Ghahramani 2016; Silvestro and Andermann
2020). Alternatively, Bayesian implementations, Monte
Carlo dropout, and model ensembles can be used to ap‑
proximate confidence intervals around the predictions
from DL models, but they are not always scalable for
large models or offer somewhat ad hoc estimations of
uncertainties (Blundell et al. 2015; Gal and Ghahramani
2016; Polson and Sokolov 2017; Silvestro and Ander‑
mann 2020).

Third, hypothesis testing is a crucial aspect in evo‑
lutionary biology and this is more directly imple‑
mented within a probabilistic framework. The statistical
comparison between alternative hypotheses typically
involves a probabilistic approach, which does not
easily have an equivalent in machine learning. Further‑
more, delving into the significance of different nodes
within a network and comprehending their influence
on model performance with a specific dataset assumes
an elevated level of complexity. The intricate and non‑
linear decision boundaries that are inherent in deep
neural networks combined with their extensively pa‑
rameterized architecture foster an impressive predic‑
tive accuracy but also contribute to the challenge of
interpreting them compared to other likelihood‑based
models.

Semi‑supervised learning for phylogenetic inference.—The
analysis of simulated alignments in RevBayes revealed
that the use of phyloRNN per‑site rates can substan‑
tially improve the accuracy of the estimated phyloge‑
netic trees. An integrated approach combining DL and
likelihood‑based inference can be seen as a form of semi‑
supervised learning (Zhu 2005), in which supervised
and unsupervised parts of the overall model are ap‑
plied to different sets of parameters. The improvements
of this semi‑supervised approach to phylogenetic infer‑
ence were most evident in the estimated branch lengths
and the resulting total tree length. The approach also
led to a strong increase in the likelihood of the data
(at least based on the posterior samples obtained from
MCMC), while reducing the number of free parame‑
ters that needed to be estimated by RevBayes; there‑
fore, potentially facilitating the posterior sampling via
MCMC (as suggested by the higher effective sample
sizes achieved in our comparisons).

While the current implementation allows for the use
of different rates for each site only for small alignments,
we showed that the phyloRNN rates can be discretized in
fewer rate categories and still have a beneficial effect on
the estimated trees. Future implementations will likely
improve the performance of this approach that should
also involve fewer evaluations of the likelihood, which
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is computed once per site compared with 4 times per
site in a gamma model discretized into 4 categories. Our
results indicate that coupling DL with likelihood‑based
methods offers the opportunity for more accurate, ro‑
bust, and interpretable estimations of macroevolution‑
ary parameters and phylogenetic relationships. Thus,
we envision a new generation of semi‑supervised phy‑
logenetic models that integrate likelihood‑based and DL
components to improve the efficiency and scalability
of the analyses, while relaxing some of the assump‑
tions currently made for mathematical convenience,
paving the way for a better understanding of macro‑
evolutionary processes.
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CODE AND DATA AVAILABILITY
The phyloRNN model is implemented as an open‑

source Python library and available at https://github.
com/orgs/phyloRNN/repositories. The library relies on
Python modules dendropy (Sukumaran and Holder
2010) and tensorflow (Abadi et al. 2015) and offers
integrations with seq-gen (Rambaut and Grass 1997)
and PhyML (Guindon et al. 2010) to simulate and an‑
alyze sequence alignments. The library also includes

utility functions to parse empirical data and gener‑
ate RevBayes (Höhna et al. 2016) scripts to perform
Bayesian phylogenetic inference based on phyloRNN‑
estimated per‑site rates. The scripts showing how to
run phyloRNN and replicate the analyses presented here
along with pre‑trained models are available on phy‑
loRNN/Scripts_and_data/Scripts. Codes and data are
also available on the Dryad data repository: provisional
DOI: 10.5061/dryad.qz612jmn6.
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