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SUMMARY  

 

Horizontal gene transfer (HGT) is one of the key processes in bacterial genome 

evolution. Bacterial genome evolution has attracted broad scientific interest for three main 

reasons. Firstly, most bacteria display rapid generation times and therefore represent good 

objects for studying molecular mechanisms leading to genetic variation. Secondly, ultrahigh 

throughput sequencing technology has led to an explosion in the number of bacterial genome 

sequences, the meta-analysis of which has revealed the important role of mobile DNA 

elements for genomic variation. And thirdly, evolutionary processes lead to the distribution of 

virulence factors, antibiotic or toxic compound resistance genes facilitating the fast generation 

of bacterial mutants compromising global public health.  

In this dissertation HGT is studied with the aim to better understand how and why 

bacterial variants evolve so quickly, thereby contributing to the knowledge of how to counteract 

the downsides and make use of the benefits of adaptive processes. To achieve this aim this 

research is focused on the study of ICEclc, a model system representing key mediators in 

bacterial genome evolution called integrative and conjugative elements (ICEs). ICEs are 

widespread mobile genetic elements (MGEs) that occur in basically all bacterial genomes and 

are capable of transferring their own as well as additional DNA to new host species. ICEclc is 

an example of a prevalent ICE type that was originally detected in the chromosome of 

Pseudomonas knackmussii B13 but has since then been discovered in a wide variety of 

other bacterial species, underlining the success of this class of ICE to infiltrate different host 

species. The element bestows the host with the capacity to metabolize a number of unique 

aromatic carbon substrates such as 3-chlorobenzoate. It can transfer at population averaged 

frequencies of 1-5% per donor cell to a number of Beta- and Gammaproteobacteria.  

Despite the findings of the existence of ICE, and despite insights in their genetic 

structure and variability, the auxiliary genes they carry, and the mechanisms that mediate ICE 

excision and transfer regulation, still little is known about their biology as “self-acting entities” 

and their interactions with the host cell. To shed light on these particular aspects of ICE 

behaviour, this thesis follows an innovative investigative approach that is based on single cell 

observation and analysis techniques. Indeed, since prokaryotic biology is still largely based on 

the idea of clonal populations of cells that all behave similarly, novel, single-cell studies are 

expected to reveal a hidden dimension in ICE biology.  

In this thesis, a two-step strategy is chosen. First, investigative efforts are directed at 

the development and improvement of fluorescence microscopy-based observation and image 



 ii 

analysis techniques particularly suited to the study of ICEclc gene activities at the single cell 

level (Chapter 2 and Chapter 3). Equipped with this methodological know-how, the ICEclc 

lifestyle is then investigated at the single cell level (Chapters 4, Chapter 5).  

Chapter 2. Accurately detecting subpopulation sizes in bimodal populations remains 

problematic. Yet subpopulation size represents a powerful parameter by which cellular 

heterogeneity under different environmental conditions can be compared. In Chapter 2 a 

simple, statistics-based method for the analysis of small subpopulation sizes is proposed for 

use in the free software environment R along with a step-by-step protocol for easy 

implementation. The approach is tested and validated on the test system of transfer 

competence in the bacterium Pseudomonas, which causes a very small proportion of cells in 

resting phase (3-5%) to develop competence for conjugative transfer of ICEclc. In addition, 

computational modelling is used to test the efficacy of the developed method. Results show 

that the proposed approaches help to minimize inconsistencies in subpopulation classification 

caused by manual threshold placements, thereby increasing sensitivity to detect subpopulation 

changes. Further it is shown that the proposed approaches allow for a standardization of 

subpopulation evaluation across different experimental set-ups. 

Chapter 3. Chapter 3 deals with microcolony growth procedures, which have gained 

recent interest due to their usefulness in time-lapse imaging of single cell growth, cell aging, 

and biofilm studies. However, not many of such procedures have been described in sufficient 

technical detail to be easily reproduced. In Chapter 3, therefore, a simple step-by-step 

procedure is provided, which allows time-lapse imaging of bacterial cell division and cell 

tracking up to the stage of a mono-layered colony of a few hundred cells. The innovation of 

Chapter 3 lies in the design of an experimental set-up that permits the simultaneous tracking 

of single cells during microcolony growth whilst changing medium conditions. This proved 

crucial for further experiments on cell fate (Chapter 4) and cell age (Chapter 5) in single ICEclc-

active cells in the later chapters.  

Chapter 4. Transfer competence development has never been shown at the single 

cell level and neither has the question of cell fate in ICE transfer-competent cells ever been 

addressed. This is probably because of the generally low frequency of transfer competence in 

ICE and the lack of technological know-how to capture this. In Chapter 4 this thesis shows for 

the first time how individual bacterial donor cells can become competent for horizontal transfer 

of a mobile DNA (ICEclc), which surprisingly, both in the presence and absence of a non-ICE 

carrier recipient species, leads to strongly impaired reproductive capabilities of the ICEclc 

transfer competent (tc) donor cell and finally cell death. Results show that the ICE induces 

transfer competence in 3%–5% of cells in a population under non-growing conditions. Further, 
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it is shown that the factors determining tc cell fate are ICEclc-encoded. Mutations in ICE genes 

disrupting tc microcolony formation (although tc cells grow slower than non-tc cells and 

ultimately dye, they still retain some potential to divide although at a slower rate than non-tc 

cells) lead to 5-fold decreased ICE transfer rates. Based on the results of Chapter 4 it is 

hypothesized that the tc state may actually have been selected for because it allowed more 

efficient transfer of ICEclc, whereas the large fitness cost the ICEclc reproductive inhibition 

program would impose on the population is only kept at bay by confining ICEclc activity to a 

small proportion of cells. Indeed, computer simulations show that low proportions of cell death 

at non-growing phase pose insignificant fitness disadvantage due to genetic drift and may 

therefore not have been selected against. Given the low transfer frequencies of most ICE, the 

regulation by subpopulation differentiation as described in this chapter might be widespread. 

Chapter 5 . Apparent stochasticity (e.g., the distribution of RpoS among cells) may 

have underlying causes, such as, some cells being in a slightly different growth phase or 

having experienced more previous biochemical damage, and thus producing more RpoS. The 

specific hypotheses this thesis tests in Chapter 5 are whether ICEclc activation in individual 

cells are dependent on cell pole age, whether it is confined to specific cellular lineages, or if it 

occurs as a consequence of pre-existing detectable biochemical damage. It is also tested 

whether tc cell formation occurs spatially at random within a microcolony. Through the use of 

time-lapse microscopy as proposed in Chapter 3, the life history of tc-cells within 

microcolonies is followed. Results show that the age of the cell pole is unlikely to play a role in 

the decision of its fate to initiate the ICEclc tc program. Furthermore, it is shown that initiation of 

transfer competence is not the result of the physiological state of ancestor cells, or of a close 

relative (sister cell). In contrast, tc-cells show higher levels of reactive oxygen species and 

membrane damage than non-tc cells, but whether cause for or effect of ICEclc activation could 

not be discerned. It is shown that ICEclc activation occurs spatially randomly in a microcolony, 

which might additionally be important for maximizing the chances in a biofilm to contact 

potential recipients.  

The principle contributions of this thesis lie in the establishment of novel analytical and 

observational solutions to single cell bacterial research, and their usage to demonstrate 

existing hypotheses of ICEclc activation and transfer competence at the single cell level. But 

perhaps most interestingly, this thesis leads to the unexpected discovery and characterization 

of a novel phenotype corresponding to a severe fitness cost in ICE transfer competent cells. 

This discovery undoubtedly poses many new exciting questions concerning the role of mobile 

DNA in manipulating host cell behavior and differentiation in order to optimize horizontal 

transmission. 
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RÉSUMÉ  

 

Le transfert horizontal de gènes (THG) est l’un des processus clefs de l’évolution des 

génomes bactériens. L’intérêt de l’étude de l’évolution des génomes bactériens provient de 

trois raisons principales. Premièrement, la plupart des bactéries présentent un temps de 

génération rapide. Elles sont donc de bons objets pour l’étude des mécanismes moléculaires 

conduisant à la variation génétique. Deuxièmement, les nouvelles technologies de 

séquençage ont conduit à une explosion du nombre de séquences de génomes bactériens, 

dont la méta-analyse a révélé le rôle important des éléments d’ADN mobiles dans la variation 

génomique. Troisièmement, les processus d’évolution mènent à la distribution de facteurs de 

virulence, d’antibiotiques et de gènes de résistance à des composés toxiques, facilitant la 

génération rapide de mutants pouvant avoir un effet sur la santé publique. 

Dans cette dissertation, le THG est étudié dans le but de mieux comprendre comment 

et pourquoi ces mutants sont formés si rapidement, donc dans le but de contribuer à 

comprendre comment empêcher les effets néfastes de ces processus adaptatifs. Pour 

réaliser cet objectif, la recherche a été axée sur l’étude d’un système appelé élément 

conjugatif et intégratif (ICE en anglais) et jouant un rôle majeur dans l’évolution de génomes 

bactériens, en s’intéressant ici à l’ICEclc comme modèle. Les ICEs sont des éléments 

génétiques mobiles très répandus, retrouvés dans (quasiment) tous les génomes bactériens 

et capables de se transférer, mais aussi de mobiliser d’autres éléments d’ADN à une cellule 

receveuse. ICEclc est un modèle d’étude d’ICEs qui a été originellement détecté dans le 

chromosome de Pseudomonas knackmussii B13 , mais qui a depuis lors été découvert dans 

une grande variété d’espèces bactériennes, montrant sa capacité à s’intégrer avec succès 

dans différentes espèces hôtes. Cet élément confère à l’hôte la capacité de métaboliser 

différents composés aromatiques comme le 3-chlorobenzoate. Il peut transférer avec une 

fréquence de 1-5% par cellule donneuse à de nombreuses Beta- et Gammaproteobacteria. 

Malgré la découverte de l’existence d’ICEs et les études de leurs structures 

génétiques et leur variabilité, des gènes auxiliaires qu’ils portent et des mécanismes qui 

permettent la régulation de l’excision et du transfert, peu de choses est connu sur leur biologie 

en temps qu’entité à part entière et leurs interactions avec la cellule hôte. Pour élucider ces 

aspects particuliers de l’ICE, cette thèse présente une approche innovante d’investigation 

basée sur l’observation à l’échelle de la cellule unique et des techniques d’analyse. En effet, 

puisque la biologie procaryotique est encore largement basée sur l’idée d’une population 
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clonale de cellules agissant de la même façon, l’étude à l’échelle de la cellule unique pourrait 

permettre de révéler une nouvelle dimension à la biologie des ICEs. 

Dans cette thèse, une stratégie à deux étapes a été choisie. Dans les deux premiers 

chapitres de recherche (Chapitre 2 et Chapitre 3), les efforts sont axés sur le développement 

et l’amélioration d’observations en fluorescence par microscopie, et sur les techniques 

d’analyse d’images permettant l’étude de l’activité de gènes de l’ICEclc à l’échelle de la cellule 

unique. Une fois l’approche méthodologique établie, le style de vie de l’ICEclc  est ensuite 

étudié à l’échelle de la cellule unique (Chapitre 4, Chapitre 5). 

La détection de sous-populations dans une population bimodale reste problématique 

mais elle représente une puissante possibilité pour comparer l’hétérogénéité cellulaire dans 

différentes conditions environnementales. Dans le Chapitre 2, une méthode statistique simple 

pour l’analyse de petites sous-populations est proposée, en présentant un protocole étape par 

étape pour une mise en place facile et une utilisation dans le logiciel R. Cette approche a été 

testée et validée en testant la compétence de transfert chez Pseudomonas, qui présente en 

phase stationnaire une très petite sous-population (3-5%) de cellules capable de développer 

une compétence pour le transfert conjugatif de l’ICEclc. De plus, la modélisation est utilisée 

pour  tester l’efficacité de la méthode développée. Les résultats montrent que les approches 

menées aident à minimiser les erreurs de classification des sous-populations causées par un 

placement manuel du seuil. Ceci permet d’augmenter la sensibilité de détection de 

changement de sous-populations. Enfin, ces approches permettent une standardisation de 

l’évaluation des sous-populations entre les expériences. 

Le Chapitre 3 s’intéresse à la croissance en microcolonie, sujet présentant un gain 

d’intérêt récent pour sa possibilité de cribler rapidement et simultanément un large nombre de 

bactéries environnementales, de suivre la croissance en temps réel à l’échelle de la cellule 

unique, de suivre la sénescence bactérienne ou d’étudier les biofilms. Malheureusement, peu 

de ces approches ont été décrites avec suffisamment de détails techniques pour être 

reproduites facilement. Dans le Chapitre 3, une procédure simple étape par étape est 

présentée, qui permet l’imagerie en temps réelle de la division cellulaire et le suivi de cellules 

jusqu’à la formation de colonies en mono-couches de quelques centaines de cellules. 

L’innovation dans ce Chapitre 3 provient de la mise au point expérimentale, permettant le suivi 

de cellules uniques durant la croissance en microcolonie lors de changement de conditions de 

milieux. Ces innovations se sont révélées cruciales pour les expériences sur la destinée 

cellulaire (Chapitre 4) et l’âge des cellules (Chapitre 5) dans des cellules ICEclc-actives 

présentées dans les chapitres suivants. 
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Le développement des cellules « tranfert-compétentes » (tc) n’avait jamais été montré 

à l’échelle de la cellule unique et la question de la destinée cellulaire des cellules tc n’avait 

jamais été adressée. Ceci est surement dû au fait que la fréquence de cellules tc est faible et 

à l’absence de moyen techniques pour visualiser ce développement. Dans le Chapitre 4, cette 

thèse montre pour la première fois comment des cellules donneuses individuelles peuvent 

devenir compétentes pour le transfert horizontal d’ADN mobile (ICEclc) mais dont le 

développement conduit à une capacité reproductive fortement affectée allant jusqu’à la mort 

cellulaire. Ce processus est maintenu en présence comme en absence de receveuse ne 

présentant pas d’ICE. Les résultats montrent que l’ICE induit la transfert-compétence dans 3-

5% des cellules d’une population en absence de croissance. De plus, il a été montré que les 

facteurs déterminant le devenir des cellules tc soit codé par l’ICEclc. Des mutations dans des 

gènes interrompant la formation de microcolonies de cellules tc (En effet, bien que les cellules 

tc croissent lentement et finissent par mourir, elles gardent une certaine possibilité de se 

diviser, avec une vitesse plus lente que les cellules non-tc) conduisent à une diminution par 5 

du taux de transfert de l’ICE. En se basant sur les résultats du Chapitre 4, il est supposé que 

l’état de transfert-compétence a été sélectionné parce qu’il permet un meilleur transfert de 

l’ICEclc, tandis que le coût de fitness important (l’inhibition de reproduction) imposé par l’ICEclc 

à la population est contrôlé par le fait que l’ICEclc est actif seulement dans une petite 

proportion de cellules. En effet, des simulations in silico montrent qu’une faible proportion de 

mort cellulaire en absence de croissance ne pose qu’un désavantage de fitness insignifiant, à 

cause du drift génétique, assurant un passage au travers de la sélection naturelle. Etant 

donné la faible fréquence de transfert dans la plupart des ICEs, la régulation par différenciation 

en sous-population expliquée dans ce chapitre pourrait être courante. 

La stochasticité apparente (par exemple la distribution de RpoS entre les cellules) peut 

avoir des causes sous-jacentes, comme des cellules présentant une légère différence de 

phase de croissance ou ayant expérimentées plus de dommages biochimiques 

précédemment, et donc produisant plus de RpoS. Les hypothèses que cette thèse teste dans 

le Chapitre 5 sont : Est-ce que l’activation de l’ICEclc dans des cellules individuelles est 

dépendante de l’âge de la cellule (du pôle cellulaire) ; est-ce que c’est confiné à une lignée 

cellulaire spécifique ; est-ce qu’elle est la conséquence de dommages biochimiques pré-

existants. Il est également testé si le développement en cellules tc apparaît spatialement au 

hasard au sein de la microcolonie. En utilisant la microscopie en temps réel proposé en 

Chapitre 3, l’histoire de la vie des cellules tc au sein des microcolonies est suivi. Les résultats 

montrent que l’âge du pôle cellulaire ne semble pas jouer de rôle dans la décision d’initier le 

développement en tc. De plus, il est montré que l’initiation en tc n’est pas le résultat de l’état 
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physiologique des ascendants d’une cellule, ni des cellules proches (cellules sœurs). Au 

contraire, les cellules tc montrent des quantités de dérivés réactifs de l’oxygène et des 

dommages membranaires plus important que les cellules non-tc, sans qu’il n’ait pu être 

démontré que c’est la cause de l’activation de l’ICEclc. Il a été montré que l’activation de 

l’ICEclc a lieu au hasard au sein de la microcolonie, ce qui peut être important pour maximiser 

les chances d’être en contact avec des potentielles cellules receveuses au sein d’une 

matrice. 

Les contributions principales de cette thèse sont l’établissement de solution pour 

l’observation et l’analyse en recherche bactérienne à l’échelle de la cellule unique, et son 

usage pour démontrer les hypothèses existantes de l’activation de l’ICEclc et de la 

compétence de transfert à l’échelle de la cellule unique. Peut-être plus intéressant encore, 

cette thèse conduit à des découvertes insoupçonnées et à la caractérisation d’un nouveau 

phénotype correspondant à un coût de fitness important pour les cellules transfert-

compétentes. Cette découverte pose à n’en pas douter de nombreuses questions concernant 

le rôle den l’ADN mobile dans la manipulation du comportement de la cellule hôte et sa 

différentiation pour optimiser le transfert horizontal. 
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BACTERIAL BIODIVERSITY 

 

Bacteria have existed for more than three billion years and represent the most ancient 

forms of life on earth (56). Bacteria also likely represent the most abundant and diverse life 

forms in the Earth’s ecosystem (7). Collectively they constitute the bulk of biomass on earth 

(128). Their phylogenetic and metabolic diversity greatly exceeds that of plants and animals (7, 

128). For example, there are more than 800,000 insect species of which each individual 

harbours millions to billions of bacteria (7). Assuming that 10% of all insect species harbour 

distinct microbial symbiont species (7, 46, 75), this aspect alone would increase the number of 

extant bacterial species by several orders of magnitude. As another illustrative example of 

bacterial diversity and abundance, Torsvik and co-workers (198) have estimated that a handful 

of soil from the top 10 cm of a beech forest contains billions of microbial organisms with more 

than 10,000 different bacterial strains. Further, on average, one cm2 of leaf surface is 

estimated to contain more than 10 million bacteria (119). Other environments teeming with 

microbial life include the human body (gut, mouth, skin) (202, 203), plant roots (126), 

hypersaline lakes (8 8), thermal vents (158), hot springs (204, 217), arctic environments (31), 

soil crusts (44), deserts (189), glacial ice (182), air-borne, intercontinental dust (64), and ultra-

high-pressure rocks and fluids of the deep subsurface (157, 226). The fact that 

microorganisms have occupied nearly every imaginable niche on Earth indeed reflects the 

enormous evolutionary potential of these organisms and their capacity to diversify and adapt to 

new environments and persist in the face of environmental insults.  

As opposed to animal diversity, bacterial diversity is not well reflected in the morphology 

as can be readily visualized by eye (Figure 1). Rather, bacterial diversity is reflected in their 

biochemistry, which comprises a plethora of cellular metabolic pathways depending on the 

environment the bacteria are residing in. Bacterial biochemical activity often results in a 

geochemical transformation of the environment, either as a consequence of chemical 

reactions for energy requirements and respiration, or as a consequence of molecule release 

such as antibiotics, toxins, signalling molecules, or extracellular polymeric substances 

(proteins, nucleic acids and lipids). A classic example for bacterial geochemical transformation 

of the environment is one of today’s most important biotechnological processes, the 

purification of wastewater. Microbial communities live here as biofilm flocks in activated sludge, 

where they transform sewage waste water into “clean” water (organic matter-reduced water) by 

efficiently transforming soluble organic waste into bacterial biomass (7). 
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Figure 1. Examples of b iod ivers i ty in insects and bacter ia .  (A) Photographs of species of 

Carabidae (ground beetles) collected in the Kalahari semi-desert, BRinK field station, Kuzikus Wildlife 

Reserve, Namibia. Insects are typically classified on a visual basis by comparison of morphologies. 

[Adapted and modified with permission from Johanna Reinhard and David Schimrosczyk.] (B) Phase 

contrast microscopy image (400 x magnification) of a sample of activated sludge from a wastewater 

treatment plant in Lausanne, Switzerland. Only several simple morphologies of microbes can be 

distinguished visually in the activated sludge sample, yet several thousand different bacterial strains 

can be expected in such a sample (7). [Reinhard (unpublished).] 



CHAPTER 1 
 

4 

  Hence, an understanding of how microorganisms attain metabolic diversity not only 

represents a highly interesting fundamental evolutionary research question, but should also 

bring knowledge towards ameliorating human and environmental health. For example, concrete 

answers to how bacteria develop resistance to antibiotics, how they become pathogenic, or 

how they rapidly adapt to degrade xenobiotic pollutants in the soil, might allow for targeted 

manipulation of these mechanisms to either inhibit (e.g. development of antibiotic resistance) or 

enhance (e.g. degradation of soil pollutants) microbial activity to suit human purposes (92, 

205). 

This thesis hopes to contribute to such promising cause by studying the integrative and 

conjugative element ICEclc. Studying ICEclc not only allows insight into one of the most 

important drivers of bacterial adaptation, the evolution of bacteria via horizontal gene transfer 

(HGT), but also represents an opportunity to investigate another mechanism of adaptation that 

has only recently, facilitated by the development of advanced technology of single cell 

observation and analysis, been revisited: Bacterial individuality. Thus, this introduction will 

concentrate on both ICEclc’s role in HGT, and bacterial individuality. In addition, a section is 

dedicated to single cell investigative methods, which have been crucial to the discoveries in 

this thesis. 
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HORIZONTAL GENE TRANSFER  

 

Horizonta l gene transfer . One of the most interesting questions in evolutionary 

microbiology is how bacteria can so quickly evolve unique features of their proteins, 

membranes, and genetic responses allowing them to survive sometimes rapid environmental 

change. Bacteria are great evolvers for several reasons. One good reason is that their 

generally short generation times and large population sizes allow for relatively quick rates at 

which de novo beneficial mutations may accumulate via subsequent rounds of natural 

selection and vertical transmission (DNA transfer to daughter cells via DNA replication and cell 

division) (76, 104, 153).  

However, an even quicker way for bacteria to evolve is via HGT, the horizontal transfer 

of genetic information between different organisms (Figures 2, 3A) (76, 104, 153, 18 3). 

Estimates hold that some 20% of an average bacterial genome are of ‘foreign’ origin, whereas 

up to 80% of all bacterial and archaeal genes may have been engaged at some point during 

evolutionary time in horizontal transfer (101, 105). The consequence of this abundant gene 

exchange is that the taxonomic relationships between lineages (or evolutionary history) can 

almost be better described by a network than by a Darwinian phylogenetic tree (Figure 2) 

(183). 

Importantly, HGT allows for the acquisition of pre-selected gene constellations where 

whole “blocks” of genetic information are acquired in single gene transfer events. The block-

wise transfer of genetic information has two important outcomes: Firstly, it allows for the rapid 

community distribution of existing adaptive traits such as antibiotic resistance (20, 143), 

xenobiotic compound degradation (67, 69), pathogenicity and virulence (109), symbiosis, or 

heavy metal resistance (109). Secondly, HGT may fast-forward evolution of novel adaptive 

traits via so called “patchwork assembly”, which is the bringing together of complementary, 

and pre-shaped (by natural selection) genetic building blocks (operons) from different microbial 

origins in the recipient cell resulting in novel biochemical pathways (80, 92, 141, 186, 205).  

To illustrate evolution by HGT consider the two hypothetical real-case scenarios in Box 

1. With regard to the first scenario, HGT is indeed notoriously known for its implication in the 

evolution of so-called “superbugs”, which is the result of indiscriminate and inappropriate use 

of antibiotics in the treatments of patients and in the food industry (5, 8, 92, 135, 148, 183). 

Superbugs is a common term in the press and scientific literature for multi-drug resistant 

bacterial strains such as Streptococcus pneumoniae, Staphylococcus aureus and 

Pseudomonas aeruginosa that cause many lethal infections each year and whose spread is 

now considered a serious and increasing global public health risk (42, 183). 
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Box 1.  Two scenarios o f  horizonta l  gene transfer. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

Scenario 1: 

A farmer feeds low doses of antibiotics to life-stock to reduce infection and enhance 

growth, thereby increasing economic return (181). The constant exposure of the local 

microbial community to antibiotics results in de novo evolution of antibiotic-resistant 

populations via succes sive rounds of random genetic mutations (8). The farmer visits a 

hospital but does not wash his hands or work-clothes prior doing so and thus facilitates 

cell-to-cell contact between hitch-hiking “farm bacteria” and locally adapted “hospital 

bacteria” (94, 102). Via HGT, the bacterial interaction between farm and hospital strains 

results in the exchange of genetic antimicrobial resi stance traits. As a result, the progenitor 

of a potentially succes sful strain with novel but pre-selected antimicrobial resistance traits 

may appear within minutes, multi-resistant to both antibiotics as used on the farm as well 

as in the hospital (102). Selection pres sure and the negative impact of the newly acquired 

genes on the host cell will determine if this strain will remain or perish in the hospital 

environment. 

 

Scenario 2:  

Toxic runoff at a military base contaminates a groundwater aquifer. The runoff contains 

chlorobenzene, a xenobiotic compound that is believed to have been alien to existing 

enzyme systems before its environmental release (186).  Initially, chlorobenzene remains in 

the aquifer at high concentration but suddenly is degraded in a relatively short period of time 

(205). What happened? Facilitated by HGT, different gene-clusters from different bacterial 

origins recombined in a single host, which, as a result, was enabled to degrade 

chlorobenzene using it as a carbon source (205). Since the recombinant host gained a 

selective advantage due to its newly acquired catabolic potency, it colonized most of the 

chlorobenzene-contaminated area, thereby lowering the chlorobenzene concentration at the 

site. 
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 The second scenario of Box 1 highlights HGT as a beneficial rather than a destructive 

quality from the human or environmental health perspective. It illustrates how bioremediation of 

contaminated groundwater or wastewater may be enhanced when biodegradative genes can 

be readily transferred to endogenous bacteria (18, 183, 195, 205).  

Both scenarios, and the evidence associated to these, are examples showing that 

HGT represents a central process in the microbial world with implications for human health and 

environmental quality. A better understanding of the mechanisms and the regulation of HGT 

therefore will contribute to our knowledge towards a better control of the spread of antibiotic 

resistance and biodegradation genes (92, 183, 186).  

What is known so far is that, although HGT can be achieved in several ways and 

involve the transmission of many different types of genetic substrates, all known mechanisms 

of HGT have the following steps in common (Figure 2) (18 3, 196):  

 

1. An activation of the transfer process; 

2. The selection of the recipient; 

3.  The uptake and successful entry of genetic material into the recipient;  

4. The short-term establishment of genetic material in the recipient cell;  

5. The long-term stable inheritance in the recipient cell. 

 

Facilitating these steps are three main mechanisms of HGT:  

 

1. Transformation, the uptake of DNA from the environment;  

2. Transduction, the DNA transfer from one bacterium to another via bacterial viruses;  

3.  Conjugation, the transfer via cell-to-cell contact, now known to shuttle many different 

genetic fragments including plasmids, transposons, integrons, and integrative and 

conjugative elements (ICEs).  

 

An additional potential transfer mechanism is based on nanotubes. Nanotubes are only 

recently discovered tubular protrusions composed of membrane components that can 

bridge between neighbouring cells and conduct the transfer of DNA and proteins (57). 

However, the abundance and relative importance of nanotubes in bacterial HGT needs still 

to be validated. 
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Figure 2. D ifferent steps of horizontal gene t ransfer . Contributions of HGT (red lines) to the 

genome composition of different types of organisms is presented through a web connecting 

bifurcating branches that complicate, yet do not erase, the tree of life. Note that HGT can occur 

between closely related, but also distantly related organisms. The inset illustrates five steps that 

lead to the stable inheritance of a transferred gene in a new host: First, activation of the transfer 

process, second, selection of the recipient, third, uptake and successful entry of genetic material into 

the recipient, fourth, short-term establishment of genetic material in the recipient cell, and fifth, long-

term stable inheritance in the recipient cell. [Adapted and modified from Smets and Barkay (183).] 
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 Mobil e  genet ic  e l ements. In an attempt to understand the different mechanisms of 

HGT in bacterial genome evolution and to assess their respective impact on genome plasticity, 

a classification of the different DNA regions affected by HGT is valuable.  Such classification is 

typically based on DNA sequence motifs. For example mobile genetic element (MGE) 

identification relies both on phylogenetic analysis of gene sequences to reveal topological 

inconsistencies between different gene families (97, 104), and on nucleotide compositional 

analysis to identify any gene that has a nucleotide pattern that differs significantly from the 

overall genome (for example GC content, cumulative GC skew, tetranucleotide frequencies or 

codon usage) (91) (Figure 3B). Applying both sequence-based analytical approaches on a 

rapidly increasing number of sequenced genomes (as of today, more than 2590 bacterial 

genomes have been sequenced, more than 190 eukaryotic genomes, and more than 3600 

virus genomes (86)) creates a picture with two interesting facts:  

Firstly, MGEs appear to be dominant features of most prokaryotic and eukaryotic genomes 

(97); for example, MGEs constitute 35% of the genome of Escherichia coli (216), 50% of the 

human genome (87), and about 80% of the maize genome (218).  

Secondly, MGE structure, size and evolutionary origin seem to be quite diverse, and 

therefore can be categorized into different types of MGEs including both mobile and non-mobile 

elements. Non-mobile or “defective” MGEs are thought to be the result of having lost the 

mobility-genes over evolutionary time and thus represent a remnant marker of DNA pointing to 

past HGT activity. Mobile MGEs on the other hand represent active facilitators of ongoing HGT 

events. In total, mobile and defective MGEs span a variety of sometimes phylogenetically 

unrelated elements such as bacteriophages, IS elements, plasmids, transposons, conjugative 

transposons, integrons, and genomic islands (GEIs) (Figure 4) (29). It is now well established  

that MGE activity adds variability to genomes by one or several of the following ways (55, 79, 

97): 

 

1. By enhancing the potential for gene transfer between organisms via providing highly 

efficient mechanisms for the passage of genes into a recipient cell (for example via 

conjugative transfer); 
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Figure 3. Impact of HGT and genera l character is t ics of GEIs.  (A) Contributions from HGT to 

the genome composition of different types of organisms. The thickness of each arrow indicates the 

predicted relative impact of each contribution. [Adapted and modified from Keese (97).] (B) GEIs are 

horizontally acquired, relatively large segments. GEI nucleotide characteristics (e.g. GC content) often 

differ from the rest due to their foreign origin. GEIs are often inserted at tRNA genes and flanked by 

direct repeats (DR). GEIs typically harbour genes encoding factors involved in genetic mobility, such 

as integrases, transposases and insertion sequences (IS). In addition GEIs usually carry several 

genes encoding traits that may increase bacterial adaptability or fitness under certain growth 

conditions. Depending on the encoded traits GEIs are named pathogenicity, symbiosis, metabolic, 

fitness or resistance islands. [Adapted and modified from Juhas et al. (92).] 
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2. By altering the function of genes in the vicinity of the insertion in the host genome via 

disruption or inactivation of genes at the site of insertion; 

3.  By contributing novel structural and functional genetic material; 

4. By acting as primary vehicle for the spread and patchwork-assembly of antibiotic-

resistance genes, for pathogenicity determinants, or for biodegradation pathways 

amongst bacteria. 

 

GEIs. GEIs are a prominent subcategory of mobile and non-mobile MGEs and include a 

rather diverse group of elements called ICEs, integrated plasmids, non-replicative but excisable 

elements, and cryptic or damaged prophages. The defining features of GEIs include the 

following characteristics (Figure 3B) (55, 92): 

 

1. They represent relatively large segments of DNA, usually between 10 and 200 kb; 

2. They are often but not always inserted at tRNA genes; 

3.  They are flanked by 16–20-bp direct repeats (DR), suggesting a site-specific mode of 

integration of GEIs into the target site (174); 

4. They harbour genes encoding integrases or factors related to plasmid conjugation 

systems or phages involved in GEI transfer; 

5. They carry insertion elements or transposons, which may have been implicated in 

mobilizing genetic material onto or deleting DNA from the element; 

6. They carry genes offering a selective advantage for host bacteria such as the provision 

of antibiotic resistance determinants, symbiosis factors, or metabolic pathways of 

aromatic compounds. Depending on the functions they provide to the host, GEIs are 

often described as pathogenicity, symbiosis, metabolic, fitness or resistance islands 

(Table 1) (55, 174). 

 

Due to their capacity of shuttling host-beneficial genes and operons between species, GEIs 

allow for “fast forward evolution” via “patchwork assembly”, or in other words, the import of pre-

evolved and functional pathways from different chromosomal sources (55). GEIs must 

therefore be considered instrumental in shaping the bacterial genome. For example, GEIs may 

confer several traits to the host with potential adaptive benefits, such as antibiotic resistance 

(19, 143), iron scavenging (107), plant symbiosis (193) or aromatic compound degradation 

(71, 201).  
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Figure 4. Var ia b le types of GEIs.  GEIs come in a large spectrum of varieties and encompass 

other categories of elements, such as conjugative transposons/ICEs, integrated plasmids, 

nonreplicative but excisable elements, and cryptic or damaged prophages. Grey-shaded areas point 

to self-mobile GEIs. [Adapted from Juhas et al. (92).] 

 

 

 

Tab le  1.  Key characteristics of experimentally described ICEs. [Adapted and modified from Wozniak 

and Waldor (223).] 

ICE Host 
Size 
(kb) 

Site of insertion Notable phenotypes 

SXT  Vibrio cholerae  99.5 prfC  CmR, SXTR, SmR 

R391  Providencia rettgeri  89 prfC  HgR, KnR 

ICEBs1  Bacillus subtilis  20 tRNALeu gene  None known 

PAPI-1  Pseudomonas aeruginosa  108 tRNALys gene  
Virulence factors and 
regulation of biofilm formation 

ICEclcB13  Pseudomonas knackmussii  103 tRNAGly gene  
3-chlorobenzoic acid 
degradation 

ICEMlSymR7A  Mesorhizobium loti  502 tRNAPhe gene  

Symbiosis with Lotus 
corniculatus involving 
nodulation and nitrogen 
fixation 

ICEHin1056  Haemophilus influenzae  59 tRNALeu gene  TetR, CmR, AmpR 

pSAM2  Streptomyces ambofaciens  10.9 tRNAPro gene  None known 

Tn916  Enterococcus faecalis  18 AT-rich regions  TetR  

CTnDOT  Bacteroides spp.  65 GTANNTTTTGC  TetR, ErmR 

TnGBS2  
Streptococcus agalactiae 
(group B Streptococcus)   

33.5 
Intergenic regions 
upstream of σA 
promoters  

None known 

σA, RNA polymerase factor σA (also known as RpoD); AmpR, ampicilin resistance; CmR, chloramphenicol resistance; ErmR, erythromycin 

resistance; HgR, mercury resistance; KnR, kanamycin resistance; prfC, peptide chain release factor 3; SmR, streptomycin resistance; SXTR, 

sulfamethoxazole and trimethoprim resistance; TetR, tetracycline resistance. 
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Although GEIs are defined as such by sharing many of the above listed features, it is 

important to note that the current classification of GEIs is not based on a unifying mode of 

functioning or lifestyle (92). For example GEI functions necessary for their maintenance, 

excision, transfer or integration might differ substantially between different GEIs. In fact, GEIs 

may be phylogenetically diverse and share multiple and parallel ancestries. For example GEIs 

might contain phylogenetically unrelated categories such as prophage-like elements, 

integrated plasmids, and integrative and conjugative elements (ICEs), the last of which are 

most relevant to the topic of this thesis (55, 92, 223). 

ICEs. While some GEIs have only remnant DNA signatures left of the genes coding for 

mobility, other GEIs have retained full functionality and are still self-transmissible. Such mobile 

GEIs are commonly referred to as ICEs (92, 141, 223). Because of their mobility ICEs 

represent interesting model systems for studying “evolution in action”. Indeed, key 

characteristics of ICE mobility have been experimentally inferred from a number of ICEs 

conferring different beneficial traits to different hosts (Table 1). Some of these include the 

antibiotic resistance-conferring ICEs ICESXT in Vibrio cholerae (20), PAPI-1 in Pseudomonas 

aeruginosa, CTn961 and CTnDOT in Bacteroidetes, and ICEHin1056 in Haemophilus 

influenza (Mohd-Zain, 2004), the nitrogen fixation-conferring ICEMlSymR7A in Mesorhizobium 

loti (164), and the chloroaromatic compound degradation-conferring ICEclc in P. knackmussii 

B13 (140, 177). From these model systems we know now that the ICE life-style includes 

several characteristic steps (Figure 5): 

 

1. Integration into and excision from the host chromosome; 

2. Conjugative transfer to a new host via cell-to-cell contact; 

3.  Maintenance in the host chromosome; 

4. Careful regulation of both the transfer steps and the host-benefiting accessory features 

(antibiotic resistance, aromatic compound degradation etc.) (Figure 5).  

 

Integration and excision from the host chromosome is perhaps the best characterized 

feature of the ICE life-style; it is mediated by a site-specific phage-like recombinase called 

integrase in conjunction with accessory proteins (recombination directionality 

factor/excisionase) that bind to regions surrounding the recombination site and help the 

integrase to position itself (28, 110, 113, 114, 162, 165, 176, 219). The integrase usually 

recognizes the direct repeat sequences attL and attR, which flank the element on either side 

(200). In the excision reaction, the attL and attR sites are thus recombined to form the attB (the   
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Figure 5. Schemat ic mode l of “ l i festyle”  of ICEclc .  In the donor cell, ICEclc is integrated in a 

tRNAGly gene and the integrase gene (intB13 ) is under the weak promoter Pint. In stationary phase, the 

activation factor InrR induces the production of IntB13  that catalyzes the excision of the ICEclc to a 

circular form. Conjugation starts with DNA processing proteins forming a relaxosome at one or both 

of the origins of transfer (oriT). The single-strand DNA and relaxase complex is then supposed to be 

transferred into recipient cells through a type IV secretion system. In the recipient, the incoming DNA is 

recircularized and used as a template to reconstruct the second strand. Once in circular form, the 

strong constitutive promoter Pcirc is placed in front of intB13. This results in a temporary 

overexpression of IntB13 that mediates the chromosomal integration of ICEclc in the integration site 

attB of a tRNAGly gene. The return to an integrated state restores the control of the weak promoter Pint 

over intB13. Meanwhile in the donor cell, the circularized ICEclc that is not transferred may be 

reintegrated into a tRNAGly gene. [Adapted and modified from Miyazaki et al. (141).] 
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chromosomal attachment or integration site) and attP (for the “phage attachment site”, the 

leftover recombination site on the now excised ICE circular form) (Figure 5). Once liberated as 

excised circular form, the ICE molecule can then proceed to conjugative type transfer. 

Conjugative type ICE transfer from donor to host cell is less well characterized, and 

current knowledge is mostly based on similarities to plasmid conjugative systems (32, 142). It 

is thought that upon a signal a relaxase covalently binds to and nicks the circular plasmid/ICE 

DNA at a specific DNA sequence pattern called the origin of transfer (oriT). This enables the 

unwinding of a single linear DNA strand (ssDNA) by helicase activity, while simultaneously the 

other strand is replicated by rolling circle replication. The relaxase remains bound to the 

displaced ssDNA and interacts with a coupling protein to recruit the nucleo-protein complex to 

a protein complex called the mating pore formation structure (Mpf). The Mpf is a plasmid/ICE-

encoded protein structure that assembles at the cell surface upon transfer-initiation and forms 

a junction between the donor and recipient cell through which the relaxase-ssDNA 

nucleoprotein can be “actively pumped” by means of the coupling protein (32). Together, 

coupling protein and Mpf constitute the so-called type IV secretion system, the exact make-up 

of which seems to be a major distinguishing feature between different ICE families. For 

example, gene clusters involved in transfer of ICEHin1056 are evolutionarily very distant from all 

previously described plasmid T4SS genes (91). Also the ICE elements pKLC102 and PAPI-1 

from P. aeruginosa, and ICEclc from P. knackmussii B13 show little sequence homology to 

known plasmid conjugative systems (91)). Once in the new cell, the co-transferred relaxase 

participates to the recircularisation of the transferred ssDNA (175), which, in the case of an 

ICE, is then ready to integrate into the new host chromosome (Figure 5).  

ICE transmission is governed by complex regulatory networks that can be activated 

and repressed by environmental stimuli. These signals influence the expression and activity of 

ICE-derived and host-derived factors to modulate ICE gene expression and ICE transfer. A 

variety of different regulatory mechanisms that control the transition from the integrated state to 

ICE excision and transfer are now beginning to become understood, which in several cases 

are reminiscent of bacteriophage behaviour (223). For example, activation and excision of the 

antibiotic resistance determinant ICESXT of Vibrio cholerae is controlled by an SOS response 

pathway involving the master regulator SetR (20, 21). Another well-described ICE model 

system is the CTnDOT family (the ICEs CTn961 and CTnDOT) in Bacteroidetes, which is well 

known for the dissemination of antibiotic resistances. In this ICE family sub-inhibitory 

concentrations of tetracycline increase their transfer frequencies resulting in an increase of 

tetracycline resistance in the local bacterial community (38, 39). 
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Figure 6. Schemat ic representat ion of the ICEc lc  genet ic organizat ion. (A) Overview of 

ICEclc genetic organization showing core and variable region. Gray pentagons point to ORFs. 

[Adapted and modified from Miyazaki et al. (141).]  (B) Detailed ORF map of ICEclc. Arrows indicate 

orientation of putative ORFs. Colors correspond to predicted function. Thick vertical lines represent 

the border of ICEclc. [Adapted and modified from Miyazaki et al. (141).] 
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If chromosome replication or cell division occurs after ICE excision from the chromosome, 

the element may not be transmitted to progeny and as a result would be lost from the host cell. 

However, ICEs have evolved maintenance strategies counteracting this effect and ensuring 

that the frequency with which ICE-free cells arise stays low. For example, ICESXT guarantees 

its maintenance in the original host cell population by a toxin-antitoxin ‘addiction’ module 

encoded by mosAT that is thought to kill any arising daughter cells without ICESXT (222). The 

SOS response is also one of the triggers for excision and transfer of the 21-kb ICEBs1 

element in Bacillus subtilis (25, 26). In contrast to ICESXT ICEBs1 ensures its maintenance 

by DnaN-independent autonomous replication in the excised form (111). Maintenance of the P. 

aeruginosa PAPI-1 element is dependent on Soj (a ParA-analogous protein) and deletion of the 

soj gene leads to a rapid proliferation of cells without PAPI-1 in the population (162). ICEclc 

has a strong preference for reintegration after excision. It is suggested that this is because 

ICEclc excision leads to displacement of a strong promoter (Pcirc) at the left end of the element 

in front of the integrase gene (Figure 5). A temporary overexpression of IntB13 occurs from the 

circular form and thus increases the favorability of integration in the new host chromosome 

(177).  

In addition to the life-style-encoding core region ICEs generally also contain a “variable 

region” which encodes characteristics that benefit the host cell. This regions is referred to as 

variable because it represents the region that is least conserved among all ICEs, containing 

genes encoding a wide range of ICE-specific phenotypes, including resistance to antibiotics 

and heavy metals, the capacity to degrade aromatic compounds, and.complex traits such as 

the ability to colonize a eukaryotic host, fix nitrogen, or promote virulence and biofilm formation.  

ICEclc. Whereas previous studies on ICEs have been of cardinal importance to begin to 

understand the basic ICE-host control mechanisms, there is still a fundamental lack of 

understanding ICE-host behaviour at the single cell level, which is crucial for their evolutionary 

success. Recently, it could be shown by single cell analysis that activation of the Pint-promoter 

leading to excision of ICEclc in Pseudomonas knackmus sii is the consequence of a bistable 

activation cascade occurring only in a 3-5% of cells in stationary phase (140, 178). Most of 

the genes implicated in ICEclc excision and transfer are only actively expressed in stationary 

phase cultures, suggesting they all respond to the bistable activation cascade (70, 140) and 

form a dedicated program to prepare cells for ICEclc transfer (i.e., a “transfer competent 

state”). ICEclc has a size of 103 kb and occurs in two copies in the chromosome of P. 

knackmussii B13, inserted at the 3’-end of genes for tRNAGly (71, 168). The element bestows 

the host with the capacity to metabolize a number of unique aromatic carbon substrates, 

among which 3-chlorobenzoate (3-CBA). Based on sequence comparisons to other genetic 
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elements ICEclc can be divided into three characteristic parts (Figure 6) (141). The first part is 

formed by the intB13 integrase gene and is located directly near the attR end. This 

organization is similar as in other GEIs (see Figure 3 B). The second part consists of a ~50 kb 

region which is variable among related GEIs and which in case of ICEclc contains the 

accessory genes for chlorocatechol and 2-aminophenol metabolism. The third part comprises 

the remainder ~50 kb region until attL, and is mostly composed of genes with unknown 

functions, although some genes display homologies to conjugative processes or to phages. 

Interestingly, however, this region is highly conserved among a wide range of GEIs and 

uncharacterized genome regions in a variety of other bacteria. It was therefore hypothesized 

that this region represents the ‘core’ region of ICEclc and its relatives (Table 2), and encodes 

the functions necessary for the element’s life-style, that is, excision, transfer and regulation of 

transfer (92, 141).  

ICEclc can transfer at population averaged frequencies of 1-5% per donor cell to a number 

of Beta- and Gammaproteobacteria, such as Pseudomonas putida, P. aeruginosa or 

Cupriavidus necator (69, 177). Natural ICEclc variants have been discovered in a wide variety 

of other bacterial species (140), among which Bordetella petrii (109), Burkholderia xenovorans 

(71) or Ralstonia sp. strain JS705 (218), underlining the success of this class of ICE to 

infiltrate different host species. Not only ICEclc, but a variety of other ICE have self-

transmission frequencies in the order of a few percent per donor cell or lower, suggesting that 

induction of a transfer-competent state in some cells in a clonal population of ICE-bearing 

donors is a common strategy (11, 13, 109, 162).  
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Tab le  2.  Key characteristics of experimentally described GEIs/ICEs related to ICEclc. [Adapted and 

modified from Miyazaki et al. (141).] 

ICE Host 
Size 
(kb) 

Site of insertion Notable phenotypes 

ICEclc Pseudomonas knackmussii  103 tRNAGly gene  
Chlorocatechol and 2-
aminophenol 

GI1 Bordetella petrii  225 tRNAGly gene 
Phtalate to protocatechuate 
metabolism 

GI2 Bordetella petrii 143 tRNAGly gene 
Aromatic compound 
degradation 

GI3  Bordetella petrii 102 tRNAGly gene Chlorocatechol degradation 

GI6  Bordetella petrii 159 tRNAGly gene None known 

ICEHin1056  Haemophilus influenzae  59 tRNAGly gene 
Antibiotic, metal and 
antiseptic resistance 

PAGI-2 Pseudomonas aeruginosa 105 tRNAGly gene 
Complexation and transport of 
heavy metal 

PAGI-3 Pseudomonas aeruginosa 103 tRNAGly gene 
Metabolic functions and 
antibiotic resistance 

PAPI-1  Pseudomonas aeruginosa  108 tRNAGly gene 
Virulence factors and 
regulation of biofilm formation 

CMGI-1 Cupriviadus metallidurans  109 tRNAGly gene Heavy metal resistance 

no name Burkholderia xenovorans  124 tRNAGly gene Chlorocatechol degradation 

 

 



CHAPTER 1 
 

20 

TIME LAPSE FLUORESCENCE MICROSCOPY FOR STUDYING 

MICROBIAL HETEROGENEITY  

 

The study of phenotypic heterogeneity among bacteria, or bacterial individuality, 

requires by definition the observation at the single-cell level. Advances in single cell technology 

therefore, have recently boosted bacterial single-cell research and led to an awareness that 

average data obtained from traditional, population-based experiments often do not represent 

correctly the behavior, status or phenotype of single cells (Figure 7). 

Microscopy has a long history as a powerful research tool for achieving single cell 

measurements; indeed, the first-ever images of differently shaped bacterial single cells were 

drawn by Antonie van Leeuwenhoek and published in 163 8 (54, 112) (Figure 8A). Today, 

microscopy, and epifluorescence microscopy in particular, do not only distinguish between 

cells from differently shaped species but even between clonal cells of isogenic populations. 

This distinction between clonal cells is made possible by use of autofluorescent proteins or 

dyes (fluorophores) that label proteins of interest, follow expression from specific promoters, or 

stain specific nucleic acid sequences (98, 122). 

In some epifluorescence microscopy applications the detection limits have been 

pushed so far that individual protein or mRNA molecules in the bacterial cell can be visualized 

and quantified (30, 40, 77, 116, 224). Furthermore, by employing differently coloured 

autofluorescent protein variants multiple parameters can be followed simultaneously and in the 

same cell (35, 121, 179). For example, in this thesis we measured differential gene expression 

in single Pseudomonas putida bacterial cells from two different promoters, the constitutively 

expressing Ptac and the inducible Pint. Their expression could be differentiated by cloning the 

gene for mCherry fluorescent protein downstream of Ptac and that for green fluorescent protein 

downstream of Pint (Reinhard, unpublished) (Figure 8 B). 

In contrast to epifluorescence microscopy, flow cytometry of bacterial cells expressing 

autofluorescent proteins does not permit time-lapse imaging, but it gives that advantage of a 

high throughput acquisition of single-cell parameters (45, 146). In modern epifluorescence 

microscopes time-lapse imaging is greatly assisted by automated image acquisition. This, in 

combination with autofluorescent proteins that are generally non-toxic, permits observation in 

live cells and temporal imaging (time-lapse imaging) over long time-scales. Microscopes 

equipped with motorized stages can be programmed to take images of multiple regions of 

interest at set time-intervals with different light regimes (e.g., bright field, green fluorescence, 

red fluorescence). Some fully automated time-lapse set-ups contain autofocus systems to 

achieve consistently sharp images of bacterial cells throughout an experiment taking up to 
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Figure 7. Subpopula t ion effects stay h idden wi th in averaged data  sets .  Shades of grey 

represent cells with low (white), medium (gray), and high (black) levels of the measured parameter. (A) 

Batch culture experimental techniques measure the average of a parameter across an entire 

population, but equal population means may characterize very different populations as indicated by 

four different population structures (i-iv). (B) Single-cell analysis techniques such as flow cytometry or 

microscopy generate a more complete picture of the diversity that may be concealed by averaging. 

For example different population means (Mean a, Mean b) representing underlying subpopulations can 

be deduced from bimodal populations, which would not be possible by batch culture experimental 

techniques. 
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 several days (4, 122, 212). 

Taking full advantage of automated (or semi-automated) image acquisition quickly 

results in the generation of enormous data sets often containing measurements of multiple cell 

parameters from several cells each with hundred to thousands of time points. Such “big” 

amount of data needs image analysis software that automatically and in an unbiased way is 

able to extract relevant information. Typically, image analysis software is based on algorithms 

that in the first step segment an image into regions of interest (such as cells) based on the 

intensities of adjacent groups of pixels. These regions (cells) can then be rapidly classified 

according to many different criteria including their intensity, shape, size, co-localization with 

regions in other color channels, and countless more.  Open source software exists where 

regions of interest can be tracked over time from time-lapse image stacks, with any number of 

quantitative phenotypes extracted at each time point (48, 73, 170, 187, 214). In this way the 

history of single cells within a growing population (such as a bacterial microcolony) can be 

traced back to one common ancestor allowing for the construction of phylogenetic lineage 

trees. These allow visualization and analysis of the effect of cell history and ancestry on 

specific cellular behavior (Figure 21) (48, 122). Movies constructed from time-lapse image 

stacks provide a direct view of genetic activities in individual cells (48, 122). Movies are not 

only aesthetically appealing, but also allow for the eye to pick out subtle patterns in individual 

cells that would be difficult to notice without visual interface (122).  

Another important aspect in single cell analysis using time-lapse microscopy is the 

choice of incubation chambers that allow tracking of single cell growth whilst guaranteeing 

reproducible environmental conditions. Autofluorescent proteins need oxygen for fluorophore 

activation, and therefore a sufficiently high oxygen availability has to be ensured. Probably the 

simplest set-up involves in-house fabricated chambers that allow for two-dimensional 

microcolony growth between a coverslip and an agarose pad (23, 49, 59, 212). These 

systems are mostly limited to the growth conditions and sample size. Because they are 

sealed, medium conditions cannot be changed during the experiment and cells eventually ‘pile 

up’, limiting the length of time of observation. More sophisticated set-ups include flow 

chambers (4, 213) or capillary flow systems (36, 99, 120, 213, 225). Microfluidic chambers 

have been introduced to maintain continuous culturing conditions (15, 43). Some groups 

developed linear microfluidic chambers in which cells are confined to grow in a narrow groove. 

These devices facilitate analysis of cell lineages, as more closely related cells are closer 

together (213). Generally these systems, however, do not allow for the construction of 

phylogenetic lineage tress covering more than three generations (Figure 21). 
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Figure 8. Examples showing how s ingle ce l l  m ic roscopy may help to detect m icrob ia l  

d ivers i ty and bacter ia l  ind iv idua l i ty . (A) Diversity of bacteria from a human mouth as described 

by van Leeuwenhoek in a letter of 17 September 1683. A: motile Bacillus; B: Selenomonas 

sputigena, with C…D its path; E: Micrococci; F: Leptothrix buccalis; G: Spirochaete, probably 

Spirochaeta buccalis. [Adaped from Dobbell (54).] (B) Bacterial individuality in two (touching) 

microcolonies (a and b) of P. putida UWC1. Overlay of time-lapse confocal laser scanning 

microscopy images in excitation and emission wavelengths for EGFP and mCherry. An orange colour 

results where both marker proteins are expressed to a similar level. In this strain mCherry marker 

protein (red) is expressed from the constitutively expressing Ptac-promoter, while the EGFP marker 

protein (green) is expressed from the inducible Pint-promoter. [Reinhard (unpublished).] 
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BACTERIAL INDIVIDUALITY AND ADAPTATION 

 

The viability of any organism critically depends on its ability to adapt to the environment. 

Bacteria have evolved global control sensory systems that allow cell physiological adjustment 

or movement to more favourable locations in response to an environmental change. 

Environmental changes might include changes in chemical composition of the environment 

(132), local temperature (131), or intensity of light (136). For example, bacteria harbour two-

component systems that enable in a first step, the sensing of environmental change via 

membrane-bound sensor kinase proteins, to then in a second step, mount an appropriate 

cellular response via signal transduction pathways (132). Another global control sensory 

system, but mechanistically very different to two component systems, is catabolite repression, 

where the presence of the carbon source glucose can be sensed via absence of the trigger 

molecule cyclic AMP, and as a result catabolism of lower energy carbon substrates is shut 

down to save energy (68). A third global control sensory system in bacteria is the stringent 

response. Here, the alarmone ppGpp serves as a pathway trigger that can be thought of as a 

mechanism for adjusting the cell’s biosynthetic machinery to amino acid limitation (129). Many 

other global control sensory systems exist, such as the heat shock response for assisting 

recovery from stress (82), the cold shock response for preventing ice formation in the 

cytoplasm (172), or quorum sensing for responding to the presence of other cells of the same 

species (17). 

What combines all global response sensory systems is that in order to function they 

need to maintain a sensory component in an active, responsive state. Such maintenance is 

energetically costly however, and the fitness advantage of maintaining a sensory system 

becomes increasingly small the longer the environmental conditions remain constant (106). 

Furthermore, time-consuming readjustment to an adverse condition may in some cases, like 

the sudden presence of an antibiotic, fail to guarantee survival of the entire population (14). Not 

surprisingly therefore (at least for the evolutionary biologist), another strategy of adaptation has 

been found in bacteria, that in comparison to global response strategies, spares the metabolic 

costs of sensory machinery while ensuring immediate adaptation to changing conditions (106). 

This strategy is commonly referred to as a bet-hedging strategy, which functions on the basis 

of cell-to-cell heterogeneity also called bacterial individuality (185, 211). Heterogenic clonal 

populations, by chance, often include some individuals that are better adapted to survive future 

environmental change than others. Some of these are therefore likely to survive environmental 

change, thereby guaranteeing the survival of the clone. Importantly, the offspring of the 

survivors will again yield populations with cell-to-cell heterogeneity facing the same strategy of 
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pre-adaptation. However, unlike the global response, bet-hedging comes at the expense of 

sub-optimal net population growth due to a few slower growing or non-growing specialized 

phenotypes in a population (106). Modelling showed that bet-hedging is only evolutionary 

favourable as long as environments change rarely (106). However, as soon as frequent 

fluctuations in environmental conditions occur, global sense-response mechanisms are 

preferred (22, 106, 117).  

So far, population heterogeneity has been found to play a role in the metabolism of 

carbon sources (139), persistence (15, 53, 188), biofilm formation decision (3 3), (34), (96), 

competence (212), sporulation (211), cell size (23), (6), phage development (13 3), (160), and 

horizontal gene transfer (140).  

One of the earliest discoveries of population heterogeneity was the observation of 

variation in colony morphology arising from single bacterial clones (9). Later, in the 1940s, the 

phenomenon of persistence was discovered: an antibiotic susceptible population of bacteria 

containing an antibiotic resistant subpopulation, which generates equal fractions of persister 

and non-persister populations upon release of the antibiotic pressure (24). Seventeen years 

later, in a landmark study on the metabolism of lactose, Novick and Weiner (149) showed that 

the production of beta-galactosidase in individual cells was highly variable and random, with 

induction increasing the proportion of cells expressing the enzyme rather than increasing every 

cell's expression level equally.  

Although all of these early studies presented important proof for the existence of 

population heterogeneity, they were hindered substantially by the lack of reliable single-cell 

assays of gene expression available at that time. Only recently, with the advent of gfp-reporter 

technology and time-lapse microscopy, have microbiologists achieved breakthroughs in 

elucidating the underlying mechanisms of population heterogeneity at single cell level. Recent 

hypotheses classify population heterogeneity into at least three types of underlying 

mechanisms (47): First, genetic mechanisms that are based on stochastic rearrangement or 

modification of DNA (phase variation). Second, epigenetic mechanisms that are based on the 

feedback architecture and molecular noise of genetic networks (gene expression noise). And 

third, phenotypic heterogeneity related to bacterial cell aging (4, 187). I will explain all three 

mechanisms of population heterogeneity formation more in detail below.  
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Populat ion heterogeneity  based on phase variat ion 

 

As mentioned above, three main mechanisms are recognized that cause phenotypic 

heterogeneity: phase variation, noise and cell aging (47). Phase variation is a process causing 

temporary and reversible genetic heterogeneity in a population. It was first discovered in 

pathogenic bacteria (207). Pathogenic bacteria are often faced with a rapidly fluctuating, 

unpredictable and therefore challenging host environment. Such variable conditions can stem 

from the infection process that is dynamic over time, for example as a result of an inflammatory 

response or the production of antibodies, or they occur during transmission from one host to 

another (144). Phase variation causes spontaneous changes in the biosynthesis of surface 

exposed structures such as flagella, fimbriae, pili and outer lipopolysaccharides (LPS) (144, 

207). Such structures are typically exposed to the immune system and play an important role 

as antigens during an immune response. Their phase variation characteristic makes sense as 

a strategy to evade the host immune system in that the resulting phenotypic heterogeneity in 

surface structures ensures that the risk of immune detection is spread among variable 

offspring, each of which has some chance of avoiding recognition (163). 

 Phase variation is achieved through changes in the DNA, either through the generation 

of novel genotypes via nucleotide sequence mutations, or through DNA modification via 

methylation (206). Common to all examples of phase variation are three main characteristics: 

high-frequency mutations at specific loci, reversibility, and prevalence for mutations in genes 

coding for surface-associated proteins (144). Underlying phase variation are at least four 

different mechanisms (47): 

 

1. Slipped-strand mispairing (SSM); 

2. Site specific recombination; 

3.  Epigenetic DNA modification; 

4. Antigenic variation.  

  

 S l ipped Strand Mispair ing. A first mechanism of phase variation is termed slipped-

strand mispairing (SSM) (144). SSM acts via short sequence repeats (SSRs) termed 

contingency loci that function as hot-spots for transient mispairing during either DNA replication 

or in the course of other processes that require DNA synthesis, such as DNA repair and 

recombination. Mispairing of complementary DNA strands at contingency loci can cause 

changes in SSR tract length, and subsequently result in a frame shift mutation abolishing 

appropriate gene expression (81) (Figure 9). Depending on whether the alteration occurs 
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upstream of or within the gene, SSM can either influence transcription or translation, 

respectively. A good example for transcriptional SSM regulation is the homopolymeric tract of 

cytidines (C-tract) in front of the promoter for fimbrial subunits in Bordetella pertussis (37) 

(Figure 9B).  Here, the C-tract functions as a spacer that optimizes interaction between an 

activator, BvgA and RNA polymerase. A change from 17 repeats to 16 repeats disrupts BvgA-

dependent fimbrial gene activation. Other similar examples of transcriptional SSM regulation 

include the adhesin encoding nadA gene in N. meningitidis (138) or the fimbriae-encoding hif 

gene in Haermophilus influenza (208). An example of translational SSM regulation can be 

seen in the expression of the adhesin opa genes in N. gonorrhoeae and N. meningitidis. Opa 

mediate bacterial adhesion to and invasion of host tissues by interacting with different classes 

of cellular receptors. Alterations of the reading frame where the initiation codon is out of frame 

with the mature molecule results in aberrant or truncated proteins (8 3). Interestingly, since the 

opa genes are present in multiple copies on the chromosome, effects of On/Off switching are 

combinatorial. For example, stochastic On/Off switching of 12 independent opa genes in 

Neis seria gonorroehae can potentially lead to a phenotypic variety of 4096 combinations (51, 

81, 103, 147). A diverse arsenal of Opa receptors increases the likelihood of matching diverse 

receptor specificities, allowing bacterial populations to either sustain infection at a specific site 

or to adapt to new niches within the same or different hosts. Clonal variation through 

combinatorial On/Off switching is maybe best illustrated in the expression of a subset of LPS 

contingency loci in H. influenza. The genes here are required for the addition of the core 

sugars, glucose, galactose and sialic acid, to the conserved tri-heptose backbone of the LPS 

molecule (Figure 10) (144). 
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Figure 9. S l i pped st rand mispa i r ing (SSM). (A) Diagram illustrating the addition or deletion of 

simple sequence DNA repeats through SSM. Each strand is represented by a single line and repeat 

units by open rectangles. DNA polymerase slippage gives rise to unpaired repeat units that generate 

bulges in DNA. If a bulge occurs in the synthesized strand (top strand) an addition of repeat length 

will follow. If the bulge occurs in the template strand (bottom strand) a deletion of repeat length will 

follow. [Adapted and modified from Moxon et al. (144).] (B) A change in C-tract length from 17 (ON) 

nucleotides to 16 (OFF) as a result of SSM disrupts BvgA (green circles) dependent activation of fim 

in B. pertussis. Promoters are depicted as -35, -10 with a black arrow indicating the direction of 

transcription. A red cross indicates no transcription. [Adapted and modified from van der Woude 

(206).] 
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Figure 10. LPS phase var iat ion base d on SSM in H. inf luenzae .  (i) - (iv) Independent 

expression of lic2A, lic3A and NeuAc results in combinatorial addition of galactose (yellow triangles), 

sialic acid (blue squares), and phosphorylcholine (green circles) at the bacterial cell surface, 

respectively. Boxes represent contingency loci within each gene. A red cross indicates no expression 

due to SSM. [Adapted and modified from Moxon et al. (144).] 
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 S ite-speci f i c  Recombinat ion. Phase variation via site-specific recombination 

exhibits several defining features that highlight the difference of this mechanism to general 

recombination (47). Firstly, the area of homology is shorter than in general recombination. 

Secondly, the recombination event occurs between specific loci rather than anywhere within 

the region of homology. And thirdly, specific recombinases are required (206). In many cases, 

site-specific recombination alters the orientation of the promoter relative to its coding region. 

For example, expression of fimA, the major subunit of type 1 fimbriae in E. coli, phase varies as 

a result of the site-specific inversion of the fimA promoter (Figure 11A). The inversion is 

mediated by two site-specific recombinases, FimB and FimE that recognize two inverted 

repeats. In the "OFF" orientation, the promoter is incorrectly oriented for transcription of the fimA 

structural gene and hence fimbriae cannot be synthesized. However, inversion can switch 

back to the "ON" orientation due to the bidirectional recognition of the inverted repeats by FimB 

(100, 134). There exists at least one example where an invertible element leads to phase 

variation not through inversion of the promoter but through creation of a transcription terminator 

(Figure 11B). Depending on the orientation of the invertible element in the DNA of Clostridium 

difficile, an intrinsic transcription terminator in the 50 leader region of the cell wall gene cwpV is 

formed (62). Interestingly, there are also some reports in which genetic elements, through site-

specific integration and excision, have been found to cause inheritable changes in the 

virulence of bacterial pathogens. For example in Legionella pneumophila, phase variation of 

LPS and other virulence factors correlates with the presence of a defective bacteriophage that 

alternates between an integrated and an extrachromosomal replicative form (81). Similarly, 

reversible inactivation of extracellular polysaccharide production by Pseudoalteromonas 

atlantica is caused by the integration and excision of IS492, a member of the IS110 family of 

insertion elements, allowing this marine bacterium to alternate between free living and biofilm-

forming stages (81). 

 DNA Modi fi cat ion. The third mechanism of phase variation is epigenetic DNA 

modification via methylation and occurs in the absence of a change in DNA sequence. DNA 

methylation is primarily known for its role in prokaryotes to monitor and regulate the contents of 

their genomes. For example, E. coli methylates its DNA in order to indicate replication status or 

direct DNA post-replicative mismatch repair. This functionality has been exploited in an elegant 

study that was first to visualize horizontal gene transfer of a plasmid (12). But the role of DNA 

methylation in phase variation serves a different purpose: That of changing expression of cell 

surface structures to ensure immune response evasion. This is achieved by involvement of 

differentially methylated sequences in the regulatory regions of the phase-varying gene or 

operon. Here, the methylation state affects the DNA binding of a regulatory protein that directly  
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Figure 11. Phase var iat ion mediate d by s i te-spec if ic recombinat ion. (A) ON and OFF-

switching of type 1 fimbrial expression in E. coli occurs as a result of fimA promoter re-orientation 

(orange) through DNA inversion mediated by site-specific recombinases fimB and fimE via recognition 

of flanking inverted repeats (IRR and IRL). Genes are shown as boxes, promoters as arrows, 

triangles as inverted repeats, and the red cross indicates no expression. [Adapted from van der 

Woude and Baumler (207).] (B) DNA inversion in the cwpV promoter of C. difficile forms an intrinsic 

terminator (bulge of aligned red dots) in the transcript of cwpV leading to the Off-phase by preventing 

transcript elongation. Transcipt is represented as dotted line, with red indicating sequence to be 

aligned. [Adapted and modified from van der Woude (206).] 
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regulates transcription. A recent example for such a mechanism is OxyR-dependent and Dam-

dependent phase variation controlling expression of the family of gtr operons implicated in 

lipopolysaccharide modification in S. enterica serovars (207). Phase variation of gtr depends on 

differential occupation of the oxidative stress response protein OxyR at two binding sites in the 

regulatory region, which is dictated by the methylation state of two pairs of Dam target 

sequences (Figure 12). Another example of epigenetic phase variation is the expression of 

pyelonephritis-associated pili (pap) (84). Pap are cell surface structures in uropathogenic 

strains facilitating adhesion to host cell surfaces, especially in the urogenital tract. The 

regulatory region of the papBA operon contains six leucine responsive regulatory protein (Lrp) 

binding sites, and two deoxyadenosine methyltransferase (Dam) methylation sites (199). 

Alternating methylation of the proximal and distal methylation sites results in the freeing and 

occupation of Lrp from Lrp binding sites that are required for transcriptional activation. 

Switching in pap expression is hypothesized to be linked to cell division, only occurring when 

the DNA is transiently hemimethylated following DNA replication. There can be several non-

identical homologs of papBA operons in one cell able to cross-regulate each other's switching 

frequency. Maintaining diversity in pap-like operons in one cell and promoting their sequential 

expression, potentially increases individual differences and therefore population heterogeneity. 

 Ant igen ic Variat ion. The fourth mechanism of phase variation is antigenic variation. 

Antigenic variation involves recombination of silent homologs to generate novel variants. For 

example, the Neisseria gonorrhoea genome contains multiple scattered copies of the silent 

and variable pili gene pilS (81, 83, 85, 137). The pilS coding region contains a number of 

semivariable and hypervariable regions, as well as a conserved region identical to pilE. This 

allows parts of pilS to be recombined by RecA with its distant homolog pilE, from where 

expression can take place due the presence of a promoter region (85). Thus, variability of pilS 

combined with subsequent gene shuffling to pilE can potentially generate millions of antigenic 

variants representing a powerful bet-hedging strategy to evade host immune response via 

population heterogeneity. 
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Figure  12. Phase var ia t ion through DNA modif icat ion in S.enter ica  serovars.  Differential 

occupation of OxyR (black ovals) at two binding sites in the regulatory region is dictated by the 

methylation state of two pairs of Dam target sequences (M) leading to expression (ON) or non-

expression (OFF) from the gtr operon. Promoters are depicted as -35, -10 with black arrows 

indicating direction of transcription. A red cross indicates no transcription. [Adapted and modified 

from van der Woude (206).] 
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 Population heterogeneity  based on no ise 

 

We have learnt above that population heterogeneity in phase variation is based on 

transient mutations or modification of DNA (206). However, population heterogeneity can also 

be the result of gene expression noise (10, 47, 58, 60, 66, 93, 122, 124, 125, 130, 167, 173, 

185, 211). For example, and explained in more detail later, the induction of competence in 

Bacillus subtilis is probabilistically induced on the basis of noise (127, 184). Other examples, 

described in more detail later, are antibiotic persistence in E.coli (14, 15), lactose metabolism in 

E.coli (1, 156), lysis/lysogeny in phage lambda (154, 160), and sporulation in B. subtilis (210, 

212).  

Experimentally, noise in gene expression can be measured by coupling synthesis of 

autofluorescent proteins to promoters and record variability of fluorescence in single cells (49, 

61, 142, 155). Such variability can either be determined from time-lapse observations that 

record the variation in fluorescence marker expression of a single-labelled strain over time (49, 

61, 155), or, from single time-point observations that record the fluorescences of a double-

labelled strain expressing two reporter genes variants under identical promoters (Figure 13) 

(60, 93, 142, 194, 209). The finite number effect plays an important role because low numbers 

of regulatory factors (between a few tens to a few hundred molecules per cell (93)), are often 

involved in promoter activation and gene transcription. The stochastic fluctuations in the 

biochemical reactions of these steps can therefore be large, leading to bursts of transcripts, 

predominantly through on and off RNA polymerase activity (66, 93). Resulting transcription 

rate variation is either amplified or buffered in the following translation step depending on protein 

lifetime and interval time between transcriptional bursts, causing variation in protein levels per 

individual cell. These variations in protein levels are known as “intrinsic” noise as its origin lies 

in the biochemical reactions of gene expression itself and independent of other factors. 

Intrinsic noise could therefore be described as the gene expression variation that would occur 

between cells if they were in precisely the same state (61, 194). The other ubiquitous 

component of gene expression noise is extrinsic noise (61, 167, 194). In fact, total gene 

expression noise is always made up of both, intrinsic and extrinsic noise (61, 167, 194). 

Extrinsic noise results either from global physiological variations in the cell, such as variations 

in the metabolic state of the cell, the cell cycle or cell age, or as a result of variability in 

upstream signal transduction (66). 
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Figure 13. Measur ing gene- intr ins ic no ise .  Two almost identical genes, which encode red and 

green fluorescent proteins, are expressed from identical promoters, and are influenced identically by 

cell-specific factors, such as gene-regulatory signals. (A) The abundances of the two expressed 

proteins are perfectly correlated when stochasticity in the biochemical steps that is intrinsic to the 

process of gene expression (gene-intrinsic noise) is absent and the effects of intracellular 

heterogeneity are negligible. A scatter plot of protein abundance that was obtained from a ‘snapshot’ 

of a cell population contains points that are only on the diagonal. [Adapted and modified from Kaern 

et al. (93).] (B) Asynchronous protein abundances in the presence of gene-intrinsic noise are shown. 

Because the biochemical steps in the expression of the two genes are independent, gene-intrinsic 

noise causes the number of expressed proteins to differ, giving rise to a scatter plot that contains 

off-diagonal points. Evaluating the differences in expressed protein abundance within individual cells, 

and averaging these differences across a sufficiently large cell population can therefore provide a 

measure of the absolute magnitude of gene-intrinsic noise. [Adapted and modified from Kaern et al. 

(93).] 
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Figure 14. Gene express ion noise is ub iqui tous, and affects d iverse systems a t severa l  

leve ls .  (A) A model of the expression of a single gene. Steps i-v represent several biochemical 

reactions, which are associated with mRNA and protein production, transitions between promoter 

states and the decay of mRNA and protein. These reactions involve binding and dissociation events 

that occur at random at the molecular level [adapted and modified from Kaern et al. (93).]. (B) 

Mechanisms that shape noise in gene expression. Noise is characterized by bursty expression of 

mRNA (top). Proteins typically have longer lifetimes than bursts, leading them to timeaverage or 

‘buffer’ these bursts (middle). Finally, noise in one gene can propagate to generate further noise in the 

expression of downstream genes (bottom). [Adapted and modified from Eldar et al. (60).] 
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Elowitz and coworkers were among the first to experimentally distinguish between the 

contributions of each type of noise in E.coli (61). Hereto, they measured green or red 

fluorescence from identical promoters in individual, double-labelled cells concluding that 

uncorrelated fluctuations resulted from intrinsic noise, whereas correlated fluctuations reflected 

extrinsic noise (Figure 13) (61, 167). 

While some of the measured fluorescence variability can be attributed to experimental 

error, a substantial part of measurable noise stems from random binding and dissociation 

events that occur between discrete reactants at the molecular level (1, 61, 95, 156, 167). 

Such biochemical noise tends to increase when the number of interacting reactants 

decreases, which is commonly known as the “finite number effect”. 

Generally, gene expression noise alone is not sufficient to cause heterogeneity at the 

phenotypic level. Often, phenotypic heterogeneity requires components such as feedback and 

non-linearity allowing the establishment of a bistable system with two stable expression 

patterns (27, 60, 125, 130).  

While feedback may tip such a system from one stable state to another, non-linearity 

sets the sensitivity at which such a switch occurs. Examples of feedback designs that may 

favour bistability are the positive feedback loop (Figure 16) or the double negative feedback 

loop (Figure 15A) (58). In both network architectures an above-threshold fluctuation of gene 

expression results in the flipping of the gene from an “OFF” to an “ON” state (Figures 14B). 

The gene expression threshold is determined by non-linear activity levels of regulatory 

molecules, which can be caused either by cooperative binding or by molecular titration of these 

molecules. In cooperative binding the regulatory molecules become active only after assembly 

of identical subunits into multimers (27). In molecular titration regulatory molecules loose 

functionality when sequestered into inactive hetero-complexes by titrating molecules (27). In 

both cases a small fold change in input generates a larger fold-change in output (Figure 18C) 

(125).  

However, it should be noted that not in all cases of population heterogeneity at the 

phenotypic level, must bistable or multi-stable switches between stable states serve as a 

basis. At least two studies showed that short-lived transcription factors and stochastic 

fluctuations in the expression of the transcription factors may be enough to create phenotypic 

diversity (152, 197).  

The phage lambda bistable system. One of the best known phenotypes of a 

genetic switch system are the alternative lytic and lysogenic states of the bacterial virus 

lambda (154, 161). Although in this system the switch is only to a very minor extent influenced 

by biochemical noise and almost exclusively induced by external cues (e.g. UV light), the 
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lambda bistable system is a well-characterized example of a switch based on double negative 

feedback-loops. Bacteriophage λ infects E. coli with two outcomes: In the lytic pathway, it 

reproduces quickly, thereby killing the host and releasing phage particles. In the lysogenic 

pathway, it integrates into the host genome and remains dormant (154). Governing the 

alternative lytic and lysogenic states of phage lambda is a double negative feedback circuit 

that consists of two antagonistic transcriptional repressors CI and Cro (Figure 15A). At high 

concentrations the CI repressor inhibits transcription of the cro gene and other genes which 

are involved in lytic growth. Simultaneously CI activates its own transcription. As a result the 

phage is held in a dormant, lysogenic state (Figure 15B). Vice verca, high levels of the Cro 

repressor inhibit transcription of the ci gene. Further, Cro, too, activates its own transcription. 

As a result, genes involved in lytic growth are freely expressed (Figure 15C), phage DNA is 

replicated and progeny is produced. Thus, a feedback system with CI and Cro mutually 

inhibiting each others transcription while stimulating their own transcription, puts into place a 

threshold of repressor concentrations that, if surpassed, acts as a switch between lysogeny 

and the lytic state. Negative auto-regulation at high CI concentrations serves the additional 

purpose of preventing CI repressor concentration from raising too much. This ensures that the 

lysogen stays poised to respond to an inducing signal (such as UV irradiation) and that the 

lysogeny state continues to self-perpetuate. At the heart of the CI and Cro feedback systems 

lie recruiting reactions that involve interactions between molecules of repressor proteins, 

between repressor and RNA polymerase, and between repressor and DNA. In the lysogen 

state, a CI-DNA interaction in form of a repressor dimer occurs, preferentially at two of three 

adjacent and similar operator sequences (operator sites 1-3). Once the CI-dimer is bound to 

operator site 1, which has a higher binding affinity than operator site 2, this dimer recruits via 

protein-protein interaction another dimer that then also binds to DNA at operator site 2. In this 

way, a repressor protein complex is cooperatively formed, and able to recruit RNA polymerase 

to the CI promoter. Transcription of the ci gene can now follow, whereas that of the cro gene 

remains repressed (Figure 15B). However, when operator site 3 is occupied by CI, RNA 

polymerase is obstructed preventing transcription of the ci gene. CI binding to operator site 3 

only occurs when its concentration reaches a high level. This negative autofeedback of CI is 

thought to have evolved to avoid locking the cell into the lysogenic state (154, 161). Operator 

site 3 can also be occupied by the Cro repressor (Figure 15C). Cro binds to operator site 3 

when cleavage of CI occurs as a result of UV radiation and DNA damage. In this case the 

transcription of cro and other lytic genes is initiated. Later in the lytic program, Cro slows down 

transcription of its own gene by binding to operator sites 1 and 2 (Figure 15C) (154, 161).  
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Figure 15. The lambda swi tch. (A) Classic example of the double -negative circuit governing the 

alternative lytic and lysogenic states of phage lambda. When the lambda repressor CI is at high 

levels it represses the gene for the Cro repressor and genes involved in lytic growth. Hence the phage 

is held in the dormant, lysogenic state. Conversely, when Cro is at high levels it represses the gene 

for CI under which condition genes involved in lytic growth are freely expressed. [Adapted and 

modified from Losick (125).] (B) In a lysogen, λ repressor preferentially occupies two adjacent 

operator sites, labeled 1 and 2. This preferential occupancy is determined by two factors: site 1 has 

the highest affinity for repressor, and a λ repressor dimer binds there cooperatively with another 

repressor dimer binding site 2. In this state, repressor activates transcription of its own gene (which 

proceeds leftward in the figure) as it represses transcription of the cro gene. With lower efficiency, λ 

repressor also binds the weak site 3 and thereby turns off transcription of its own gene. The yellow 

stars indicate protein-protein contacts of about equal strengths, one mediating cooperative binding 

of repressor dimers, the other mediating recruitment of RNA polymerase by repressor. (C) UV 

irradiation results in cleavage of repressor and the onset of transcription of cro and other lytic genes. 

Cro binds the same three operator sites, but in an order opposite that of repressor: it first binds site 

3 and turns off expression of the repressor gene. Later in the lytic cycle, Cro decreases or stops 

transcription of its own gene by binding sites 1 and 2. [Adapted and modified from Ptashne (161).] 
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 Competence. Bacterial competence development is presented here as an example 

to understand the interplay between key drivers of population heterogeneity including gene 

expression noise, nonlinearity-based thresholding, and feedback network architecture (Figure 

16). It should be noted however that competence development cannot be regarded as a fate-

sealing bistable system since the transition from the vegetative state to the competent state is 

a reversible process. 

Competence development is the conditioning to take up extracellular DNA. Key to 

competence development in Bacillis subtilis is the master regulatory protein ComK, which at 

specific concentrations above a 'threshold' is able to induce its own transcription (210). A 

switch to high expression of comK results in both the activation and repression of genes 

involved in competence development, such as comG and comS, repectively, eventually 

leading to a stable competence state (Figure 16). However, the state of competence is only 

transient since ComK is targeted for degradation by the MecA/ClpP/ClpC complex of 

proteases. Although the MecA/ClpP/ClpC complex tends to degrade ComK, it is kept at bay 

by the presence of a competitor target peptide called ComS. Only when ComS levels decrease 

as a result of degradation and are not replenished due to ComK repression, nothing stops 

degradation of ComK to occur. As a result, ComK reaches sub-threshold concentrations and 

the cell transits back from competence to the vegetative state. (90, 191). As different 

members of the population switch between the “ON” and “OFF” competence state, a steady 

state in population heterogeneity results, which leads to competence for DNA uptake in ca. 

10% of the cells of a population (90). While the spontaneous nature of the switch is thought to 

be driven by intrinsic, random fluctuations (noise) in ComK expression levels (192), the 

proportion of the competent cell fraction depends on the ComK concentration threshold level. 

This relationship can be attributed to the non-linear characteristic of ComK activity levels, which 

stem from both the cooperative nature of the ComK active state as a multimeric transcription 

factor (211), and ComK titration by the MecA/ClpP/ClpC complex of proteases which rapidly 

bind to and degrade ComK. Considering that DNA acquisition might represent risk and chance 

at the same time, the maintenance of a subpopulation competent for DNA uptake can be 

thought of as a typical bet-hedging strategy. While new DNA might serve as an advantageous 

blueprint for rapid adaptation to a changing environment, it potentially facilitates dangerous 

intake of foreign DNA such as viruses. By only committing part of a population to the DNA-

uptake gamble, the population avoids risking extinction while still keeping open a backdoor to 

ameliorate its adaptive potential. The observed variability in the durations of competence in B. 

subtilis might reflect an adaptation to a broad range of extracellular DNA concentrations (60). 
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Figure 16. The DNA uptake competence cycle  in Bac i l lus subt i l i s .  Noise within the system 

drives the transition from the vegetative state to the competent state. [Adapted and modified from 

Johnston and Desplan (90).] 
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Sporulation. Bacterial competence development in Bacillus subtilis is an example 

of bistability based on a bi-directional cellular differentiation process: reversible transitions from 

the competent state to the non-competent state occur, yielding sub-populations of each state. 

In contrast, another type of bistability in Bacillus subtilis, sporulation, is based on a 

unidirectional and therefore irreversible differentiation process (185, 211). Once a cell has fully 

committed to sporulation, its fate is sealed; As part of a last resort survival strategy and 

triggered in response to mild nutrient limitation and high cell density, an elaborate 

developmental program is on the way that after the early stages inevitably culminates in the 

formation of a highly resistant endospore. The endospore is released by mother cell lysis and 

can remain dormant for many years while retaining the potential to germinate and resume 

growth once conditions become favourable again. Because not all cells in a population enter 

spore formation simultaneously, two distinct sub-populations result: a spore forming (ca. 20%) 

and a non-spore forming population (212). At the heart of this phenotypic bifurcation lies the 

master regulator Spo0A, which when phosphorylated is potentially able to initiate the 

sporulation cascade via direct control of the activity of more than 100 genes (49). 

Phosphorylation of Spo0A occurs via a multicomponent phosphorelay including the primary 

kinases KinA and KinB, which both feed phosphoryl groups into the relay, and two 

intermediate phosphotransferases, Spo0B and Spo0F, which subsequently transfer 

phosphoryl groups to Spo0A (Figure 17) (49). It is the net phosphate availability of this 

phosphorelay, that determines whether or not a high enough cellular concentration (threshold 

level) of phosphorylated Spo0A is reached to initiate sporulation (49). Cell-to-cell variability in 

phosphorelay phosphate availability represents thus a key driver for sporulation heterogeneity. 

Three main factors influence phosphorelay phosphate availability: expression levels of the 

phosphorelay genes KinA, KinB and SpoF, negative regulation of phosphorelay activity via 

dephosphorylation by the aspartyl-phosphate phosphatases RapA and Spo0E, and indirect 

positive feedback via SigH (49). In SigH-mediated positive feedback, Spo0A-P represses an 

unstable transcriptional repressor protein called AbrB, which is a repressor of the alternative 

sigma factor SigH. SigH is an activator of the transcription of kinA, spo0F and spo0A (49). 

Spo0A-P thus sets up a self-reinforcing cycle that stimulates both its synthesis and 

phosphorylation. The implication of this feedback loop is its potential to cause a rapid increase 

of Spo0A-P once a certain threshold phosphate charge has been reached. This would 

ultimately result in activation of the unidirectional sporulation program. Interestingly, this form of 

feedback helps, but is not essential to establish heterogeneous initiation of sporulation (49). 

The role of dephosphorylation in the phosphorelay is thought to provide the link between  
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Figure 17. Ma in phosphotransfe r routes wi thin the  Bac i l lus subt i l is .  [Adapted and 

modified from de Jong et al. (49).] 
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environmental cues and the timing of sporulation. For example, RapA phophatase activity is 

known to be influenced by growth rate, cell densities, and nutritional status of the cell (49).  

The biological significance of sporulation bistability may be manifold. Most obviously, it 

may constitute a bet-hedging strategy to cope with an uncertain future of either a temporary 

shortage of nutrients or a prolonged period of famine (185, 211). While non-spore-forming cells 

are better adapted to a temporary shortage of nutrients because they can rapidly resume 

growth when nutrients become available again, spore formers are better adapted to a 

prolonged period of famine because they form dormant spores that can survive long periods of 

stress thus preserving the clonal lineage. The simultaneous presence of both cell types thus 

prepares the clonal population for different future environments (185, 211).  

An additional benefit of sporulation heterogeneity might be optimisation of resources. 

As mother cells lyse to release endospores, nutrients are released that can stimulate diauxic 

growth of non-sporeformers. Thus, heterogeneity in the timing of spore formation allows 

utilization of these resources that would otherwise be lost (210). However, more importantly in 

this respect is that spore forming cells that are not yet irreversibly committed to sporulation, 

exhibit a behaviour referred to as cannibalism: spore forming cells produce extracellular toxins 

that cause extensive lysis (~70% of viable cells) in their non-spore forming siblings. The 

extracellular toxins are expressed in a Spo0A-dependent manner from two operons, skf 

(sporulating killing factor) operon and sdf (sporulating delay protein) operon, that also express 

immunity factors protecting spore forming cells from self-lysis by the toxins they produce (41, 

78, 123). The resulting release of nutrients from lysed cells serves as a signal to prevent 

sporulating cells from continuing into the sporulation program. This allows sporulating cells that 

have not yet passed the point of no return in the otherwise unidirectional sporulation program, 

to quickly revert to the vegetative mode and resume growth should new nutrients arrive (41, 

212). Another hypothesis is that nutrient release through cannibalism maintains a minimal 

nutrient concentration required for the completion of sporulation, a long lasting, energy-

intensive process (about 7 hours at 37ºC) (41). 

Pers istence. Another prominent example of population heterogeneity, similar to 

sporulation in that resistance to harsh environmental conditions is brought about by retardation 

of growth, is the bet-hedging strategy of bacterial persistence. In 1944 Bigger noted that 

treatment of Staphylococcus aureus with penicillin resulted in rapid killing of the majority of 

cells but with a small subpopulation of typically one per million cells (24) showing prolonged 

survival in the presence of the antibiotic (14, 24). Mutation as the primary cause of resistance 

was ruled out because when the resistant sub-population was re-cultured and subjected to 

treatment of antibiotic exposure as before, again a small fraction of survivors appeared.  
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Figure 18. Stochast ic bet -hedging in bacter i a generates popula t ion d ivers i ty. (A) An 

external condition (e.g. starvation) triggers (yellow star) the phenotypic differentiation of the population 

into a small, stochastic subpopulation of dormant type 1 bacterial persisters (red). Dormant 

persisters then survive adverse conditions such as antibiotic treatment. Upon return to normal growth 

conditions, these cells divide and re-establish the population. Finally, a new persister subpopulation 

is determined. (B) Survival curve of wt E. coli (black) and high persistence mutant (red). At t = 0, 

overnight cultures were diluted into fresh medium containing ampicillin. Note that the initial killing of 

both strains is similar, indicating that the mechanistic interaction with the antibiotic is similar. Tailing 

is observed in both cases, but to a greater degree for the high persistence mutant, due to the higher 

fraction of dormant bacteria. [Adapted and modified from Balaban et al. (15).] (C) Threshold-based 

persistence. The smooth distribution of expression of the toxin (At) is transformed by the threshold 

(dotted line) into a bi-modal distribution of normally growing cells (green) and persistent cells (red). 

Inlet: Schematic organization of a typical toxin-antitoxin network motif. The toxin (HipA) is co-

expressed with its antitoxin (HipB). Together the proteins form a complex that is not toxic and 

represses their expression. [Adapted and modified from Rotem et al. (171).] 
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Therefore, Bigger hypothesized that the observed antibiotic-tolerant fraction of cells 

must have been made up of genetically identical, but slow or non-growing cells, which he 

continued to refer to as persisters (24). Considering that antibiotics generally target processes 

associated with active growth such as cell wall biosynthesis, transcription, translation, or DNA 

replication, resistance by slow growth was indeed a plausible hypothesis (47), which was 

recently confirmed by a series of state-of-the art, single cell experiments by Balaban and 

coworkers (15). In these experiments an E. coli hipA mutant with a 1000-fold increased rate of 

persister cell formation (in comparison to the wild type) (145) was used. Together with a clever 

designed time-lapse imaging technology entailing specialized microfluidics incubation devices, 

individual persister cells could be observed, which displayed spontaneous entering and exiting 

of periods of reduced growth. Two types of persisters became evident. Type I persisters 

formed in response to a external triggers such as stationary phase (72), whereas, Type II 

persisters formed stochastically and continuously during population growth (72).  

While the mechanism for type II persistence remains elusive at this point, type I persistence 

seems to be regulated by a threshold-based, titration-based mechanism involving the hipBA 

antitoxin toxin (AT) module (171). AT-modules typically consist of a co-expressed antitoxin and 

toxin pair, with the former neutralizing the toxic effect of the latter (74). AT-systems can be 

involved in many different cellular processes such as plasmid stabilisation, programmed cell 

death, modulation of the global levels of translation and replication during exposure to nutritional 

stress (74). In the hipBA AT-system, binding affinity of the toxin HipA to its antitoxin HipB 

causes an increased frequency of persistence. Consistent with the titration hypothesis that 

HipA and HipB neutralize each other, HipA was shown to be active only once a threshold of 

expression was surpassed, which in turn was dependent on the concentration of HipB. 

Although it was shown that free HipA toxin was responsible for initiating and maintaining the 

persistence state  (Figure 18), its exact mechanism remains unclear (72). HipA interaction with 

other key regulatory proteins interfering with translation and transcription is likely.  

Positive feedback, or double negative feedback, as mentioned above, are common 

components in bistable systems as they help maintain alternative stable states. In this respect 

it is interesting to note that HipA is thought to positively regulate its own expression. Another 

important factor in bistable systems is non-linearity, which helps to create a border between On 

and Off stable states. Heterodimer binding of the HipBA toxin antitoxin is innately ultrasensitive 

and therefore potentially represents an important component in bistability (27).  

 



GENERAL INTRODUCTION 
 

47 

Lactose ut i l isation. Another classic example of population heterogeneity (showing that 

genetically identical cells in the same environment can exhibit different phenotypes) is the 

lactose utilisation system in Escherichia coli (115). The genes for lactose metabolism (lac 

genes) are fully expressed for every cell in a population under high concentrations of inducer. 

However, at moderate inducer concentrations, the lac genes are fully expressed in only a 

fraction of a population. This phenomenon of population heterogeneity was first discovered by 

Novick and Weiner in 1957, who hypothesized that switching from the uninduced state to the 

induced state must occur through a single rate limiting molecular process (149). Only recently, 

with the advent of sophisticated fluorescent marker technology, could this hypothesis be 

experimentally confirmed. Facilitated through molecular-level sensitivity in fluorescence 

microscopy coupled with time-lapse imaging, Choi and colleagues (40) were able to show that 

the “ON” switch of lac expression is triggered by stochastic dissociation of the LacI repressor 

from its DNA target sites (Figure 19). LacI is a tetrameric transcription factor that, upon binding 

to two lac operators, causes DNA loop formation in the promoter region of the lac operon (40). 

Lac gene transcription can only initiate if the loop structure disappears, which it can do in two 

ways. Either the LacI repressor dissociates from both operator sites (complete dissociation), or 

only from one operator site (partial dissociation) (40). Under high intracellular inducer 

concentration, it is always the complete dissociation of the LacI repressor that occurs. In this 

case, repressor dissociation is active and the repressor remains sequestered after 

dissociation by the inducer (40). Also, under high intracellular inducer concentrations a 

homogenous expression of the lac genes in the population is seen (40). In contrast, under low 

or intermediate intracellular inducer concentrations, LacI stochastically dissociates from the 

operators independently of the inducer. Under these conditions partial repressor dissociation 

occurs much more often than complete repressor dissociation (40). Furthermore, because in 

partial dissociation the repressor remains in proximity to the vacant operator binding site (as 

opposed to during complete dissociation) rebinding occurs rapidly (40). Consequently, little time 

for the generation of mRNA (a single copy) is available, only allowing for a small burst of protein 

(40). Although complete repressor dissociation under low or medium inducer concentrations 

occurs rarely, when it does, no quick rebinding of the repressor is possible. As a result multiple 

mRNAs can be transcribed resulting in a large burst of Lac proteins (40). Amongst the Lac 

proteins is also the LacY transporter, which allows influx of further inducer (40). As a result of 

increasing inducer concentrations, active displacement of LacI repressor from the lac 

operators occurs and thus a positive feedback loop is initiated that ultimately leads to a switch 

in phenotype from the Off to the On-state of lactose utilisation (Figure 19) (40).  
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Figure  19. The express ion of lac tose permease in E .  co l i .  (A) The repressor LacI and 

permease LacY form a positive feedback loop. Expression of permease increases the intracellular 

concentration of the inducer TMG, which causes dissociation of LacI from the promoter, leading to 

even more expression of permeases. Cells with a sufficient number of permeases will quickly reach a 

state of full induction, whereas cells with too few permeases will stay uninduced. (B) A high 

concentration of intracellular inducer can force dissociation of the repressor from its operators. (C) At 

low or intermediate concentrations of intracellular inducer, partial dissociation from one operator by 

the tetrameric LacI repressor is followed by a fast rebinding. Consequently, no more than one 

transcript is generated during such a brief dissociation event. However, the tetrameric repressor can 

dissociate from both operators stochastically and then be sequestered by the inducer so that it 

cannot rebind, leading to a large burst of expression. [Adapted and modified from Choi et al. (40).] 
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Populat ion heterogeneity  based on aging  

 

Besides phase variation and biochemical noise, aging (or senescence), too, might play 

a role in driving bacterial individuality. Recent studies provided evidence that age affects cell 

size and timing of cell division (6, 23), growth rates (187, 190) and survival (213) and the 

localisation of proteins (159) and protein aggregates (118, 220). Hence, a picture emerges in 

which bacteria exhibit individuality for demographic (and therefore deterministic) rather than 

stochastic reasons. 

Generally, aging can be defined as a decline in reproductive rate and survival due to 

deterioration of function with age (169). This interpretation is founded on the fact that structural 

damage accumulates in tissues, cells and subcellular structures as an inevitable 

consequence of vital activities (2). Modelling suggests that asymmetric differentiation between 

parental and progeny cells may readily evolve as a strategy to cope with structural damage (3, 

63, 89, 215). In this case the damaged or aged structures are not equally propagated from 

parent to offspring (Figure 20C). Rather, the majority of damaged structures segregates to the 

parent, while the offspring receives newly synthesized structures and therefore emerges 

rejuvenated. Thus, aging can be seen as a division-of-labour strategy to cope with 

accumulating damage where parent fitness is sacrificed in favour of offspring fitness (150).   

Indeed, multiple examples of asymmetrical aging exist in the microbial world. It has been shown 

that yeast (16) use cues acting as indicators of polarity to faithfully segregate damaging protein 

aggregates to the ageing cell lineage while leaving the other lineage rejuvenated and free of 

such damage (151). Although asymmetrical distribution of subscellular structures between 

cells during cell division is a common/known feature in many bacteria (180), a link between 

asymmetric differentiation and aging has so far only been shown in a few systems (4, 6, 23, 

212). The first bacterium in which aging was demonstrated is the alphaproteobacterium 

Caulobacter crescentus (4). In this organism asymmetric division yields division yields two 

phenotypes: a stalked, chromosome replication-competent parent cell and an offspring 

replication-noncompetent swarmer cell. While the stalked cell remains attached to a solid 

surface by virtue of a polar and strongly adhesive holdfast, the swarmer cell is equipped with a 

polar flagellum allowing for dispersal and colonization of new territory (Figure 20A). Stalked cells 

give rise to new swarmer cells that eventually themselves differentiate into stalked cells. The 

Caulobacter life cycle thus entails a 'juvenile phase' in which swarmer cells must go through a 

period of differentiation before becoming capable of reproducing (108).  
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Figure 20. Bacter ia l Aging. (A) Concept of damage-related aging: damage is unequally 

distributed in the progeny of a dividing mother cell. If such damage is biased towards the older cell 

pole in each generation, cell-pole related aging occurs. Ovals, cells; black dots, damage; dotted 

oval, cell death. [Adapted and modified from Ackermann et al. (2).] (B) Schematic of the life cycle of C. 

crescentus. d, oldest pole mother cell; Number of red stars, number of times the old pole mother cell 

has witnessed a cell division. [Adapted and modified from Ackermann et al. (4).] (C) Schematic of 

reproductive output of C. crescentus (progeny produced per stalked cell and hour) as a function of 

age (4). 
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C. crescentus dimorphic life cycle strategy was elegantly exploited by Ackermann and 

colleagues to monitor hundreds of cell division events over long periods of time (130 divisions 

over a time-period of 300 hours) (4). In this case a flow chamber was prepared in which the 

swarmer cells were continuously flushed away by flowing medium, while stalked cells stayed 

attached to the chamber walls and thus could be monitored (Figure 20A). Combining this set-

up with automated time lapse imaging, it became clear that with each division, stalked cells 

required progressively longer times to produce swarmer cells and hence were aging (Figure 

20B). 

But how about aging in symmetrically shaped cells? Recording of bacterial aging in 

morphologically (visually) symmetrically dividing cells such as rod-shaped E. coli is more tricky 

than in asymmetrically dividing cells such as Caulobacter (187). Because division in E. coli 

occurs at mid-cell, old and new cell poles can only be identified by looking back in division 

history with help of time-lapse movies (Figure 21A). The number of times an old pole has 

'witnessed' cell division and therefore birth of a new cell pole during septation, can then be 

taken as a measure of cell age. Lineage trees are particular revealing when asking if a physical 

trait is inherited or related to cell pole age (Figure 21A). Alternatively, fluorescent marker fusion 

proteins can be employed that localize at cell poles. Although this technique might help in 

distinguishing old from new cell poles without the need of documenting growth history, it will be 

limited to age determination beyond only a few cell divisions (159). 

The first demonstration of aging in visibly symmetrically dividing cells was reported by 

Stewart and colleagues (187). This group recorded the history and physical parameters of 

single cells in E. coli monolayer microcolonies. They found that cells of old pole age showed 

diminished growth rate, decreased offspring production and increased incidence of death in 

comparison to cells of young pole age. The discovery of aging in E. coli came as a surprise 

because it was widely accepted that organisms reproducing by binary fission were functionally 

immortal due to lack of visual asymmetry. However, this latter assumption does not hold true 

beyond visual perception since on a physiological level all bacterial cells can be considered 

inherently asymmetric for at least two reasons. Firstly, it has been shown that DNA segregates 

non-randomly to old or new cell poles (221). Secondly, any cell constituent with limited diffusion 

and a long half-life may be expected to accumulate at the old pole (187). For example, in E.coli 

it is known that components of the cell wall turn over slowly and are conserved in the poles 

where they are formed (50). 
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Figure 21. Schemat ic compar ing microcolony-  and microflu id ics- ba sed t ime- lapse 

observat ion systems.  (A) Schematic of microcolony growth over time. (B) Lineage tree constructed 

from (A). Each cell division is represented by branching events in the lineage tree. (C) Magnification of 

dotted part of (B) showing assignment of cell-pole ages. Individuals at different ages are 

represented by rounded rectangles: Red pole, oldest pole; green pole, second oldest pole; grey pole, 

new pole; number within rectangle, pole age corresponding to the number of divisions the oldest pole 

has witnessed. (D) Schematic illustration of the microfluidic mother machine proposed by Wang and 

colleagues (213). The oldest pole mother cell is trapped at the end of the growth channel. Red pole, 

oldest cell pole; d, oldest pole mother cell; Number of red stars, number of times the old pole mother 

cell has witnessed a cell division. 
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Yet, another study on E.coli cell pole aging, this time by Wang and colleagues using a 

microfluidics device termed ‘mother mashine’ (213), as opposed to the microcolony growth 

procedure that was used by Stewart et al. (187) (see Figure 21), was not able to detect age 

related bias in growth rate. Rather, Wang and collegues saw a very robust mechanism of 

growth over hundreds of generations in cells inheriting the old pole (213). Rang et al. (166) 

reconciled the contradicting results of Wang et al. (213) and Stewart et al. (187) on basis of a 

population genetic model. They attributed the differences in aging in the two experiments to the 

differential experimental conditions used, respectively, claiming that insufficient extrinsic 

damaging agents were acting on the cells in Wang’s experiment (166, 213); In comparison to 

the microcolony growth set-up from Stewart et al. (187), which could only track cells up to 

eight generations, Wang et al. (213) used a microfluidics-based system allowing for online 

tracking of single cells for up to 200 generations (Figure 21B). Although Wang and colleagues 

did not find growth-rate based aging (213), they still noted a higher incidence of death in old 

cells, which they attributed to the accumulation of some unidentified lethal agent, possibly 

protein aggregation (accumulating damages). Indeed, accumulation of protein aggregates in 

old cells of E. coli had been found previously by Lindner and colleagues (118). Another study 

showed bistable populations of E. coli consisting of damage-enriched and a damage-free 

population in stationary phase; whereas damage-free cells remained reproductively competent, 

damage-enriched cells eventually became non-culturable (52). 

In another study of visibly symmetrically dividing rod cells, Bergmiller and colleagues 

showed that age in Methylobacterium extorquens influences cell size and the interdivision 

interval (23). In this species cells with young poles are smaller upon division and take longer to 

divide than cells with older poles and therefore contribute to cell size heterogeneity in the clonal 

population. This case showed that age differences between individuals represent regular, 

deterministic processes that affect biological properties and lead to population heterogeneity in 

another way than noise-based systems.  

Another aging phenomenon was recently reported by Aldrich and co-workers (6), who 

focused on mycobacteria. They found that old-pole cells grew faster and showed longer birth 

lenghts than new-pole cells. As a result, physiologically distinct subpopulations showed 

differential susceptibility to antibiotics. 

Thus, it can be concluded that while the exact molecular mechanisms leading to aging 

still remain unknown, more and more studies appear that demonstrate the role of aging in cell-

to-cell heterogeneity. Aging might thus represent, next to stochastic mechanisms of cell-to-cell 

variability generation such as phase variation or biochemical noise-based heterogeneity, 

another important component upholding a bet-hedging survival strategy. 
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RESEARCH OBJECTIVES AND THESIS OUTLINE 

 

In this dissertation HGT is studied with the general aim to better understand how and 

why bacteria evolve so quickly. In this way this work hopes to contribute to the knowledge of 

how to counteract the downsides or enhance the benefits of adaptive processes. To achieve 

this goal the research of this thesis is focused on the study of ICEclc, a model system 

representing key mediators in bacterial genome evolution.  

Whereas previous studies on ICEclc have more focused on the molecular aspects of 

bistability formation (140, 142, 178), excision/integration (70), transfer (142) and regulation 

(140, 178), the principle research of this thesis was more directed at the establishment of 

single cell analysis tools and their usage to demonstrate the existence of a number of eloquent 

steps in transfer competence formation. Indeed, since prokaryotic biology in general is still 

largely based on the idea of clonal populations of cells which all behave the same, novel, 

single-cell studies could be expected to reveal a hidden dimension in ICE biology (47, 53, 122). 

At the onset of this thesis there was fundamental lack of knowledge in single cell 

behaviour with regard to ICEclc and ICEs in general. It seems that the generally low ratios at 

which ICEs are transferred from donor to recipient and the methodological obstacle associated 

to this fact has disencouraged many researchers to investigate ICE-transfer at the single cell 

level (11, 13, 109, 162). However, such knowledge is crucial for the understanding of the 

evolutionary success of ICE since even in uniform environments, it cannot be assumed that 

ICEs behave similarly in all cells of a clonal population (47). More and more cases of bacterial 

individuality are being discovered in different fields such as prophage activation (154), 

sporulation (212), competence (90), persistence (15) and lactose metabolism (40), which 

points to the possibility that bacterial individuality might also play an important role in the 

regulation of HGT. Indeed, prior to the start of this thesis it could be shown that activation of the 

Pint-promoter leading to excision of ICEclc in Pseudomonas knackmus sii occurs only in a 3-

5% of cells (178), which was later suggested to be the result of a bistable activation cascade 

involving a dedicated program to prepare cells for ICEclc transfer (70, 140, 142). Not only 

ICEclc, but a variety of other ICE have self-transmission frequencies in the order of a few 

percent per donor cell or lower, suggesting that induction of a “transfer-competent” state in 

some cells in a clonal population of ICE-bearing donors is indeed a common strategy (11, 13, 

109, 162). 

Therefore, for this thesis, it seemed promising to try characterize differences between 

ICE-ON (transfer activated) versus ICE-OFF (transfer inactivated) cells at the single cell level, 

which had never been done before. One major obstacle, however, represented the low 
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proportion of ICEclc-ON cells and the rather weak promoter strengths of the available 

promoters (Pint-promoter, Pinr-promoter) that by fusion to genes of fluorescent marker proteins 

could indicate the ICEclc-ON state. These flaws had to be taken into account when designing 

single cell methodologies and strategies for this project. Therefore, the aims of this thesis 

comprise both methodological and fundamental research goals. The main goals of this thesis 

thus are: 

 

1 )  To estab l ish a sound set  o f  methods that  can  

a )  rel iab ly characterize and quant i fy  smal l subpopulation ef fects, and  

b)  fol low bacteria l  ce l lu lar growth and ICEclc -activat ion over t ime and as a  

function o f  vary ing growth condit ions; 

 

2 )  To per form fundamenta l  research at the s ingle ce l l  leve l  to   

a )  provide direct proof for the “transfer competent state” o f ICEclc-active  

ce l ls,   

b)  descr ibe the physiology o f  transfer competent ce l ls in wi ldtype and 

mutant  backgrounds to quanti fy the cost o f transfer competence in  

single ce l ls and at  the populat ion l eve l ,  and 

c )  determine the genealogy o f  transfer competent ce l ls in  microco lon ies to  

see i f  the potentia l  for transfer competence is heritab le or i f there is a  

l ink between age and the deve lopment o f  t ransfer competence.  

 

The goals of this thesis are targeted in four research chapters. The first two research 

chapters (Chapter 2 and Chapter 3) are methodological in nature putting into place the tools 

needed for studying ICEclc at the single cell level. Equipped with these tools the following two 

chapters (Chapter 4 and Chapter 5) then target direct evidence for the state of transfer 

competence and subsequently aim to tease out differences between transfer competent 

versus non-transfer competent cells with regard to cell physiology, fitness, heredity, and cell 

age. 

Outlook Chapter 2. A key challenge is the quantification and description of 

subpopulations.  Recently, it could be shown by single cell analysis that activation of the (late) 

Pint-promoter leading to excision of ICEclc in Pseudomonas knackmussii is the consequence 

of a bistable activation cascade occurring only in part of the cells in stationary phase (140, 

178). However, the fraction of ICEclc could not be determined in an accurate and reproducible 

way, which becomes important if it should be taken as a measure to compare different genetic 
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backgrounds or physiological conditions. In this chapter we revisit this problematic and 

propose a simple method for the quantification of subpopulations. Parts of this chapter were 

used for a paper by Minoia and colleagues (140). 

Outlook Chapter 3.  Time-lapse experiments require a delicate experimental set-up by 

which model organisms can be tracked, allowing sufficient extraction of qualitative and 

quantitative data. While many different set-ups have been proposed in the literature (4, 6, 15, 

23, 187, 212, 213), only very few exist allowing manipulation of external factors during 

observation, amongst which are complicated micro-fluidics set ups (6, 15, 213) that cannot 

track genealogy of whole microcolonies. Here we provide a simple step-by-step procedure, 

which allows time-lapse imaging of bacterial cell division and cell tracking up to the stage of a 

monolayered microcolony of a few hundred cells whilst allowing for manipulation of 

environmental conditions. This set-up provides the basis for Chapter 4 and Chapter 5. 

Outlook Chapter 4 . Whereas recent studies on ICEs have been of cardinal importance 

to begin to understand the basic ICE-host control mechanisms, there is a fundamental lack of 

understanding with regard to ICE-host behaviour at the single cell level, which is crucial for their 

evolutionary success. We demonstrate here the existence of a transfer-competent state and 

further show that it not only leads to ICEclc transfer, but inevitably inhibits subsequent 

proliferation of competent donor cells and leads to lysis. We argue that ICEclc-induced donor 

cell division inhibition and lysis is a form of programmed cell-death, but which is fundamentally 

different from toxin-antitoxin addiction modules (65, 74, 222). We hypothesize that the transfer-

competent state may actually have been selected for because it allowed more efficient transfer 

of ICEclc, whereas the large fitness cost the ICEclc reproductive inhibition program would 

impose on the population is only kept at bay by confining ICEclc activity to a small proportion of 

cells.  

Outlook o f Chapter 5 . The objectives of the work presented in Chapter 5 were to 

study the appearance of tc cells as a function of their life history in microcolonies. In particular, 

we addressed the following questions: (i) Is tc cell formation dependent on cell pole age with 

older cells being more prone than younger cells? (ii) Does tc cell formation preferentially occur 

in specific lineages in a microcolony with, incidentally, lysing sister cells? (iii) Is tc cell formation 

a function of spatial organisation or density within a microcolony? (iv) Does tc cell formation 

occur as a consequence of pre-existing detectable biochemical damage? 

Through the use of time-lapse microscopy we thus follow the life history of tc-cells 

within microcolonies. We demonstrate that the age of the cell pole is unlikely to play a role in 

initiating the ICEclc tc program. We also show that initiation of transfer competence is not the 

result of the physiological state of ancestor cells, or of a close relative (sister cell). In contrast, 
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tc-cells show higher levels of reactive oxygen species and membrane damage than non-tc 

cells, but whether this is causing or is the effect of ICEclc activation could not be discerned. 

We find that ICEclc activation occurs spatially randomly in a microcolony, which might 

additionally be important for maximising the chances in a biofilm to contact potential recipients. 
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 ABSTRACT 

 

Accurate detection of subpopulation size determinations in bimodal populations 

remains problematic yet it represents a powerful way by which cellular heterogeneity under 

different environmental conditions can be compared. So far, most studies have relied on 

qualitative descriptions of population distribution patterns, on population-independent 

descriptors, or on arbitrary placement of thresholds distinguishing biological ON from Off 

states. We found that all these methods fall short of accurately describing small population 

sizes in bimodal populations. Here we propose a simple, statistics-based method for the 

analysis of small subpopulation sizes for use in the free software environment R and test this 

method on real as well as simulated data. 

Four so-called population splitting methods were designed with different algorithms that 

can estimate subpopulation sizes from bimodal populations. All four methods proved more 

sensitive than previously used methods when analyzing subpopulation sizes of transfer 

competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The 

methods’ resolving powers were further explored by bootstrapping and simulations. Two of the 

methods were not severely limited by the proportions of subpopulations they could estimate 

correctly, but the two others only allowed reliable subpopulation quantification when this 

amounted to less than 25% of the total population. In contrast, only one method was still 

sufficiently accurate with subpopulations smaller than 1 % of the total population.  

This study proposes a number of rational approximations to quantifying small 

subpopulations and offers an easy-to-use protocol for their implementation in the open source 

statistical software environment R.  
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AUTHOR SUMMARY 

 

Advances in microbiology have traditionally been based on population level studies, 

assuming that clonal populations consist of individual cells with on average the same 

behaviour. However, recent studies have shown important heterogeneity among cells in 

isogenic microbial populations, leading to a variety of clearly different bi- or multimodal 

phenotypes and even bistable phenotypic traits. Precise characterization of subpopulation 

differences is difficult, and to date there exists no universal protocol for the determination of 

small subpopulation sizes. The principal contribution of this study is a simple and practical 

statistical approximation to subpopulation quantification in bimodal populations. For this 

purpose we created a set of functions in the open source software environment R 

accompanied by step-by-step instructions for easy implementation. We develop and test our 

methods to study transfer competence development in the bacterium Pseudomonas, during 

which a very small proportion of cells in resting phase (3-5%) become prone for conjugative 

transfer of so-called Integrative and Conjugative Elements. In addition, we use computational 

modelling to test the efficacy of our methods to separate artificially constructed populations 

with different (known) proportions. Our approach helps to minimize inconsistencies in 

subpopulation classification, and increases sensitivity and accuracy of subpopulation size 

quantification. 
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INTRODUCTION 

 

Advances in microbiology have traditionally been based on studies at the population 

level. Questions of how cells respond to their environment, interact with each other, or undergo 

complex processes such as cellular differentiation or gene expression have been mostly 

answered by inference from population-level data. Recent technological advances have 

facilitated the study of individual cells and led to new appreciation for the existence and 

importance of phenotypic heterogeneity (2, 14). There is no more doubt that gene expression is 

heterogeneous among cells in isogenic microbial populations and leads to physiological 

heterogeneity (18, 47, 51). In many cases distributions of physiological parameters among 

individual cells in populations show a small part, usually less than a few percent of the total, to 

be more than two-fold different from the population average (28, 50, 62). It is thought that the 

appearance or existence of small subpopulations with different phenotypes in a clonal 

population may be beneficial for its survival under adverse conditions (18, 59). As example, 

persistence to antibiotic toxicity in Escherichia coli is a very rare phenomenon (3), yet it is of 

great importance since it enables population survival and outgrowth when the antibiotic is 

removed. Growth to stationary phase of B. subtilis leads to the appearance of subpopulations 

with widely varying expression of glycolysis and gluconeogenesis enzymes that are thought to 

better enable stationary phase survival (18). In fact, an increasing number of phenotypic traits 

has been discovered that are not even homogenously distributed among all cells in a clonal 

bacterial population but rather lead to the formation of two (bimodal) distinct subpopulations. 

Current examples from microbiology include horizontal gene transfer activation in 

Pseudomonas (33, 34, 41), sporulation (19, 36), cannibalism (24), extracellular matrix formation 

(61), competence development(31, 48), and motility (13, 25) in Bacillus subtilis, the lysis-

lysogeny switch of phage lambda (37), lactose utilization (35), the arabinose catabolic pathway 

(46), and chemotaxis in E. coli (26), quorum sensing-regulated bioluminescence in Vibrio 

harveyi (1), flagella expression in Salmonella typhi (6), or phase variation in a number of 

pathogens (55, 56). There is no reason not to assume that many more and diverse bimodal or 

even multimodal phenotypic differentiations in clonal bacterial populations would exist, and 

there is evidence that the extent of phenotypic variability is a selectable trait (47). Evidently, in 

order to better understand bimodal phenomena it is of critical importance to have accurate 

measurement and analysis tools for differentiating subpopulations within the total population. 

Most authors exploring bimodal phenomena have been relying on production of 

autofluorescent proteins to study critical promoters and regulatory events at the single cell level, 
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mainly because of the ease to detect expression of the reporter protein in individual cells (27, 

47, 51). Such detection is typically performed by either epifluorescence microscopy and digital 

image analysis (9, 16, 18, 29, 51, 60) or by flow cytometry, if expression of the fluorescent 

reporter protein is sufficiently high (10, 30, 47, 49, 57, 58, 61). Measures of expression 

heterogeneity such as occurrence of bimodalities or subpopulation sizes, represent useful 

parameters to quantify phenotypic heterogeneity and its differences in mutants or as a result of 

growth conditions. However, the more one approaches very small subpopulation sizes (e.g., a 

few percent of the total) the more difficult it is to accurately detect and determine such events, 

and so far most methods do not take such low proportions into appropriate consideration. For 

example, subpopulation dynamics is often solely assessed in form of descriptive graphs that 

present the total distribution of fluorescence intensities for individuals. These included 

histograms (10, 17, 18, 30, 35, 46), cumulative distribution curves (CDFs) (4, 5, 44, 48, 53), 

normal quantile-quantile (Q-Q) plots (27, 42, 52) or percentile-percentile (P-P) plots (32). 

Although representations of total populations are useful for stating evident differences in 

distribution patterns between treatments, they tend to overlook more subtle differences which 

often need a quantitative approach. Quantification of subpopulation dynamics is generally done 

by addressing individual fluorescence values that fall within pre-defined boundaries of the total 

population. However, often these boundaries are determined independently of the nature of the 

distribution of the total population data. An example of this is when gating of clusters in flow 

cytometry is manually defined to identify subpopulation shifts (7, 49, 57, 61) or when threshold 

rules are based on background- or control fluorescence in fluorescence microscopy to 

determine “all-or-none” induction responses (1, 9, 13, 33, 58). A problematic with 

subpopulation quantification using pre-defined and distribution-independent thresholding is that 

such classification does not attempt to statistically approximate estimates for true, that is 

biologically relevant, subpopulations (since boundaries have nothing or little to do with the 

distribution of the data), but rather represents a pragmatic approach to achieve differentiation 

between treatments. Therefore, generally, such approach falls short of serving as a universal 

method for subpopulation quantification, especially when subpopulations overlap. One solution 

to this problem would entail a distribution-based approximation of the distinct subpopulations 

that is entirely independent of the experimental test system used (as long as the test system is 

sensitive enough), and the result of which could be expressed as a dimensionless quantity. 

The aim of this study is to propose a methodology for quantifying small subpopulations 

(few percent) in bimodal populations. Our approach is based on a statistically valid 

approximation to finding the “true” subpopulation size in bimodal populations and expressing it 



CHAPTER 2 
 

82 

as a percentage of the total population size. The model system we use to develop our method 

is the bistable behaviour of the integrative and conjugative element called ICEclc of the 

bacterium Pseudomonas knackmussii B13 (22, 39, 40, 44). It was previously discovered that 

the promoter of the integrase gene (Pint) on ICEclc expresses under stationary-phase conditions 

in some 3% of cells in culture, specifically when they have been grown with 3-chlorobenzoate 

(3CBA) as sole carbon and energy source (44, 45). Cells that induce Pint are locked in a bistable 

state (33) and undergo a process of competence formation which enables ICEclc transfer (41). 

ICEclc behaviour was inferred from single-cell fluorescence measurements on strains carrying 

an additional single-copy transcriptional fusion between Pint and the gene for enhanced green 

fluorescent protein (eGFP) or mCherry. In first instance and because of the absence of clear 

bimodality, distribution-independent descriptors were used to describe Pint expression (44, 45). 

For this purpose, eGFP fluorescence intensities of at least one thousand imaged cells were 

ranked, from which the 95th percentile and the mean fluorescence intensity among the top five 

percent were calculated (44, 45). Alternatively, subpopulation sizes were determined from the 

'breakpoint' in cumulatively ranked fluorescence values of thousands of individual imaged cells 

(34). Here we evaluate different methods for subpopulation characterization and propose a 

simple routine in the open source statistical software R that integrates some of the ideas of 

earlier studies (27, 33, 34). As these methods require population splitting (PS) into a large and 

small subpopulation (by use of a cutoff value) we call them PS methods. Our PS methods are 

particularly suitable for analysis of subpopulations of only a few percent of the total, which may 

otherwise be difficult to discern. A first data verification step is incorporated in the subroutine 

that summarizes data from different images to ensure that no outlier exposure errors or biases 

exist. The following steps then help to find the statistically most likely appropriate subpopulation 

size. We challenge PS methods in two ways; firstly, by measuring subpopulation sizes of ICEclc 

transfer competent cells of P. knackmussii B13 under different growth conditions, and 

secondly, by quantifying subpopulation sizes of computer-generated mixed populations. 
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RESULTS 

 

Stationary phase induct ion o f Pint-egfp  in P. knackmussi i B13. Single cell 

fluorescence can be quantified from a digital image with the help of image analysis software 

that recognizes cells as objects through thresholding of pixel intensities, and measures their 

average pixel fluorescence intensity (AGV). AGVs of all cells are typically plotted as histograms, 

CDFs, or as Q-Q plots. As noticed previously (33, 44), cells of P. knackmussii B13 Pint-egfp did 

not visibly fluoresce during exponential growth on 3CBA, whereas a small proportion of cells in 

the culture induced egfp in stationary phase (Figure 1A and B). This difference is reflected in the 

shapes of the histograms that can be constructed from the AGVs of cells grown under these 

conditions; in the histograms of Figure 1 both populations look similarly in that they follow the 

shape of a normal distribution. However, paying attention to detail, it can be seen that under 

stationary phase conditions, a small proportion of cells manifests as a far-stretched right-hand 

tail of the histogram (Figure 1B and lower boxplot), which under exponential phase conditions is 

missing (Figure 1A and lower boxplot). The eGFP expression of such cells could be considered 

as outliers, or they could comprise a separate subpopulation, in which case the distribution of 

the data would be bimodal. The distribution is visualized more clearly in a boxplot 

representation, where, under stationary phase conditions, the histogram upper tail corresponds 

to boxplot outliers (Figure 1B, 2A). A CDF shows this particular subpopulation of cells with high 

eGFP expression as a 'kink' (Figure 2B, also see (44)), while in a normal Q-Q plot two lines with 

different slopes can be seen (Figure 2D, also see (27)). In all representations it becomes 

apparent that there is a subpopulation of cells behaving differently, but the Q-Q plot 

representation indicates that the data are bimodal. On the other hand, mean values alone, as 

commonly used as a measure in averaged samples, would not have revealed the bimodal 

nature of the population. 

Which parameters would best describe and quantify the subpopulation effect? 

Quantification of the extent of bimodality is particularly important when less evident differences 

in population responses occur or effects of e.g., mutations need to be interpreted. For 

example, previous analysis suggested that Pint-egfp is induced more strongly under stationary 

phase conditions when cells are pre-grown on 3CBA than on fructose (44). This interpretation 

was based on use of distribution-free analyses and parameters such as the 95th percentile, the 

boosted mean or the mean of the top 5% of the population in a CDF (33, 44). Although these 

methods have worked satisfactorily to conclude that cells that had grown on 3CBA were 

different from those grown on fructose (44), they did not provide a biological explanation for the 



CHAPTER 2 
 

84 

choice of the 95% percentile-AGV value. Other distribution-free parameters like the boosted 

mean (mean of AGV between 75 and 95th percentile) or mean of the top 5% AGV of the 

population also permitted statistical differentiation of eGFP expression from Pint-egfp in cultures 

of P. knackmussii B13 under different growth conditions, but did not allow calculation of the 

actual subpopulation size (44). Therefore, we decided to follow another approach that aimed to 

separate the bimodal data, which would allow the level of induction to be described in terms of 

the percentage of induced cells of the total population and mean AGV of induced cells. 

Because these methods rely on splitting of the population into large and small subpopulation, 

we refer to these methods as population splitting (PS) methods. 

Quanti le-quant i le  plot interpretation o f bimodal ity.  When plotting all AGV 

values in cumulative order as a function of their theoretically derived normally distributed 

ranking number, a so-called normal Q-Q plot, normally distributed AGV values among a 

population will become visible as a straight line (Figure 2C, also see (27, 32)), the slope of which 

corresponds to the standard deviation of the population. The median AGV in a normal Q-Q plot 

is found at the ranking number of ‘zero’ (Figure 2C-F). Deviations from a normal distribution will 

become visible in the normal Q-Q plot as deviations from the straight line (Figure 2D). Ideally, 

bimodal normally distributed subpopulations appear as two intersecting straight lines with 

different slopes (and therefore different standard deviations). Indeed, while AGV values of single 

cells in exponentially growing populations of P. knackmussii B13 cells expressing egfp from Pint 

were distributed along a single straight line (Figure 2C), AGVs from cells in stationary phase 

distributed in the diagram along two straight lines with different slopes (Figure 2D). Calculation 

of the size of the (eGFP inducing) smaller subpopulation would thus in essence consist of 

finding a statistically correct approximation of the point where the two straight lines would 

intersect and subsequent determination of the number of data points in each population. 

However, this proves difficult because it is impossible to determine a priori whether cells close 

to the intersection point would belong to one or the other subpopulation. Nevertheless, 

because of the large size of the ‘eGFP uninduced’ subpopulation (large subpopulation) 

compared to that of the eGFP inducing one (small subpopulation), a highly robust linear 

regression can be calculated for the large subpopulation on basis of a sub-sample of this 

subpopulation. We took this sub-sample as equivalent to the approximate interquartile range 

(IQR) (Figure 2E) of the large subpopulation. The large subpopulation IQR can be calculated 

from all AGV points between visually placed minimum and maximum AGVs (grey area: Figure 

2E, Protocol supporting information (S)1, which can easily be estimated from a normal Q-Q 

plot. 



IMPROVED STATISTICAL ANALYSIS OF LOW ABUNDANCE PHENOMENA  
 

85 

 

 

 

 

Figure 1.  eGFP express ion from a monocopy randomly inserted PinR-egfp fusion in 

planctonic cel ls of P. knackmussi i B13 grown in batch culture and sampled in 

exponent ia l phase (A) or stat ionary phase (B ). Micrographs show typical population differences 

of cells grown on 5 mM 3-chlorobenzoate (3CBA) under non-inducing (exponential phase) and inducing 

conditions (stationary phase), taken under eGFP illumination (right) and the corresponding image in 

phase contrast (PhC, left). The white bar in images corresponds to a scale of 10 µm. Graphs show 

fluorescence values (AGVs) measured from single cells represented as histograms and lateral boxplots 

(grey area below graph). Percentages correspond to calculated sizes of subpopulations statistically 

significantly expressing eGFP. Note that the calculated mean fluorescence values over the whole 

population are statistically significantly different if assuming both are normally distributed (P=0.00056, 

Welch 2-sample t-test). 
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Since the slope in a Q-Q plot corresponds to the standard deviation it can be used to calculate 

the upper cutoff value at the 1% confidence level assuming that the large subpopulation is 

normally distributed (Figure 1E): 

! 

cutoff = 2.576 " SD + median , where 2.576 is the constant of 

the quantile function of the normal distribution with probability 0.995, SD is the standard 

deviation of the large subpopulation and median is the median of the large subpopulation. 

When applying such method, we calculated that 2.8% of cells in stationary phase cultures of P. 

knackmussii B13 Pint-egfp grown on 3CBA and 1.2% in cultures grown on fructose expressed 

egfp statistically different from the large subpopulation (Figure 2F, Table 1). The method, 

therefore, permitted calculation of subpopulations of proportionally low abundance (≈ few 

percent of the total). 

This method was termed Default in R to distinguish it from three other methods of 

subpopulation separation proposed in this study: Manual, Boxplot1.5, and Boxplot3 (Protocol 

S1). Manual allows the user to manually distinguish large and small subpopulation by visually 

placing the cutoff value between the two subpopulations on a Q-Q plot (this can be done in R 

by use of the locator(...) function, which reads the position of the graphics cursor when the 

mouse button is pressed; see Protocol S2, Figure S3). Alternatively, the same procedure can 

also be done on a histogram, in which case the histogram peak-to-tail border has to be visually 

determined (Figure S3). Bates and collegues (4) deduced subpopulation size by determining 

the midpoints of histogram peaks. However, when comparing histogram mid-point 

determination versus histogram peak-to-tail border determination as means to define 

subpopulation we found the latter more reliable (Figure S3). A similar idea based on manual 

placement of population separation aids has been used previously (although without the use of 

interactive graphs), where visually placed tangents in a CDF plot were employed and 

approximate reading by eye determined the cutoff point between small and large subpopulation 

(34). The methods Boxplot1.5 and Boxplot3 both work simply by applying commonly used 

formulas for outlier detection in boxplots (12, 20); here we consider the upper tail outliers as 

part of the small subpopulation and represent them as a percentage of the whole population. 

Boxplot1.5 uses the formula 

! 

cutoffmild = Q
3

+ IQR "1.5, where Q3 is the 3rd quartile of the 

data, IQR the interquartile range, and cutoff the lower limit for mild outlier determination. 

Similarly, Boxplot3 uses the formula 

! 

cutoff extreme =Q
3

+ IQR " 3 for extreme outlier 

determination.  
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Figure 2. D istr ibut ion of  eGFP f luorescence intens it ies (AGV) in ce l ls  of  P.  knackmussi i  

B13 st rain 1343 (s ingle copy insert ion of a Pint-egfp  fusion)  taken at exponent ia l or  

stat ionary phase afte r growth on 10 mM 3CBA. (A) Boxplot representation. Ctrl, wildtype P. 

knackmussii B13 without eGFP. (B) Cumulative distribution curve representation (CDF). Stat, stationary 

phase. Exp, exponential phase. (C, D) Same as (B) but as normal quantile-quantile (Q-Q) plot 

representations. (E) Same as (D) but data is categorized in large subpopulation (G1, grey area) and small 

subpopulation (G2, white area) below and above a cutoff line (cutoff), respectively. The placement of the 

cutoff line is determined via the slope of a regression line (orange line) fitted to the data points belonging 

to the interquartile range (IQR, orange) of the large subpopulation. (F) Distribution of eGFP fluorescence 

intensities in cells taken at inducing conditions (stationary phase) grown on either 10 mM 3CBA (CBA, 

black) or 10 mM fructose (Fruc, red). Percentages express subpopulation fractions of fructose and 3CBA 

induced cells (see further Table 1).  



CHAPTER 2 
 

88 

Table  1. Varying subpopulation sizes of ICEclc transfer competent cells in P. knackmussii B13-1343 

Pint-egfp grown on different carbon sources. 

Category Carbon source
1

 % Subpopulation
2

 
Signif icantly  dif ferent  

category
3

 

A 3CBA  4.7 ± 1.4 B*, C**, D**, E**, F* 

B Fructose 2.2 ± 0.4 A*, C*, D*, E*, F* 

C 4-Hydroxybenzoate 0.6 ± 0.2 A**, B* 

D Anthranilate 0.3 ± 0.2 A**, B*, F* 

E Benzoate 0.1 ± 0.3 A**, B*, C* 

F Glucose 0.7 ± 0.5 A*, B*, D* 

1) 10 mM of carbon source in minimal medium (see Methods). 

2) Average ICEclc transfer competent subpopulation of cells (percent of total) determined from biological triplicates, 

expressing egfp from P
int
 ± standard deviation. Sampled 15 - 20 h after onset of stationary phase. Determined via R 

command find.sub.pop(...) in Default mode.  

3) * and ** indicate significant differences at P<0.05 and P<0.01, respectively, as determined by the Welch Two 

Sample t-test. 

 

Method compar ison. To compare methods that relied on population splitting (PS) 

into large and small subpopulation (Default, Manual, Boxplot1.5, Boxplot3) to methods that did 

not (Mean, Boosted Mean, 95th percentile, Mean Top 5%), we analyzed small subpopulation 

sizes of cells defined by eGFP expression from both the Pint and the PinR promoters inserted in 

single copy in P. knackmussii B13 derivatives, and grown under different conditions (Figure 3, 

Table S4, S5). P. knackmussii cultures in 3CBA were typically growing exponentially between 8 

and 20 h after inoculation, whereas stationary phase (i.e., cessation of growth) was reached 

after 24 h (Table S2). P. knackmussii cultures in fructose were typically growing exponentially 

between 20 and 40 h after inoculation, and reached stationary phase after 45 h (Table S2). In 

contrast, P. knackmussii cultures on glucose grew slightly faster and reached stationary phase 

after 12 h (Table S2). We further tested benzoate, 4-hydroxybenzoate and anthranilate (Table 

1). Cultures on anthranilate grew much slower, with stationary phase reached after 50 h (Table 

S2). Analysis of all culture conditions indicated that growth on 3CBA elicited the strongest 

induction of Pint and PinR promoters in comparison to the others (Table 1, Figure 3, Table S4). 

Further, PS methods indicate that a larger subpopulation of Pint-egfp expressing cells is formed 

on fructose in comparison to glucose, benzoate, and the other two aromatic compounds 

(Table 1, Figure 3A, Table S4). In contrast, with the exception of Mean Top 5%, non-PS 

methods failed to distinguish between 3CBA-, fructose- and glucose-grown induction (Figure 

3B, Table S5). We therefore conclude that the PS methods are more sensitive to small but 

consistent changes in subpopulation sizes than non-PS methods.  
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Figure 3. Di ffe rent methods for quant if icat ion of  subpopulat ion sizes of Pint-egfp  or PinR-

egfp expressing cel ls.  (A) Output of four different PS methods for subpopulation size. For each 

method the same data set was used. (B) Same data as (A) but quantified via distribution-independent 

non-PS methods that do not determine subpopulation size. Error bars indicate the 95% confidence 

interval for re-sampled (bootstrapped) data. Dark grey bars: 3CBA grown cells; intermediate grey bars: 

fructose-grown cells; light grey bars: glucose-grown cells. 
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Method robustness analys is by bootstrapping. In order to assess the 

robustness and accuracy of estimating small subpopulation sizes using different PS methods, 

we tested each PS method separately on a number of slightly varying bimodal populations. For 

this purpose we used bootstrapping with re-sampling (with replacement) data from wet 

experiments followed by the PS method and calculation of 95% confidence intervals. 

Bootstrapping was carried out with 20 replicates for the manual PS methods Default and 

Manual, and 500 replicates for all other methods, PS and non-PS. The bootstrapping 

procedures were implemented in the R functions get.ci(…) and get.ci.other(…) (Protocol S1, 4) 

for PS and non-PS methods, respectively, both of which keep a record of the results after each 

replicate and calculate 95% confidence intervals (Figure 3, 4, 5). We compared eight different 

methods using the same data set including four PS (Figure 3A) and four non-PS methods 

(Figure 3B). Bootstrapping results indicate that, although less sensitive to small subpopulation 

changes, most non-PS methods are much more robust than PS methods; that is, they form 

smaller confidence intervals in response to random variations in data. An exception is the non-

PS method Mean Top 5%, whose 95% confidence intervals look similar to those of the PS 

methods. Interestingly, Mean Top 5% is also the only non-PS method that confirmed a 

statistically significant eGFP fluorescence subpopulation change in P. knackmussii B13 Pint-

egfp/PinR-egfp grown on 3CBA versus grown on fructose or glucose (Table S4). However, 

Mean Top 5%, like all other non-PS methods but unlike most PS methods, failed to indicate a 

statistically significant difference between growth on fructose and growth on glucose (Table 

S5). The extreme robustness to random variation as seen in the methods Mean, Boosted 

Mean, and 95th Percentile, might explain part of the reason why these methods fail to respond 

significantly to small changes in small subpopulations (Figure 3B, Table S5). On the other hand, 

PS methods Default, Manual, Boxplot1.5, and Boxplot3, showed comparably large confidence 

intervals, reflecting some inconsistency in separating small subpopulations from large 

subpopulations (Figure 3A, Table S4). Nevertheless, all PS methods distinguished between 

small subpopulation sizes of 3CBA-grown versus fructose-grown or glucose-grown P. 

knackmussii B13 Pint-egfp/ PinR-egfp. Furthermore, PS methods Manual, Boxplot1.5 and 

Boxplot3.5 even showed significant differences between fructose-grown and glucose-grown P. 

knackmussii B13 Pint-egfp/ PinR-egfp. Thus, our experiment showed that, while non-PS 

methods are generally more robust to overall variation in populations, they are also less 

sensitive to small subpopulation changes than PS methods. 

Confidence interval calculation via bootstrapping may be particularly useful in cases 

where subpopulation determination is biased. As an example, subpopulation determination 
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according to the PS method Manual is inherently biased due to human subjectivity in placing 

the cutoff point on a Q-Q plot where subpopulations should be separated. This problematic 

can be diminished, however, by repeating the method several times on a resampled dataset 

(bootstrapping) and calculating the confidence interval. As another example case for the use of 

bootstrapping, normal Q-Q plot representation of Pint-egfp expression in P. putida UWC1 

typically manifested as a curve (Figure 5) rather than the two lines of different slopes as seen in 

P. knackmussii B13 (Figure 2), which complicated the finding of the point of separation 

between subpopulations. However, re-applying PS methods on re-sampled datasets helped to 

define the confidence limits of the subpopulation determination itself (Figure 5). Another 

demonstration of such a case is shown in Figure S1, where a dataset that includes biases due 

to faulty data recording during image acquisitions is subjected to PS methods. This case also 

highlights the usefulness of summarizing single cell data as boxplots per image, which makes 

possible the filtering-out of image-inherent bias in a data set (Protocol S2).  
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Figure 4. Effect of re-sampling methods of original data sets on the determinat ion of  

confidence intervals for the subpopulat ion s ize of egfp-expressing cel ls in stat ionary  

phase cultures of  P.  knackmussi i  B13 st rain 2399 (sing le copy PinR-egfp ) grown on 

3CBA. (A) Bootstrapping of original data sets (re-sampling with replacement). Methods Default and 

Manual were repeated 20 times with manual intervention of the slope line determination. Methods 

Boxplot1.5 and Boxplot3 use 500 automatically re-sampled data sets. 95% confidence intervals (red, 

dotted lines) were calculated assuming a normal distribution of the results (mean ± SD × 1.96). (B) same 

data as in (A) but re-sampled subpopulation size determinations plotted as Q-Q plots. Note the normal 

distribution of the results.  
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Figure 5.  Example of a data set showing poorer Q-Q plot performance (smooth curve of  

distr ibuted data points ). (A) Q-Q plot of single cell eGFP fluorescence values obtained from P. putida 

UWC1-ICEclc Pint-egfp cells (strain 2508) grown on 3CBA to early stationary phase. Width of the red line 

corresponds the interquartile range of the fluorescence values. Dotted lines indicate threshold line 

placement for subpopulation calculation via methods Boxplot3, Boxplot1.5, Default and Manual. (B) 

Results from the four different subroutines on this data set. Error bars represent 95% confidence 

intervals on re-sampled data sets with bootstrapping (see Figure 4). 
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Computer s imulations. Following the empirical bootstrap approach above, we 

wanted to test the performance of our proposed methods on a large variety of bimodal 

populations. Hereto we used computer simulations that not only allowed to treat large data 

sets but also had the added advantage that “true” subpopulation parameters were known 

before analysis. Thus, by comparing true and estimated subpopulation ratios, the accuracy of 

each PS method in estimating subpopulation proportions could be assessed, which we 

calculated according to: 

! 

100 " S
estimated

# S
true( ) S

true[ ] , where Sestimated is the estimated 

subpopulation size, and Strue is the true subpopulation size, both expressed as a percentage of 

the total population. In this way we could consider how the accuracy varies with different 

bimodal population paramters. In a first experiment we tested the accuracy of separating two 

subpopulations across a range of 64,000 simulated bimodal populations (Figure 6, 7, Video 

S1-S3). The populations were produced by mixing a single large subpopulation with a variety of 

smaller-sized subpopulations (Figure 6). To create the large subpopulation we used typical 

population parameters as found in non-induced populations of P. knackmussii B13 containing 

a PinR-egfp fusion (Table S3). By plotting the method bias against true subpopulation size, true 

subpopulation standard deviation and/or true subpopulation mean, we now obtained an 

overview of the accuracy and robustness of the separation method, presented, for space 

reasons, either as selected representative 3D plots (Figure 7) or selected representative 2D 

plots (Figure 8). Only two of the four separation methods were tested in this way, Boxplot1.5 

and Boxplot3, since it would have been an almost impossible feat to test the other methods 

Default and Manual on an equally large number of datasets due to their requirement of a 

manual work-flow (mouse-clicking on an interactive graph). However, Default and Manual were 

still tested on a smaller scale including fewer simulated bimodal populations (Table 2). The 

simulation results show that Boxplot1.5 and Boxplot3 give less than 20% inaccuracy between 

the estimated and true population size over the entire span of tested subpopulation standard 

deviations (10-50) as long as the difference between means of the large and the small 

populations remains between 40 and 50 units, respectively (Figure 7, Figure 8, Video S1-S3, 

Table S6). Furthermore, the simulations indicated that separation becomes less accurate when 

the size of the small subpopulation is decreasing to below 1.1% or values in the small 

subpopulation become more diverse (i.e., higher standard deviation) (Figure 7, Figure 8, Video 

S1-S3, Table S6). Both methods also become rapidly unreliable when small subpopulation 

proportions become larger than 25% (Figure 7, Figure 8, Video S1-S3, Table S6), a feature also 

confirmed in another simulation experiment (Table 2). This is because outlier detection in 

boxplots beyond this point is not synonymous with bimodality anymore (Figure S2). However, 
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we found that the Q-Q plot- based PS methods Manual and Default could still be used to 

accurately determine subpopulations larger than 25%, since Q-Q plots show bimodality over a 

large range of subpopulation proportions (Table 2, Figure S2). 

With respect to the decreasing accuracy with decreasing small subpopulation sizes we 

conducted a second series of simulations dedicated to very small subpopulation sizes 

focussing on subpopulation proportions between 0.1 and 1.2% (Figure 9, 10, Video S4-S9, 

Table S7). Overall, Boxplot3 manifested itself as the more robust and accurate method than 

Boxplot1.5 for determining very small subpopulations. More specifically, population size 

estimations in Boxplot3 were never less than 11% from the true population size (n=200000) 

over the entire span of percentage parameters tested, provided the mean difference was at 

least 67.8 units and standard deviation was set at 37.7 units (Figure 10, Table S7). By 

comparison, under the same conditions, estimations from Boxplot1.5 were only within less than 

20% from the true value when the tested subpopulation was larger than 1.1%, exponentially 

increasing to 352% where subpopulations were approaching 0.1% (Figure 10, Table S7). 

 

 

 

 

 

 

Figure 6. Scheme i l lustrat ing the three parameters, mean difference between la rge and 

small subpopulat ion, standard deviat ion of sma ll subpopulat ion and proport ion of smal l  

subpopulat ion. Parameters were changed in a computer simulation to create variations of mixed 

populations upon which the PS methods of subpopulation determination were tested (see Figure 7, 9). 

Black, large subpopulation. Colour, small subpopulation. 
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Figure 7 (on the right ).  3D surfaces of simulat ion data showing the accuracy (z  axis) in 

determining the subpopulat ion size using two di ffe rent methods of populat ion 

separat ion: Boxplot1.5 and Boxplot3.  Accuracy is shown as a function of different population 

mixtures (1600 per plot), with subpopulations either varying in mean differences (range: 2-137; n=40; x 

axis) and proportions (range: 0.1-40%; n=40; y axis) at a constant standard deviation (37.7) (A, B), or 

varying in mean differences (range: 2-137; n=40; x axis) and standard deviations (range: 10-50; y axis) at 

a constant proportion (3.2%) (C, D), or with varying standard deviations (range: 10-50; n=40; x axis) and 

proportions (range: 0.1-40%; n=40; y axis) at a constant mean difference (67.8) (E, F). Accuracy is taken 

as the difference between calculated and real subpopulation size and expressed as a percentage of the 

real subpopulation size. Accuracy therefore indicates the normalized deviance of the calculated 

subpopulation size from the real subpopulation size. A negative value indicates that the method 

underestimated the subpopulation size. A positive value indicates an overestimated result. A value of 

zero indicates perfect match between estimation and true value. A smooth surface of the same colour 

indicates a robust separation. NA, missing values. 
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Figure 8. 2D representat ions of simulat ions shown in Figures 7A-F. Accuracy is shown as a 

function of subpopulation proportion (range: 0.1-40%; n=40) at a mean difference of 67.8 and a 

subpopulation standard deviation of 37.7 (A), as a function of mean difference (range: 2-137; n=40) at a 

subpopulation proportion of 3.2% and subpopulation standard deviation of 37.7 (B), or as a function of 

subpopulation standard deviation (range: 10-50; n=40) at a mean difference of 67.8 and a subpopulation 

proportion of 3.2% (C). Also see Table S6 for values of these graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 (fol lowing page).  Same as F igure 7 but as a result  from a simulat ion focusing 

on subpopulat ions with small proport ions (range: 0.1-1.2%). Each surface is constructed 

from 250 data points, stemming from population separations of population mixtures with varying 

subpopulations with 15 different mean difference values (range: 2-137) and 15 different proportion values 

(range: 0.1-1.2%) at a constant standard deviation of 38.6. (A, B): Simulation was performed with 

population mixtures with n=2000. (C, D): Simulation was performed with population mixtures with 

n=20,000. (E, F) Simulation was performed with population mixtures with n=200, 000. 
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Figure 10. 2D representat ions of simulat ions shown in Figures 9A-F. Accuracy is shown as a 

function of subpopulation proportion (range: 0.1-1.2%; n=15) at a mean difference of 67.8 and a 

subpopulation standard deviation of 37.7. (A): Simulation was performed with population mixtures with 

n=2000. (B): Simulation was performed with population mixtures with n=20000. (C): Simulation was 

performed with population mixtures with n=200000. Also see Table S7 for values of these graphs. 
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Table  2. Comparison of the accuracy of population splitting (PS) methods in estimating subpopulations 

from simulated bimodal populations with different true subpopulation sizes. 

Estimated subpopulation size  (% of total  popu lation)
2

 True subpopulation s ize (% of  

total  population)
1

 Default Manual Boxplot1 .5 Boxplot3 
  1.00   1.75 ± 0.17   0.98 ± 0.03   1.17 ± 0.18   0.98 ± 0.06 

  3.00   3.80 ± 0.93   2.77 ± 0.20   2.92 ± 0.08   2.63 ± 0.21 

  6.00   5.80 ± 0.31   5.85 ± 0.26   5.57 ± 0.03   5.45 ± 0.05 

  9.00   8.80 ± 0.10   8.40 ± 0.30   8.28 ± 0.13   7.75 ± 0.35 

12.00 11.35 ± 0.15 11.58 ± 0.35 10.97 ± 0.12 10.42 ± 0.13 

15.00 14.25 ± 0.18 14.12 ± 0.13 13.85 ± 0.10 13.15 ± 0.33 

18.00 17.02 ± 0.18 16.67 ± 0.28 16.52 ± 0.25 15.43 ± 0.28 

20.00 18.88 ± 0.13 18.73 ± 0.45 17.83 ± 0.06 16.80 ± 0.26 

30.00 27.50 ± 0.23 28.58 ± 0.38 12.47 ± 2.32   2.42 ± 1.06 

40.00 37.13 ± 0.56 38.05 ± 0.26   1.93 ± 0.31   0.03 ± 0.03 

50.00 46.02 ± 0.30 46.18 ± 0.60   0.30 ± 0.15   0.03 ± 0.03 

60.00 54.32 ± 0.38 56.95 ± 0.28   0.10 ± 0.10   0.02 ± 0.03 

70.00 63.02 ± 0.49 66.02 ± 0.21   0.03 ± 0.03   0.03 ± 0.03 

80.00 70.88 ± 1.16 74.55 ± 0.17   0.05 ± 0.00   0.03 ± 0.03 

90.00 75.40 ± 2.16 84.32 ± 1.08   0.17 ± 0.14   0.03 ± 0.03 

92.00 75.64 ± 1.58 87.01 ± 0.38   0.25 ± 0.15   0.00 ± 0.00 

95.00 71.42 ± 1.00 90.03 ± 0.58   0.35 ± 0.17   0.03 ± 0.03 

98.00 50.59 ± 18.55 92.20 ± 0.10   0.32 ± 0.18   0.03 ± 0.03 

1) True subpopulations were simulated using the R function rnorm(…) with a standard deviation of 37.7, a mean 

value of 127.3, and the number of observations corresponding to the subpopulation percentage to be tested from a 

total number of 2000 observations. Mean and standard deviation used for the simulations represent population 

parameters as obtained from fluorescence microscopy analysis of batch grown P. knackmussii B13 P
int
-egfp in 3CBA 

(see Table S3). 

2) Estimated subpopulation sizes (mean ± SD; 3 independent repetitions) were determined applying the PS methods 

on simulated bimodal populations using the R function findsub(...) (Protocol S2). A bimodal population was simulated 

by mixing two simulated populations, a real subpopulation1 and a second subpopulation.  The second subpopulation 

was created using the R function rnorm(…) with a standard deviation of 3.9, a mean value of 63.0, and the number 

of observations depending on the sample size of real subpopulation1 to give a total of  2000 observations. Mean and 

standard deviation used for the simulations represent population parameters as obtained from fluorescence 

microscopy analysis of batch grown P. knackmussii B13 P
int
-egfp in 3CBA (see Table S3). 
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DISCUSSION 

 

Principal contr ibut ion o f the study. The principal contribution of this study is a 

simple and practical statistical approximation to subpopulation quantification in bimodal 

populations. For this purpose we created a set of functions in the open source software 

environment R accompanied by a step-by-step instructional protocol for easy implementation 

(Protocol S1, 4).  

Motivation o f this study . The motivation to define methods of subpopulation 

quantification was twofold: firstly stemming from a need for a statistical tool do describe 

subpopulation sizes of ICEclc transfer competent cells in Pseudomonas in particular (21, 34, 

41) and, secondly, to provide a more general set of tools for basic subpopulation quantification 

in single cell microbiology with easy implementation into existing image analysis work-flows.  

Why try to d ist inguish between subpopulat ions ? Population-level parameters, 

such as the average cellular response, by definition will obscure biological detail that is 

noticeable in small subpopulations of cells. The task of determining the subpopulation sizes of 

ICEclc-transfer competent cells in P. knackmussii B13 presents itself as a particularly 

challenging example. Firstly, this is because their proportions are typically small (3.3% of the 

total population; see Table S3) (33, 41); secondly, they commonly have an estimated mean 

expression value from the key Pint-promoter that is only twice as high as the mean of the non-

active population (Table S3). Thirdly, the standard deviation of expression values in this 

subpopulation is ca. 10 times larger than that of the non-active population  (Table S3). 

Together, this equates to subpopulations that are almost certainly overlapping and thus mixed 

to some degree, which makes it mathematically impossible to achieve “true” demarcation 

between subpopulations (32). Histograms of ICEclc-activity distributions typically resemble 

Gaussian curves with hardly noticeable tails extending to their right-hand sides (Figure 1). First, 

we speculated that such histograms are no suitable visualisations for manually placing 

subpopulation thresholds confidently and in a statistically acceptable way; even if a threshold 

was placed such that the histogram tail would be separated from the Gaussian curve, we 

questioned the reproducibility of such a placement due to a manual work-flow based on 

grounds of visual perception. Such an approach, we assumed, was likely be prone to bias 

(user arbitrariness) by subjective decision-making, therefore hindering reliable quantification of 

subpopulation changes. Indeed, Bates and colleagues (4, 5) offered a "manual" histogram-

based approach earlier, which we noticed produced strong variability in subpopulation size 

determination of ICEclc transfer competent cells (Figure S3). Hence, we decided to improve 
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upon this by using Q-Q plot representations. These have the added advantage of showing two 

subpopulations, each with normally distributed data of different spread, as two straight lines of 

different slopes (see, e.g., Figure 2) (27). The point of demarcation between such 

subpopulations can be determined manually (as in the subroutine Manual). Yet, in cases where 

bimodal distribution patterns are less clear (e.g., Figure 5), we developed a method (named 

Default) that standardizes cutoff placement on grounds of the most reproducible part of the 

distribution pattern, that is, the part that is most robust to change by subpopulation effects. In a 

Q-Q plot this region conveniently corresponds to the lower (and longer) straight line, on which 

an interval of representative slope of that line should be easily definable. Nevertheless, under 

certain conditions Manual can be the more accurate tool (Table 2, Figure S3) and is especially 

useful in cases where the Default algorithm fails, for example in instances with datasets where 

the IQR of the larger subpopulation does not follow a Gaussian distribution (Figure S1). 

Generally, when subpopulation quantification becomes challenging/ambiguous, or risks to be 

influenced by subjective input from the user, it is good practice to apply quantification 

repeatedly on the same original but re-sampled (with replacement) data set. Importantly, both 

Default and Manual are not limited by the proportions of the tester subpopulation in order to 

produce quantitatively correct results (Table 2), in contrast to Boxplot  methods. 

Boxplot1.5 and Boxplot3 define subpopulations without prompting the user for input 

since their subpopulation classification is simply based on outlier detection as commonly used 

in boxplots (12, 20, 54). This latter trait was found especially useful when numerous data sets 

needed to be analysed as shown in the simulations of this study, where 64000 bimodal 

populations were analysed within ca. 10 hours (see Figure 7, 9). As expected, Boxplot methods 

respond differently than manual methods to changes in distribution patterns (Figure 5, Figure 

S1, S2). Boxplot1.5 and Boxplot3 only allowed for reliable subpopulation quantification where 

subpopulations amounted to less than 25% of the total population (Figure 7, 8, Table 2, Figure 

S2). This is not surprising, since it is well documented that under certain distribution scenarios 

boxplots fail to visualize bimodality (11). Boxplot3 was by far more accurate than Boxplot1.5 

with subpopulations smaller than 1 % of the total population (Figure 9, 10, Video S4-S9, Table 

S7). In contrast, due to its more conservative classification of outliers, Boxplot3 tends to 

underestimate subpopulation sizes in comparison to Boxplot1.5 (Figure 8). At low 

subpopulation sizes, it is relevant to increase sample numbers such as can be obtained from 

flow cytometry experiments (> 20000; see Figure 9), or calculate confidence limits from 

bootstrappings (e.g., function get.ci(...), Figure 5, Protocol S2). In general, when comparing PS 

methods to existing methods of quantification, we found that PS methods were more sensitive 
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to small subpopulation effects, for example when assessing ICEclc activity in P. knackmusssii 

B13 under different growth conditions (Figure 3, Table S4).  

Limitat ions o f the proposed methods. The strength of the proposed methods in 

this paper is also their weakness; the determination of the percentile corresponding to the 

cutoff point/threshold between two subpopulations can only be approximated, and becomes 

more inaccurate as subpopulations overlap. On the one hand approximation allows to split a 

bimodal population into two and characterize the biologically relevant fraction in a 

subpopulation response. On the other hand such characterization becomes increasingly 

inaccurate in describing the biologically relevant fractions until it eventually fails completely as 

subpopulations overlap. There are only two alternatives to this dilemma, which are analyses 

that either avoid finding subpopulation-relevant cut-off percentiles altogether, or describe all 

percentiles in a population, without specifying one. As an example of the second approach are 

visualisations of qualitative changes of entire populations through comparisons of distribution 

patterns (27, 32, 44, 53). MacArthur (32) even proposed a way to quantify qualitative changes 

spanning the total range of percentiles, that is calculating percentage differences per individual 

percentile between treatment and control (Figure S4, Table S8) (32).  

Other studies. Few studies in the microbiology literature specify the problematic of 

statistically exposing true subpopulations from bimodal populations. Rather, it seems that most 

studies content themselves with a categorisation of subpopulations via thresholds based on 

fluorescence background levels, negative controls lacking fluorescent marker, or manual gating 

of clusters in flow cytometry (1, 7, 9, 13, 33, 49, 57, 58, 61). The reasons might be twofold. 

Firstly, pragmatism, which argues that as long as an approach serves the purpose of 

quantification at a sufficiently high resolution it is good enough. Secondly, the problematic that 

statistical distributions of subpopulation behaviours overlap, causing a certain degree of 

subpopulation mixing, and therefore make a precise demarcation between subpopulations 

impossible.  

Conclusion. To date there exists no universal protocol in the microbiology literature 

for the determination of small subpopulation sizes. Rather, many labs use their own in-house 

methods of subpopulation quantification. We see the advantage/novelty of our proposed 

methods in the attempt to statistically deduce subpopulation size from a qualitative assessment 

of the underlying bimodal distributional shape. We argue that a distribution shape-based 

approach is by definition (inherently) more true to finding the biologically relevant subpopulation 

than distribution-independent methods. Consequently, our approach should help firstly, to 

minimize inconsistencies in subpopulation classification caused by manual threshold 



IMPROVED STATISTICAL ANALYSIS OF LOW ABUNDANCE PHENOMENA  
 

105 

placements, and secondly, to increase sensitivity and accuracy to subpopulation changes. 

Thirdly, our method would help to standardize subpopulation evaluation across different 

experimental set-ups. Since subpopulation size as expressed as percentage of the total 

population is a dimension-less quantity, it is also independent of scales and units linked to the 

sensitivity of recording equipments and experimental set-ups. Therefore, subpopulation size 

expressed as a fraction of the total population represents a suitable parameter for comparisons 

across a wide range of different studies. 
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METHODS 

 

Culture cond it ions. All strains in this work are listed in Table S1. All strains were 

batch-cultured in 200 ml Erlenmeyer flasks containing 30 ml liquid minimal at 30°C and with 

200 rpm rotary shaking. Type 21C minimal medium (MM) (23) was supplemented with either 3-

chlorobenzoate (3CBA, 10 mM), fructose (10 mM), glucose (10 mM), benzoate (10 mM), 

anthranilate (10 mM) or 4-hydroxybenzoate (10 mM) as sole carbon and energy source. 

Increase in culture turbidity at 600 nm was followed during growth to estimate the onset of the 

stationary phase and exact sampling times for epifluorescence microscopy (Table S2). 

Stationary phase samples (i.e., 10 to 30 hours after cessation of turbidity increase in batch 

culture) of three microliter were deposited on microscope glass slides, covered with a 0.17 mm 

cover slip and immediately imaged.  

Promoter reporter gene fusions. To examine expression of the Pint promoter at 

single cell level we used previously constructed transcriptional fusions between Pint and 

promoterless egfp genes (33), that were inserted in single copy on the chromosome of a variety 

of Pseudomonas strains (Table S1) via mini-Tn5 delivery, and verified by antibiotic selection 

markers and specific PCR amplification.  

Digital imaging. Fluorescence intensities of single cells with or without transcriptional 

fusions to the egfp gene were determined by digital imaging. Single cells were visualized at 

1000-fold magnification under a Zeiss Axioscope2 upright epifluorescence microscope 

equipped with a Spot Xplorer 1.4 MPixel cooled CCD camera (Visitron Systems GmbH, 

Puchheim, Germany). Images were recorded with phase-contrast illumination (10 ms) and with 

the filter eGFP HQ470/40 for eGFP fluorescence (excitation wavelength 480 ± 20 nm, emission 

wavelength 520 ± 20 nm, 500 ms) (Chroma Technology Corp, VT, USA). Average intensity 

values (AGV) of each cell were determined from 16-bit stored TIF-images using the program 

METAVIEW (version 6.1r5, Visitron Systems GmbH) using the phase-contrast image as mask for 

outlining the cells in the eGFP channel. Data were exported to EXCEL (Microsoft Corporation, 

Redmond, Wash.) or R (38). At least 1000 cells were measured for each condition and at least 

six images were taken per condition or strain. 

Programming in R . All statistical analysis and computations were processed in R. 

For PS methods, an approach was followed that assumed bimodality of the data (i.e., 

containing two subpopulations each with a normal distribution). The list of individual cellular 

AGVs was hereto transferred from EXCEL to a data text file, which was placed into an R work-

folder. Data were processed according to different PS and non-PS methods in a subroutine 
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written in R named findsub(...) (Protocol S1, S2). Essentially, the setting Default in findsub(...) 

ranks data according to their AGV and plots the values against a theoretical normal distribution 

(the normal Q-Q plot) (Protocol S1) (27). Subsequently, the subroutine determines the median 

and a region around the median to produce the linear regression line for the larger 

subpopulation. A horizontal separator line is then automatically generated according to 

! 

cutoff = 2.576 " slope + median , where cutoff is the point at which the horizontal separator 

line is drawn, slope is slope of the linear regression line (and therefore the standard deviation of 

the large subpopulation), and median is the median of the data set (Protocol S1). All data points 

above the horizontal separator line are considered to belong to the smaller subpopulation. The 

subroutine in Default mode further allows manual setting of the range of the large population 

from which the median value is determined via mouse-clicking on an interactive graph (Protocol 

S1). Other PS modes of findsub(...) include the modes Manual, Boxplot1.5 and Boxplot3. While 

Manual allows manual determination of the breakpoint between subpopulations via mouse-

clicking on an interactive graph (Protocol S1, Figure S3), Boxplot1.5 and Boxplot3 use an 

outlier algorithm as calculated by the R function boxplot(...) (R graphics package) (Protocol S1). 

The argument range of the function boxplot(...) determines how far the plot whiskers extend out 

from the box beyond which outliers are identified. Boxplot1.5 uses range = 1.5 and Boxplot3 

uses range = 3, corresponding to mild and extreme outlier detection, respectively (54). Finally, a 

fifth mode of findsub(...) is the mode Other. This mode calculates results according to four non-

PS algorithms including the population mean (Mean), and the population-independent methods 

95th percentile (95th Percentile), mean between the 75th and 95th percentile (Boosted Mean), and 

mean of the top 5% of a population (Mean Top 5%) (Protocol S1). 

Finally, the subroutines get.ci(...) and get.ci.other(...) were written in R (Protocol S2), 

allowing to bootstrap PS and non-PS methods, respectively, for 95% confidence interval 

determination. Bootstrapping was carried out via random sampling with replacement of data 

sets with subsequent application of the method of choice with n repetitions (Protocol S1, S2). 

For confidence interval calculations with 20 repetitions (Default, Manual), a normal distribution 

of the bootstrapped results was assumed (Protocol S1): 

! 

CIuppe r / lower = mean ± SD "1.96, where 

CIupper/lower is the upper or lower confidence interval, respectively, mean is the population mean 

and SD is standard deviation. For methods Default and Manual repetitions were limited to 20 

because every calculation requires manual intervention on an interactive graph for the method 

to work. 
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For confidence interval calculations with 500 repetitions (all other methods), the R function 

boot.ci(...) from the R boot package (8, 15) was used with the percentile method of bootstrap 

confidence interval calculation.  

 

Simulations and data presentation. Bimodal populations were simulated by 

mixing a large subpopulation with multiple, smaller subpopulations varying in standard 

deviation, mean and size, respectively. Large and small subpopulations were created with the 

function rnorm(...) of the R statistical package (38). Parameters for the creation of the large 

subpopulation were set to standard deviation SD=3.9, and mean mean=63, both of which 

were considered typical values for AGV data sets obtained from stationary phase batch 

cultures of ICEclc-harbouring Pseudomonas tagged with a Pint-egfp reporter and grown on 

3CBA (Table S3).  Size N of the mixed populations was set to 2000, 20000 or 200000. 

Parameters for the creation of subpopulations were set to all possible combinations of either 40 

or 15 equidistantly spaced values for standard deviations, mean values, or population sizes, 

which in total yielded 403 (=64000) or 153 (=3375) different subpopulations, respectively. The 

ranges for 40 equidistantly spaced parameter values were set to 10 to 50 for standard 

deviations, 65 to 200 for mean values, and 0.1% to 40% of the total population for small 

subpopulation sizes. The ranges for 15 equidistantly spaced parameter values were set as 

above except for 0.1% to 1.2% for small subpopulation sizes. Small subpopulation 

determination was carried out according to the PS methods Boxplot1.5 and Boxplot3. For 

code and script for the simulation of mixed populations and their separation using Boxplot1.5 

and Boxplot 3 see Protocol S3. The R package "lattice" (43) was used for 3D visualizations of 

the data by use of the function wireframe(...). The freeware IMAGEJ (version 1.440, USA) was 

used for creating movies of the visualisations (Video S1-S9). 
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DESCRIPTION OF SUPPLEMENTARY FILES 

 

Figure S1. Bias compromises detection of small subpopulations in bimodal data. 

This file contains a series of graphs that demonstrate the obstructive role of bias in estimating 

subpopulation size in bimodal data. The left row of graphs are based on a faulty data set with 

data originating from two images that have much lower fluorescence values as a result of a 

mistake during image acquisition. The right row of graphs represents the same data set but 

with the data from the biased images removed. This panel of graphs highlights the practicality 

of summarizing single cell data as boxplots per image, which makes it possible to find the 

source of bias in a data set.  

Figure S2. Failure of the method Boxplot1.5 and success of the method Default to 

accurately analyze a bimodal population that contains a large subpopulation (40% of the total 

population). In this file the failure of the method Boxplot1.5 and the success of the method 

Default to accurately analyze a simulated bimodal population that contains a large 

subpopulation (40% of the total population) is demonstrated. 

Figure S3. Accuracy of a hand-analysis method estimating small subpopulation sizes 

in simulated bimodal populations via mid-point determination of large subpopulation histogram 

peak.  This file contains a graphical explanation of a hand-analysis method for subpopulation 

detection which uses visual determination of the mid-point of the large subpopulation peak in a 

histogram as a basis. A similar hand-analysis method has been proposed recently by Bates 

and colleagues {Bates, 2005 #45}.  Further, this file contains a data-table showing the 

accuracy performance of the method on multiple simulated bimodal populations, and an 

annotated script which was used for the simulations in R. 

Figure S4. The use of P-P plots for non-parametric and graphical response 

quantification. This file illustrates the concept of employing P-P plots for non-parametric and 

graphical response quantification {MacArthur #70}, using results obtained from the 

measurement of ICEclc activity in P. knackmussii B13 grown under different environmental 

conditions as an example data-set. 

Table S1. Bacterial strains used in this work. In this file we provide a list with all 

bacterial strains used in this work. 

Table S2. Pseudomonas knackmussii B13 growth in batch culture. This file contains a 

table listing timing of exponential growth and onset of stationary phase in batch cultures of P. 

knackmussii B13 and P. putida UWC (ICEclc) grown on different carbon substrates. 
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Table S3. Large and small subpopulation parameters of fluorescence data from 

promoter-egfp reporters for ICEclc activation in Pseudomonas knackmussii B13. This file 

contains a data table showing typical measured large and small subpopulation parameters of 

fluorescence data obtained from promoter-egfp reporters for ICEclc activation in P. 

knackmussii B13 after growth on 3CBA. These parameters were used as reference parameters 

for ICEclc activation when creating some of the simulated subpopulations in Figures 7, 8, 9 and 

10, Table 2, and Figure S2, S3.  

Table S4. Significance testing of subpopulation effects from ICEclc activation under 

different conditions quantified by different PS methods. This file contains a data table showing 

results from quantifications of small subpopulation effects by different PS methods. Results 

from this table are visualized in Figure 3A.  

Table S5. Significance testing of subpopulation effects from ICEclc activation under 

different conditions quantified by different non-PS methods. This file contains a data table 

showing results from quantifications of small subpopulation effects by different PS methods. 

Results from this table are visualized in Figure 3B.  

Table S6. Bias as a function of subpopulation proportion (range: 0.1-40%; n=40) at a 

mean difference of 67.8 and a subpopulation standard deviation of 37.7. This file contains a 

data table showing numerical data corresponding to Figure 8. 

Table S7. Bias as function of subpopulation proportion (range: 0.1-1.2%; n=15) at a 

mean difference of 67.8 and a subpopulation standard deviation of 37.7. Data table 

corresponding to Figure 10. 

Table S8. ICEclc activity-response in Pseudomonas knackmussi B13 Pint-egfp to pre-

growth on different carbon sources, quantified over percentile range. Data correspond to Figure 

S4C. 

Protocol S1. Description of R functions for quantification of low abundance 

phenomena in bimodal populations. This file provides a detailed description of the proposed R 

functions findsub(...) and get.ci(...) as tools for quantification of small subpopulation phenomena 

and method confidence interval calculation, respectively. We also show examples of graphical 

and command-line output from these functions. 

Protocol S2. Scripts and functions for quantification of low abundance phenomena in 

bimodal populations. This file contains the proposed R scripts and functions for quantifying low 

abundance phenomena in bimodal populations. Comments within scripts and the README file 

serve as step-by-step guidance for the implementation of the relevant functions in R. An 
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example data set is included, allowing for a demonstration of the relevant functions while 

following the step-by-step procedure (not included in this thesis). 

Protocol S3. Scripts and functions for generating simulated data.  This file contains 

the R scripts and functions used for generating the simulated bimodal populations that were 

analyzed in this paper. 

Video S1. Accuracy of subpopulation determination as quantified by the methods 

Boxplot1.5 or Boxplot3 from different simulated bimodal populations.  This file contains a movie 

showing the results of Boxplot1.5 and Boxplot3 methods of subpopulation detection tested on 

simulated bimodal populations with varying subpopulation proportions, standard deviations and 

mean values (see Methods). Method accuracy is shown as the percentage bias between 

estimated and true subpopulation size (z-axis), and as a function of subpopulation standard 

deviation (x-axis) and subpopulation proportion (y-axis). The 40 different movie image frames 

show results for different simulated subpopulation mean values. A bias of zero indicates that 

estimated subpopulation size equals true subpopulation size. Negative or positive bias 

indicates under- or over-estimation of subpopulation size in comparison to true subpopulation 

size, respectively. Instances where the method fails to detect any subpopulation size are 

indicated as solidly coloured squares at the top surface of the co-ordinate system (also see NA 

annotations in Figure 7, 9). 

Video S2. Accuracy of subpopulation determination as quantified by the methods 

Boxplot1.5 or Boxplot3 from different simulated bimodal populations. This file contains a movie 

showing the results of the Boxplot1.5 and Boxplot3 methods of subpopulation detection tested 

on simulated bimodal populations with varying subpopulation proportions, standard deviations 

and mean values (see Methods). Method accuracy is shown as the percentage bias between 

estimated and true subpopulation size (z-axis) and as a function of subpopulation mean (x-axis) 

and subpopulation proportion (y-axis). The 40 different movie image frames show results for 

different simulated subpopulation standard deviations. A bias of zero indicates that estimated 

subpopulation size equals true subpopulation size. Negative or positive bias indicates under- or 

over-estimation of subpopulation size in comparison to true subpopulation size, respectively. 

Instances where the method fails to detect any subpopulation size are indicated as solidly 

coloured squares at the top surface of the co-ordinate system (also see NA annotations in 

Figure 7, 9). 

Video S3. Accuracy of subpopulation determination as quantified by the methods 

Boxplot1.5 or Boxplot3 from different simulated bimodal populations. This file contains a movie 

showing the results of the Boxplot1.5 and Boxplot3 methods of subpopulation detection tested 
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on simulated bimodal populations with varying subpopulation proportions, standard deviations 

and mean values (see Methods). Method accuracy is shown as the percentage bias between 

estimated and true subpopulation size (z-axis) and as a function of subpopulation mean (x-axis) 

and subpopulation standard deviation (y-axis). The 40 different movie image frames show 

results for different simulated subpopulation proportions. A bias of zero indicates that estimated 

subpopulation size equals true subpopulation size. Negative or positive bias indicates under- or 

over-estimation of subpopulation size in comparison to true subpopulation size, respectively. 

Instances where the method fails to detect any subpopulation size are indicated as solidly 

coloured squares at the top surface of the co-ordinate system (also see NA annotations in 

Figure 7, 9). 

Video S4. Boxplot1.5 method accuracy as tested on simulated bimodal populations 

with low subpopulation proportions (0.1-1.2%). This file contains a movie showing the results of 

the Boxplot1.5 method of subpopulation detection tested on simulated bimodal populations of 

three different population sizes (n=2×103, n=2×104, and n=2×105) with simulated small 

subpopulation proportions ranging between 0.1 and 1.2% of the large subpopulation (see 

Methods). Method accuracy is shown as the percentage bias between the estimated and the 

true subpopulation size (z-axis) and as a function of subpopulation standard deviation (x-axis) 

and subpopulation proportion (y-axis). Different movie panels show results for different total 

population sizes. The 15 different movie image frames show results for different simulated 

subpopulation mean values. A bias of zero indicates that the estimated subpopulation size 

equals the true subpopulation size. Negative or positive bias indicates under- or over-

estimation of subpopulation size in comparison to true subpopulation size, respectively. 

Instances where the method fails to detect any subpopulation size are indicated as solidly 

coloured squares at the top surface of the co-ordinate system (also see NA annotations in 

Figure 7, 9). 

Video S5. Boxplot1.5 method accuracy as tested on simulated bimodal populations 

with low subpopulation proportions (0.1-1.2%). This file contains a movie showing the results of 

the Boxplot1.5 method of subpopulation detection tested on simulated bimodal populations of 

three different population sizes (n=2×103, n=2×104, and n=2×105) with simulated small 

subpopulation proportions ranging between 0.1 and 1.2% of the large subpopulation (see 

Methods). Method accuracy is shown as the percentage bias between the estimated and the 

true subpopulation size (z-axis) and as a function of subpopulation mean (x-axis) and 

subpopulation standard deviation (y-axis). Different movie panels show results for different total 

population sizes. The 15 different movie image frames show results for different simulated 
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subpopulation proportions. A bias of zero indicates that the estimated subpopulation size 

equals the true subpopulation size. Negative or positive bias indicates under- or over-

estimation of subpopulation size in comparison to true subpopulation size, respectively. 

Instances where the method fails to detect any subpopulation size are indicated as solidly 

coloured squares at the top surface of the co-ordinate system (also see NA annotations in 

Figure 7, 9). 

Video S6. Boxplot1.5 method accuracy as tested on simulated bimodal populations 

with low subpopulation proportions (0.1-1.2%). This file contains a movie showing the results of 

the Boxplot1.5 method of subpopulation detection tested on simulated bimodal populations of 

three different population sizes (n=2×103, n=2×104, and n=2×105) with simulated small 

subpopulation proportions ranging between 0.1 and 1.2% of the large subpopulation (see 

Methods). Method accuracy is shown as the percentage bias between the estimated and the 

true subpopulation size (z-axis) and as a function of subpopulation mean (x-axis) and 

subpopulation proportion (y-axis). Different movie panels show results for different total 

population sizes. The 15 different movie image frames show results for different simulated 

subpopulation standard deviations. A bias of zero indicates that the estimated subpopulation 

size equals the true subpopulation size. Negative or positive bias indicates under- or over-

estimation of subpopulation size in comparison to true subpopulation size, respectively. 

Instances where the method fails to detect any subpopulation size are indicated as solidly 

coloured squares at the top surface of the co-ordinate system (also see NA annotations in 

Figure 7, 9). 

Video S7. Boxplot3 method accuracy as tested on simulated bimodal populations 

with low subpopulation proportions (0.1-1.2%). This file contains a movie showing the results of 

the Boxplot3 method of subpopulation detection tested on simulated bimodal populations of 

three different population sizes (n=2×103, n=2×104, and n=2×105) with simulated small 

subpopulation proportions ranging between 0.1 and 1.2% of the large subpopulation (see 

Methods). Method accuracy is shown as the percentage bias between the estimated and the 

true subpopulation size (z-axis) and as a function of subpopulation standard deviation (x-axis) 

and subpopulation proportion (y-axis). Different movie panels show results for different total 

population sizes. The 15 different movie image frames show results for different simulated 

subpopulation mean values. A bias of zero indicates that the estimated subpopulation size 

equals the true subpopulation size. Negative or positive bias indicates under- or over-

estimation of subpopulation size in comparison to true subpopulation size, respectively. 

Instances where the method fails to detect any subpopulation size are indicated as solidly 



CHAPTER 2 
 

120 

coloured squares at the top surface of the co-ordinate system (also see NA annotations in 

Figure 7, 9). 

Video S8. Boxplot3 method accuracy as tested on simulated bimodal populations 

with low subpopulation proportions (0.1-1.2%). This file contains a movie showing the results of 

the Boxplot3 method of subpopulation detection tested on simulated bimodal populations of 

three different population sizes (n=2×103, n=2×104, and n=2×105) with simulated small 

subpopulation proportions ranging between 0.1 and 1.2% of the large subpopulation (see 

Methods). Method accuracy is shown as the percentage bias between the estimated and the 

true subpopulation size (z-axis) and as a function of subpopulation mean (x-axis) and 

subpopulation standard deviation (y-axis). Different movie panels show results for different total 

population sizes. The 15 different movie image frames show results for different simulated 

subpopulation proportions. A bias of zero indicates that the estimated subpopulation size 

equals the true subpopulation size. Negative or positive bias indicates under- or over-

estimation of subpopulation size in comparison to true subpopulation size, respectively. 

Instances where the method fails to detect any subpopulation size are indicated as solidly 

coloured squares at the top surface of the co-ordinate system (also see NA annotations in 

Figure 7, 9). 

Video S9. Boxplot3 method accuracy as tested on simulated bimodal populations 

with low subpopulation proportions (0.1-1.2%). This file contains a movie showing the results of 

the Boxplot3 method of subpopulation detection tested on simulated bimodal populations of 

three different population sizes (n=2×103, n=2×104, and n=2×105) with simulated small 

subpopulation proportions ranging between 0.1 and 1.2% of the large subpopulation (see 

Methods). Method accuracy is shown as the percentage bias between the estimated and the 

true subpopulation size (z-axis) and as a function of subpopulation mean (x-axis) and 

subpopulation proportion (y-axis). Different movie panels show results for different total 

population sizes. The 15 different movie image frames show results for different simulated 

subpopulation standard deviations. A bias of zero indicates that the estimated subpopulation 

size equals the true subpopulation size. Negative or positive bias indicates under- or over-

estimation of subpopulation size in comparison to true subpopulation size, respectively. 

Instances where the method fails to detect any subpopulation size are indicated as solidly 

coloured squares at the top surface of the co-ordinate system (also see NA annotations in 

Figure 7, 9). 
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SUPPLEMENTARY FILES 

 

Figure S1 

 

Figure S1 Bias compromises detect ion of small  subpopulat ions in bimodal  data. This file 

contains a series of graphs that demonstrate the obstructive role of bias in estimating subpopulation size 

in bimodal data. A), B) Box-plot representations of Pint-egfp expression in P. putida UWC1 for 7 different 

image sets (1-7). The left row of graphs are based on a faulty data set with data originating from two 

images that have much lower fluorescence values as a result of a mistake during image acquisition. The 

right row of graphs represents the same data set but with the data from the biased images removed. C), 

D) Q-Q plot representations of uncorrected and corrected data sets in A and B, respectively. E), F) 

Subpopulation size calculations using the uncorrected and corrected data sets from A and B, 

respectively. This panel of graphs highlights the practicality of summarizing single cell data as boxplots 

per image, which makes it possible to find the source of bias in a data set.  
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Figure S2 

 

Figure S2. Fai lure of the method Boxplot1.5 (B ) and success of the method Default  (C)  

to accurately analyze a simulated b imodal populat ion (A; n=2000) containing a large  

subpopulat ion (40% of the total populat ion). Bimodal population was created in R by mixing two 

simulated Gaussian subpopulations whose means (63.0, 127.3) and standard deviations (3.9, 37.7) 

represented typical population parameters as obtained from fluorescence microscopy analysis of batch 

grown P.knackmussii Pint-egfp in 3CBA (see Table S3). mean, estimated mean of subpopulation; perc, 

estimated percentage of subpopulation from total population; cutoff, point of separation between 

subpopulations; Min, estimated minimum of lower subpopulation; Max, estimated maximum of lower 

subpopulation; median, estimated median of lower subpopulation; Green points above cutoff,  estimated 

subpopulation. 
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Figure S3 

 

Figure  S3. Est imat ion of the small  subpopulat ion size (percentage of  total  populat ion) in 

a bimodal populat ion via visua l determinat ion of e ither the mid-point of the histogram 

peak (A, C), or alternat ively the approximate border between histogram peak and 

histogram tai l  (B,  D). (A) To calculate the percentage of the small subpopulation the number of 

observations in G1 was subtracted from the total number of cells. The G1 fraction was approximated by 

quantifying the “left” half of the peak mid-point (dotted line), and multiplying by 2. This approach is similar 

to the “hand-analysis method” proposed by Bates and colleagues [1] [2]. (B) Same as (A) but G1 fraction 

was approximated by quantifying the “left” part of the peak-tail border (dotted line). This approach is 

similar to the Manual method as proposed in this paper (Protocol S1). Left panels in (A) and (B) show a 

histogram of a simulated bimodal population with standard deviations 3.9 and 37.7, mean values 63 and 

127.3, and number of observations 1860 and 140, for G1 and G2 Gaussian fractions, respectively. 

Gaussian simulations were carried out by the R function rnorm(…). (C) Simulation results of estimates of 
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a range of true subpopulation sizes (dotted line; 1-49%) using the method according to (A) and 

implemented in the R function sim.midpoint(…) (Figure S3 R code 1, see below). D) Same as (C) but 

method according to (B) implemented in the R function sim.peaktail(…) (Figure S3 R code 2, see below). 

Error bars denote SD (calculated from 5 independent repetitions). 
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Figure S3 Table. Accuracy of histogram-based manual method of subpopulations determination. 

 
Peak mid-point  

determination
1 Peak-ta i l  border determination

1 

True 
subpopu lation 

size (%)
2
 

Estimated 
subpopu lation 

size (%)
3
 

Bias
4
 

Estimated 
subpopu lation 

size (%)
3
 

Bias
4
 

1.0   3.6 ± 4.3 260.0 ± 428.4    0.9 ± 0.0    -7.0 ± 4.5 
3.0   7.7 ± 3.4 155.3 ± 112.8    2.7 ± 0.1  -11.3 ± 3.2 
5.0 10.6 ± 5.2 111.2 ± 103.4    4.4 ± 0.2  -11.6 ± 4.6 
7.0 10.2 ± 2.1   45.7 ± 30.4    6.3 ± 0.1    -9.7 ± 1.6 
9.0 14.3 ± 5.0   59.3 ± 55.7    8.1 ± 0.2  -10.1 ± 1.7 
11.0   6.9 ± 4.5  -37.1 ± 40.7    9.6 ± 0.1  -12.7 ± 0.6 
13.0 14.5 ± 3.3   11.5 ± 25.6  11.5 ± 0.2  -11.5 ± 1.8 
15.0 13.1 ± 5.0  -12.4 ± 33.0  13.2 ± 0.2  -12.2 ± 1.7 
17.0 18.3 ± 7.2     7.7 ± 42.2  15.2 ± 0.3  -10.6 ± 1.6 
19.0 21.5 ± 4.4   13.1 ± 23.3  16.6 ± 0.3  -12.9 ± 1.4 
21.0 19.9 ± 8.7    -5.4 ± 41.2  19.2 ± 0.3    -8.5 ± 1.3 
23.0 20.3 ± 1.5  -11.8 ± 6.5  20.5 ± 0.4  -10.8 ± 1.5 
25.0 22.8 ± 5.9    -8.6 ± 23.6  22.5 ± 0.4  -10.1 ± 1.7 
27.0 28.1 ± 10.0     4.2 ± 37.2  24.3 ± 0.5  -10.2 ± 1.7 
29.0 28.2 ± 2.4    -2.8 ± 8.4  25.9 ± 0.4  -10.7 ± 1.6 
31.0 25.5 ± 7.5  -17.7 ± 24.0  27.8 ± 0.2  -10.4 ± 0.7 
33.0 29.7 ± 5.8  -10.1 ± 17.7  29.5 ± 0.5  -10.7 ± 1.5 
35.0 31.0 ± 3.0  -11.4 ± 8.6  31.8 ± 0.6    -9.3 ± 1.8 
37.0 34.2 ± 1.1    -7.6 ± 2.9  33.5 ± 0.6    -9.5 ± 1.7 
39.0 34.4 ± 3.2  -11.8 ± 8.3  34.9 ± 0.7  -10.6 ± 1.8 
41.0 38.2 ± 3.5    -6.9 ± 8.7  36.3 ± 0.5  -11.5 ± 1.1 
43.0 39.0 ± 5.3    -9.4 ± 12.3  38.3 ± 0.2  -10.9 ± 0.6 
45.0 41.3 ± 3.1    -8.1 ± 7.0  40.1 ± 0.5  -10.8 ± 1.2 
47.0 44.1 ± 4.5    -6.1 ± 9.6  42.1 ± 0.3  -10.5 ± 0.6 
49.0 54.0 ± 4.1   10.3 ± 8.3  43.7 ± 1.2  -10.9 ± 2.5 

1) Methods of subpopulation detection (see Figure S3 Figure 1 A and B). 

2) True subpopulations were simulated (see Figure S3 R code) using the R function rnorm(…) with a standard 

deviation of 37.7, a mean value of 127.3, and the number of observations corresponding to the subpopulation 

percentage to be tested from a total number of 2000 observations. Mean and standard deviation used were 

obtained from fluorescence microscopy analysis of batch grown P. knackmussii P
int
-egfp in 3CBA (see Table S3). 

3) Estimated subpopulations (mean ± SD; 5 independent repetitions) also shown in Figure S3 1C, D. Were 

determined by quantifying the larger subpopulation in a bimodal population and subtracting it from the total 

population. This was either done by peak mid-point determination or by peak-tail border determination (see Figure 

S3 Figure 1A,B for details) using the R function sim.midpoint(…) and sim.peaktail(…), repectively (see Figure S3 R 

code 1, 2). The bimodal population was simulated by mixing two simulated populations; a true subpopulation2 and a 

second subpopulation.  The second subpopulation was created using the R function rnorm(…) with a standard 

deviation of 3.9, a mean value of 63.0, and the number of observations depending on the sample size of true 

subpopulation2 to give a total of  2000 observations. Mean and standard deviation used were obtained from 

fluorescence microscopy analysis of batch grown P. knackmussii P
int
-egfp in 3CBA (see Table S3). 
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4) Bias was calculated according to: (estimated subpopulation size – true subpopulation size)/true subpopulation 

size x 100. 
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Figure S3 R  code 1. R code defining the function sim.midpoint(…), which simulates bimodal 

populations and estimates subpopulation size according to histogram peak mid-point 

determination (see Figure S3 Figure 1A).   

 

#vector of subpopulation sizes to be tested 

my.true.fractions<-rep(seq(1,50,2),each=5)/100 

 

#definition of function 

sim.midpoint<- function(total.N = 2000, true.fractions = my.true.fractions) { 

 true.size<-true.fractions*total.N 

 sim.list<-list() 

 for (i in 1:length(true.fractions)) { 

  

  a<-rnorm(total.N-total.N*true.fractions[i],63,3.9)#subpopulation1 

  b<-rnorm(total.N*true.fractions[i],127.3,37.7)#subpopulation2 

  my.sim<-c(a,b)#mixed bimodal population 

 

  sim.list[[i]] <- my.sim 

  } 

 

 my.results<-numeric() 

 for (i in 1:length(sim.list)) { 

  sim.index<-sim.list[[i]] 

  hist(sim.list[[i]],breaks=100, col="grey", main=paste(i,"of",length(sim.list))) 

  my.estimate <-locator(n=1)#mouse-click determination of histogram peak mid-point 

  dev.off() 

  my.results[i]<-length(sim.index)-length(sim.index[sim.index<my.estimate$x])*2 

  }  

 midpoint.data<<-cbind(my.results, true.size)/20 

 midpoint.data 

} 

sim.midpoint()#execution of function 

 



CHAPTER 2 
 

128 

Figure S3 R  code 2. R code defining the function sim.peaktail(…), which simulates bimodal 

populations and estimates subpopulation size according to histogram peak-tail border 

determination (see Figure S3 Figure 1A).  

 

#vector of subpopulation sizes to be tested 

my.true.fractions<-rep(seq(1,50,2),each=5)/100 

#definition of function 

sim.peaktail<- function(total.N = 2000, true.fractions = my.true.fractions ) { 

 true.size<-true.fractions*total.N 

 sim.list<-list() 

 for (i in 1:length(true.fractions)) { 

  

  a<-rnorm(total.N-total.N*true.fractions[i],63,3.9)#subpopulation1 

  b<-rnorm(total.N*true.fractions[i],127.3,37.7)#subpopulation2 

  my.sim<-c(a,b)#mixed bimodal population 

 

  sim.list[[i]] <- my.sim 

  } 

 

 my.results<-numeric() 

 for (i in 1:length(sim.list)) { 

  sim.index<-sim.list[[i]] 

  hist(x=sim.index,breaks=100, col="grey", main=paste(i,"of",length(sim.list))) 

  my.estimate <-locator(n=1)#mouse-click determination of histogram peak-tail border 

  dev.off() 

  my.results[i]<-length(sim.index)-length(sim.index[sim.index<my.estimate$x]) 

  }  

  peaktail.data<<-cbind(my.results, true.size)/20 

  peaktail.data 

} 

sim.peaktail()#execution of function 

 

Figure S3 References 

1. Bates D, Epstein J, Boye E, Fahrner K, Berg H, Kleckner N: The Escherichia col i 

baby cel l  column: a novel  cel l  synchron ization method provides new 

insight into the bacterial cel l  cycle. Mol Microbiol 2005, 57(2):380-391. 

2. Bates D, Kleckner N: Chromosome and Replisome Dynamics in E. col i:  Loss 

of Sister  Cohesion Tr iggers Global Chromosome Movement and Med iates 

Chromosome Segregation. Cell 2005, 121(6):899-911. 
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Figure S4 

 

Figure S4. (A) Q-Q plot representation of single cell eGFP fluorescence from Pint-egfp in P. knackmussii 

B13 corresponding to ICEclc activation in response to different growth conditions. Black, stationary 

(stat.) phase after growth on 3CBA (5 mM); red, stat. phase after growth on fructose (5 mM); green, 

exponential (exp.) phase with growth on 3CBA (5 mM); blue, exp. phase with growth on fructose (5 mM). 

(B) P-P plot representation of data shown in (A) plotting ranked values of stat. phase fluorescence 

against ranked values of exp. phase fluorescence. (C) ICEclc activity-response in Pseudomonas 

knackmussi B13 to pre-growth on fructose or 3CBA, quantified over the full percentile range (also see 

Table S8). A similar quantification method was proposed by McArthur and collegues [1]. For each carbon 

source, response was calculated from the data sets shown in (A), and according to 

! 

100 " P
k

STAT
# P

k

EXP( ) P
k

EXP[ ], where 

! 

P
k

STAT
 is the kth percentile at stat. phase and 

! 

Pk
Exp

 is the kth 

percentile at exp. phase. Thus, the absence of any subpopulation activity in the exp. populations provide 

a negative control population, by which subpopulation activity in the stat. fractions may be assessed. 

Black, response to pre-growth on 3CBA (5mM). Red, response to pre-growth on fructose (5mM). In this 
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figure, a positive response corresponds to cell fluorescence stonger in stationary phase than in 

exponential phase, while a negative response corresponds to vice versa. 
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Figure S4 References 

 

1. MacArthur B, D., Tare R, S., Please CP, Prescott P, Oreffo R, O., C.: A non- invasive 

method for in si tu  quant if ication of subpopulation behaviour in mixed cel l  

cul ture. J R Soc Interface 2006, 3(6):63-69. 
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Table S1 

 

Table S1. Strains used in this study. 

Strain Descr iption Reference 

P. knackmussii B13-1343 P
int
-egfp [1] 

P. knackmussii B13-2396 

P. knackmussii B13-2398 

P. knackmussii B13-2399 

P
inR
-egfp [2] 

P. putida UWC-3408 ICEclc, P
int
-egfp [3] 

 

Table S1 References 

 

1. Sentchilo V, Ravatn R, Werlen C, Zehnder AJ, van der Meer JR: Unusual  in tegrase 

gene expression on the clc genomic island in Pseudomonas  sp .  Stra in  

B13. Journal of Bacteriology 2003, 185(15):4530-4538. 

2. Minoia M, Gaillard M, Reinhard F, Stojanov M, Sentchilo V, van der Meer JR: 

Stochastici ty and bistabi l i ty  in horizontal  transfer  control  o f a genomic 

island in Pseudomonas. Proc Natl Acad Sci U S A 2008, 105(52):20792-20797. 

3. Reinhard F, Miyazaki R, Pradervand N, van der Meer JR: Cel l  d i f ferentiat ion to  

"mating bodies" induced by an integrating and conjugative element in  

free-l iv ing bacter ia. Curr Biol 2013, 23(3):255-259. 
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Table S2 

 

Table S2. Pseudomonas knackmussi B13 growth as determined via culture turbidity at 600 nm. 

Strain Carbon substrate 
Exponential  

growth (h)
1

 

Onset  of 
stationary 

phase (h)
1

 
P. knackmussi B13-1343 3-chlorobenzoate (5 mM) 8 - 20 24 

 glucose (10 mM) 2 - 8 12 

 fructose (10 mM) 20 - 40 45 

 benzoate (10 mM) 4 - 10 12 

 4-hydroxybenzoate (10 mM) 1 - 15 18 

 anthranilate (5 mM) 40 - 48 50 

P. putida UWC (ICEclc) - 2508 3-chlorobenzoate (5 mM) 30 - 50 60 

1) Time after inocculation.  
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Table S3 

 

Table  S3. Reference subpopulation parameters calculated from single cell fluorescence values 

obtained from PinR-egfp reporter in P. knackmussii B13. 

 
Large 

subpopu lation
1

 

Small  

subpopu lation
1

 
  

Strain (promoter-egfp 
reporter) SD

2
 Mean

2
 SD

2
 Mean

2
 

Mean 
dif ference 

(rat io)
2,3

 
Proportion (%)

4
 

P. knackmussii B13-1343 

(P
int
-egfp) 

4.7 70.0 27.1 109.5 39.5 (1.6) 4.2 

P. knackmussii B13-2396 

(P
inR
-egfp) 

3.2 60.3 44.2 142.2  81.9 (2.4) 3.0 

P. knackmussii B13-2397 

(P
inR
-egfp) 

3.0 59.4 34.1 125.1  65.7 (2.1) 2.0 

P. knackmussii B13-2398 

(P
inR
-egfp) 

5.2 66.1 38.8 121.5 55.4 (1.8) 4.0 

P. knackmussii B13-2399 

(P
inR
-egfp) 

3.3 59.3 44.3 138.3 79.0 (2.3) 3.3 

Mean population 

parameter 5 
3.9 63.0 37.7 127.3 64.3 (2 .0) 3.3 

1) Large and small subpopulation were separated according to the Boxplot3 method. Fluorescence values of at least 

2000 cells in stationary phase were investigated per strain after 25 hours of batch growth on 3CBA (5mM). 

2) eGFP fluorescence (arbitrary units) 

3) Difference  between the means of large and small subpopulation (arbitrary units). 

4) Proportion of  small subpopulation as determined by the Boxplot1.5 method. 

5) Mean estimated population parameters as calculated from the four P
inR
-egfp strains only. These were used as 

reference parameters for the creation of the bimodal simulations in this paper. 
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Table S4 

 

Table S4. Proportions of subpopulations as calculated via four different PS methods from single cell 

eGFP fluorescence data.  

   Subpopulat ion s ize (%)
3

    

Category
1

 
Carbon 

source 
Method

2
 

PinR

-egfp  

2396

4
 

PinR-

egfp  

2398

4
 

PinR-

egfp  

2399

4
 

Pin t-

egfp  

1343

4
 

Mean 

(± SD) 

Welch Two 

Sample t-test
5

 

Wilcoxon 

rank sum 

test
5

 

A 3CBA Default 2.7 5.1 2.8 4.7 3.8 ± 1.3 B*, C* B*, C* 

  Manual 2.8 3.4 3.3 4.6 3.5 ± 0.8 B**, C** B*, C* 

  Boxplot1.5 2.8 4.3 2.8 4.3 3.6 ± 0.9 B*, C** B*, C** 

  Boxplot3 2.6 2.7 2.5 3.2 2.8 ± 0.3 B**, C** B*, C* 

          

B Fructose Default 1.3 0.9 1.2 2.4 1.5 ± 0.7 A* A* 

  Manual 1.2 0.9 1.2 2.1 1.4 ± 0.5 A**, C* A*, C* 

  Boxplot1.5 1.2 0.9 1.2 2.4 1.4 ± 0.7 A* A* 

  Boxplot3 1.1 0.9 1.1 1.8 1.2 ± 0.4 A**, C* A**, C* 

          

C Glucose Default 0.6 0.6 0.9 2.0 1.0 ± 0.7 A* A* 

  Manual 0.4 0.1 0.3 0.6 0.4 ± 0.2 A**, B* A*, B* 

  Boxplot1.5 0.5 0.5 0.8 1.6 0.9 ± 0.5 A** A** 

    Boxplot3 0.4 0.1 0.3 0.6 0.4 ± 0.2 A**, B* A*, B* 

Data was obtained from Pint-egfp or PinR-egfp expression in P. knackmussii B13 batch-grown to stationary phase 

with either 3CBA, fructose or glucose as carbon source (also see Figure 4 A). 

1) Categories for significance testing 

2) PS method used to determine subpopulation. 

3) Subpopulation size (percent of total population)  

4) Reporter-egfp construct and P. knackmussii B13 strain number. 

5) Significance testing comparing the means between different categories of the same methods. * and ** indicate 

significant differences at P<0.05 and P<0.01, respectively. 
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Table S5 

 

Table S5 Proportions of subpopulations as calculated via four different non-PS methods from single cell 

eGFP fluorescence data.  

   eGFP f luorescence    

Category

1
 

Carbon 

source 
Method

2
 

PinR-

egfp  

2396

3
 

PinR-

egfp  

2398

3
 

PinR-

egfp  

2399

3
 

Pin t-

egfp  

1343

3
 

Mean 

(± SD) 

Welch Two 

Sample t-

test
4

 

Wilcoxon 

rank sum 

test
4

 

A 3CBA Mean   62.5   68.8   61.4   72.1   66.2 ± 5.1   

  95 Percentile   66.2   79.7   65.0   81.7   73.1 ± 8.7   

  Mean top 5% 107.5 120.6 106.5 111.6 111.6 ± 6.4 B**, C** B*, C* 

  Boosted Mean   64.1   73.4   63.0   76.2   69.2 ± 6.6   

          

B Fructose Mean   60.7   58.4   58.1   64.4   66.2 ± 5.1   

  95 Percentile   64.5   62.2   62.2   70.9   65.0 ± 4.1   

  Mean top 5%   76.6   72.0   75.3   84.6   77.1 ± 5.4 A** A* 

  Boosted Mean   63.2   61.0   60.7   67.9   63.2 ± 3.3   

          

C Glucose Mean   62.2   59.7   61.0   62.8   61.4 ± 1.4   

  95 Percentile   68.0   66.1   67.1   69.6   67.7 ± 1.5   

  Mean top 5%   74.5   69.3   72.2   76.5   73.1 ± 3.1 A** A* 

    Boosted Mean   66.2   63.7   64.8   66.8   65.4 ± 1.4     

Data was obtained from Pint-egfp or PinR-egfp expression in P. knackmussii B13 batch-grown to stationary phase 

with either 3CBA, fructose or glucose as carbon source (also see Figure 4 B). 

1) Categories for significance testing 

2) PS method used to determine subpopulation. 

3) Reporter-egfp construct and P. knackmussii B13 strain number. 

4) Significance testing comparing the means between different categories of the same methods. * and ** indicate 

significant differences at P<0.05 and P<0.01, respectively. 
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Table S6 

 

Table S6A. Simulation results corresponding to Figure 8 with Boxplot1.5 as method of subpopulation 

determination. 

Figure 8A Figure 8B Figure 8C 

Proportion  Bias  Mean.dif f  Bias  SD Bias  

  0.10 200.00     2.00 -58.73 10.00    3.17 

  1.10   13.64     5.46 -57.14 11.03    3.17 

  2.10     4.76     8.92 -46.03 12.05    3.17 

  3.15    -6.35   12.38 -42.86 13.08    3.17 

  4.15    -3.61   15.85 -41.27 14.10    3.17 

  5.20    -6.73   19.31 -41.27 15.13    3.17 

  6.20    -5.65   22.77 -25.40 16.15    3.17 

  7.25    -7.59   26.23 -23.81 17.18    3.17 

  8.25    -7.88   29.69 -26.98 18.21    3.17 

  9.30    -9.14   33.15 -23.81 19.23    3.17 

10.30    -8.25   36.62 -22.22 20.26    3.17 

11.35    -6.17   40.08 -19.05 21.28    3.17 

12.35    -7.29   43.54 -15.87 22.31    3.17 

13.35    -6.74   47.00   -9.52 23.33    1.59 

14.40    -8.68   50.46   -6.35 24.36    3.17 

15.40    -8.12   53.92   -7.94 25.38    1.59 

16.45    -8.81   57.38   -1.59 26.41    1.59 

17.45    -7.16   60.85   -4.76 27.44    0.00 

18.50    -8.38   64.31   -3.17 28.46    1.59 

19.50  -10.51   67.77   -6.35 29.49    1.59 

20.55    -6.33   71.23   -3.17 30.51    0.00 

21.55    -9.98   74.69    1.59 31.54    0.00 

22.60    -8.41   78.15    3.17 32.56    1.59 

23.60  -10.17   81.62    1.59 33.59   -4.76 

24.65    -9.13   85.08    3.17 34.62   -7.94 

25.65  -14.42   88.54    1.59 35.64    1.59 

26.70  -17.79   92.00    1.59 36.67   -1.59 

27.70  -40.79   95.46    1.59 37.69   -6.35 

28.70  -43.73   98.92    3.17 38.72   -1.59 

29.75  -65.21 102.38    1.59 39.74   -3.17 

30.75  -64.88 105.85    3.17 40.77   -1.59 

31.80  -78.14 109.31    3.17 41.79   -7.94 

32.80  -81.71 112.77    3.17 42.82   -3.17 

33.85  -88.77 116.23    3.17 43.85   -6.35 

34.85  -90.82 119.69    3.17 44.87   -3.17 
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Table S6A Cont inued      

Figure 8A  Figure 8B  Figure 8C  

Proportion  Bias  Mean.dif f  Bias  SD Bias  

35.90  -91.50 123.15    3.17 45.90 -11.11 

36.90  -95.93 126.62    3.17 46.92   -6.35 

37.95  -97.63 130.08    3.17 47.95 -11.11 

38.95  -96.66 133.54    3.17 48.97   -3.17 

40.00  -96.75 137.00    3.17 50.00   -3.17 
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Table  S6B.  Simulation results corresponding to Figure 8 with Boxplot3 as method of subpopulation 

determination. 
Figure 8A Figure 8B  Figure 8C  

Proportion  Bias  Mean.dif f  Bias  SD Bias  

  0.10   0.00     2.00 -68.25 10.00    0.00 

  1.10   0.00     5.46 -55.56 11.03    0.00 

  2.10   -7.14     8.92 -55.56 12.05    0.00 

  3.15 -17.46   12.38 -61.90 13.08    0.00 

  4.15   -6.02   15.85 -63.49 14.10    0.00 

  5.20   -7.69   19.31 -42.86 15.13    0.00 

  6.20   -8.06   22.77 -52.38 16.15    0.00 

  7.25 -11.03   26.23 -36.51 17.18    0.00 

  8.25 -11.52   29.69 -44.44 18.21    0.00 

  9.30 -11.29   33.15 -28.57 19.23    0.00 

10.30   -7.77   36.62 -31.75 20.26    0.00 

11.35 -13.66   40.08 -26.98 21.28   -1.59 

12.35 -11.74   43.54 -30.16 22.31   -1.59 

13.35 -13.11   47.00 -22.22 23.33    0.00 

14.40 -13.89   50.46 -19.05 24.36   -1.59 

15.40 -10.39   53.92 -14.29 25.38   -1.59 

16.45 -10.94   57.38 -19.05 26.41   -4.76 

17.45 -10.60   60.85 -14.29 27.44   -6.35 

18.50 -13.24   64.31 -12.70 28.46   -4.76 

19.50 -13.85   67.77 -17.46 29.49   -4.76 

20.55 -13.63   71.23   -9.52 30.51   -7.94 

21.55 -15.08   74.69   -9.52 31.54    0.00 

22.60 -15.93   78.15   -6.35 32.56   -6.35 

23.60 -21.19   81.62   -4.76 33.59   -6.35 

24.65 -19.07   85.08   -3.17 34.62   -6.35 

25.65 -19.49   88.54   -3.17 35.64 -14.29 

26.70 -32.02   92.00   -1.59 36.67 -12.70 

27.70 -50.00   95.46   -6.35 37.69 -17.46 

28.70 -90.77   98.92    0.00 38.72 -11.11 

29.75 -86.72 102.38    0.00 39.74 -11.11 

30.75 -97.72 105.85   -1.59 40.77   -7.94 

31.80 -97.48 109.31    0.00 41.79 -15.87 

32.80 -98.63 112.77   -1.59 42.82   -7.94 

33.85 -99.70 116.23   -3.17 43.85 -15.87 

34.85 NA 119.69    0.00 44.87 -19.05 

35.90 NA 123.15    0.00 45.90 -12.70 

36.90 -99.86 126.62    0.00 46.92   -9.52 
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Table S6B Cont inued      

Figure 8A  Figure 8B   Figure 8C  

Proportion  Bias  Mean.dif f  Bias  SD Bias  

37.95 NA 130.08    0.00 47.95 -15.87 

38.95 NA 133.54    0.00 48.97 -15.87 

40.00 NA 137.00    0.00 50.00 -22.22 
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Table S7 

 

Table S7. Simulation results corresponding to Figure 10. 

 Figure 10A (n=2000) Figure 10B (n=20000) Figure 10C (n=200000) 

method Proportion Bias Proportion Bias Proportion Bias 

Boxplot1.5   0.10 100.00 0.10 390.00 0.10 351.50 

   0.15   66.67 0.18 225.71 0.18 189.92 

   0.25   20.00 0.26 145.10 0.26 130.16 

   0.30   16.67 0.34 113.43 0.34   96.72 

   0.40   12.50 0.41   93.90 0.41   76.81 

   0.45   11.11 0.49   65.31 0.49   63.25 

   0.55     9.09 0.57   60.53 0.57   52.71 

   0.60     8.33 0.64   52.71 0.65   43.80 

   0.70    -7.14 0.73   45.52 0.73    38.16 

   0.80     0.00 0.80   40.99 0.81   34.57 

   0.85     5.88 0.88   37.29 0.89   30.55 

   0.95     0.00 0.96   32.81 0.96   25.57 

   1.00     0.00 1.04   32.69 1.04   24.03 

   1.10     0.00 1.12   24.55 1.12   21.10 

    1.20    -8.33 1.20   27.08 1.20   17.92 

Boxplot3   0.10     0.00 0.10  -10.00 0.10    -8.50 

   0.15     0.00 0.18  -11.43 0.18    -9.80 

   0.25     0.00 0.26    -5.88 0.26    -9.34 

   0.30     0.00 0.34    -8.96 0.34    -9.84 

   0.40  -12.50 0.41    -6.10 0.41   10.39 

   0.45     0.00 0.49    -9.18 0.49    -9.64 

   0.55    -9.09 0.57    -9.65 0.57    -9.54 

   0.60     0.00 0.64  -12.40 0.65    -9.93 

   0.70    -7.14 0.73  -11.03 0.73    -9.88 

   0.80    -6.25 0.80    -8.70 0.81    -9.54 

   0.85    -5.88 0.88    -6.78 0.89    -8.36 

   0.95  -21.05 0.96  -10.42 0.96    -9.18 

 10.00  -10.00 1.04    -8.17 1.04    -9.78 

   1.10    -4.55 1.12    -8.48 1.12    -9.10 

    1.20    -8.33 1.20    -7.08 1.20    -9.62 
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Table S8 

 

Table S8. ICEclc activity-response in Pseudomonas knackmussi B13 Pint-egfp to pre-growth on 

different carbon sources, quantified over percentile range. Data correspond to Figure S4C. 

 Response (%)
2

 

Percenti le
1

 Fructose 3CBA 

97.80%    -4.74     6.47 

97.85%    -4.83     6.89 

97.90%    -4.70     9.29 

97.95%    -4.75   13.97 

98.00%    -4.59   22 .02 

98.05%    -4.51   26 .27 

98.10%    -4.35   32 .97 

98.15%    -4.19   33 .72 

98.20%    -3.97   36 .64 

98.25%    -3.97   44 .32 

98.30%    -3.98   49 .31 

98.35%    -4.05   53 .88 

98.40%    -3.91   54 .74 

98.45%    -3.73   60 .10 

98.50%    -3.63   76 .48 

98.55%    -3.20   81 .58 

98.60%    -3.17   82 .25 

98.65%    -3.05   84 .14 

98.70%    -3.02   84 .27 

98.75%    -2.73   85 .43 

98.80%    -2.88   86 .73 

98.85%    -2.57   88 .33 

98.90%    -2.59   89 .67 

98.95%    -1.32   91 .11 

99.00%     4.07   93 .83 

99.05%     7.13   94 .03 

99.10%   19.60   94 .01 

99.15%   26 .68   98 .82 

99.20%   27 .52   99 .00 

99.25%   34 .04   99 .61 

99.30%   35 .90   99 .68 

99.35%   36 .79 107.35 

99.40%   44 .43 114.22 

99.45%   46 .14 133.47 
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99.50%   47 .41 135.01 

Table S8 Cont inued   

 Response (%)
2

 

Percenti le
1

 Fructose 3CBA 

99.55%   53 .87 135.87 

99.60%   60 .95 137.32 

99.65%   61 .26 161.80 

99.70%   71 .40 169.08 

99.75%   80 .76 183.48 

99.80%   92 .43 186.68 

99.85% 107.00 190.35 

99.90% 111.90 195.29 

99.95% 154.82 201.38 

100.00% 217.95 217.84 

1) Percentile range from 97.80-100%. Bold, first percentile value corresponding  to response  > 20%. 

2) Positive values denote cell fluorescence brighter in stationary phase than in exponential phase, while a negative 

response corresponds to vice versa. Bold, response > 20%. 
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Protocol  S1 

 

Descr iption o f the R  functions f indsub(. .. ),  get .c i( .. . ),  and  get.ci .other ( .. .) 

Different strategies of small subpopulation quantification and robustness testing were translated 

into the R [1] functions findsub(...) and get.ci(...), respectively (for code see Protocol S2). In this 

way subpopulations could be computationally calculated following a simple protocol of 

commands (Protocol S1, Figure 1: (5)-(8)). The functions provide numerical as well as graphical 

output (Protocol S1, Figure 2-8). Functions used in Default or Manual mode were designed to 

work on basis of interactive graphs requiring mouse-clicking at the approximate locations of the 

large subpopulation minimum and maximum, or at the point of separation between large and 

small subpopulation, respectively (Protocol S1, Figure 2, 3). In contrast, functions in Boxplot1.5 

and Boxplot3 modes were designed to run fully automatically once initiated (Protocol S1, Figure 

4, 5). An additional mode Other was designed to employ other methods of characterization 

corresponding to the mean, 95th percentile, boosted mean, and the mean top five % of the 

total population, respectively (Protocol S1,  Figure 6). Bootstrap confidence interval calculations 

may be performed by the functions get.ci(...) (Protocol S1, Figure 7, 8) and get.ci.other(...). 

While the former calculates the confidence intervals of the methods in modes Default, Manual, 

Boxplot1.5, and Boxplot3, the latter calculates confidence intervals of Other modes. get.ci(...) 

and get.ci.other(...) both employ the R funtions boot(...) and boot.ci(...) included in the R 

package boot [2] [3], which perform re-sampling of original data set (with replacement) and 

subsequent method application. Shown below, are examples of R output of the functions 

findsub(...) and get.ci(...) as tested on an example data set (Protocol S2). The example data set 

was compiled from single cell eGFP fluorescence values of Pseudomonas knackmussi B13 

strain 1343 grown in batch culture on minimal medium with 3-chlorobenzaote as carbon 

source (10 mM), sampled 10 h after reaching stationary phase. 
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Protocol S1 Figure 1. R functions. (1) Clears R working environment. (2) Sets the directory of R 

working environment. (3) Imports example data set as an object in R. (4) Imports function code for 

subpopulation analysis in R. (5)-(8) Four different modes of subpopulation analyses where x is assigned 

the data to be analysed (in this case example.data). Modes Default and Manual represent interactive 

methods requiring mouse-clicking on a graph. Modes Boxplot1.5 and Boxplot3 run automatically once 

initiated. Mode Default requires two mouse-clicks on the approximate minimum and maximum of the 

large subpopulation, respectively. Mode Manual only requires one mouse-click on the approximate point 

of separation of the to subpopulations. (9) Mode other uses other methods of characterization namely 

mean, 95th percentile, boosted mean, and mean top five. (6)-(13) A function for each mode to determine 

confidence intervals reflecting consistency (reproducibility) of the method. Automatic modes Boxplot1.5 

and Boxplot3 employ bootstrapping with R replicates. The Default setting of R is set to 500 but can be 

changed. Similarly, interactive modes Default and Manual employ resampled trials of x repetitions, with 

the Default set to 20 trials. (14)-(17) Confidence interval determination for mean, 95th percentile, boosted 

mean, and mean top five are based on bootstrapping with R = 500 rounds.  
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Protocol S1 Figure 2. Example of R output of the function findsub(...) with mode set to Default and 

example.data used as data set. (A) Command line output stating the cutoff value at which the small 

subpopulation was separated from the large subpopulation (cutoff), the size n of the small subpopulation 

(n.sub-pop) and the total population (n.total), the percentage of the small subpopulation (perc.sub-pop), 

and the mean value of the small subpopulation (mean.sub-pop). (B) Graphical output highlighting the 

manually placed minimum (Min) and maximum (Max) thresholds that encompass the estimated large 

subpopulation (vertical lines), its median (lower horizontal line), the points belonging to the IQR within the 

large subpopulation (green, vertical), the regression line fitted to the IQR points (green line), the cutoff 

value separating large and small subpopulation (dotted horizontal line), and the points belonging to the 

small subpopulation (green, vertical). (C) Histogram graphical output of the estimated small 

subsubpopulation. (D) QQ plot of the estimated small subpopulation. 
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Protocol S1 Figure 3. Example of R output of the function findsub(...) with mode set to Manual and 

example.data used as data set. (A) Command line output stating the cutoff value at which the small 

subpopulation was separated from the large subpopulation (cutoff), the size of the small subpopulation 

(n.sub-pop) and the total population (n.total), the percentage of the small subpopulation (perc.sub-pop), 

and the mean value of the small subpopulation (mean.sub-pop). (B) Graphical output highlighting the 

manually placed cutoff separating large and small subpopulation (dotted horizontal line), and the points 

categorized as small subpopulation (green). (C) Histogram of the small estimated subpopulation. (D) QQ 

plot of the small estimated subpopulation. 
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Protocol S1 3 Figure 4. Same as Figure 2 but with mode set to Boxplot1.5. Note that the cutoff 

value in this case is determined by how far the upper whisker of the boxplot extends, which is no more 

than 1.5 times the interquartile range from the box (upper quartile).  
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Protocol S1 Figure 5. Same as Figure 2 but with mode set to Boxplot3. Note that the cutoff value in 

this case is determined by how far the upper whisker of the boxplot extends, which is no more than 3 

times the interquartile range from the box (upper quartile).  

 

 

Protocol  S1 Figure  6. Same Figure 1 but with mode set to Other. Mode Other uses other methods of 

characterization namely mean (mean), 95th percentile (perc.95), 99th percentile (perc.99), boosted mean 

(boost), and mean top five (top5) of the total population, respectively. 
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Protocol S1 Figure 7. Example of R output of the function get.ci(...) with mode set to Default and 

example.data.txt used as data set. (A) Command line output stating the 2.5 and 97.5 percentiles of the 

trial results ($quantiles), the standard deviation ($sd), the mean ($mean), and the 95% confidence interval 

($ci.95). The latter was calculated according to 

! 

CIuppe r / lower = mean ± SD "1.96, where CIupper/lower is 

the upper or lower confidence interval, mean is the population mean, and SD is the standard deviation of 

the boostrap results. Also shown are the individual results of applying get.ci(...) with mode set to Default 

on the re-sampled dataset ($trials). (B) Histogram graphical output (left) and QQ-plot graphical output 

(right) of the bootstrap results. 
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Protocol S1 Figure 8. Example of R output of the function get.ci(...) with mode set to Boxplot1.5 and 

example.data.txt used as data set. (A) Command line output stating the number of bootstraps (R), the 

result of applying get.ci(…) with mode Boxplot1.5 on the original dataset (Result), and confidence 

intervals according to different algorithms including the basic bootstrap method (Basic), the studentized 

bootstrap method (Normal) and the bootstrap percentile method (Percent). (B) Histogram graphical 

output (left) and QQ-plot graphical output (right) of the bootstrap results. 
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Protocol  S2 

 

Protocol  S2: step-by-step scr ipt  for R  

 

#.. Step 1: Create a clean R environment. 

 

rm(list=ls(all=TRUE)) 

 

#.. Step 2: Set the R work folder address. You need to create or choose a folder on your 

computer and enter its address into the command below. Tip: if you mouse-drag this folder 

into the setwd("...") location in this document, its address will be copied there saving you 

laborious address typing.  

 

setwd("/Users/fedor/Desktop/R.test/FINDSUB") # sets work folder address 

 

#.. Step 3: Before you continue, make sure to place into the newly created work folder the files 

FINDSUB_code.txt and example.data.txt and if you want to analyze our own data, also another 

file named my.data.txt (see step 4). Now import into R the data text file called 

"example.data.txt" via the read.table() command as shown below. This data set is required for 

demonstrative purposes of this script, but it is also needed when your own data is analyzed. 

Generally, to be recognized by the R commands of this script, the data to be imported from the 

text file needs to be organized in a specific way in the text file: a first line called the "header" 

consisting of three, space delimited words named “value”, “image” and “name“. Below these 

words then, are placed three columns of the corresponding data (see the file examle.data.txt). 

The category "value" contains the cell specific parameter under investigation, such as cellular 

fluorescence values. The category "image" describes from which image or sample the "value" 

originates from. The category "name" is the name of the experiment.  

 

example.data <- read.table("example.data.txt", header=TRUE) # imports example.data.txt 

 

#.. Step 4: Import into R the textfile called "my.data.txt". This file contains your own data set. 

Create a text file called "my.data.txt" and place it together with the files "examle.data.txt", 

"FINDSUB_code", and "script" into your R workfolder. This text file should be organized exactly 

as the file "example.data.txt” with the same column names (“value”, “image” and “name“) but 
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with your own data now replacing the example data. Tip: organize your data in Microsoft Excel 

(Microsoft Corporation, Redmond, Wash.) and then copy-paste it to a blank text file called 

“my.data.txt”. Missing values should be replaced by "NA". As an example of how your data 

should be organized have a look at the file "example.data.txt". 

 

my.data <- read.table("my.data.txt", header=TRUE) # imports my.data.txt 

 

#.. Step 5: Quality control: Look at your data image by image (example data). To look at your 

own data replace "example.data" with "my.data.txt". 

 

boxplot(example.data$value~example.data$image) # draws boxplots 

 

#.. Step 6: Import the textfile called "FINDSUB_code.txt". This file contains the functions that 

are required for data analysis with this script. Furthermore, it reads in the dataset 

"example.data" for demonstrative purposes. Both, the file "FINDSUB_code.txt" and 

"examle.data.txt" need to be present in the R work folder. 

 

source("FINDSUB_code.txt") # imports code  

 

#.. Step 7: Data analysis in four different modes using the example data set 

"example.data$value", where "default" and "manual" modes are interactive and require mouse-

clicking on a QQ plot graph, whereas "boxplot1.5" and "boxplot3" modes are fully automatic. 

"default" mode requires two mouse-clicks on the approximate start and end of the approximate 

main-population, respectively. "manual" mode only requires one mouse-cklicking on the 

approximate point of separation between main- and sub-population. Mode "other" uses other 

methods of characterization namely mean, 95th percentile, boosted mean, and mean top five. 

To look at your own data replace "example.data" with "my.data.txt". 

 

findsub(x=example.data$value, mode="default") 

findsub(x=example.data$value, mode="manual") 

findsub(x=example.data$value, mode="boxplot1.5") 

findsub(x=example.data$value, mode="boxplot3") 

 

findsub(x=example.data$value, mode="other") 
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#.. Step 8: A function for each mode to determine confidence intervals reflecting consistency 

(reproducability) of the method. Automatic modes "boxplot1.5" and "boxplot3" employ 

bootstrapping with R rounds. The default setting of R is set to 500 but can be changed to any 

number. Similarly, interactive modes "default" and "manual" employ resampled trials of a 

number of repetitions, with the default set to 20 trials. To look at your own data replace 

"example.data" with "my.data.txt". 

 

get.ci(x=example.data$value, trials=20, mode="default") 

get.ci(x=example.data$value, trials=20, mode="manual")  

get.ci(x=example.data$value, R=500, mode="boxplot1.5") 

get.ci(x=example.data$value, R=500, mode="boxplot3") 

 

#.. Step 9: Same as Step 8 but for the "other" methods: mean, 95th percentile, boosted mean, 

and mean top five. 

 

get.ci.other(x=example.data$value, R=500, mode="mean") 

get.ci.other(x=example.data$value, R=500, mode="perc.95")  

get.ci.other(x=example.data$value, R=500, mode="top.5") 

get.ci.other(x=example.data$value, R=500, mode="boost") 
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Protocol  S2: R  code 

 

The following code defines the functions findsub(), get.ci(), and get.ci.other(). findsub() quantifies 

small sub-population effects according to the methods "default", "manual", "boxplot1.5", 

"boxplot3" or "other", which can be chosen via the argument mode. The function get.ci() 

bootstraps "default", "manual", "boxplot1.5", or "boxplot3", which can be chosen via the 

argument mode. Arguments R and trials determine the number of bootstraps for the methods 

"boxplot1.5" or "boxplot3" and "default" or "manual", repectively. The function get.ci.other() 

bootstraps population mean (mean), 95th percentile (perc.95), booseted mean (boost), 

population mean top 5% (top.5). Argument R determines the number of bootstraps.  

 

############ findsub function 

findsub <- function (x = example.data$value, mode = "default") { 

 graphics.off() 

 dev.off(!1) 

 if (mode == "default") { 

  c <-as.data.frame(qqnorm(x,ylab="Fluorescence (AGV)")) 

  mtext(3,text= paste ("cutoff mode=",mode)) 

  my.p1<-locator(n=1) 

  abline(v=my.p1$x) 

  text("Min", x= my.p1$x+0.25, y=max(c$y)-2*max(c$y)/100) 

  my.p2<-locator(n=1) 

  abline(v=my.p2$x) 

  text("Max", x= my.p2$x+0.25, y=max(c$y)-2*max(c$y)/100) 

 

  sub.c <- subset(c, x>=my.p1$x & x<=my.p2$x) 

  points(sub.c, pch = 21, bg="red", col="red", cex = 1) 

 

  upper.y <- quantile(sub.c$y,0.75) 

  lower.y <- quantile(sub.c$y,0.25) 

  median.y <- median (sub.c$y) 

 

  core <- subset(sub.c, y>=lower.y & y<=upper.y) 

  points(core, pch = 21, bg="green", col="green", cex = 1) 

  abline(h=median.y, col="black") 

  text("median", x= -2.5, y=median.y+2*max(c$y)/100) 
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  lm.core <- lm(core$y~core$x) 

  abline(lm.core, col="green") 

 

  slope <- coefficients(lm.core)[[2]] 

  cut.off<-round(slope*qnorm(0.995)+median.y,2) 

  abline(h=cut.off, col="black", lwd=2, lty=2) 

  text(paste("cutoff=",cut.off), x= -2.5, y=cut.off+2*max(c$y)/100) 

 

  subpop <<- subset(c, y > cut.off) 

  points(subpop, pch = 21, bg="green", col="green", cex = 1) 

 

  sub.perc <<- round(length(subpop$y)/length(c$y)*100,2) 

  sub.mean <- round(mean(subpop$y),2) 

 

  text(paste("perc=",sub.perc,"%"),x=0,y=cut.off+2*max(c$y)/100,col="black") 

  text(paste("mean=",sub.mean),x=0,y=cut.off+8*max(c$y)/100,col="black") 

 

  if (length(subpop$x) > 1){ 

   dev.new(width=6,height=3) 

   par(mfrow=c(1,2)) 

   hist(subpop$y, xlab="Fluorescence (AGV)") 

   qqnorm(subpop$y, ylab="Fluorescence (AGV)") 

   qqline(subpop$y) 

  } 

 

   

  my.data.frame <- 

data.frame(mode,cut.off,length(subpop$y),length(c$y),sub.perc,sub.mean, row.names=NULL) 

  names(my.data.frame)<-c("mode","cutoff","n.sub-pop","n.total","%.sub-

pop","mean.sub-pop") 

  my.data.frame 

   

 } else if (mode == "manual") { 

    

  c <-as.data.frame(qqnorm(x,ylab="Fluorescence (AGV)")) 

  mtext(3,text= paste ("cutoff mode=",mode)) 

  my.p1<-locator(n=1) 

  #abline(v=my.p1$x) 
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  abline(h=my.p1$y, col="black", lwd=2, lty=2) 

   

  cut.off<-round(my.p1$y,2) 

  text(paste("cutoff=",cut.off), x= -2.5, y=cut.off+2*max(c$y)/100) 

 

  subpop <<- subset(c, y > cut.off) 

  points(subpop, pch = 21, bg="green", col="green", cex = 1) 

 

  sub.perc <<- round(length(subpop$y)/length(c$y)*100,2) 

  sub.mean <- round(mean(subpop$y),2) 

 

  text(paste("perc=",sub.perc,"%"),x=0,y=cut.off+2*max(c$y)/100,col="black") 

  text(paste("mean=",sub.mean),x=0,y=cut.off+8*max(c$y)/100,col="black") 

  mtext(3,text= paste ("cutoff mode=",mode)) 

 

  if (length(subpop$x) > 1){ 

   dev.new(width=6,height=3) 

   par(mfrow=c(1,2)) 

   hist(subpop$y, xlab="Fluorescence (AGV)") 

   qqnorm(subpop$y, ylab="Fluorescence (AGV)") 

   qqline(subpop$y) 

  } 

 

  my.data.frame <- 

data.frame(mode,cut.off,length(subpop$y),length(c$y),sub.perc,sub.mean, row.names=NULL) 

  names(my.data.frame)<-c("mode","cutoff","n.sub-pop","n.total","%.sub-

pop","mean.sub-pop") 

  my.data.frame 

 

 } else if (mode == "boxplot1.5") { 

    

  c <-as.data.frame(qqnorm(x,ylab="Fluorescence (AGV)")) 

   

  cut.off<-round(boxplot(c$y,plot=T, range=1.5, add=T, h=F, at=3.4)$stats[5],2) 

  abline(h=cut.off, col="black", lwd=2, lty=2) 

  text(paste("cutoff=",cut.off), x= -2.5, y=cut.off+2*max(c$y)/100) 

 

  subpop <<- subset(c, y > cut.off) 
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  points(subpop, pch = 21, bg="green", col="green", cex = 1) 

 

  sub.perc <<- round(length(subpop$y)/length(c$y)*100,2) 

  sub.mean <- round(mean(subpop$y),2) 

 

  text(paste("perc=",sub.perc,"%"),x=0,y=cut.off+2*max(c$y)/100,col="black") 

  text(paste("mean=",sub.mean),x=0,y=cut.off+8*max(c$y)/100,col="black") 

  mtext(3,text= paste ("cutoff mode=",mode)) 

 

  dev.new(width=6,height=3) 

  par(mfrow=c(1,2)) 

  hist(subpop$y, xlab="Fluorescence (AGV)") 

  qqnorm(subpop$y, ylab="Fluorescence (AGV)") 

  qqline(subpop$y) 

 

  my.data.frame <- 

data.frame(mode,cut.off,length(subpop$y),length(c$y),sub.perc,sub.mean, row.names=NULL) 

  names(my.data.frame)<-c("mode","cutoff","n.sub-pop","n.total","%.sub-

pop","mean.sub-pop") 

  my.data.frame 

 

 } else if (mode == "boxplot3") { 

    

  c <-as.data.frame(qqnorm(x,ylab="Fluorescence (AGV)")) 

   

  cut.off<-round(boxplot(c$y,plot=T, range=3, add=T, h=F, at=3.4)$stats[5],2) 

  abline(h=cut.off, col="black", lwd=2, lty=2) 

  text(paste("cutoff=",cut.off), x= -2.5, y=cut.off+2*max(c$y)/100) 

 

  subpop <<- subset(c, y > cut.off) 

  points(subpop, pch = 21, bg="green", col="green", cex = 1) 

 

  sub.perc <<- round(length(subpop$y)/length(c$y)*100,2) 

  sub.mean <- round(mean(subpop$y),2) 

 

  text(paste("perc=",sub.perc,"%"),x=0,y=cut.off+2*max(c$y)/100,col="black") 

  text(paste("mean=",sub.mean),x=0,y=cut.off+8*max(c$y)/100,col="black") 

  mtext(3,text= paste ("cutoff mode=",mode)) 
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  dev.new(width=6,height=3) 

  par(mfrow=c(1,2)) 

  hist(subpop$y, xlab="Fluorescence (AGV)") 

  qqnorm(subpop$y, ylab="Fluorescence (AGV)") 

  qqline(subpop$y) 

 

  my.data.frame <- 

data.frame(mode,cut.off,length(subpop$y),length(c$y),sub.perc,sub.mean, row.names=NULL) 

  names(my.data.frame)<-c("mode","cutoff","n.sub-pop","n.total","%.sub-

pop","mean.sub-pop") 

  my.data.frame 

 

 } else if (mode == "other") { 

  q.75 <- quantile(x,.75) 

  q.95 <- quantile(x,.95) 

  my.mean <- mean(x) 

  my.perc.95 <- quantile(x,.95) 

  my.perc.99 <- quantile(x,.99) 

  my.boost <- mean(x[x > q.75 & x < q.95]) 

  my.top5 <- mean(x[x > q.95]) 

   

  my.data.frame <- data.frame(my.mean,my.perc.95,my.perc.99,my.boost,my.top5, 

row.names=NULL) 

  names(my.data.frame)<-c("mean","perc.95","perc.99","boost","top5") 

  my.data.frame 

  

 } 

} 

 

 

 

############ load library for bootstrap functions 

 

library("boot") 

 

############ bootstrap functions for population splitting methods 

############ get.ci 
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fun.boxplot1.5 <- function (x,ind) {  

 cut.off<-round(boxplot(x[ind] ,plot=F, range=1.5, add=T, h=F, at=3.4)$stats[5],2) 

 subpop <- x[ind][x[ind] > cut.off] 

 sub.perc <- round(length(subpop)/length(x[ind])*100,2) 

 sub.perc 

 } 

 

fun.boxplot3 <- function (x,ind) {  

 cut.off<-round(boxplot(x[ind] ,plot=F, range=3, add=T, h=F, at=3.4)$stats[5],2) 

 subpop <- x[ind][x[ind] > cut.off] 

 sub.perc <- round(length(subpop)/length(x[ind])*100,2) 

 sub.perc 

 } 

 

 

get.ci <- function (x = example.data$value, mode="default",trials=20, R=500) { 

 if (mode == "boxplot1.5") { 

  my.boot<-boot(x,fun.boxplot1.5, R=R) 

  graphics.off() 

  dev.off(!1) 

  dev.new(width=8,height=4) 

  plot(my.boot) 

  mtext("mode=boxplot1.5", line=3) 

  my.boot.ci<-boot.ci(my.boot,type=c("norm","basic","perc")) 

  names<-

c("R","Result","Normal.low","Normal.high","Basic.low","Basic.high","Percent.low","Percent.high") 

  results<-

c(my.boot.ci$R,my.boot.ci$t0,my.boot.ci$normal[2],my.boot.ci$normal[3],my.boot.ci$basic[4],my.boot.ci

$basic[5],my.boot.ci$percent[4],my.boot.ci$percent[5]) 

  data.frame(row.names=names,results) 

 

 } else if (mode == "boxplot3") { 

  my.boot<-boot(x,fun.boxplot3, R=R) 

  graphics.off() 

  dev.off(!1) 

  dev.new(width=8,height=4) 

  plot(my.boot) 
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  mtext("mode=boxplot3", line=3) 

  my.boot.ci<-boot.ci(my.boot,type=c("norm","basic","perc")) 

  names<-

c("R","Result","Normal.low","Normal.high","Basic.low","Basic.high","Percent.low","Percent.high") 

  results<-

c(my.boot.ci$R,my.boot.ci$t0,my.boot.ci$normal[2],my.boot.ci$normal[3],my.boot.ci$basic[4],my.boot.ci

$basic[5],my.boot.ci$percent[4],my.boot.ci$percent[5]) 

  data.frame(row.names=names,results) 

 

 } else if (mode == "manual") {   

  my.replicate <<- replicate(trials,findsub(sample(x,size=length(x),replace=T), 

mode="manual")[1,5]) 

  graphics.off() 

  dev.off(!1) 

  dev.new(width=8,height=4) 

  par(mfrow=c(1,2)) 

  hist(my.replicate) 

  mtext("mode=manual", line=3) 

  qqnorm(my.replicate) 

  qqline(my.replicate) 

  list( 

  quantiles=quantile(my.replicate,probs = c(0.025, 0.975)), 

  sd=sd(my.replicate), 

  mean=mean(my.replicate), 

  ci.95=c(mean(my.replicate)-

qnorm(0.975)*sd(my.replicate),mean(my.replicate)+qnorm(0.975)*sd(my.replicate)), 

  trials=my.replicate) 

   

 } else if (mode == "default") { 

  my.replicate <<- replicate(trials,findsub(sample(x,size=length(x),replace=T), 

mode="default")[1,5]) 

  graphics.off() 

  dev.off(!1) 

  dev.new(width=8,height=4) 

  par(mfrow=c(1,2)) 

  hist(my.replicate) 

  mtext("mode=default", line=3) 

  qqnorm(my.replicate) 
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  qqline(my.replicate) 

  list( 

  quantiles=quantile(my.replicate,probs = c(0.025, 0.975)), 

  sd=sd(my.replicate), 

  mean=mean(my.replicate), 

  ci.95=c(mean(my.replicate)-

qnorm(0.975)*sd(my.replicate),mean(my.replicate)+qnorm(0.975)*sd(my.replicate)), 

  trials=my.replicate) 

 

 }   

}   

 

 

 

############ bootstrap functions for non-population splitting methods 

############ get.ci.other 

 

fun.mean <- function (x,ind) {  

 mean(x[ind]) 

 } 

 

fun.perc95 <- function (x,ind) {  

 quantile(x[ind],.95) 

 } 

 

fun.top5 <- function (x,ind) {  

 q.95 <- quantile(x[ind],.95) 

 mean(x[ind][x[ind] > q.95]) 

 } 

 

fun.boost <- function (x,ind) {  

 q.75 <- quantile(x[ind],.75) 

 q.95 <- quantile(x[ind],.95) 

 mean(x[ind][x[ind] > q.75 & x[ind] < q.95]) 

 } 

 

 

get.ci.other <- function(x, mode, R) { 
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 if (mode == "mean") { 

  my.boot<-boot(x,fun.mean, R=R) 

  graphics.off() 

  dev.off(!1) 

  dev.new(width=8,height=4) 

  plot(my.boot) 

  mtext("mode=mean", line=3) 

  my.boot.ci<<-boot.ci(my.boot,type=c("norm","basic","perc")) 

  names<-

c("R","Result","Normal.low","Normal.high","Basic.low","Basic.high","Percent.low","Percent.high") 

  results<-

c(my.boot.ci$R,my.boot.ci$t0,my.boot.ci$normal[2],my.boot.ci$normal[3],my.boot.ci$basic[4],my.boot.ci

$basic[5],my.boot.ci$percent[4],my.boot.ci$percent[5]) 

  data.frame(row.names=names,results) 

 

 } else if (mode == "perc.95") { 

  my.boot<-boot(x,fun.perc95, R=R) 

  graphics.off() 

  dev.off(!1) 

  dev.new(width=8,height=4) 

  plot(my.boot) 

  mtext("mode=perc.95", line=3) 

  my.boot.ci<<-boot.ci(my.boot,type=c("norm","basic","perc")) 

  names<-

c("R","Result","Normal.low","Normal.high","Basic.low","Basic.high","Percent.low","Percent.high") 

  results<-

c(my.boot.ci$R,my.boot.ci$t0,my.boot.ci$normal[2],my.boot.ci$normal[3],my.boot.ci$basic[4],my.boot.ci

$basic[5],my.boot.ci$percent[4],my.boot.ci$percent[5]) 

  data.frame(row.names=names,results) 

   

 } else if (mode == "top.5") { 

  my.boot<-boot(x,fun.top5, R=R) 

  graphics.off() 

  dev.off(!1) 

  dev.new(width=8,height=4) 

  plot(my.boot) 

  mtext("mode=top.5", line=3) 
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  my.boot.ci<<-boot.ci(my.boot,type=c("norm","basic","perc")) 

  names<-

c("R","Result","Normal.low","Normal.high","Basic.low","Basic.high","Percent.low","Percent.high") 

  results<-

c(my.boot.ci$R,my.boot.ci$t0,my.boot.ci$normal[2],my.boot.ci$normal[3],my.boot.ci$basic[4],my.boot.ci

$basic[5],my.boot.ci$percent[4],my.boot.ci$percent[5]) 

  data.frame(row.names=names,results) 

  

 } else if (mode == "boost") { 

  my.boot<-boot(x,fun.boost, R=R) 

  graphics.off() 

  dev.off(!1) 

  dev.new(width=8,height=4) 

  plot(my.boot) 

  mtext("mode=boost", line=3) 

  my.boot.ci<<-boot.ci(my.boot,type=c("norm","basic","perc")) 

  names<-

c("R","Result","Normal.low","Normal.high","Basic.low","Basic.high","Percent.low","Percent.high") 

  results<-

c(my.boot.ci$R,my.boot.ci$t0,my.boot.ci$normal[2],my.boot.ci$normal[3],my.boot.ci$basic[4],my.boot.ci

$basic[5],my.boot.ci$percent[4],my.boot.ci$percent[5]) 

  data.frame(row.names=names,results) 

 } 

} 

 

 

############ define example data set 

example.data <- read.table("example.data.txt", header=TRUE) 

############ 

##.. Single cell eGFP fluorescence values of Pseudomonas knackmussi B13-1343 grown in batch 

culture on minimal medium with 3-chlorobenzaote (10 mM) to stationary phase, sampled 10 h after 

reaching stationary phase. 
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Protocol  S3 

 

Protocol  S3: Scrip t fo r us ing the funct ion popsim() 

 

# create a clean R environment. 

rm(list=ls(all=TRUE)) 

 

# set work folder address 

setwd("/Users/fedor/Desktop/R.test/POPSIM") 

 

# import function code  

source("POPSIM_code.txt") 

 

## run simulation 

popsim (range=1.5, length.main=2000, mean.main=63, sd.main=3.9, runs=5, perc.low=0.1, 

perc.high=1.2, mean.low=65, mean.high=200, sd.low=10, sd.high=50) 

 

## popsim argument description 

# range:    define the method of sub-population detection: range = 1.5 (Boxplot1.5) or 

range = 3 (Boxplot3) 

# length.main:  define the total population length 

# mean.main:  define the main populaion mean 

# sd.main:  define the main population standard deviation 

# runs:   define the number of different small sub-population parameters to be tested per 

category 

# perc.low:  define the smallest small sub-population to be tested (% of total population) 

# perc.high:  define the largest small sub-population to be tested (% of total population) 

# mean.low:  define the smalles small sub-population mean to be tested 

# mean.high:  define the largest small sub-population mean to be tested 

# sd.low:  define the smallest small sub-population standard deviation to be tested 

# sd.high:  define the largest small sub-population standard deviation to be tested 

 

 

 

## look at the raw data 

run.param 
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## run.param column description 

# lengths: length n parameters for simulations of small sub-populations 

# means: mean value parameters for simulations of small sub-populations 

# sds:  standard deviation parameters for simulations of small sub-populations 

# msr:   mean of simulated small sub-population 

# mse:   mean of estimated small sub-population 

# m.diff:  difference between simulated and estimated means 

# psr:   percentage of simulated small sub-population 

# pse:   percentage of estimated small sub-population 

# p.diff:  difference between simulated and estimated percentage 

# sdsr:   standard deviation of simulated small sub-population 

# sdse:   standard deviation of estimated small sub-population 

# sd.diff:  difference between simulated and estimated standard deviation 

# my.range: range argument setting as used in the R function boxplot() 

# lenght.mix: length n of total population 
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Protocol  S3: R  code for the function  

 

The following code defines the function popsim(), which identifies sub-populations from 

simulated bimodal populations using the methods Boxplot1.5 (argument range = 1.5) or 

Boxplot3 (argument range = 3). 

 

#--------------------------------------------- 

   # 1) functions get.results and get.sub 

#--------------------------------------------- 

 

# the function get.results mixes main- and sub-population, separates them according to either 

boxplot1.5 or boxplot3 method, and compares the result with the simulated sub-population 

get.results <- function(u,v,w,range) { 

 

 pop.sub.real <<- rnorm(u,v,w) # simulate small sub-population 

 pop.mix <<- c(pop.sub.real, sample(pop.main,length(pop.main)-length(pop.sub.real))) # mix 

small sub-population and main population 

 pop.sub.exp <<- get.sub(range=range) # estimate small sub-popualtion using either the 

Boxplot1.5 or the Boxplot3 method 

  

 if ((length(pop.sub.exp)==0)==F) { 

 

  sdsr <<- sd(pop.sub.real) # standard deviation of simulated small sub-population 

  sdse <<- sd(pop.sub.exp)  # standard deviation of estimated small sub-population 

  sd.diff <<- sd(pop.sub.exp)-sd(pop.sub.real) # difference between simulated and 

estimated standard deviation 

 

  psr <<- length(pop.sub.real)/length(pop.mix)*100 # percentage of simulated small sub-

population 

  pse <<- length(pop.sub.exp)/length(pop.mix)*100 #  percentage of estimated small sub-

population 

  p.diff <<- length(pop.sub.exp)/length(pop.mix)*100-

length(pop.sub.real)/length(pop.mix)*100 # difference between simulated and estimated percentage 

 

  msr <<- mean(pop.sub.real) # mean of simulated small sub-population 

  mse <<- mean(pop.sub.exp) #  mean of estimated small sub-population 
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  m.diff <<- mean(pop.sub.exp)-mean(pop.sub.real) # difference between simulated and 

estimated means 

   

  my.range <<- range 

       length.mix <<-length(pop.mix) 

   

 } else { 

  sdsr <<- sd(pop.sub.real) 

  sdse <<- NA 

  sd.diff <<- NA 

 

  psr <<- length(pop.sub.real)/length(pop.mix)*100 

  pse <<- NA 

  p.diff <<- NA 

 

  msr <<- mean(pop.sub.real) 

  mse <<- NA 

  m.diff <<- NA 

  sep.diff <<- NA 

   

  my.range <<- range 

  length.mix <<- length(pop.mix) 

 }  

} 

 

#--------------------------------------------- 

 

# the function get.sub allows to define the methods Boxplot1.5 (range = 1.5) and Boxplot3 (range = 3) 

get.sub <- function(range = range) { 

 cut.off <- boxplot(pop.mix,plot=F, range=range)$stats[5] 

 pop.mix [pop.mix > cut.off] 

 } 

 

 

#--------------------------------------------- 

   # 2) final simulation function 

#--------------------------------------------- 

# use range = 1.5 for Boxplot1.5, or range = 3 for Boxplot3 
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popsim <- function (range=1.5, length.main=2000, mean.main=63, sd.main=3.9, runs=10, 

perc.low=0.1, perc.high=1.2, mean.low=65, mean.high=200, sd.low=10, sd.high=50) { 

 

 #------- setting population parameters --------- 

 # creation of main population 

 pop.main <<- rnorm (length.main, mean.main, sd.main) 

 

 # determination of small sub-population parameters  

 # determination of the sub-population sizes to be tested 

 range.perc <- seq(from=perc.low,to=perc.high,length.out=runs) 

 range.length <- range.perc*length.main/100 

 

 # determiation of small sub-population means to be tested 

 range.mean <- seq(from=mean.low,to=mean.high,length.out=runs) 

 

 # calculation of the mean differences (mean.diff) between small sub-population and main 

population 

 range.meandiff <- range.mean - mean.main 

 

 # determiation of small sub-population standard deviations to be tested 

 range.sd <- seq(from=sd.low,to=sd.high,length.out=runs) 

 

 # creating dataframe with all small sub-population parameters 

 lengths <- rep(range.length,each=runs^2) 

 means <- rep(rep(range.mean,each=runs),runs) 

 sds <- rep(range.sd,runs^2)  

 run.param <- data.frame(lengths=lengths, means=means, sds=sds) 

 #--------------------------------------------- 

 

 for(i in 1:runs^3){ 

   get.results (u=run.param[i,][[1]],v=run.param[i,][[2]],w=run.param[i,][[3]], 

range=range) 

 

   run.param$msr[i] <- msr 

   run.param$mse[i] <- mse 

   run.param$m.diff[i] <- m.diff 

 

   run.param$psr[i] <- psr 
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   run.param$pse[i] <- pse 

   run.param$p.diff[i] <- p.diff 

 

   run.param$sdsr[i] <- sdsr 

   run.param$sdse[i] <- sdse 

   run.param$sd.diff[i] <- sd.diff 

    

   run.param$my.range[i] <- my.range 

   run.param$length.mix [i] <- length.mix 

  } 

  run.param<<-run.param 

 } 
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Published previously in Microcolony growth assays p. 3562-3570. In K. N. Timmis, V. de 

Lorenzo, T. McGenity, and J. R. van der Meer (ed.), Handbook of Hydrocarbon and Lipid 

Microbiology, vol. 5. Springer Verlag. Friedrich Reinhard and Jan Roelof van der Meer designed 

the study. Friedrich Reinhard performed experiments and analysis. Friedrich Reinhard and Jan 

Roelof van der Meer wrote the book chapter.  
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ABSTRACT 

 

Microcolony growth procedures have gained recent interest for the following reasons: 

rapid simultaneous screening for growth of large numbers of bacteria from environmental 

samples, time-lapse imaging of single cell growth, cell aging or biofilm studies. Not many of 

such procedures have been described in sufficient technical detail to be easily reproduced. 

Here we provide a simple step-by-step procedure, which allows time-lapse imaging of bacterial 

cell division and cell tracking up to the stage of a monolayered colony of a few hundred cells. 
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INTRODUCTION 

 

For a variety of reasons it can be interesting to study microbial growth at the micro- 

rather than at the macroscale as is typically done in shaken flask suspended cultures, 

bioreactors or the like. Numerous studies on bacterial biofilms or colonies have demonstrated 

conclusively that cells at different spatial locations within the closely packed cellular structure 

of a biofilm or colony face different growth conditions and can display different activity and 

phenotypes(15). More recently, the idea of phenotypic identity of individual bacteria among 

clonal populations has been challenged by the discovery and deeper understanding of bistable 

switches underlying e.g., competence development or sporulation (11), horizontal gene transfer 

(2, 12), by cell aging (14), differential killing and resistance development (3, 5), or by 

cooperative behaviour (1) and bet-hedging (16). Phenotypic differentiation was also shown to 

occur among bacteria degrading hydrocarbons in bioreactors (17), suggesting that many more 

such phenomena exist. To study individual cellular behaviour in populations one needs different 

tools that allow single cell distinction, analysis of cellular genealogies, and easy analysis of 

individual gene expression. Major advances in the use of autofluorescent proteins, fluorescent 

staining techniques or in vivo specific protein labelling techniques have enabled single cell 

study of gene expression and subcellular protein localization patterns (2, 6). Microscale growth 

experiments on the other hand are very helpful to set up the conditions under which to study 

individual cell behaviour. Combinations of single cell tracking in microscale growth experiments 

may well be used to monitor the reaction time of cells to signals and stimuli, such as light, 

poisons, nutrients, chemical agents, signalling compounds and so on.  

Microscale experiments might also be interesting from the perspective of studying 

growth on traces of carbon compounds that otherwise are too toxic to be applied in large 

quantities. Microscale growth has already been shown to offer excellent possibilities for large 

library screening or for screening growth characteristics of large numbers of environmental 

isolates simultaneously in micro-Petri dishes (9). The procedure we describe below is an 

example of how colony formation from a single cell up to a few hundred cells can be monitored 

in real time by microscopic observation, which may be used for further advanced 

biodegradation studies as well. 
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GENERAL PROCEDURE STRATEGY AND OUTLINE 

 

Microcolony growth procedures are designed as such that direct microscopic 

observations are possible in real time conditions without disturbance of the specimen. Several 

examples of microcolony growth assays exist and we will briefly mention a few of them, while 

concentrating our technical description on only one. Bacterial biofilm growth assays could 

actually be considered the first such strategy for real-time microcolony observation, in which 

the multilayered structure is analyzed during a period of days up to two weeks, as a function of 

cell type, gene mutations or surface material. In combination with time-lapse imaging it is 

possible to follow cellular division from single cells to a single-layered microcolony, from which 

individual cell division rates and cell pole age for every individual in the microcolony can be 

calculated.  

A microcolony growth procedure has to start with the choice of material to grow the 

structure on. As mentioned, continuous flow biofilm growth experiments typically start with a 

closed chamber with glass cover slips on both sides (4, 15). Bacterial cells can be inoculated 

at low density, some of which will attach to the surface, and because of the constant carbon 

feed from one direction of the flow cell, will develop to a mature biofilm on the surface in a 

matter of days (Fig. 1). The formation and structure of the biofilm can be examined 

microscopically from underneath one of the glass cover slips, ideally by confocal laser 

scanning microscopy, in order to produce multilayered focussed images. Biofilm studies profit 

greatly from the use of fluorescently-tagged cells, which permit easier visualization of individual 

cells in a complex biofilm structure and allow the in vivo study of activity of specific cellular 

promoters in and during biofilm growth. Procedures for continuous flow biofilm formation have 

been described extensively elsewhere and need not be repeated here (4, 7). To the best of our 

knowledge, no study has yet tracked the origin and fate of every single cell in a mature biofilm 

by time-lapse imaging, but theoretically this should be possible. 

Other microcolony growth procedures have used porous materials to inoculate cells 

onto and follow the microcolony development in time. Such porous materials can be bacterial 

filters or porous aluminium oxides that can be moulded to include nanocavities (9). The porous 

surfaces can then be placed on a medium surface, from which nutrients will diffuse through 

the support to the cells. Porous nanocavity plates have the advantage that growth of 

thousands of microcolonies can be followed simultaneously, because they are physically 

separated from each other. This permits growth analysis, for example, of separated individual 

bacterial cells in communities, of phenotypic variation upon stress (8), or of large libraries of 

mutants.  
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Figure 1. Examp le of a b iof i lm f low microcolony growth setup.  (A) A four-channel flow 

chamber, covered on both sides with cover slips. (B) A heterogeneous biofilm of Pseudomonas 

knackmussii B13 on 10 mM 3-chlorobenzoate developed after 5 days flow, imaged at 40 × phase 

contrast.  
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Microcolony assays have also been carried out in spatially confined microfluidics 

structures, in which cells are provided with nutrients by diffusion from an agar surface below, 

but are physically confined to a microstructure on top (3). The microstructure forces the cells to 

grow within the spatial boundaries defined by the structure, for example, a capillary. In this case 

cells will divide and arrange themselves in longitudinal direction, which can be used to examine 

cell arrest, mutant arisal and phenotypic variation, such as upon antibiotic addition (3).  

Finally, microcolonies can be grown on the surface of a semi-solidified gel matrix that 

provides nutrients to the cells, but is so thin that light passes through and cell division can be 

followed directly by microscopy. In this procedure, cell division is physically constrained by the 

presence of the gel surface on one and a glass cover slip on the other side. Even so, in our 

experience two-to three layered microcolonies will develop eventually, that are not hindered in 

the z-direction by the cover slip. Examples of this procedure include recent studies that have 

used methods of single cell tracking (2, 14, 16). The crux in the procedure is to form a flat gel 

surface onto which to inoculate the cells; then cover the surface but still allowing oxygen (for 

aerobic bacteria) to penetrate, and to prevent drying out of the surface and the cells. Glass 

slides with small concave inclusions and silicon surrounding ridges have hereto been deployed 

(2, 14). 

The procedure we describe in more detail below was inspired on earlier gel matrix 

assays, but with some modifications. These modifications, we find, easily allow further online 

manipulation of growth conditions or cell staining during the course of an experiment without 

interfering with the original structure of the microcolonies and the positions of the individual 

cells therein. Our procedure also allows long-term (up to one week) online-monitoring of the 

cells in the microcolony, without desiccation or oxygen depletion throughout the length of the 

experiment. The protocol describes the creation of a flat and thin nutrient surface on which 

cells can be inoculated and are constrained by a glass cover slip, but with the difference that 

the other side of the gel matrix is exposed to a headspace (Fig. 2). The system is then placed 

within an air tight microscope observation chamber for incubation and time-lapse imaging. We 

termed this protocol the pancake method because it involves the turning of a gel patch, similar 

to the flipping of a pancake (see Fig. 2).  

Since the gel patch is inoculated with a diluted cell suspension, flipping of the gel patch 

results in the entrapment of isolated single cells at the glass-gel interface (Fig. 2A). Nutrients 

reach the cells by diffusion from the gel, whereas the gel layer is so thin (1 mm) that oxygen 

can diffuse freely to the cell layer that forms in between the gel and the glass (Fig. 2B). Further 

substrate can be added on top of the gel without interfering with the original positions of the 

cells or developing microcolonies on the other side. Substrate addition can be done either in 



MICROCOLONY GROWTH PROCEDURES 
 

 

179 

form of a liquid solution, or as a volatile released into the headspace within the closed chamber 

(in the case of, e.g., naphthalene or toluene). Additional advantage is that the cells can be 

specifically stained after defined incubation periods, by applying the dye again on top of the gel 

surface, after it will diffuse through the gel and stain the cells. Examples of useful stains 

include the Live/Dead reagent (Invitrogen, Molecular Probes). 

Not unsurprisingly, cells grow into microcolonies even without extra added carbon 

source to the gel, because of carbon traces in the gel that cannot be completely removed. 

Final average colony sizes even without any carbon added reach up to a few hundred cells, but 

this size is inversely proportional to the density of the inoculated cell suspension. The 

concentration of cells in the inoculum can thus easily be adjusted to obtain monolayered 

microcolonies (Fig. 3), which is an important prerequisite when single cells are to be 

investigated with microscopes that cannot resolve along the z-axis (like confocal laser 

scanning microscopy, CSLM), or in experiments with prolonged incubation periods. In our 

hands, we find that at above 0.1 mM extra carbon added to the gel, colony sizes will start to 

increase as a result of the specific extra carbon source. 

We generally assemble the whole setup in a commercially available perfusion chamber 

system from H. Sauer (Germany, see below, Fig. 2), which comes with a rigid metal cast POC 

chamber, round coverslips and silicon or Teflon spacer rings. The POC chamber allows both 

closed and open configurations, and several add-on options for nutrient-flow circuits exist. But 

in theory any airtight system (to prevent desiccation of the gel patch) consisting of two glass 

cover slip layers and a spacer-ring(s) should work as long as it fits into the microscope table.  

We used the pancake method to full satisfaction in combination with three different 

microscopes with different set-ups, a Zeiss Axioscope upright epifluorescence microscope, a 

Leica inverted epifluorescence microscope, and an inverted CLSM from Leica. CLSM has the 

obvious advantage that multi-layered cell structures can be focused more properly, but has the 

disadvantage that quantification of autofluorescent protein signals is more difficult (in case this 

is important). In the upright microscope-POC chamber configuration, the distance of the 

chamber to the condensor is too large to enable proper phase-contrast imaging, but the 

epifluorescence imaging mode is unrestricted. 
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Figure  2.  Schemat ic out l ine of the pancake method and perfus ion incubat ion chamber 

assembly.  (A) POC assembly parts and gel patch flipping. a: locking ring, b: upper coverslip, c: 

silicon ring, d: lower coverslip, cells and gel patch, e: perfusion chamber. (B) Sideview of POC 

chamber in inverted microscope configuration. a: silicon ring, b: headspace, c: condensation, d: 

upper coverslip, e: gel patch, f: cells, g: lower coverslip, h: objective. 

 

 

 

 

Figure 3. M ic rocolony s izes of Pseudomonas put i da  UWC1-ICEc lc  e quippe d wi th a  

const i tut ive ly expressed mCherry prote in after 144 h incubat ion at 20°C on agarose 

surfaces supplemented wi th 0.1 mM 3-chlorobenzoate in the pancake method.  Initial 

inoculation densities: ≈104 cells per µl (A), ≈1000 cells per µl (B), ≈100 cells per µl (C). Images taken 

in mCherry epifluorescence and upright mode with a Zeiss Axioscope at 1000 × magnification. 
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ADVANTAGES AND DISADVANTAGES 

 

We have experienced the following advantages of our modified procedure to prepare 

gel surface growth in a closed microscope chamber. First, because of the system containment 

and upside-down configuration, the gel surface is less prone to shrinking in the z direction 

because of desiccation. We found that in the ‘cells-on-top’ configuration, an agarose surface 

(even in a completely closed chamber with moisture) shrinks with about 1-2 µm per day, which 

makes automated imaging more difficult except if z-stacks are recorded. In the upside-down 

configuration, any shrinking of the agar surface does not influence the automated focusing of 

cells directly close to the glass cover slip (Fig. 2B). Secondly, the use of the microscope 

chamber with round cover slips and upside-down configuration permits the proper functioning 

of even short working distance lenses, which are basically limited to the thickness of the cover 

slip (0.17 mm) at high magnification. Thirdly, in upside-down configuration on an inverse 

microscope, the fluorescence light path does not travel through the agarose nor is it obstructed 

by condensation on the upper glass cover. Turning the POC chamber around for observation 

on an upright microscope has the small risk that the gel patch will fall down or loosen because 

of gravity. Condensation cannot form between the agarose patch and bottom coverslip. 

Sequential carbon substrates or staining dyes can be applied on the gel surface without 

affecting or disrupting the positions of single cells or the microcolony structure. In combination 

with CLSM multilayered colonies can be explored. The method is suitable for single-cell 

tracking, time-lapse imaging, and single-cell fluorescence imaging over periods of one week. 

Finally, the microscope chambers can be positioned exactly on the microscope stage, but also 

removed and incubated separately, if multiple such systems need to be analysed and imaged. 

The pancake method does have some drawbacks. Turing around the gel patch 

requires a bit of practise. As an alternative the second cover slip can be placed directly on the 

inoculated cell surface, and then turned around, but we find that in that case removing the 

support cover slip for the gel (which is now on the top side) is not unproblematic and can either 

break or will again lift the whole patch from the lower glass cover. Condensation forms on the 

inside of the upper coverslip obstructing somewhat bright-field and phase contrast views, both 

of which rely on light passing through the whole chamber from the opposing light source into 

the lens. Another disadvantage of the gel patch protocol might be accumulation of (toxic) 

metabolites and change of pH over time in the gel-surface provided to the cells.  
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PROCEDURE 

 

Protoco l: Preparation o f the ge l patch. Prepare the POC Chamber and the 

cover slips by autoclaving and subsequent drying in a sterile flow hood. Separate the cover 

slips during autoclaving by inserting a tooth pick between them. Install a round cover slip (42 

mm diameter, 0.17 mm thickness) at the bottom of the POC chamber and place a 1 mm 

Silicon ring on top (Fig. 2). For optimal sterile conditions carry out the whole procedure in a 

laminar air flow bench. 

 

1. Place a drop of 150 µl molten liquid 1% agarose medium maintained at 50°C on the 

bottom glass cover slip.  

2. Immediately place another round cover slip on top of the agarose medium droplet. 

Press softly until the droplet is flat and the top cover slip touches the Silicon separation 

ring. Let the agarose solidify. 

3.  Remove the upper glass slide and the Silicon ring to expose the agarose surface.  

4. Prepare the bacterial suspension to inoculate on the surface. The cell density in this 

suspension may depend on the research question, but we generally start with a 

suspension that has ≈5·106 cells per ml. This corresponds approximately to a 100-fold 

dilution of an overnight culture on 4 mM fructose. Collect the cells by centrifugation at 

low speed and wash once in carbon free minimal medium to remove traces of organic 

carbon or possible toxic secondary metabolites. Centrifuge again to collect cells and 

resuspend in the medium to the final desired cell density. 

5. Pipette a volume of 10 µl of cell suspension on the planar agarose surface, distribute 

the droplet evenly by tilting in a circular motion and allow it to dry at room temperature in 

the sterile flow hood. This typically takes five to ten minutes. Stop when a water film is 

no longer visible. Avoid drying too long or else the agarose will dry out. 

6. Now take another coverslip to lift the agarose patch and place it upside down onto a 

new round cover slip for the POC chamber. This requires some practise but is most 

easily performed by slightly inserting the edge of a cover slip at an angle between the 

agarose and the support glass surface until the agarose makes enough contact with 

the new coverslip to be lifted (Fig. 2A: steps 1-3). The cells will now be facing down.  

 

Note: As an alternative, you could add a new cover to the side of the gel patch with the 

cells, turn the system around and remove the back support cover slip. We find, however, that 

this is more difficult because the back cover often sticks better to the agarose. 
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7. Insert the new support coverslip with the gel patch into the POC chamber. Now place 

two Silicon rings (each of 1 mm thickness), finally a fresh round glass cover and close 

the system with the metal ring.  

 

Note: Instead of placing the gel patch in a closed configuration, the POC chamber can 

also be operated in open mode, which makes subsequent manipulation of substrates or dyes 

more easy. The open POC-mode requires, however, an inverted microscope set-up. 

 

8.  The chamber is now ready to be mounted on a microscope. Growth temperature can 

be adjusted to ambient temperature of the room in which the microscope is operated, 

or set to a specific temperature if an incubation chamber on the microscope table is 

used.  

 

Note: As an alternative, the POC chamber can be removed from the microscope table 

for external incubation in a small temperature incubator. In this case, one cannot make time-

lapse imaging and finding back the exact position may be more difficult.  

 

9. It may be fairly difficult at first to spot and focus single cells at the agarose-cover slip 

interface. It is helpful to find the edge of the gel patch and use this area to focus, 

because often a higher concentration of bacteria can be found here. From there on 

move towards the centre of the patch and focus on an isolated single cell. To make 

sure to focus on a growing individual cell, wait until the first cell division before setting 

up the automated time-lapse function.   

10. For time-lapse microscopy take images at regular time intervals. The shorter the time 

interval the more accurate every cell can be followed. Cells will start to divide 

synchronously but after a few divisions will lose this synchronicity. Typically we start 

with images taken every 10-15 minutes. Manual readjustments may be needed to 

remain in focus over longer periods. Depending on programming abilities and 

automated x-y stages, multiple positions can be monitored over time. 

11. We use Metamorph or Metaview (Molecular Devices) to produce image stacks and 

track cells, but any imaging program can be of help here. ImageJ is a public domain 

software for image analysis (rsb.info.nih.gov/ij/). 

 

Optiona l  protoco l: Cel l  sta in ing and new carbon substrates. We find that 

microcolonies grown to stationary phase on gel patches can be reactivated by the addition of 
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new substrate. For this purpose, open of the POC chamber and pipette a 10 µl droplet of a 100 

mM carbon substrate solution on the top of the gel patch. Within 15 minutes the substrate has 

reached the cells by diffusion. 

In a similar manner, dyes can be added by opening the POC chamber and applying a 

10 µl drop of the dye solution (e.g., Live-Dead® stain from Invitrogen) on the top of gel patch. 

Dyes will diffuse through the cell and stain the cells after ≈ 15 minutes. Staining is complete 

after 1-2 hours. Do not add more than 10 µl at once, or else microcolonies can disassemble at 

the glass-gel interface. 
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MATERIALS 

 

Chemica ls and so lutions. Growth medium of choice for your favourite bacterium. 

For Pseudomonas, Burkholderia and Cupriavidus we use Pseudomonas defined medium 

(Gerhard et al., 1981). The basic medium contains per litre: 1 g NH4Cl, 3.49 g Na2HPO4.2H2O, 

2.77 g KH2PO4, has a pH of 6.8 and is  sterilized by autoclaving. Carbon substrates are added 

according to the experimental setup. Afterwards per L of medium 20 ml of Hutner’s vitamin free 

mineral base (filter sterilized), and 2 ml of a 500-fold diluted filter-sterile vitamin solution are 

added. Hutner’s vitamin free mineral base contains per litre: 10 g NTA, dissolve and neutralize 

with ca. 6 g KOH, 14.45 g MgSO4·7H2O, 3.33 g CaCl2·2H2O, 9.74 mg (NH4)6Mo7O24·4H2O, 99 

mg FeSO4·7H2O, and 50 ml of Metals 44 solution. Hutners is sterilized by filtration and stored 

4ºC. Metals 44 solution contains per 100 ml: 387 mg Na4EDTA·4H2O, 1.095 g ZnSO4·7H2O, 

914 mg FeSO4·7H2O, 154 mg MnSO4·H2O, 39.2 mg CuSO4·5H2O, 24.8 mg Co(NO3)2·6H2O, 

17.7 mg Na2B4O7·10H2O, a few drops of 6 N H2SO4, is sterilized by filtration and stored at 4ºC. 

Antibiotics can be added upon desire and according to the characteristics of the bacterial 

strain used.  

Agarose medium solution is prepared by dissolving 1.0% (w/v) ultra-pure agarose into 

the selected growth medium. Autoclave the growth medium with the agarose, cool down to 

50°C before pouring the gel patch. 

POC chamber.  We use a POC set-up (Helmut Saur Laborbedarf, D-72734 

Reutlingen, Germany). Silicon rings come with the system. Teflon® rings can be custom 

manufactured to resist organic volatile contaminants if used as growth substrate. The system 

can be operated with round coverslips, 42 or 25 mm ø (Helmut Saur). 

Microscope. Epifluorescence microscope (upright or inverse) with appropriate filters in 

case fluorescent markers are used. Confocal laser scanning microscope for analysis of 

multiple cell layers. Magnifications: 63 × or 100 × 10. Preferentially use objectives with long 

working distances.  
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DATA EXAMPLES 

 

Example 1. Quanti f i cat ion o f  microco lony GFP expression. In this example 

we used a Pseudomonas putida strain constitutively expressing mCherry from the tac 

promoter, and egfp from the integrase promoter intB13p (12). Microcolonies were grown on gel 

patches with 0.1 mM 3-chlorobenzoate to study induction of the Pint promoter in stationary 

phase. These conditions are known to result in bifurcation of the population and leading to 

around 2-5% of cells expressing Pint (13). Microcolonies were grown from single cells in the 

pancake protocol for up to one week. After 24 hours cells in the colony stopped dividing and 

the cells entered stationary phase. The overlay image (Fig. 4) shows egfp expression in a 

number of individual cells in a microcolony of cells that all express mCherry at 48 hours after 

start of the experiment.  

Example 2. Cel l  pole tracking using t ime- l apse f luorescence microscopy. 

Cell pole tracking is a technique that is used to study bacterial cell aging effects. In this 

example we used Cupriavidus necator strain JMP134, a strain which degrades 2,4-

dichlorophenoxyacetic acid (10), but which was grown here on diluted nutrient broth agarose 

gel patches. Microcolony development was followed here by phase-contrast microscopy with 

images taken every 10 minutes. The three images show manual tracking of young cell poles 

appearing in the first, second and third generation of cell division over the time course of seven 

generations (8.71 h, Fig. 5).  
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Figure 4. Examp le of a microcolony of Pseudomonas put ida  UWC1-ICEc lc  const i tut ive ly 

express ing mCherry and induc ing egfp from intB13p ,  formed on agarose surfaces wi th 

0.1 mM 3-chlorobenzoate after 48 h. (A) Confocal laser scanning image in excitation and 

emission wavelengths for egfp at 1000 × magnification. (B) Idem for mCherry. (C) Overlay of A and 

B. Note that only a small proportion of cells express egfp from intB13p. 

 

 

 

Figure 5. Ce l l  po le t rack ing in ind iv idua l s  with in a deve lop ing microcolony of 

Cupr iavidus necator on d i luted agarose medium in the pancake method.  (A), Four-cell 

stage after 2.51 h. (B) and (C) Multiple cell stages after 6.39 and 8.71 h, respectively. (D) to (F), 

Corresponding marker overlays to track poles. Ancestral cell poles: green and blue. Second 

generation new cell poles: red. Third generation cell poles, yellow.  
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OUTLOOK AND RESEARCH NEEDS 

 

There is a clear new interest in single cell microbiology, phenotypic variation and its 

underlying causes. As outlined above this requires sets of methods to visualize and record the 

fates of individual bacteria during growth. Although a number of simple methods to grow and 

follow individual bacterial growth exist currently, many more will be deployed by combining 

microstructuring and –fluidics techniques with bacteria growth. Advances in computer systems 

and microscopy will doubtless permit next generation data recordings, enabling further 

dissection and understanding of microbial life and development at the real microscale level. 
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 SUMMARY 

 

Lateral gene transfer (LGT) is one of the most important processes leading to 

prokaryotic genome innovation (21). LGT is typically associated with conjugative plasmids and 

bacteriophages, but recently, a new class of mobile DNA known as Integrating and Conjugative 

Elements (ICE) was discovered, which is abundant and widespread among bacterial genomes 

(4, 9, 11, 13, 17, 28). ICE are thought to be hybrids of plasmids and bacteriophages, but very 

little is known about the factors that control vertical and horizontal transmission. By studying at 

single cell level the behavior of a prevalent ICE-type in the genus Pseudomonas as model (9, 

18), we uncover for the first time the remarkable and novel way in which the ICE orchestrates 

specific host cell differentiation to ensure horizontal transmission. We find that the ICE induces 

a state of transfer-competence in 3-5% of cells in a population under non-growing conditions. 

Through mutant analysis, transfer experiments and heterologous expression we show how ICE 

factors control the development of transfer-competent cells into specific assemblies that we 

name 'mating bodies'. Interestingly, cells in mating bodies undergo fewer and slower division 

than non-transfer competent cells, and eventually lyse. On the other hand, mutations in ICE 

genes disrupting mating body formation lead to fivefold decreased ICE transfer rates. Hence, 

by confining the transfer competent state to a small proportion of the population, ICE horizontal 

transmission is achieved with little cost in terms of vertical transmission. Given low transfer 

frequencies of most ICE (1, 14, 22) we anticipate regulation by subpopulation differentiation to 

be widespread. 
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RESULTS AND DISCUSSION 

 

ICEclc  d i f ferentiates a small  proport ion o f host  cel ls into t ransfer  competent 

cel ls. ICE are normally integrated and stably maintained in the chromosome of their bacterial 

host. However, in order to spread to other hosts, they must excise by site-specific 

recombination, conjugate to a new recipient cell and reintegrate at one or more unique insertion 

sites (2, 3, 15, 22, 24). Previous results using a prevalent model ICE named ICEclc (after its 

propensity to code for a metabolic pathway for chlorocatechol degradation) in the bacterium 

Pseudomonas knackmussii B13 showed that expression of the ICEclc integrase is limited to a 

small fraction of cells (18, 19, 25), suggesting that only these cells are capable of transmitting 

the ICE to new recipients.  

In order to demonstrate the existence of the presumed dedicated ‘transfer competent’ 

(tc-) cells in a population, we followed ICEclc transfer at individual cell level (Supplementary 

Experimental Procedures). As donor for ICEclc we used P. knackmussii B13, labeled with a 

single copy fluorescent reporter gene (egfp) fusion to the promoter of the intB13 integrase gene 

(Pint). Intact integrase is essential for ICEclc excision and transfer (18, 20), and expression of 

eGFP from Pint would thus indicate the initiation of the ICE horizontal transmission process at 

single cell level. P. knackmussii B13 cells were additionally labeled with a single copy 

constitutively expressed Ptac-mCherry fusion to differentiate them from recipient (Table S1). As 

recipient for ICEclc we use Pseudomonas putida UWC1 containing a single-copy engineered 

conditional trap that upon ICEclc insertion leads to strong eGFP production (Figure 1A) (24). 

Time-lapse epifluorescence microscopy of mixtures of donor and recipient cells on agarose 

nutrient surface showed indeed appearance of brightly fluorescent recipient cells, indicating 

ICEclc transfer (Figure 1B, arrow a). Brightly fluorescent recipient cells (n=78 scored events) 

arose exclusively upon observable physical contact to a donor cell that had expressed Pint-egfp. 

No ICEclc transfer was observed with donor strains with deletions in the intB13 gene or in the 

left attachment site attL, which cannot excise ICEclc. This showed, therefore, that ICEclc can 

only transfer from specialized cells (tc-cells) that have somehow differentiated from the rest of 

the population. The tc-state can be detected by expression of reporter protein from an extra 

copy Pint promoter (Figure S1), but transfer likely depends on expression of a large number of 

other genes on ICEclc (8, 18) and signals from the host cell (19). These results thus confirmed 

previously formulated hypotheses (18) that Pint-expressing cells are indeed those and only those 

that are capable of transferring ICEclc.  
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Figure 1. ICEclc  t ransfe r and competence format ion. (A) Schematic principle of ICEclc transfer 

and explanation of the single-copy engineered conditional trap in the recipient cell (24). The star at the 

Pint-promoter indicates it being expressed only in transfer competent (tc-) cells. (B ) Time-lapse 

epifluorescence (eGFP and mCherry overlay) and phase-contrast (PhC) imaging of ICEclc transfer from 

P. knackmussii B13 donors (d) to P. putida UWC1 (r, both labeled as indicated in a ). Tc-donor cells 

visible in orange (overlay of eGFP from Pint and red from mCherry). Non-tc donor cells fluoresce red only. 

Note how a brightly eGFP expressing transconjugant of P. putida becomes visible from t = 12 h onwards 

(arrow marked a) whereas the corresponding B13 donor cell lyses (arrow marker b). See also Figure S1. 
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Transfer competent donor  cel ls face severe growth impairments. Intriguingly, tc-

donor cells displayed different morphology than non tc-donor cells in the time-lapse transfer 

experiment (Figure 1B). To test this observation further, P. knackmussii B13 cells were 

collected from a liquid culture under stationary phase conditions and deposited on the surface 

of a nutrient agarose. Tc-cells in this case consistently formed smaller microcolonies than cells 

that showed no expression of the Pint-egfp marker (Figure 2A, B). Tc-cells showed aberrant cell 

shapes, divided more slowly, accumulated more biochemical damage (i.e., reactive oxygen 

species and membrane damage, Figure S2A, B), and lysed more frequently than cells in 

microcolonies from non-tc cells (Figure 2A, B). In fact, up to 50% of tc-cells from P. 

knackmussii B13 placed on nutrient surface were unable to divide at all (Figure 2B). As 

expected, a small proportion of cells in microcolonies from non-tc starter cells developed 

transfer competence once the colony entered stationary phase, as indicated by their eGFP 

fluorescence from Pint (Figure 2B, 50 h). Also such newly formed tc-cells within microcolonies 

displayed slower division and higher lysis probability compared to neighbouring non-tc cells 

when presented with fresh nutrients (Figure 2C). Similar formation of small microcolonies from 

tc-cells and their growth inhibition was detected in three other species, into which a single 

ICEclc copy was inserted via conjugation, notably P. putida UWC1 and two Pseudomonas 

aeruginosa strains (Figure 2B). Hence, specific small microcolony formation from tc-cells and 

their reproductive inhibition is not host-dependent, is not an artifact of the labeling techniques 

(Supplementary Experimental Procedures), and occurs independently of the presence of 

recipient cells without ICEclc. Collectively, these experiments demonstrated that ICEclc tc-cells 

arise species-independently and reproducibly at low frequency (~10-2 per cell) under non-

growing conditions (stationary phase, Figure 2A). Tc-cells can divide to form a small 

microcolony when new growth substrate becomes available, but their cell division is specifically 

and severely inhibited, and tc-cells eventually lyse (Figure 2A, B). Reversion of the tc-state was 

not detected in time-lapse experiments (n~100 tc-starter cells), but may occur at lower 

frequencies given that ICEclc excision and reintegration in different chromosomal attachment 

sites can be detected by PCR in suspended cell cultures (24). 
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Figure 2 (on the left ).  Format ion of speci f ic t ransfer  co lony morphotypes of  ICEclc  tc-

cel ls. (A) Limited division of a tc-cell (orange-green cell at time 0) into a transfer colony morphotype 

(TCM) compared a regular microcolony formed from a non-tc cell of P. knackmussii B13 (labeled as 

indicated on top image). Inset shows corresponding phase-contrast micrographs of the TCM, 

highlighting decay and cell lysis after 20 h. Note how a small proportion of cells in regular microcolony 

randomly again develops transfer competence at t = 50 h in stationary phase (green cells). (B) 

Quantification of TCM sizes achieved from ICEclc tc- compared to non-tc cells taken from stationary 

phase suspended culture and deposited on nutrient surface. Green bars: tc-cells dividing more than 

once. Black bars: no cell division. Red bars, average microcolony growth from non-tc cells. Disappearing 

lineages indicate cell lysis. ICEclc donors: P. knackmussii B13 (2 copies), P. putida UWC1, P. aeruginosa 

ATCC33356 and P. aeruginosa  ATCC33938 (all one ICEclc copy)(7). (C) Cumulative length of progeny 

of newly formed ICEclc tc-cells of P. knackmussii B13 in regular microcolonies compared to neighbours 

during a 6.8 h period, after renewed addition of 4 mM glucose (70 h). Mean percentage of lysis among 

tc- versus non-tc B13 cells across 22 examined microcolonies. Average size: 175 ± 78 cells, average 

proportion of 13 ± 6 tc-cells, during the time window of 51-75 h in stationary phase and after addition of 

glucose at time 70 h. Error bars denote s.d. See also Figure S2. 

 

ICEclc controls process o f tc-cel l  microcolony formation. In order to 

demonstrate that ICEclc controls the development of tc-cell microcolonies (TCM) we measured 

the proportion of TCM arising from tc-cells in strains with intact or mutant ICEclc. Since P. 

knackmussii B13 carries two ICEclc copies we used hereto P. putida UWC1 with a single 

integrated ICEclc (Figure 3). The proportion of TCM developing from stationary phase P. putida 

UWC1 (ICEclc) cells placed on nutrient surface, scored by epifluorescence microscopy after 

120 h incubation was almost 0.7% (Figure 3C). This proportion is slightly lower than the 

proportion of tc-cells identified by Pint-egfp expression, because some of those do not develop 

into TCM (Figure 2B, table S2). In contrast, P. putida UWC1 without ICEclc, but with a mini-

Tn7-delivered single copy of the clc-genes, enabling growth on the same nutrient surface 

(Supplementary Experimental Procedures) produced only 0.02% TCM (P<0.05, Figure 3C). P. 

putida UWC1 carrying a mutant ICEclc with a transposon insertion in orf18502, causing 

silencing of expression of ICEclc transfer genes in a region strongly conserved among a wide 

variety of ICE (8, 18) (Figure 3A), produced a proportion of TCM non-significantly different from 

strain UWC1 without ICEclc (0.06%, P>0.05, Figure 3C). In contrast, deletions in intB13 or in 

attL that prevent ICE excision showed TCM proportions similar to wild-type ICEclc (P>0.05, 

Figure 3C, Figure S2C). This indicated that development of tc-cells into TCM is due to the 

presence and expression of ICEclc genes. It also indicates that slower growth of tc-cells is not 

due to ICEclc excision or any other activity of the IntB13 integrase, as a result of which cells 
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could no longer metabolize growth medium components (Supplementary Experimental 

Procedures).  

Formation o f tc-cel l  microcolonies is int imately l inked to ICEclc transfer .  

To identify which ICEclc factors are responsible for the cell growth inhibition and TCM 

formation, we cloned ICEclc gene combinations under control of the LacIq/Plac system on a 

plasmid in P. putida UWC1 without ICEclc (Supplementary Experimental Procedures, Table 

S1). Of various combinations a particular 6-kb DNA fragment from within the conserved ICEclc 

region (18) invoked strong growth inhibition of P. putida UWC1 cultures (Figure 3A). 

Subsequent subcloning of individual and combinations of gene fragments under LacIq/Plac 

expression control indicated that growth inhibition was due to the presence of a small open 

reading frame on ICEclc which we named shi (Japanese for dead) (Figure 3A, B). Expression of 

shi was necessary for culture growth inhibition, but in addition required the 5'-region of an 

upstream gene with partial homology to parA (Figure 3A, B). Microscopic observations showed 

that population growth inhibition was due to formation of slow growing cells with abnormal long 

morphologies. P. putida UWC1 cells in which the parA-shi region was expressed produced 

small microcolonies on nutrient surface (Figure S3A) with cell morphologies and cellular 

damage similar to what was observed for tc-cells within TCM for both P. knackmussii and P. 

putida UWC1 with ICEclc (Figure 3C). This suggested that expression of the parA-shi region in 

a host without ICEclc reproduced at least partly the development of tc-cells into TCM. 

Tailored deletion of either parAICEclc or shi on ICEclc in P. putida UWC1 indeed 

significantly reduced the proportion of TCM compared to wild-type (P<0.01, Figure 3D). 

Interestingly, also ICEclc transfer rates from P. putida UWC1 with the parAICEclc or shi deletion 

were up to fivefold lower than of the wild-type (P<0.01, Figure 3E). In contrast, P. putida 

UWC1-ICEclc-Dshi produced the same proportion of Pint-egfp expressing cells in stationary 

phase as wild-type ICEclc in P. putida (3.6±1.0 vs 3.8±0.5, p=0.94). This indicates that tc-cells 

in P. putida UWC1-ICEclc-Dshi indeed arise, but cannot develop into TCM. Since we could 

score TCM only when consisting of at least two cells, this would explain the observed reduced 

proportion of TCM in this strain (Figure 3D). The formation of TCM is thus intimately linked to 

more effective ICEclc transfer.  
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Figure 3. ICEclc  dependency of TCM format ion in P. put ida  UWC1. (A) Indication of the 

relevant gene region on ICEclc implicated in tc-cell microcolony (TCM) formation. Fragments introduced 

by plasmid into P. putida UWC1 (without ICEclc) are depicted. (B) Effect on population growth of 

different cloned ICEclc fragments after IPTG induction (black symbols) from the heterologous Plac-

promoter (triangles in panel a). (C) Small microcolony formation and cellular differentiation induced in P. 

putida UWC1 without ICEclc but with the parA-shi-parBICEclc locus (20 h after IPTG induction), compared 

to TCM of P. knackmussii B13 (Pint-egfp) and P. putida UWC1 (ICEclc, Pint-egfp). rcm, microcolony from 

non-tc cells. PI, propidium iodide. DAPI, 4',6'-diamino-2-phenylindole. (D) Proportions of TCM (Figure 

2A) per total number of microcolonies scored after 120 h on agarose surface (stationary phase) with 0.1 

mM 3-chlorobenzoate. (E) ICEclc transfer frequencies in donor-recipient filter matings. Letters indicate 

significance groups in ANOVA followed by Tukey's post-hoc testing (P<0.05). See also Figure S3. 
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ICEclc control is unl ike plasmid toxin-anti toxin systems. The implication of 

ICEclc encoded factors in inhibition of proliferation of tc-cells is reminiscent of but distinctly 

different from plasmid and other ICE-encoded toxin-antitoxin systems that inhibit plasmid- or 

ICE-free daughter cells to divide (6, 10, 27). First of all, the parAICEclc and shi gene products do 

not display any significant similarity to any of the known seven classes of TA-systems from 

plasmids, ICE and chromosomes (6). The shi open reading frame encodes a small hypothetical 

protein (85 amino acids) which is highly conserved among ICE similar to ICEclc. Very low but 

discernable homology of Shi is found to a eukaryotic voltage-gated calcium channel domain 

suggesting it may influence bacterial membrane potential (Figure S3B). Secondly, the process 

of cell division inhibition within TCM is not the result of ICEclc loss or ICE excision. To 

demonstrate this, we measured the eGFP reporter signal intensity from Pint in individual tc-cells 

and their offspring within TCM. Since Pint-expression is completely silent in absence of ICEclc, 

daughter cells that would have lost ICEclc would no longer produce new eGFP and their 

fluorescence would diminish by 50% after every cell division (23). Contrary to this, eGFP 

fluorescence did not diminish in tc-cell lineages of P. knackmussii B13 (n=8 TCM; Figure 4), nor 

in P. putida UWC1 (ICEclc) without or with deletions in intB13 or attL (Figure S4). Inhibition of 

tc-cell division is thus not a consequence of loss of ICEclc and is therefore unlike classical 

toxin-antitoxin systems.  

TCM formation, a tradeoff between hor izontal and vert ical transmission. In 

conclusion, our results show that ICEclc transfer occurs exclusively from tc-cells, the 

development of which is initiated in non-growth stationary phase conditions. The phenomenon 

of transfer competence is so far only known from Enterococcus spp. where plasmid-free 

recipients induce plasmid conjugal transfer from potential donors by peptide pheromones (5, 

26), without actually showing cellular differentiation of conjugating cells. Subpopulation 

competence development also occurs in early stationary phase B. subtilis cells, but this 

involves the process of DNA uptake (natural transformation) rather than conjugation (16). In 

contrast, ICEclc differentiated tc-cells can divide into specific microcolonies (TCM) when cells 

are presented with new nutrients, although many tc-cells do not divide at all and eventually lyse 

within TCM (Figure 2A). TCM formation is controlled by ICEclc factors shi and parA, and tc-cells 

within TCM show distinctly different morphologies than cells in regular microcolonies in which 

ICEclc is not active. Because mutants in which transfer competence is initiated but which do 

not form TCM display fivefold lower transfer rates (deletion of shi on ICEclc, Figure 3E), we 

conclude that the formation of TCM provides a selective advantage to the success of ICEclc 

horizontal transmission. We hypothesize that even though transfer  
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Figure 4. eGFP f luorescence from the Pint promoter in tc-cel ls of P. knackmussi i B13 

and sibl ings. Black circles, mean eGFP fluorescence in non-tc cells (n=500 at each time point). Grey 

squares, average background fluorescence of the epifluorescence image. Open circles, cell division 

events. See also Figure S4. 
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competence is initiated in stationary phase such cells are nutrient starved and tc-cells need 

nutrients to complete the transfer process. In addition, the few divisions that tc-cells undergo to 

form a TCM may serve to increase the chance to contact a suitable recipient cell on a surface 

(Figure 1B, Figure S3C). TCM may in that perspective be regarded as primitive 'mating bodies'. 

We show that ICEclc horizontal transmission leads to sacrifice of tc-donor cells, but by 

confining the transfer competent state to a small proportion of cells (3-5%) fitness loss at the 

population level becomes undetectable (table S3) (7). Slower growth and lysis of tc-donor cells 

may be a consequence of specific high demand for resources to produce the conjugative 

system or of excessive oxidative damage (Figure S2B). Lysis will also locally release nutrients 

from which transconjugants might profit. ICEclc horizontal/vertical transmission tradeoff is thus 

maintained at the proportion of cells which enter transfer competence (Figure S3D). Such 

subpopulation control may also explain the system of so-called 'fertility inhibition' that 

conjugative plasmids use to repress transfer and avoid strong fitness cost to the host (12). 

Since ICEclc relatives are widespread in proteobacterial genomes and have a very conserved 

core region including the parA-shi genes (13, 18), this suggests that they employ a similar 

mechanism of horizontal transmission. The mechanism displayed by ICEclc presents a new 

concept on how mobile DNA can control host cell behavior and differentiation in order to 

ensure horizontal transmission. 

 

EXPERIMENTAL PROCEDURES 

 

See supporting information. 
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INVENTORY 

 

Figure S1. Calibration data showing the thresholding necessary to identify transfer competent 

cells on the basis of the intensity of the eGFP signal from the Pint-promoter. 

 

Figure S2. Background data showing the thresholding necessary to identify tc-cell 

microcolonies on the basis of propidium iodide and reactive oxygen species staining. Further 

background to show tc-cell microcolony sizes in attL and intB13 mutants of ICEclc. 

 

Figure S3. Background data and conceptual schemes to illustrate the formation of tc-cell 

microcolonies in the process of ICEclc horizontal and vertical transmission. 

 

Figure S4. Further data to show the intensity of the Pint-reporter signal in mother and 

daughter cells of tc-cell microcolonies of attL and intB13 mutants of ICEclc. 

 

Table S1. All strains and plasmids used in the study. 

 

Table S2. Calibration data to link the proportion of tc-cell microcolonies with the number of 

Pint-reporter gene expressing cells within tc-cell microcolonies. 

 

Table S3. Model predictions to illustrate the fate of a mutant without cell growth inhibition 

mechanism in tc-cell microcolonies. 

 

Experimental  procedures.  Strains and media, microcolony growth procedures, 

epifluorescence and time lapse microscopy, ICEclc transfer experiments, staining techniques, 

identification of tc-cells, specific cloning strategies, background on growth on nutrient medium, 

background on thresholding on the basis of reporter gene expression, statistical procedures. 
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Figure S1, related to Figure 1. Fluorescence Intens ity Levels from Pint in ICEclc  Transfe r  

Competent (tc)  and Non-tc Cel ls. (A) eGFP fluorescence in transfer competent cells (open squares, 

n=19), compared to non-tc cells in case of P. knackmussii B13 (black diamonds, n=19) and background 

of the nutrient surface (open triangles), directly after inoculation on nutrient agarose. (B) as (A), but for P. 

putida UWC1 (ICEclc)  (n=19, ICEclc transfer competent cells, n=53 non-tc cells, n=93 background 

determination). 
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Figure S2, related to Figure 2. Pre ferent ia l Cel l  Damage in Microcolonies Formed f rom 

ICEclc  Transfe r Competent Ce l ls. (A) Propidium iodide (PI) stains. a, Transfer colony morphotypes 

(TCM, arrows) formed from ICEclc transfer competent (tc) starter cells between regular microcolonies 

from non-tc starter cells of P. putida UWC1 (ICEclc) scored after 120 h development on agarose surface 

with 0.1 mM 3-CBA. Note how PI-staining (indicative for membrane damage) invariably correlates to 

TCM. Images show phase contrast (PhC), eGFP and PI fluorescence (artificially colored green and red, 

respectively), and in overlay of both. b, Quantification of red fluorescence in individual cells in suspended 

stationary phase culture on 3-CBA of P. putida UWC1 (ICEclc, Pint-egfp) either non-stained, stained with 

PI or treated with isopropanol and then stained. Dotted line indicates minimum PI fluorescence of dead 

cells. c, PI fluorescence in individual cells in suspended stationary phase culture on 3-CBA of three 

clones of P. putida UWC1 (ICEclc, Pint-egfp) as a function of Pint-egfp expression. (B) Increased Reactive 

Oxygen Stress (ROS) in ICEclc Transfer Competent Cells. a ROS staining of an TCM of P. putida UWC1 

(ICEclc) formed on agarose surface with 0.1 mM 3-CBA after 120 h. Relevant images show phase-

contrast (PhC), eCherry expression from Pint, H2DFCDA-stain (ROS), and overlay. Relevant labeling 

details of the ICEclc host strain indicated schematically. b, Image overview showing exclusive strong 

ROS staining of TCM. c, Percentage of ROS-positive among ICEclc transfer competent cells (identified 

on the basis of their eCherry expression from Pint) and ICEclc non-tc cells stained in stationary phase 

suspended batch cultures (three clones with different positions of the single copy Pint-eCherry fusion). d,  

Thresholding on stationary phase suspended batch grown cells above which ROS-staining is considered 

positive. Asterisks indicate significance at the P<0.001 level, while error bars represent 95% confidence 
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intervals. (C) Effect of attL and intB13 deletions in ICEclc on formation of TCM. a , Microcolony sizes from 

transfer competent (tc, green and black bars) or non-tc starter cells (red bars) of three independent Pint-

eCherry clones of P. putida UWC1 (ICEclc, DattL) mutant. Z-axis, colony sizes over time in individual 

transfer competent starter cells. Red bars, mean colony sizes over time of 50 colonies from non-tc 

starter cells. b as a, but for three independent Pint-eCherry clones of P. putida UWC1 (ICEclc, DintB13). 

c, as a, but for three independent Pint-eCherry clones of P. putida UWC1 (ICEclc). 
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Figure S3, related to Figure 3. Transfe r competent cel l  mic rocolonies. (A) Small 

microcolony formation induced in P. putida UWC1 without ICEclc. Phase-contrast micrographs (400 x 

magnification) of colonies of P. putida UWC1 strains on nutrient surface after 8 h induction with IPTG. 

Top image: P. putida UWC1 with the empty pME6032 vector. Middle image: P. putida UWC1 with the 

cloned parA-shi region from ICEclc. Bottom image: P. putida UWC1 with the cloned parA-shi-parB 

region from ICEclc. For cellular details and staining, see Figure 3d in main text. (B ) The parA-shi-parB 

region of ICEclc. Top part shows location of orf98147 (parB-like) , shi (orf99792) and orf100033 (parA-

like) on ICEclc nearby the left end (attL) and the outwards facing Pcirc-promoter. Predicted sizes in amino 

acids listed below. Lower part shows predicted Conserved Domains and Interpro domains of Orf98147, 

Orf100033 gene products and Shi, compared to ParB and ParA proteins of P. putida, and CACB2 of 

Mouse, respectively. GenBank Accession number of ICEclc: AJ617740. (C) Conceptual idea of the 

effect of having a primitive mating body as opposed to a single transfer-competent (tc) cells in the 

chance of contacting potential recipient cells. Upper panel: scenario for a tc-cell that is not capable of 

forming a small colony (e.g., shi mutation). Lower panel: tc-cell that can divide a few times despite 

producing aberrant cell morphologies. Do-i, inactive donor cells. Do-a, tc-cell (here depicted in green to 

represent the expression of the Pint-egfp fusion. Re, recipient cell. Arrow indicates provision of nutrients 

to restart cell division after stationary phase. (D ) Model of transfer competence and cell reproductive 

inhibition pathway induced by ICEclc. Note that the exact timing of ICEclc excision was not determined 

here and may occur both during stationary phase or upon renewed nutrient stimulation. 
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Figure S4, Related to Figure 4. eCherry Expression f rom Pint in Sib l ings Developing 

from ICEc lc Transfer-Competent or Non-tc starter Cel ls  of  P. put ida UWC1 (ICEclc ) with 

or  without Delet ions of intB13 or attL. (Top) Individual fluorescence intensity of cells within four 

different TCM over time for P. putida UWC1 (ICEclc) Pint-eCherry. (Middle) As a but for P. putida UWC1 

(ICEclc-int). (Bottom) As a but for P. putida UWC1 (ICEclc-attL). 
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 Table S1. Bacteria l strains used in the study. 

Strain and designation Description 

Lab 

col lection 

strain  

number  Reference 

P. knackmussii B13 

Two (non-tandem) copies of ICEclc 

integrated in different tRNAGly-genes 

78 

(12) 

P. putida UWC1 

Plasmid-less derivative of P. putida mt-2 

(TOL), used as recipient for ICEclc, RifR 

1291 

(4) 

P. knackmussii B13 (P
int
-egfp) 

Single copy mini-Tn5 insertion with P
int
-

egfp fusion. Three clones with different 

insertion position. KmR 

1343-1345 

(11) 

P. putida UWC1 (jimX-egfp) 

Single copy mini-Tn5 insertion with 

jimX-egfp artificial ICEclc integration site 

leading to strong eGFP production upon 

integration, KmR 

2756 

(9). 

P. putida UWCGC 

Derivative of strain 1291 carrying a 

single copy mini-Tn7 insertion with GmR 

and P
tac
-mCherry. 

2744 

(6) 

P. putida UWC1 (ICEclc) 

One copy of ICEclc integrated in 

tRNAGly-gene #3, obtained via 

conjugation with B13 and strain 1291 

2610 

(9). 

P. putida UWC1 (ICEclc, P
int
-

egfp) 

Single copy mini-Tn5 insertion with P
int
-

egfp fusion in strain 2610. Three clones 

with different insertion position, KmR 

2507, 2508, 

2510 

This work 

P. knackmussii B13 (P
int
-egfp, 

P
tac
-mCherry) 

Single copy mini-Tn7 insertion with P
tac
-

mCherry into strain 1343, used for 

constitutive labeling, KmR, GmR 

2586 

This work 

P. putida UWC1 (ICEclc, P
int
-

egfp, P
tac
-mCherry) 

Single copy mini-Tn7 insertion with P
tac
-

mCherry into strain 2507, used for 

constitutive labeling, KmR, GmR 

2590 

This work 

P. putida UWC1 (ICEclc) 

One copy of ICEclc integrated in 

tRNAGly-gene #6, obtained via 

conjugation with B13 and strain 1291 

2738 

(6) 

P. putida UWC1 (ICEclc-Dint) 

Knockout of intB13 gene on ICEclc in 

strain 2738. No excision or transfer of 

ICEclc. KmR 

2785 

(6) 

P. putida UWC1 (ICEclc-

DattL) 

Knockout of attL on ICEclc in strain 

2738. No excision or transfer of ICEclc. 

KmR 

2786 

This work 

P. aeruginosa ATCC33356 One copy of ICEclc into P. aeruginosa 2854 (1) 
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(ICEclc, P
int
-egfp) ATCC33356, further equipped with 

single copy mini-Tn5 insertion 

containing P
int
-egfp. KmR 

This work 

P. aeruginosa ATCC33938 

(ICEclc, P
int
-egfp) 

One copy of ICEclc into P. aeruginosa 

ATCC33938, further equipped with 

single copy mini-Tn5 insertion 

containing P
int
-egfp. KmR 

2869 

(1) This work 

P. putida UWC1 (ICEclc-

orf18502::Km) 

One copy of ICEclc with mini-Tn5-Km 

insertion into orf18502, in P. putida 

UWC1. No more transfer of ICEclc. 

2961 

This work. 

P. putida UWC1 (mini-Tn7-

clc) 

Single copy chromosomal insertion of a 

mini-Tn7(clcRABDE) into P. putida 

UWC1. Allows growth on 3-

chlorobenzoate. 

3227 

This work 

P. putida UWC1 (ICEclc-

DattL, P
int
-eCherry) 

Single copy mini-Tn5 insertion of a P
int
-

eCherry cassette into strain 2786. Three 

clones with different insertion position. 

KmR 

3403-3405 

This work 

P. putida UWC1 (ICEclc-Dint, 

P
int
-eCherry) 

Single copy mini-Tn5 insertion of a P
int
-

eCherry cassette into strain 2785. Three 

clones with different insertion position. 

KmR 

3406-3408 

This work 

P. putida UWC1 (ICEclc, P
int
-

eCherry) 

Single copy mini-Tn5 insertion of a P
int
-

eCherry cassette into strain 2738. Three 

clones with different insertion position. 

KmR 

3414-3416 

This work 

P. putida UWC1 (ICEclc-

orf18502::Km, P
int
-eCherry) 

Single copy mini-Tn5 insertion of a P
int
-

eCherry cassette into strain 2961. Three 

clones with different insertion position. 

KmR 

3406-3408 

This work 

P. putida UWC1 (ICEclc-

DparA) 

Deletion of parA (orf100033) on ICEclc 

in strain 2738. KmR 

3509 

This work 

P. putida UWC1 (ICEclc-Dshi) 

Deletion of shi (orf99792) on ICEclc in 

strain 2738. KmR 

4095 

This work 

    

Plasmid Descr iption 

Lab 

col lection 

number Reference 

pME6032 

pVS1-p15A ori shuttle vector carrying 

lacIq-P
tac
; TcR 

3448 

(3) 

pTCB177 pUC28 derivative carrying 6.4 kb EcoRI 1324 (11)  
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fragment of ICEclc 

pME-EE6.4 

pME6032 derivative carrying 6.4 kb 

EcoRI fragment from pTCB177 with 

par-inrR region 

3977 

This work 

pMEparAsB 

pME6032 derivative carrying full length 

parA-shi-parB locus 

4039 

This work 

pMEparAsB' 

pMEparAsB derivative lacking 980-bp 3’ 

part of parB 

4094 

This work 

pMEparADsB 

pME6032 derivative carrying parA and 

parB; shi deleted 

4041 

This work 

pMEparA’sB 

pMEparAsB derivative having internal 

330-bp deletion in parA 

4039 

This work 

pMEshi pME6032 derivative carrying shi 4072 This work 

pMEparA pME6032 derivative carrying parA 4151 This work 

pMEparB pME6032 derivative carrying parB 4150 This work 

pMEparAs 

pME6032 derivative carrying parA and 

shi 

4149 

This work 

pMEparA’s 

pMEparAs derivative having internal 

330-bp deletion in parA 

4194 

This work 
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Supplementary Table 2. Correlat ion between TCMs and ICEclc  act ivit y in dif ferent 

strains of Pseudomonas put ida with ICEclc .  

Strain Strain 

Number 

Background Reporter Total TCM a % TCM with 

active P
int 
 

P. putida 3403 ICEclc DattL P
int
-eCherry 11 91 

 3404 ICEclc DattL P
int
-eCherry 3 67 

 3405 ICEclc DattL P
int
-eCherry 6 100 

      

P. putida 3406 ICEclc DintB13 P
int
-eCherry 48 96 

 3407 ICEclc DintB13 P
int
-eCherry 22 100 

 3408 ICEclc DintB13 P
int
-eCherry 11 91 

      

P. putida 3414 ICEclc P
int
-eCherry 32 94 

 3415 ICEclc P
int
-eCherry 18 100 

 3416 ICEclc P
int
-eCherry 26 92 

      

P. putida 2507 ICEclc P
int
-egfp  11 91 

P. putida 2508 ICEclc P
int
-egfp 12 100 

P. putida 2510 ICEclc P
int
-egfp 8 100 

      

P. putida 2590 ICEclc P
int
-egfp, P

tac
-mCherry 34 88 

a) Strains were grown for 120 h on agarose medium with 0.1 mM 3-chlorobenzoate. TCMs were identified under 

phase contrast microscopy on basis of small size. Absence or presence of fluorescence from P
int
-eCherry or P

int
-egfp 

was then scored on individual cells. 
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Table S3. Model ing of development of reproduct ive inhibit ion independent mutants in 

populat ions of ICEclc  containing hosts. 

Parameters       

Probability of 

transfer 

competent 0.03 0.03 0.03 0.03 0.20 0.25 

Mut Rate (per 

generation) 10-5 10-5 10-6 10-8 10-8 10-8 

Nr mutants 

(start) 10 0 0 10 1 1 

Cycle End Ratio (mutant/WT)  After Cycle 

1 3.75·10-4 1.75·10-4 9.56·10-6 2.00·10-4 2.00·10-4 2.00·10-4 

2 5.13·10-4 3.09·10-4 9.25·10-6 2.04·10-4 2.47·10-4 2.64·10-4 

3 6.46·10-4 4.43·10-4 9.20·10-6 2.03·10-4 2.49·10-4 3.51·10-4 

4 7.81·10-4 5.78·10-4 9.20·10-6 2.03·10-4 2.49·10-4 4.39·10-4 

5 9.17·10-4 7.14·10-4 9.20·10-6 2.03·10-4 2.49·10-4 5.27·10-4 

6 1.05·10-3 8.49·10-4 9.20·10-6 2.03·10-4 2.49·10-4 6.14·10-4 

7 1.26·10-3 9.84·10-4 9.20·10-6 2.03·10-4 2.49·10-4 7.90·10-4 

8 1.46·10-3 1.19·10-3 9.20·10-6 2.03·10-4 2.49·10-4 9.66·10-4 

9 1.66·10-3 1.39·10-3 9.20·10-6 2.03·10-4 2.49·10-4 1.23·10-3 

10 1.87·10-3 1.59·10-3 9.20·10-6 2.03·10-4 2.49·10-4 1.58·10-3 

11 2.07·10-3 1.80·10-3 9.20·10-6 2.03·10-4 2.49·10-4 2.02·10-3 

12 2.27·10-3 2.00·10-3 9.20·10-6 2.03·10-4 2.49·10-4 2.64·10-3 

13 2.48·10-3 2.20·10-3 9.20·10-6 2.03·10-4 2.49·10-4 3.43·10-3 

14 2.68·10-3 2.41·10-3 9.20·10-6 2.03·10-4 2.49·10-4 4.49·10-3 

15 2.88·10-3 2.61·10-3 9.20·10-6 2.03·10-4 2.49·10-4 5.90·10-3 

16 3.09·10-3 2.82·10-3 9.20·10-6 2.03·10-4 2.49·10-4 7.85·10-3 

17 3.29·10-3 3.02·10-3 9.20·10-6 2.03·10-4 2.49·10-4 1.04·10-2 

18 3.56·10-3 3.22·10-3 9.20·10-6 2.03·10-4 2.49·10-4 1.38·10-2 

19 3.84·10-3 3.49·10-3 9.20·10-6 2.03·10-4 2.49·10-4 1.84·10-2 

20 4.11·10-3 3.77·10-3 9.20·10-6 2.03·10-4 2.49·10-4 2.45·10-2 

21 4.38·10-3 4.04·10-3 9.20·10-6 2.03·10-4 2.49·10-4 3.26·10-2 

Simulat ion parameters 

N cells at start: 50,000; Generation time ICEclc transfer competent cells: 2 h; Generation time non-active 

cells: 1 h; Nr. Generations per cycle: 10; Death rate of ICEclc transfer competent cells: 0.4 (1/h); Total 

amount of substrate per cycle: 10-4 g /mL; Amount of carbon per cell: 2·10-12 g; Biomass yield: 0.3 g/g; 

Ks: 2·10-5 g/ml; µ(max): 0.693 (1/h); µ(max, mutant): 0.693 (1/h); Population dilution factor per cycle: 

0.001 
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EXPERIMENTAL PROCEDURES 

 

Strains and Cul ture Med ia. All strains used in this work are listed in table S1. 

ICEclc has a size of 103 kb and occurs in two copies in the chromosome of P. knackmussii 

B13, inserted at the 3’-end of genes for tRNAGly . (2, 7)The element provides the host with the 

capacity to metabolize a number of unique aromatic carbon substrates, among which 3-

chlorobenzoate (3-CBA). P. putida UWC1 (ICEclc) contains one copy of the ICEclc element 

integrated in tRNAGly (9). P. aeruginosa ATCC33356-2608 and P. aeruginosa ATCC33938-2606 

are wild-type strains in which one copy of ICEclc was integrated via conjugative transfer from P. 

knackmussii B13 as donor (1). Strains were grown from a single well-separated colony in five 

ml of type 21C minimal medium (MM) (10) containing 4 mM 3-CBA until stationary phase (24 – 

96 h) at 30°C and at 180 rpm agitation, before being reinoculated onto agarose nutrient 

surfaces.  

ICEclc mutations. Deletion mutants in a variety of ICEclc genes and regions (i.e., 

intB13, attL, orf100033-parAICEclc, orf99792-shi) were produced by double recombination as 

described previously (6) or by Tn5 mutagenesis and selection (orf18502). Mutants were verified 

by PCR analysis and DNA sequencing. Orf numbering is according to GenBank entry 

AJ617740 (ICEclc). 

Promoter Reporter Gene Fusions. Transfer competent cells were visualized by 

fluorescent reporter protein expression from a single-copy chromosomal transcriptional fusion 

of promoterless egfp or eCherry genes to Pint, the promoter in front of the intB13 gene in the 

integrated state (5, 10). Pint-fusions were inserted in single copy on the chromosome of a 

variety of Pseudomonas strains (table S1) via mini-Tn5 delivery, and verified by antibiotic 

selection markers and specific PCR amplification. To improve visualization strains were 

additionally tagged with mCherry constitutively expressed from a single copy Ptac-mCherry mini-

Tn7 insertion (13). For all mini-Tn5 insertions at least three independent clones with different 

insertion positions were purified and used for subsequent time-lapse microscopy experiments 

(table S1). P. putida UWC1 recipients with the conditional insertional trap (Figure 1A) were 

described previously (9).  

Microco lony  Growth Procedure.  To follow the real-time fate, elongation and 

division of single individual ICEclc transfer competent (tc) and non-tc Pseudomonas cells we 

grow ICEclc donor strains in presence or absence of recipients from single cells to 

microcolonies on agarose nutrient surface in a closed sterile microscopy chamber as described 

previously (8).  



CHAPTER 4 
 

220 

ICEclc Transfer . Transfer rates of ICEclc wild-type and mutants used P. knackmussii 

B13 or P. putida UWC1 (ICEclc) as donors and P. putida UWC1-Gm (gentamycin resistance) 

as recipient in 48 h filter matings, as described previously (6, 9). Presence of ICEclc was verified 

by PCR using tailored primers (6, 9). 

Population Growth Inh ibit ion. The effect of individual or combinations of ICEclc 

genes on growth of P. putida UWC1 (without ICEclc) was tested in suspended culture and in 

microcolonies formed on agarose patches. Different combinations of ICEclc genes 

(Supplementary Experimental Procedures, table S1) were cloned in the broad-host range 

vector pME6032 under IPTG derepressable LacIq-Plac control (3). Two sets of triplicate 

suspended cultures were inoculated at a culture turbidity (measured at 600 nm) of ~0.001 in 

type 21C MM-medium with 10 mM fructose, with or without 0.5 mM IPTG, after which the 

culture growth was continued to be monitored for 40 h. For microcolony experiments cells of P. 

putida UWC1 with pME6032-based plasmids were allowed to go through 3 cell doublings, 

after which 3 µl of a 50 mM IPTG stock solution was dropped on the back of a 150 µl agarose 

patch. Microcolony development was continued to be imaged during another 8 h, after which 

the cells were stained with PI and, after another 2 h, with DAPI (as described above). 

Microscopy. Cells, microcolonies and the brightness of fluorescent reporters were 

imaged with a Leica AF 6000 epifluorescence microscope (Leica Microsystems Heidelberg 

GmbH). Images were taken with a DFC320 monochrome camera (Leica Microsystems GmbH), 

a 100/1.30 oil immersion lens (HCX PL FLUOTAR; Leica) or a 40/0.60 (HCX PL Fluotar L40) 

lens for measuring microcolony morphotypes, at an exposure time of 800 ms. Images were 

digitally recorded as 16-bit TIFF-files using the Leica AF6000 software, and analysed using 

METAMORPH (version 6.1r5, Visitron Systems, Germany). Images for display were artificially 

colored ‘red’ (for eCherry, mCherry and PI) or ‘green’ (for eGFP or H2DCFDA), stored as 8 bit 

files using the Leica LAS software, and then auto-leveled and cropped to the final resolution 

and image size using ADOBE PHOTOSHOP CS4 (Adobe Inc.). 

Time-Lapse Experiments. Time-lapse experiments were facilitated by the use of a 

mark-and-find motorized stage (Märzhäuser Wetzlar, Germany). Regions containing ICEclc tc- 

and non-tc cells to follow over time were identified at the start of the experiment by recording 

individual cell eGFP or eCherry fluorescence values expressed from the single copy Pint – fusion. 

The cutoff for being identified as ICEclc transfer competent cell based on Pint–egfp or –eCherry 

expression was taken as a value higher than a fluorescence value of Q3 (upper quartile) + IQR 

(interquartile range) x 3, (Figure S1). Microcolony formation of both types of cells was followed 

until stationary phase and until new tc-cells appeared in the microcolonies formed from ICEclc 



CELL DIFFERENTIATION TO ‘MATING BODIES’ 
 

221 

non-tc starter cells. Between 10 and 20 regions per agarose patch were followed in time. The 

total number of cells and the proportion of cells expression reporter from Pint per microcolony 

were counted at each time point. 

Transfer competent cel l  microcolony (TCM) Quanti f ication. In addition to 

quantifying the proportion of cells expressing the Pint-egfp reporter fusion, we measured the 

proportion of TCM among all microcolonies produced on agarose surface as an indication for 

the cellular differentiation process conferred by ICEclc. TCMs were identified on gel patches 

incubated for 120 h, stained first with propidium iodide (PI) and subsequently –with a one hour 

interval, with 4',6' diamino-2-phenylindole·2HCl (DAPI). To score as TCM it consisted of at least 

two cells, had started from cells expressing Pint-egfp and/or contained clustered PI-positive 

cells and representing an outlier low-end area-size (upper quartile - interquartile range x 1.5) in 

comparison to neighbouring colonies (Figure S2, table S2). The proportion of TCM among all 

microcolonies was quantified from 50 randomly placed and imaged regions within an area 

spanning a typical gel patch. Total biomass and median colony size (in area units) per image 

was determined on thresholded DAPI stained images in METAMORPH. The number of 

microcolonies per image was then calculated by dividing the total biomass area divided by the 

median colony size, which was summed up across all investigated images to give the total 

number of microcolonies. The frequency of TCMs was then calculated as the total number of 

positively scored TCM divided by the calculated total number of microcolonies over all images 

per patch (Table S2).  

Stain ing Procedures. For staining developed microcolonies we pipetted a droplet of 

3 µl of staining solution to the back (non-inoculated) side of a 150 µl agarose patch and 

incubated the patch for one hour in the dark before microscopy imaging. As staining solutions 

we used PI (final concentration 30 µM), H2DCFDA (20 µg/ml), or DAPI (20 µg/ml). In the case of 

staining suspended cultures, one µl of PI stock solution (20 mM) was added to 500 µl cell 

suspended and incubated for 30 min in the dark. For H2DCFDA staining, one µl of a 10 mM 

stock solution in DMSO was added to 500 µl cell suspension and the suspension was 

incubated for two hours at 22°C in the dark before microscopy examination. As a positive 

control for reactive oxygen species, cells were treated with H2O2 (final concentration in 

suspension of 80 µM) for two hours in the dark, after which they were stained using H2DCFDA. 

Construction of pME6032-der ived p lasmids with parA-shi-parB 

fragments. A 6.4 kb EcoRI fragment of pTCB177 was subcloned into pME6032, generating 

plasmid pME-EE6.4. To generate pME-parA, pME-shi and pME-parB, the three genes 

parAICEclc, shi and parBICEclc were separately amplified from ICEclc by PCR, cloned into pUC18-
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miniTn7-Lac, and from there subcloned into the SacI-KpnI sites on pME6032. In the same way 

the full length parA-shi-parB region was PCR amplified and cloned into pME6032. The resultant 

plasmid pME-parAsB was digested by StuI and self-ligated to generate pME-parAsB’, which 

lacked the 3' 980-bp of parB. On the pUC18-miniTn7-Lac derivative plasmid the full length 

parA-shi-parB region was digested by SphI and self-ligated. This creates an 330-bp internal 

deletion in parA. The fragment was recovered by SacI-KpnI digestion and subcloned into 

pME6032, generating pME-parA’sB. Plasmids pME-parAsB and pME-parA’sB were then 

digested by SalI-XhoI and self-ligated to generate pME-parAs and pMEparA’s, respectively, 

that lack parB. 

Threshold ing reporter  gene intensi t ies f rom Pint for identi f ication o f cel ls  

as transfer competent . Transfer competent (tc) cells were identified at the beginning of 

microcolony growth on agarose nutrient surface, or within newly formed microcolonies during 

stationary phase on the basis of the per-cell fluorescence value of eGFP or eCherry expressed 

from a single copy chromosomally located fusion to the Pint-promoter (Figure S1). Strains were 

precultured in aqueous suspension (batch culture) on 4 mM 3-chlorobenzoate (3-CBA) until 

stationary phase, after which the culture was diluted and individual cells were deposited on a 

fresh solid agarose medium surface with 0.1 mM 3-CBA in an approximate density of 1 cell per 

70 µm2, (8). Tc cells arising in stationary phase have activated the reporter from Pint and are 

visible as brighter green cells on the agarose surface. A random region on the agarose patch 

(50 × 70 µm2 ) was chosen and single cells were focused under phase contrast at 1000 × 

magnification. An image was then recorded of eGFP or eCherry fluorescence and quantified 

using a METAMORPH subroutine. The cutoff for being identified as ICEclc tc-cell based on Pint–

egfp or –eCherry expression was taken as a value higher than a fluorescence value of Q3 

(upper quartile) + IQR (interquartile range) x 3 (interquantile range) in a boxplot representation of 

all data. If the image contained at least one cell with brighter than average eGFP or eCherry 

fluorescence it was assumed to represent an ICEclc-tc starter cell and the region was saved for 

the duration of the time-lapse investigation. In a similar way, a randomly chosen non-bright cell 

was identified and followed as an ICEclc non-tc control cell. Twenty such regions were followed 

for each experiment. 

To identify tc cells within microcolonies developed from non-tc starter cells we imaged and 

quantified the eGFP or eCherry fluorescence intensity of all individual cells within microcolonies 

during stationary phase. These were analyzed via the subroutine and method as outlined above 

for single starter cells.  
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Biochemical damage occurr ing in transfer  competent cel ls exposed to  

new growth substrate. A large proportion of cells (up to 100%) in transfer colony 

morphotypes (TCM) developed from ICEclc-tc starter cells stained positive with propidium 

iodide (PI), suggesting those cells to carry severely compromised membranes permitting PI 

entry and binding to DNA (Figure S2A). Positive staining with PI was identified on suspended 

cells as having a PI fluorescence higher than the minimum fluorescence of stained cells and 

was compared to cells first treated with isopropanol and then PI stained (Figure S2A,c and d). 

In contrast, microcolonies formed from non-tc starter cells in stationary phase displayed less 

than 1% PI-positive cells, and the occurrence of staining PI-positive was not significantly 

(P>0.05) correlated to expression of eGFP from Pint at stationary phase in the microcolony 

(Figure S2A).  

TCM from ICEclc-tc cells also stained very brightly with dichlorodihydrofluorescein diacetate 

(H2DCFDA, Figure S2B), which stains cells with higher intracellular concentrations of reactive 

oxygen species (ROS) and is a further potential indicator for cell damage. A significantly larger 

proportion (P<0.001) of ICEclc-tc cells in stationary phase suspended culture also stained 

H2DCFDA-positive (15.6 ±1.5 %, n=47, three independent clones, Figure S2B). These results 

therefore indicated that cells in which ICEclc is activated accumulate a variety of biochemical 

damage during stationary phase, and continue to do so when provided with new growth 

substrate.  

Quantif icat ion o f the proport ion o f t ransfer  competent cel ls v ia  thei r  

propensity  to  form aberrant t ransfer co lony morphotypes (TCM) . Importantly, two 

methods were used to identify the proportion of ICEclc-tc cells in a population: (i) expression of 

reporter protein from Pint and (ii) poor reproduction and, consequently, consistent formation of 

smaller microcolonies with a high percentage of damaged cells in comparison to microcolonies 

starting from a non-tc cell (Figure 2). Since smaller microcolonies could possibly also form 

because of defects in use of 3-CBA in the agarose medium (for example, as a result of excision 

and loss of ICEclc) or because of toxicity of 3-CBA metabolites on sensitive cells, we first 

calibrated co-occurrence of TCM and reporter induction. Notably, in strains with ICEclc having 

deleted intB13 or attL abolishing ICEclc excision, TCM still formed at the same proportion 

(Figure 2C). This showed that TCM are not a consequence of loss of ICEclc in individual cells. 

As explained above, staining with PI above threshold correlated in 100% of the observed 

microcolonies with expression of eGFP from Pint (in TCM with at least two cells formed, Figure 

2A). Since up to half of all ICEclc-tc starter cells do not grow at all on fresh medium surface 

(e.g., Figure 2b), the proportion of TCM is lower than that obtained by scoring Pint-egfp 
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expression. The background score for TCM in strains without ICEclc but which could grow on 

the same medium (i.e., P. putida UWC1 mini-Tn7-clc) was 0.05%. This probably reflects the 

proportion of naturally dead and damaged cells during manipulation from stationary phase 

culture to fresh agarose medium. Significantly, TCM also stained very brightly with H2DCFDA 

(Figure S2C), but this was not used for TCM quantification.  

Veri f ication o f f luorescent label ing and insert ion art i facts.  In order to ensure 

that induction of transfer competence or cell death in tc-cells was not due to labeling artifacts, 

we scored both proportions of TCM in labeled and non-labeled strains (Figure 3, compared P. 

putida UWC1 (ICEclc) and strain having Pint-eCherry fusion). In all cases of mini-transposon 

labeling we analyzed three independent clones with different insertion position (Table S1), 

without any noticeable effect on proportions of TCM or expression of reporter protein from Pint. 

strains and of cells that express reporter protein from Pint was independent of the reporter used 

(eGFP or eCherry, note Figure 3), or of the insertion position of the mini-Tn5 used to deliver the 

single copy Pint-fusion on the chromosome of the test strain. In order to exclude specific effects 

of eGFP we used the same expression from Pint using eCherry. The same results were 

recorded for three clones with different insertional position of the Pint-egfp or Pint-eCherry fusion 

in P. knackmussii B13 and in P. putida UWC1 (ICEclc) (not shown).  

Model ing of e ffect o f mutations abol ishing cel l  reproduct ive inh ibit ion  

process. One could imagine that spontaneous mutants lacking the TCM process could arise, 

but modeling of simple serial batch growth suggests that at the current proportion of 3% tc-

cells mutants without cell killing appearing at rates of 10-8 per generation are unlikely to take 

over before a few hundreds of generations (Table S3). Only if a large fraction of tc-cells (>20%) 

would arise in a stationary phase populations such mutants would rapidly outcompete the wild-

type in serial batch transfer growth experiments. 

Statist ics. Data analysis and statistics were performed using the program R 

(http://cran.r-project.org). 95% Confidence intervals on fluorescence intensities of 

subpopulations was calculated via 500 bootstrapping cycles (using the R algorithms ‘quantiles’ 

and ‘boot.ci’). The threshold fluorescence for being assigned a PI-positive cell was identified as 

the minimum PI fluorescence of isopropanol treated stained cells (Figure S2A). The threshold 

for being categorized as an ROS-positive cell was identified as the minimum fluorescence 

among H2O2-treated and H2DCFDA-stained cells (Figure S2B). Statistical significance was 

tested at the P<0.001 (two asterisks) or P<0.01 level (one asterisk). Measurement differences in 

other experiments were tested using ANOVA followed by a Tukey post hoc test. 
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ABSTRACT 

 

ICEclc is an Integrative and Conjugating Element in the bacterium Pseudomonas 

knackmussii. ICEclc is vertically inherited through co-replication with the host-chromosome 

during cell division. Horizontal transmission is initiated in a small (~3%) subpopulation of cells 

during stationary phase, which become transfer competent (tc) and finally arrest cell growth. 

Here, we investigate the hypothesis whether pre-existing biochemical damage or cell age are 

factors predetermining cells in which the ICEclc transfer program is activated. Through the use 

of time-lapse microscopy, we follow the life history of tc-cells within microcolonies. We 

demonstrate that the age of the cell pole is unlikely to play a role in the decision of its fate to 

initiate the ICEclc tc program. Furthermore, we show that initiation of transfer competence is 

not the result of the physiological state of ancestor cells, or of a close relative (sister cell). In 

contrast, tc-cells show higher levels of reactive oxygen species and membrane damage than 

non-tc cells, but whether cause for or effect of  ICEclc activation could not be discerned. 

ICEclc activation occurs spatially randomly in a microcolony, which might additionally be 

important for maximising the chances in a biofilm to contact potential recipients.  
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INTRODUCTION 

 

Clonal bacterial populations display heterogeneous characters that are not due to 

sporadic mutations in individuals as a result of horizontally acquired DNA, loss of genetic 

information or rare and spontaneous point mutations (8). Common causes of such phenotypic 

heterogeneity include phase variation, asynchronized cell cycles or gene expression noise (8). 

In addition, there are some reports that suggest cell aging to play a role in the occurrence of 

phenotypic heterogeneity (1, 8). Cell age was shown to affect cell size and timing of cell 

division (3, 5), but also growth rates (27, 28) and cell survival (30). Furthermore, it has been 

shown in Escherichia coli that the sub-cellular localisation of proteins (17) and protein 

aggregates can differ among individuals in a clonal population as a result of cell age (13, 31). 

Cell age in symmetrically dividing bacterial species is frequently measured as the relative age 

(in numbers of divisions) of the poles of an individual cell in a population (27). This concept is 

based on the hypothesis that cell constituents with limited diffusion and a long half-life 

eventually accumulate at the old pole, resulting in a physiological asymmetry between the old 

and new poles (9). A distinction between new and old cell poles is thus necessary. Whereas 

new poles are produced at mid-cell during division by binary fission, old poles remain at the cell 

ends. The number of times an old pole has “witnessed” the birth of a new pole can then be 

taken as a measure for cell age. Cell pole births and age determinations can be inferred from 

tracking of dividing individual cells in e.g., microcolonies or microfluidics devices, by time-lapse 

microscopy (14). Tracking of every individual cell during formation of a microcolony also allows 

to determine their interrelatedness and genealogy, which can be represented as a lineage tree 

(5, 27, 29).  

Individual cell tracking methods are particularly suitable to follow phenotypic 

heterogeneity events within isogenic populations, when coupled to autofluorescent protein 

expression from promoters of interest (26, 27, 29). Expression of the autofluorescent protein 

can then be linked to parameters like birth time, cell length, growth rate, cell pole age and 

physiological state (5, 27, 29). As an example, Veening et al. (29) used the spoIIA- and abrB 

promoters fused to gfp to show that sporulation in Bacillus subtilis cells within a microcolony 

was stochastic and not related to cell pole age, although it was inherited epigenetically as it 

preferentially followed cell lineages (29). In contrast, Bergmiller et al. showed that growth rate 

and cell size in Methylobacterium extorquens AM1 depend on cell pole age (5).  

The objectives of the underlying study were to study bistable activation of the ICEclc 

element in Pseudomonas knackmussii B13 and Pseudomonas putida. ICEclc is an 

integrative and conjugating element with a size of 103 kb which enables its host to utilize the 
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unique carbon and energy source 3-chlorobenzoate (3-CBA) (10). ICEclc is integrated directly 

downstream of a gene for tRNAGly (25), but can become active in 3-5% of cells in a population 

during stationary phase, inducing them to become transfer competent (15, 22). Transfer 

competent (tc) cells excise ICEclc and can transfer the element to recipient cells (22). The 

molecular decisions that lead to ICEclc becoming activated in particular individual cells but not 

in others are not well understood. Recent findings showed the role of the stationary phase 

sigma factor in controlling the proportion of tc cells in a population and suggested that cells 

with on average higher amounts of RpoS are more prone to become active ICEclc donors (16). 

Intriguingly, the proportion of tc cells arising in culture is dependent on the carbon substrate 

that cells have used, being highest (3-5%) upon growth with 3-CBA but low upon growth with 

succinate or glucose (<1%) (10, 15). In analogy to activation of prophages by SOS response 

(18) one possible hypothesis for ICEclc excision is that cells in which the ICE is activated are 

already predetermined by biochemical damage that may be the result of cell age or other (4, 6, 

7). Also, specific signalling effects at high cell density could possibly influence the arisal of tc 

cells (19-21), although previous experiments showed no effect of culture exposure to UV or 

chemicals, or of high and low cell density on the appearance of the excised ICEclc form (25).  

The objectives of the work presented here were thus to study the appearance of tc 

cells as a function of their life history in microcolonies. In particular, we examined the following 

hypotheses: (i) tc cell formation is dependent on cell pole age with older cells being more prone 

than younger cells. (ii) tc cell formation preferentially occurs in specific lineages in a 

microcolony with, incidentally, lysing sister cells. (iii) tc cell formation is a function of spatial 

organisation or density within a microcolony. (iv) tc cell formation occurs as a consequence of 

pre-existing detectable biochemical damage. To study hypotheses (i)-(iii) we used a 

microcolony growth set-up as previously reported (23) with P. knackmussii B13 cells that 

were labelled by two fluorescent reporter markers. One of those consists of a constitutively 

expressed mCherry protein, the other of an enhanced green fluorescent protein (eGFP), which 

is brought under control of the intB13 integrase promoter (Pint) and therefore expressed only in 

tc cells (22, 25). Life history of individual cells in the microcolonies was recorded by cell 

tracking on time-lapse image series taken by epifluorescence microscopy (5, 14, 24). 

Hypothesis (iv) was examined by staining for cell damage and reactive oxygen species (ROS) 

formation in individual cells grown in suspended batch culture on 3-CBA to stationary phase of 

P. knackmussii B13 or P. putida UWC1 (ICEclc).  
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RESULTS 

 

Cel l pole age distr ibution in microco lon ies o f P. knackmussi i B13 ce l ls. In 

order to determine whether the occurrence of tc cells is correlated to their cell pole age we 

determined the cell pole age distributions of in total 811 tc-cells of P. knackmus sii B13 among 

69 microcolonies in stationary phase from time-lapse imaging (Table 1, supporting information 

(SI) Raw data). B13 tc-cells were identified on the basis of the level of eGFP expression from a 

single copy chromosomal fusion to the Pint-promoter (Figure 1B, SI Figure 1). On average, 6. 8 

% of cells in a microcolony grown to stationary phase developed tc (Figure 1B, Table 2). Also 

on average, cells in such microcolonies went through seven cell divisions, producing between 

160 and 200 cells (Table 2). The theoretical cell pole age distribution for cells in microcolonies 

that go through seven divisions follows an exponential decay, resulting in 50% of cells with cell 

pole age 1, 25% of cells with cell pole age 2, etc. (see Table 1). Chi-square testing indicated 

no statistically significant difference between the expected and the observed cell pole age 

distribution of ICEclc tc-cells pooled from in total 69 microcolonies (Table 1, Goodness-of-fit 

test: P = 0.643; Fisher’s exact test: P = 0.899). ICEclc tc cells are thus as likely to appear in a 

cell with pole age 1 (youngest generation) as with pole age 7 (oldest generation). Given that the 

largest number of tc-cells appears among cells with a cell pole age of 1 suggests that 

prolonging the number of generations to grow a microcolony would not change the correlation 

of cell pole age to ICEclc formation. This indicates that there is no likely relation between the 

occurrence of transfer competence and cell pole age. 

L ineage dependent tc ce l l  occurrence. In order to test whether the arisal of tc 

cells is dependent on events occurring within a particular cell lineage, we tracked individual 

cells during the formation of three microcolonies of the Pint-egfp labeled P. knackmus sii B13 

cells (Figure 1A, SI Figure 2, 3). The three colonies were selected on a visual basis, being 

monolayered only and with sufficient tc-cells in stationary phase. Statistically speaking the 

three selected microcolonies may have had an overrepresentation of the number of tc-cells 

compared to a larger set of microcolonies (Table 2), but the cell pole age distributions were 

again not significantly different from the assumed theoretical distribution (Table 3). Lineaging of 

mother to daughter cells showed that cell division in the microcolonies becomes 

unsynchronized after 2-4 divisions. tc-cells mostly appeared in the final generation of a lineage, 

but some lineages stopped dividing sooner than others and, therefore, tc-cells appear at 

different moments in the microcolony (Figure 2A, C, E, Fig. S3). Once initiated, most but not all 

tc-cells did not further divide (Figure 1A). Between 7 and 12 % of individual cells in the three 

observed microcolonies lyse (Table 2; arrow in Figure 1A), with lysis sometimes occurring 
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before tc cell appearance (Figure 2C, E). Lineages with lysed cells occurred randomly (Figure 

1A, Table 10). Interestingly, some of such cells developed a small concentrated green spot 

before lysis and consistently such cells did not divide any longer once the green spot was 

visible (Figure 3). ICEclc tc-cells did not systematically appear in cell lineages that stopped cell 

division earlier (Figure 2B, D, F). Furthermore, we tested if sister cells of tc-cells are more likely 

to become transfer competent themselves (Table 6), or if families of cells derived from the 

same ancestor are more likely to contain tc-cells (Table 9, 11). Both hypotheses were not 

supported by statistical analysis (Table 6, 9, 11). 

L ineage dependent occurrence o f  ce l l  lysis. In order to determine whether 

there was a correlation between cell lysis and cell pole age, we repeated the analysis of above 

for lysed cells and their position in the lineage tree. Statistical analysis did not support the 

hypothesis that cell lysis occurrence was related to cell pole age (Table 4). We then tested 

whether there was a correlation between the occurrence of lysed cells and the occurrence of 

tc-cells within the same microcolony, the hypothesis being that there would be a higher 

probability of having a lysed (lineage) sister cell when becoming a tc-cell. Comparing the 

observed frequency to a randomized probability of having lysing sister cells by Chi-square 

testing did again not show any significant difference (Table 5), meaning that tc formation is not 

related to nor the consequence of having a sister cell which is more prone to lyse. We further 

asked the question whether observed lysis could have been epigenetically inherited and tested 

if lysis occurred preferentially within clusters of closely related cells, which was not the case 

(Table 10). 

Spat ia l ly dependent format ion o f  tc -ce l ls or l ineag ing within  

microco lon ies. Next, we tested whether tc formation or cell lysis occurred specifically within 

certain lineages that form spatially within a microcolony. Interestingly, also lineages of B13 

cells form in longitudinal direction within a microcolony (Figure 1C) as previously observed in E. 

coli (14, 24). To test whether tc-cells or cell lysis appear spatially random within a microcolony 

we divided the mature microcolony in random blocks of ~17 cells each, counted the 

occurrence of tc- and lysed cells within that block (Figure 1D, E), and tested in Chi-square or 

Fischer’s exact test whether this occurrence follows Poisson distribution or not. Results 

showed that both tc- and lysed cells appear spatially at random within a microcolony (Table 7, 

8 ).  

Occurrence o f biochemica l damage in indiv idual ce l ls . In order to discern 

whether tc-cells arise as a result of some pre-existing or accumulated biochemical damage, 

we measured the timing of birth of tc-cells compared to non-tc cells in their final cell division, 

assuming that when mother cells leading to tc-cells would have been previously damaged they 
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would not have divided as fast as the others. Results, however, showed that for the three 

microcolonies the birth time of tc-cells was not different than for non-tc cells (Figure 2B, D, F).  

We further tested whether tc cells on average display more membrane damage or higher ROS 

levels than in non-tc cells. As this staining is difficult to perform on growing microcolonies 

because the dyes may influence the further life trajectory of the cells, we relied on staining of 

stationary phase suspended cultures. P. knackmus sii B13 Pint-egfp stationary phase cultures 

on 3-CBA displayed less than 1% PI- positive cells. Being identified as PI-positive (i.e., having 

PI fluorescence as expected from isopropanol treated cells) was not significantly (P>0.05) 

correlated to being identified as a tc-cell (SI Table 1). In contrast, tc-cells showed higher levels 

of PI fluorescence than non-tc cells (Figure 4, P<0.001). P. putida UWC1 (ICEclc) Pint-egfp 

stationary phase cultures showed a significantly larger proportion of PI-positives among tc-cells 

than among non-tc cells (P<0.001, Figure 4, Fig. S9, S10, Table S1). Also, a significantly larger 

proportion of tc-cells than of non-tc cells in stationary phase 3-CBA grown cultures of P. 

putida UWC1 (ICEclc) Pint-mCherry stained ROS-positive (P<0.001, Figure 4, Figure S7, Figure 

S8, Table S1).  

 

 

 

Figure 1 (next page). ICEc lc  tc Format ion and Lys is  dur ing Microcolony Growth. (A) 

Lineage tree of 157 cells of microcolony 1A. Arrows point to cells (tree tips) identified as ICEclc tc-

cells. Crosses point to lysed cells (shorter tree tips). Capital letters (A, B, …, H) indicate lineage 

clusters derived from the descendents of the eight initial cells after approximately 3 generations (see 

Table 9, 10). Small letters (a, b, …, p) name lineages sub-clusters derived from the descendents of 

the 16 initial cells after approximately 4 generations (see Table 11). Different colours and patterns 

above the tree uniquely identify lineages and sub-lineages after 70 h of growth as represent Ted in 

panel (C). Yellow stars indicate time of appearance of tc cells. Note non-linear time scale in panel A. 

(B) Phase contrast visualisation (left) and overlay of green and red fluorescence (right) of microcolony 

1A after 70 h of growth. Note absence of cell shapes of lysed cells. Arrows shows an example of a 

lysed cell position. White bar indicates 2 µm. Non-tc cells appear as red because of constitutive 

mCherry expression from the Ptac promoter. Tc-cells appear as yellow because of constitutive 

mCherry expression from the Ptac promoter in combination with expression of eGFP from the Pint 

promoter (diagram). Note absence of fluorescence in lysed cells (arrow). (C) Region map of 

microcolony 1A after 70 h showing location of lineages (colours) and sub-lineages (colours with or 

without pattern) as defined in (A). (D) Region map of microcolony 1A after 70 h showing randomly 

defined areas with occurrences of lysed cells (black dots). (E) Region map of microcolony 1A after 70 

h showing randomly defined areas with occurrences of ICEclc tc-cells (green dots). 
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Figure 2 (previous page). M ic rocolony growth curves and b i r th t imes of last generat ion 

tc- versus non- tc ce l l s in a microcolony. (A, C, E) Growth curves of microcolonies 1A, 7A and 

17F, respectively. Cell lysis events (lysed) and number of ICEclc tc-cells (TC) are shown after 29, 51 

and 70 h of growth, respectively (dotted line). (B, D, F) Birth time frequencies of last-generation tc- 

and non-tc cells in microcolonies 1A, 7A and 17F, respectively. Note how birth-time frequencies of tc- 

and non-tc cells are similarly distributed, suggesting a normal growth history of ancestors of tc-cells. 

 



RANDOM ICECLC TRANSFER COMPETENCE FORMATION IN INDIVIDUAL CELLS OF PSEUDOMONAS 
 

237 

 

 

 

 

Figure 3. Three examples of cel l  lys i s  w ith preced ing green spot development (arrow,  

A, B , C) . Non-tc cells appear as red because of constitutive mCherry expression from the Ptac 

promoter. Tc-cells appear as yellow/green because of constitutive mCherry expression in 

combination with expression of eGFP from the Pint promoter. Note early green spot development 

(arrow) and subsequent lysis in cells before appearance of ICEclc tc-cells in A and C.  
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Figure 4 (on the left ).  S ignif icance test ing of proport ions of PI-pos i t ive ce l l s detected  

among tc-ce l l s  ( i .e . ,  eGFP pos i t ive ce l l s)  or non- tc ce l l s  in sta t ionary phase  

suspended batch cul tures by resampl ing data sets via unpa i r ing PI and eGFP 

f luorescence or ROS and mCherry f luorescence on ind iv idua l  ob jects .  A) P. knackmussii 

B13-1343 cells (n=4536) (single copy insertion of Pint-egfp). Paired data sets for tc cells (black) or 

non-tc cells (white). Gray, unpaired resampled data set of tc-cells. Data points above dotted 

threshold line represent PI-positive cells, proportions of which are presented in the grey box as 

percentage of all investigated cells. * indicates that the populations are statistically different (P < 

0.001) as tested with Student-t test and Wilcoxon test. Note how unpairing results in non-significant 

differences of tc cell populations compared to non-tc cells. B) Similar but for P. putida UWC1-2507 

(5704 cells), -2508 (4475 cells) or -2510 (3922 cells), all carrying one copy of ICEclc and a single 

copy insertion of Pint-egfp. For thresholding in these strains see SI Figures 9 and 10. C) As B) but for 

P. putida UWC1-3014 (4843 cells), -3015 (5230 cells) or -3016 (8246 cells), all carrying one copy 

of ICEclc and a single copy insertion of Pint-eCherry. For thresholding in these strains see SI Figures 7 

and 8. (*) indicates that the populations are statistically different (P < 0.001) only as with Student-t 

test but not with Wilcoxon test.  
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Table  1.  Cell agea distribution in ICEclc transfer competent cells of P. knackmussii B13. 

Age
a  Observed

b Expected
c Residuals

d  P values
e  

1 406 405.50 0.50 0.64 3, 0.8 8 9  

2 200 202.75 -2.75  

3  99 101.3 8  -2.3 8   

4 54 50.69 3 . 31  

5 3 3  25.34 7.66  

6 10 12.67 -2.67  

≥ 7f 9 12.67 -3.67   
a) Cell age is referred to as the number of cell divisions the older pole of a cell has experienced during 70 h of 

microcolony growth.  

b) Observed age frequency in ICEclc tc-cells (n = 811) from multiple independent microcolonies (n = 69) of 

similar size (mean = 173 cells, sd = 43 cells) equivalent to 7 generations. tc-cells were identified if their 

eGFP fluorescence intensity values exceeded a threshold value (X) determined according to X
cu to

= Q3 + IQR * 

3 , where Q3 is the upper quartile and IQR is the interquartile range of eGFP fluorescence intensity values of 

all cells of a microcolony (see SI Figure 1).  

c) The expected age frequency in 811 tc-cells from 69 microcolonies calculated from the theoretical age 

frequency of cells in a single microcolony with 7 generations under the assumption of equal division rates for 

each cell and no cell death. We used the formula E
x

 = P
x 

* 811, where E
x

 is the expected frequency of tc-cells 

with age x (x = 1, 2, …,7), and P
x

 is the probability of occurrence with age x. P
x 

equals 1/(2x), assuming 

exponential growth of cells without lysis.  

d) Residuals were calculated by subtraction of expected from observed frequencies.  

e) P-values of the 'goodness-of-fit' test (first value) and Fisher’s exact test (second value), performed with 

observed versus expected values as shown in the table. f) Maximum cell age was 8 cell divisions in some (n 

= 3 ) microcolonies. 

 

Tab le 2. Proportion of ICEclc transfer competent and lysed cells of P. knackmussii B13 under 

microcolony growth conditions. 

Microcolony  Number of cells
a after 70 h

 
tc cells (%)

b Lysed cells (%)
c 

1A 140 22 (15.7) 17 (12.1) 

7A 160 25 (15.6) 12 (7.5) 

17F 237 3 3  (1 3 .9) 18 (7.6) 

Multiple (n = 69) 16 8 ± 46.3d (6.8  ± 3 . 3 )d  
a) Microcolony size determined as the number of visible cells after 70 h of growth on agarose surface (see 

Figure 1, SI Figure 2-6).  

b) Number and percentage of ICEclc tc-cells in a microcolony after 70 h.  

c) Number and percentage of lysed cells in the microcolony between 0 and 70 h. (see Figures 1A, B, D; SI 

Figure 2A, C, D; SI Figure 3A, C, D).  

d) Average ± standard deviation 
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Table  3.  Cell pole age distribution among tc cells of P. knackmussii B13 in three selected 

microcolonies. 

  All cells  tc cells     

Microcolony  AGE
a  Observed

b  Observed
c  Expected

d  Residuals
e  P values

f  
1A 1 80 8  11.21 -3.21 0.278, 0.666 

 2 3 8  8  5.32 2.6 8   

 3  17 2 2.3 8  -0.3 8   

 4 13 1 1.82 -0.82  

 5+6+7
g 

3+4+2 
= 9 

1+1+1 
= 3 1.26 1.74  

7A 1 8 9  11 12.94 -1.94 0.400, 0.866 

 2 3 8  8  5.52 2.48  

 3  25 3  3 .6 3  -0.6 3   

 4 9 0 1.31 -1.31  

 5+6+7+8
g  

4+4+2+1 
= 11 

2+1+0+0  
= 3 1.60 1.40  

17A 1 127 20 16.44 3 .56 0.776, 0.9 31 

 2 65 7 8 .41 -1.41  

 3  32 3  4.14 -1.14  

 4 15 1 1.94 -0.94  

 5+6+7+8
g  

7+5+2+2 
= 16 

1+1+0+0  
= 2 2.07 -0.07  

a) Cell age is referred to as the number of cell divisions the older pole of a cell has experienced during 70 h of 

microcolony growth.  

b) Observed age frequency in all cells of a microcolony.  

c) Observed age frequency in ICEclc tc-cells of a microcolony.  

d) The expected age frequency in TC cells of a microcolony was assumed to be similar to the observed age 

frequency in all cells of that microcolony. It was therefore calculated using the formula E
x

 = P
x 

* n
tc

, where, per 

microcolony, E
x

 is the expected frequency of TC cells with age x (x = 1,2, …), P
x

 is the probability of 

occurrences of cells with age x, and n
tc

 is the total number of TC cells. P
x

 was determined according to P
x 

= 

O
x

/n
to t

, where, per microcolony, O
x 

is the observed frequency of cells with age x, and n
to t

 is the total number of 

cells including lysed cells.  

e) Residuals were calculated by subtraction of expected from observed frequencies.  

f) P-values of the goodness-of-fit (first value) and the Fisher’s exact test (second value).  

g) Categories are combined to achieve an expected frequency of  > 1 as required for reliable goodness-of-fit 

testing. 
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Table 4. Cell age distribution in lysed cells of P. knackmussii B13 among three selected 

microcolonies. 

  All cells  Lysed cells     

Microcolony  AGE
a  Observed

b  Observed
c  Expected

d  Residuals
e  P values

f  
1A 1 80 12 8 .66 3 . 34 0.242, 0.562 

 2 3 8  1 4.11 -3.11  

 3  17 1 1.84 -0.84  

 4+5+6+7
g 

13+3+4+2 
= 22 

1+0+1+1 
= 3 2.3 8  0.62  

7A 1 8 9  7 6.21 0.79 0.840, 1.000 

 2 3 8  2 2.65 -0.65  

 3  25 1 1.74 -0.74  

 
4+5+6+7+

8
g

 

9+4+4+2+1 
= 20 

2+0+0+0+0 
= 2 

1.40 0.60  

17A 1 127 8  8 .96 -0.96 0.715, 1.000 

 2 65 5 4.59 0.41  

 3  32 3  2.26 0.74  

 4 15 0 1.06 -1.06  

 5+6+7+8
g

 
7+5+2+2 
= 16 

1+1+0+0 
= 2 

1.13 0.87  

Legend, see Table 3 . 

 

Tab le  5.  Lysis in sister cells of tc cells of P. knackmussii B13. 

Microcolony Nr. lysed cells
a

 Observed
b

 Expected
e

 Conf idence interval
d

 

1A  17 0 2.3 8 0.00, 5.00 

7A  12 0 1.95 0.00, 5.00 

17F 18 0 2.26 0.00, 6.00 

a) Lysis was classified as such if a cell showed reduced mCherry fluorescence intensity and disintegrated 

cell shape (see Figure 1 B).  

b) Observed frequency of cell lysis in sister cells of tc-cells. Sister cells were defined as the offspring of a 

dividing mother cell.  

c) Expected frequency of cell lysis in sister cells of tc-cells. The expected frequency of sister cell lysis E
lys

 was 

calculated by E
lys

 = P
lys

 * n
tc

, where P
lys

 is the probability of lysis and n
ly s

 is the number of tc-cells in a microcolony. 

P
lys

 was obtained from the ratio of lysed cells divided by the total number of cells in a microcolony.  

d) 95% Confidence intervals were calculated according to the bootstrap percentile method by bootstrap 

simulation of sister cell lysis (R = 5000).  

 

Tab le  6.  ICEclc transfer competence in sister cells of tc cells of P. knackmussii B13. 

Microcolony  Nr. tc-cells Observed Expected Conf idence interval 

1A  22 4 3 .0 8 0.00, 6.00 

7A  25 2 4.56 1.00, 8 .00 

17F 3 3  2 4.02 1.00, 8 .00 

Legend, see Table 5. 
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Tab le  7.  Spatial occurrence of tc cells within a microcolony. 

Microcolony Occur rence
a

 Observed
b

 Expected
c

 Residuals
d

 P values
e

 

1A  0 6 3 .46 2.54 0.042, 0.408 

 1 2 5.08 -3.0 8  

 2 2 3 .72 -1.72  

 ≥ 3 5 2.74 2.26  

7A 0 3  3 .91 -0.91 0.445, 0.892 

 1 8  5.74 2.26  

 2 2 4.22 -2.22  

 3  3  2.07 0.9 3  

 ≥ 4 1 1.05 -0.05  

17F 0 7 6.07 0.9 3 0.244, 0.825 

 1 5 8 . 34 -3.34  

 2 8  5.74 2.26  

 3  4 2.6 3 1.37  

 ≥ 4 0 1.22 -1.22  

a) Occurrences of ICEclc tc-cells within equally sized, randomly placed areas across a microcolony (see 

Figure 1 and SI Figure 2, 3 ).  

b) Observed frequency of occurrences.  

c) Expected frequency of occurrences were obtained assuming a Poisson distribution with a mean (λ) value of 

λ = n
tc

/k occurrences, where n
tc

 is the total number of tc-cells within a microcolony and k is the number of 

sampling areas across that colony.  

d) Residuals were calculated by subtraction of expected from observed frequencies. 

e) P values of the goodness-of-fit test (first value) and Fisher’s exact test (second value). 

 

Tab le  8.  Spatial occurrence of cell lysis within a microcolony of P. knackmussii B13.  

Microcolony Occur rence
a

 Observed
b

 Expected
c

 Residuals
d

 P values
e

 

1A  0 3  4.8 3 -1.8 3 0.35 3, 0.76 3 

 1 8  5.47 2.53  

 2 3  3 .10 -0.10  

 ≥ 3 1 1.60 -0.60  

7A 0 8  8 . 3 9 -0.39 0.9 8 6, 1.000 

 1 6 5.92 0.08  

 ≥ 2 3  2.6 8 0.32  

17F 0 9 11.34 -2.34 0.35 3, 0.669 

 1 12 8 .50 3 .50  

  ≥ 2 3  4.16 -1.16   

Legend, see Table 7 
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Tab le 9. ICEclc transfer competence across 8 lineage clusters (A-H) in a microcolony of P. 

knackmussii B13. 

Microcolony Cluster a (cells)
a

 Observed
b

 Expected
c

 Residuals
d

 P values
e

 

1A A (16) 2 2.24 -0.24 0.459, 0.966 

 B  (14) 1 1.96 -0.96  

 C (18 ) 6 2.52 3 .4 8  

 D (22) 4 3 .0 8 0.92  

 E (24) 3 3 . 3 6 -0.36  

 F (25) 3 3 .50 -0.50  

 G (23 ) 2 3 .22 -1.22  

 H (15) 1 2.10 -1.10  

7A A (31) 5 4.51 0.49 0.469, 0.857 

 B  (24) 7 3 .49 3 .51  

 C (27) 5 3 .92 1.08  

 D ( 31) 2 4.51 -2.51  

 E (21) 2 3 .05 -1.05  

 F (17) 1 2.47 -1.47  

 G (9) 1 1.31 -0.31  

 H (12) 2 1.74 0.26  

17F A (3 3 ) 5 4.27 0.73 0.457, 0.766 

 B  (25) 0 3 .24 -3.24  

 C (35) 6 4.53 1.47  

 D ( 32) 5 4.14 0.86  

 E (32) 6 4.14 1.86  

 F (3 3 ) 2 4.27 -2.27  

 G (35) 6 4.53 1.47  

  H (30) 3 3 . 8 8  -0.8 8   

a) Clusters (A, B , …, H) are groups of related cells in a microcolony that are defined in the lineage trees of 

Figures 1, SI Figure 2, 3 . Further legend details, see Table 7-8. 
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Tab le  10.  Cell lysis across 8 lineage clusters (A-H) in a microcolony of P. knackmussii B13. 

Microcolony Cluster  (cells)
a

 Observed
b

 Expected
c

 Residuals
d

 P values
e

 

1A A (16) 1 1.73 -0.73 0.050, 0.584 

 B  (14) 3 1.52 1.48  

 C (18 ) 1 1.95 -0.95  

 D (22) 4 2.3 8 1.62  

 E (24) 2 2.60 -0.60  

 F (25) 0 2.71 -2.71  

 G (23 ) 1 2.49 -1.49  

 H (15) 5 1.62 3 . 3 8   

7A A (31) 0 2.16 -2.16 0.265, 0.614 

 B  (24) 2 1.67 0.3 3  

 C (27) 3 1.8 8 1.12  

 D ( 31) 0 2.16 -2.16  

 E (21) 2 1.47 0.53  

 F (17) 2 1.19 0.81  

 G + H (9 + 12)
f
 3 1.47 1.53  

17F A (3 3 ) 3 2.3 3 0.67 0.527, 0.92 3 

 B  (25) 2 1.76 0.24  

 C (35) 2 2.47 -0.47  

 D ( 32) 3 2.26 0.74  

 E (32) 5 2.26 2.74  

 F (3 3 ) 1 2.3 3 -1.3 3  

 G (35) 1 2.47 -1.47  

  H (30) 1 2.12 -1.12   

f) Categories are combined to achieve an expected frequency of  > 1 as required for reliable goodness-of-fit 

testing. 

Further legend details, see Table 9. 
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Table 11. ICEclc transfer competence across 16 lineage clusters (a-p) in a microcolony of P. 

knackmussii B13. 

Microcolony Sub-cluster  (cells)
a

 Observed
b

 Expected
c

 Residuals
d

 P values
e

 

1A a (8 ) 1 1.12 -0.12 0.946, 0.995 

 b ( 8 ) 1 1.12 -0.12  

 c (9) 1 1.26 -0.26  

 d + e (5 + 9)
f
 3 1.96 1.04  

 f (9) 3 1.26 1.74  

 g (9) 2 1.26 0.74  

 h (13 ) 2 1.82 0.18  

 i (11) 1 1.54 -0.54  

 j (13 ) 2 1.82 0.18  

 k (12) 1 1.6 8 -0.6 8  

 l (13 ) 2 1.82 0.18  

 m (12) 2 1.6 8 0.32  

 n (11) 0 1.54 -1.54  

 o + p (7 + 8 )
f
 1 2.10 -1.10  

7A a (15) 1 2.18 -1.18 0.253, 0.9 30 

 b (16) 4 2.3 3 1.67  

 c (13 ) 3 1.89 1.11  

 d (11) 4 1.60 2.40  

 e (12) 0 1.74 -1.74  

 f (15) 5 2.18 2.82  

 g (15) 1 2.18 -1.18  

 h (16) 1 2.3 3 -1.3 3  

 I (11) 2 1.60 0.40  

 j (10) 0 1.45 -1.45  

 k (10) 0 1.45 -1.45  

 l (7) 1 1.02 -0.02  

 m (8 ) 1 1.16 -0.16  

 n +o + p (1 + 4 + 8 )
f
 2 1.89 0.11  

17F a (17) 2 2.20 -0.20 0.8 82, 0.996 

 b (16) 3 2.07 0.9 3  

 c (9) 0 1.16 -1.16  

 d (16) 0 2.07 -2.07  

 e (16) 3 2.07 0.9 3  

 f (19) 3 2.46 0.54  

 g (16) 2 2.07 -0.07  

 h (16) 3 2.07 0.9 3  

 i (16) 3 2.07 0.9 3  

 j (16) 3 2.07 0.9 3  

 k (17) 1 2.20 -1.20  

 l (16) 1 2.07 -1.07  

 m (19) 2 2.46 -0.46  
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Table  11-Cont inued     

Microcolony Cluster  (cells)
a

 Observed
b

 Expected
c

 Residuals
d

 P values
e

 

 n (16) 4 2.07 1.9 3  

 o (14) 1 1.81 -0.81  

  p (16) 2 2.07 -0.07   

Legend, see Table 10 
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DISCUSSION 

 

One of the mysteries in ICE gene transfer among bacteria is the mechanism that 

controls the typically low frequency by which ICEclc becomes excised in clonally identical 

populations of donor cells. Indeed, our previous results on ICEclc in P. knackmussii B13 using 

stable fluorescent reporter gene fusions at single-cell level indicated that 3-5% of cells in 

stationary phase suspended culture after growth on 3CBA as sole carbon and energy source 

measurably express the PinR and Pint promoters (15, 25). More recently, we could demonstrate 

that cells that activate Pint are those that initiate a program for transfer competence, through 

which they become able to transfer ICEclc (22). In addition, we showed that the proportion of 

cells expressing PinR and Pint depends on RpoS levels, with cells having higher than population-

average RpoS levels showing a higher likelihood of activating the tc-cascade (16). These 

results thus suggested that the decision to activate or not PinR and Pint in an individual cell is a 

stochastic process. However, apparent stochasticity (e.g., the distribution of RpoS among 

cells) may have underlying causes, such as, some cells being in a slightly different growth 

phase or having experienced more previous biochemical damage, and thus producing more 

RpoS. The specific hypotheses we thus wanted to test in this work were whether ICEclc 

activation in individual cells was dependent on cell pole age, whether it was confined to 

specific cellular lineages, or occurred as a consequence of pre-existing detectable 

biochemical damage. We also tested whether tc cell formation occurs spatial randomly within a 

microcolony. In essence, none of the hypotheses is supported by the experimental 

observations, from which we conclude that ICEclc activation is a random process depending 

on stochastic variation among individual cells. 

Most of the experiments here were based on time-lapse imaging of individual cells in 

growing microcolonies. This has the advantage of tracing the behaviour and life history of all 

cells throughout exponential and stationary phases, when the colony stops growing and ICEclc 

tc-formation is initiated. On the other hand, to avoid that the microcolony became multilayered 

and individual cells could no longer be traced accurately, we had to restrict the amount of 

carbon available to cells. As a consequence of this, only a limited number of generations (7-8) 

could be followed before the colony entered stationary phase. Therefore, there is a relatively 

low number of cells with 'old' poles within the demographic distribution of the clonal population 

in the colony. Overall, however, there was no statistical support to conclude that old cells 

would be more prone to activating ICEclc (Table 1). In fact, the finding that ICEclc activation 

events occur as frequently among cells with poles of 1 generation than in any other category 

suggests that cell age is not a determining factor for the activation process, and that designing 
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the experiment differently to observe more older cells (e.g., by a mother machine (30)) would 

not have changed the outcome.  

Along similar lines we tested whether occurrence of tc-cell activation is confined to 

specific cell lineages that develop over time, but there was no statistical evidence to support 

that hypothesis (Tables 9-11). This suggests that in case of ICEclc there is no pre-existing 

epigenetic modification, as was hypothesized for the case of sporulation in Bacillus subtilis 

(29), that would determine groups of cells from particular lineages to all activate ICEclc. 

Interestingly, although the timing of tc-cell appearance within the microcolony was relatively 

coherent (i.e., within 29 to 70 h, at the onset of stationary phase, Figure 2), their position was 

statistically speaking random (Table 7). One could imagine that positionally random activation 

has a selective advantage for a conjugative element that attempts to gain access to new host 

cells (Figure 5). Totally random appearance of ICEclc tc-cells within a microcolony is in major 

contrast to other examples of bistability phenomena. For example, B. subtilis cells expressing 

sporulation promoters (PspoIIA-gfp and PabrB-gfp) cluster rather in particular cell lineages (29). 

Finally, we tested whether ICEclc tc-cells appear as a consequence of previously 

experienced biochemical damage. One indication for this could be the frequency of cell lysis in 

sister cells of tc-cells. However, there was no statistical evidence for increased frequency of 

tc-cell appearance among sisters of lysed cells (Table 5). Also, some tc-cells still divided after 

initiation of the tc-state but their timing of birth was no different than non-tc cells. This would 

indicate that on average tc-cells are not more damaged than non-tc cells. The only indication 

for a possible pre-existing biochemical damage came from staining of stationary phase 

suspended cultures. This showed that tc-cells on average stain brighter with PI than non-tc 

cells. At least for P. putida UWC1 carrying ICEclc the tc-cells accumulate more ROS than non-

tc cells. Now since these stainings were performed on a single time sample, we cannot 

discern whether tc-initiation occurs because of damage (indicative higher PI and ROS 

staining), or whether damage occurs as a consequence of tc-initiation. To differentiate 

between those might be an interesting avenue to pursue specifically by using tools that would 

allow identification over time of the tc-state of cells and of reactive oxygen species presence. 

One possibility here would be reporter gene fusions to promoters in P. knackmus sii or P. putida 

reactive to oxygen radicals, which, however, so far have not been identified.  

The hypothesis we have entertained recently is that ICEclc transfer competence is 

initiated in stationary phase cells, but that actual ICE transfer will need subsequent energy for 

cells (22). In this respect it is interesting that microcolonies in stationary phase have several 

incidences of lysing (non-tc) cells, the released nutrients of which could possibly benefit tc-

cells. Since ICEclc activation and lysis occurs spatially randomly throughout the microcolony 
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"biofilm" a small amount of nutrients would become available, which might not be sufficient to 

renew cell division but might provide enough energy to stimulate ICEclc transfer. For example, 

in cannibalism in B. subtilis, it is thought that cell lysis provides food to the non-cannibalized 

fraction of cells delaying the one-way process to the formation of the spores (12). Finally, 

spatially random occurrence of ICEclc tc-cells might have been selected for because it would 

allow a higher chance of contacting possible recipient cells and thus potentially more efficient 

ICE transfer. This, together with the postulated beneficial effects on transfer of outgrowth of tc-

cells to small groups of tc-cells (22), would then add to the strategy of ICEclc to maximize its 

horizontal transmission rates from a proportionally small number of tc-cells arising in the 

population strains. It is also possible that random lysis throughout a biofilm might somehow 

play a significant role in overall biofilm stability and structure, perhaps through the release of 

structural, and signalling molecules from lysed cells, or the formation of gaps, which would add 

to the “porosity” of a biofilm potentially affecting medium flow and nutrient circulation. This could 

then be regarded as self-destructive cooperation strategy, whereby the death of one cell helps 

others, benefiting public good, in this case a favourable biofilm environment (2). 
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Figure 5. Conceptua l  i dea showing transfer  probab i l i ty as a funct ion of spat ia l  

arrangement of t ransfer competent ce l l s .  Higher probability of donor-to-recipient cell-to-cell 

contact (and therefore more effective transfer) when donor cells appear randomly distributed 

throughout the donor microcolony (A) as opposed to when they appear clustered (B). Green, transfer 

competent cells. Grey, donor strain microcolony. Brown, recipient cells. 
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MATERIALS AND METHODS 

 

Strains and Culture Media. The strains used in this work were derivatives of P. 

knackmussii B13 and P. putida UWC1 (ICEclc), which carry single copy transposon insertions 

with reporter gene fusions between the Pint-promoter and egfp or mCherry (22). Strains were 

revived by streaking from -80°C glycerol stocks onto nutrient agar, where necessary 

supplemented with kanamycin at 50 µg/ml. Single colonies were picked and cultured in five ml 

of type 21C minimal medium (MM) (11) containing 4 mM 3-CBA until stationary phase (24 – 

96 h) at 30°C and at 180 rpm agitation. Stationary phase cultures were recovered and diluted 

before being inoculated onto agarose nutrient surfaces to initiate microcolony growth. Agarose 

nutrient patches included 0.1 mM 3-CBA as sole (added) carbon and energy source, but cells 

also utilize traces of available organic carbon source in the agarose. 

Microco lony Growth Procedure. To initiate and follow microcolony development in 

real-time we used a perfusion chamber setup as described previously, in which the 

microcolony forms in between the surface of a glass slide and the nutrient surface (22, 23). 

With the used culture dilutions, medium components and concentrations, microcolonies from 

non-tc starter cells developed to stationary phase in about 24 hours and reached a size of 

160-200 cells.  

Microscopy. Cells in microcolonies were examined with an inverted Leica AF6000 

epifluorescence microscope (Leica Microsystems Heidelberg GmbH). Images were taken with 

a DFC320 monochrome camera (Leica Microsystems GmbH) and a 100/1.30 oil immersion 

lens (HCX PL FLUOTAR; Leica), at an exposure time of 800 ms. Filters used for eGFP and 

ROS-stain was GFP BP470/40, and for PI and mCherry Y3 BP535/50 (Leica). Images were 

digitally recorded as 16-bit TIFF-files using the Leica AF6000 software. 

Time-lapse experiments were facilitated by the use of a mark-and-find motorized stage 

(Märzhäuser Wetzlar, Germany). A random region on the agarose patch was chosen and 

single cells were focused under phase contrast at 1000 × magnification. Microcolony formation 

was then followed with images taken at roughly 1-h intervals until 70 h after start of the 

experiment and until cells appeared in the microcolonies which had activated the Pint-promoter 

(22). Individual cells were considered to have activated ICEclc when the fluorescence level of 

the reporter protein expressed from Pint was higher than a value of the Q3 (upper quartile) + 3 

times the interquartile range (SI Figure 1, (22)). 

Image Analyses. Original images consisted of 16-bit TIFF-files, which were used for 

fluorescence intensity measurements in METAMORPH (version 6.1r5, Visitron Systems, 

Germany). METAMORPH was also used for manual counting of cells to determine microcolony 
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sizes, for artificial colouring of ‘red’ (mCherry) or ‘green’ (for eGFP), for creating overlays of ‘red’ 

(mCherry) and ‘green’ (for eGFP), for creating time-lapse image stacks, alignment of these 

stacks and subsequent creation of time-lapse movies and for conversion to 8 bit files for 

subsequent processing. 8 Bit images were cropped to the final resolution and image size 

using ADOBE PHOTOSHOP CS4 (Adobe Inc.). mCherry fluorescence images for lineage tree 

analyses were prepared in GRAPHIC CONVERTER X (version 6.0.4 1386, Lemke Software 

GmbH, Germany) by subsequently carrying out inversion, changing resolution from 300 ppi to 

600 ppi, and manually adjusting levels.  

L ineage Tree Analyses. Time-lapse microscopy pictures were aligned using 

METAMORPH to create image stacks. Aligned images were then analyzed with the MATLAB-

based program SCHNITZCELL (24) with extended MATLAB scripts by Bergmiller (5) to extract cell 

pole age. SCHNITZCELL was used to segment the images, identify cells, and track cells over 

consecutive images. Time-lapse videos of growing microcolonies were created from aligned 

image stacks in METAMORPH, which were used in parallel to the SCHNITZCELL processing. This 

manual frame-by-frame cell tracking was employed to verify correct cell lineage mapping. 

Sta in ing.  To stain for membrane damage we used propidium iodide (PI) at a final 

concentration of 30 µM. As a general ROS marker, cells were stained with 

dichlorodihydrofluorescein diacetate (H2DCFDA) at 20 µg/ml. Hereto, one µl of an appropriate 

stock solution (PI, 20 mM; H2DCFDA, 10 mM in DMSO) was added to 500 µl cell suspension 

and incubated for 30 min (PI) or 2 h (H2DCFDA) in the dark, after which cells were examined 

by epifluorescence microscopy.  

The threshold fluorescence for being assigned a PI-positive cell was identified as the minimum 

PI fluorescence of isopropanol treated stained cells (22). The threshold for being categorized 

as a ROS-positive cell was identified as the minimum fluorescence among H2O2-treated and 

H2DCFDA-stained cells as described in SI Figures 7-10 and Reinhard and colleagues(22). 

Calcu lat ions.  Data analysis and statistics were performed using the program R 

(Ihaka and Gentleman, 1996; http://cran.r-project.org).  

 

ACKNOWLEDGEMENTS  

 

This work was supported by grants 3100A0-108199 and 31003A_124711 from the 

Swiss National Science Foundation. An introduction to SCHNITZCELL was kindly provided by 

Marcus Arnoldini and Martin Ackermann (ETH Zurich, Switzerland). Further, MATLAB code for 

optimization of SCHNITZCELL scripts for P. knackmus sii B13 was kindly provided by Jonathan 

Young and Michael Elowitz. 



CHAPTER 5 
 

254 

REFERENCES  

 

1. Ackermann, M., S. C. Stearns, and U. Jenal. 2003. Senescence in a bacterium 

with asymmetric division. Science 300:1920. 

2. Ackermann, M., B. Stecher, N. E. Freed, P.  Songhet, W. D. Hardt , and M. 

Doebel i . 2008. Self-destructive cooperation mediated by phenotypic noise. Nature 

454:987-90. 

3. Aldr idge, B. B., M. Fernandez-Suarez, D. Hel ler , V. Ambravaneswaran, D. 

Ir imia, M. Toner, and S. M. Fortune. 2012. Asymmetry and aging of 

mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 

335:100-104. 

4. Beaber , J. W., B. Hochhut, and M. K. Waldor. 2004. SOS response promotes 

horizontal dissemination of antibiotic resistance genes. Nature 427:72-74. 

5. Bergmil ler , T. , and M. Ackermann. 2011. Pole age affects cell size and the timing 

of cell division in Methylobacterium extorquens AM1. J Bacteriol 193:5216-5221. 

6. Bose, B., J. M. Auchtung, C. A. Lee, and A. D. Grossman. 2008. A 

conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol Microbiol 

70:570-852. 

7. Bose, B., and A. D. Grossman. 2011. Regulation of horizontal gene transfer in 

Bacillus subtilis by activation of a conserved site-specific protease. J Bacteriol 193:22-

29. 

8. Davidson, C. J. , and M. G. Surette.  2008. Individuality in bacteria. Annu Rev 

Genet 42:253-68. 

9. de Pedro, M. A. , J. C. Quinte la, J. V. Hol t je, and H. Schwarz . 1997. Murein 

segregation in Escherichia coli. J Bacteriol 179:2823-2834. 

10. Gai l lard , M., T. Val laeys, F.  J. Vorho lter, M. Minoia,  C. Werlen,  V.  

Sentchi lo,  A. Puhler , and J. R. van der  Meer. 2006. The clc element of 

Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J 

Bacteriol 188:1999-2013. 

11. Gerhardt , P. , R. G. E. Murray, R. N. Cost i low, E. W. Nester, W. A. Wood, 

N. R. Krieg, and G. Br iggs Phi l l ips (ed.) . 1981. Manual of methods for general 

bacteriology. American Society for Microbiology, Washington, D.C. 

12. González-Pastor,  J. E.,  E. C. Hobbs, and R. Losick. 2003. Cannibalism by 

sporulating bacteria. Science 301:510-513. 



RANDOM ICECLC TRANSFER COMPETENCE FORMATION IN INDIVIDUAL CELLS OF PSEUDOMONAS 
 

255 

13. Lindner , A. B., R. Madden, A. Demarez , E. J. Stewart , and F. Taddei .  

2008. Asymmetric segregation of protein aggregates is associated with cellular aging 

and rejuvenation. Proc Natl Acad Sci U S A 105:3076-3081. 

14. Locke, J. C.,  and M. B. Elowitz . 2009. Using movies to analyse gene circuit 

dynamics in single cells. Nat Rev Microbiol 7 :383-92. 

15. Minoia, M., M. Gai l lard, F. Reinhard, M. Stojanov, V. Sentchi lo, and J. R.  

van der Meer . 2008. Stochasticity and bistability in horizontal transfer control of a 

genomic island in Pseudomonas. Proc. Natl. Acad. Sci. U S A 105:20792-7. 

16. Miyazaki , R., M. Mino ia, N. Pradervand, S.  Sulser, F. Reinhard, and J. R.  

van der Meer . 2012. Cellular variability of RpoS expression underlies subpopulation 

activation of an integrative and conjugative element. PLoS Genet 8 :e1002818. 

17. Ping, L ., B. Weiner, and N. Kleckner . 2008. Tsr-GFP accumulates linearly with 

time at cell poles, and can be used to differentiate 'old' versus 'new' poles, in 

Escherichia coli. Mol Microbiol 69:1427-1438. 

18. Ptashne, M. 2011. Principles of a switch. Nature chemical biology 7:484-487. 

19. Ramsay, J. P., A. S. Major , V. M. Komarovsky, J. T. Su l l ivan, R. L . Dy , M. 

F. Hynes, G. P.  Salmond, and C. W. Ronson. 2013. A widely conserved 

molecular switch controls quorum sensing and symbiosis island transfer in 

Mesorhizobium loti through expression of a novel antiactivator. Mol Microbiol 87:1-13. 

20. Ramsay, J. P. , J.  T . Sul l ivan,  N. Jambari, C. A. Ortori , S.  Heeb, P.  

Wil l iams, D. A. Barrett , I . L. Lamont, and C. W. Ronson. 2009. A LuxRI-

family regulatory system controls excision and transfer of the Mesorhizobium loti strain 

R7A symbiosis island by activating expression of two conserved hypothetical genes. 

Mol Microbiol 73:1141-1155. 

21. Ramsay, J.  P.,  J. T . Sul l ivan, G. S. Stuart , I .  L . Lamont,  and C. W. 

Ronson. 2006. Excision and transfer of the Mesorhizobium loti R7A symbiosis island 

requires an integrase IntS, a novel recombination directionality factor RdfS, and a 

putative relaxase RlxS. Mol Microbiol 62:723-734. 

22. Reinhard, F. , R. Miyazaki , N. Pradervand, and J. R. van der Meer . 2013. 

Cell differentiation to "mating bodies" induced by an integrating and conjugative 

element in free-living bacteria. Curr Biol 23:255-9. 

23. Reinhard, F .,  and J.  R. van der  Meer . 2010. Microcolony growth assays p. 

3562-3570. In K. N. Timmis, V. de Lorenzo, T. McGenity, and J. R. van der Meer (ed.), 

Handbook of Hydrocarbon and Lipid Microbiology, vol. 5. Springer Verlag. 



CHAPTER 5 
 

256 

24. Rosenfeld , N., J. W. Young, U. Alon,  P. S. Swain, and M. B. Elowitz . 

2005. Gene regulation at the single-cell level. Science 307:1962-1965. 

25. Sentchi lo,  V. , R. Ravatn, C. Werlen,  A. J. Zehnder , and J. R. van der  

Meer . 2003. Unusual integrase gene expression on the clc genomic island in 

Pseudomonas sp. Strain B13. Journal of Bacteriology 185:4530-8. 

26. Si lander , O. K., N. Niko l ic , A. Zaslaver , A. Bren, I . Kiko in, U. Alon, and M. 

Ackermann. 2012. A genome-wide analysis of promoter-mediated phenotypic noise 

in Escherichia coli. PLoS Genet 8:e1002443. 

27. Stewart, E. J. , R. Madden, G. Paul , and F.  Taddei . 2005. Aging and death in 

an organism that reproduces by morphologically symmetric division. PLoS Biol 3 :e45. 

28. Veening, J. W., W. K. Smits, and O. P. Kuipers. 2008. Bistability, epigenetics, 

and bet-hedging in bacteria. Annu Rev Microbiol 62:193-210. 

29. Veening, J. W., E. J. Stewart , T . W. Berngruber , F . Taddei, O. P. Kuipers,  

and L.  W. Hamoen. 2008. Bet-hedging and epigenetic inheritance in bacterial cell 

development. Proc Natl Acad Sci U S A 105:4393-8. 

30. Wang, P. , L . Robert , J. Pel le t ier, W. L. Dang, F. Taddei , A. Wr ight, and S. 

Jun. 2010. Robust growth of Escherichia coli. Curr Biol 20:1099-103. 

31. Winkler,  J.,  A. Seybert , L. Kon ig , S. Pruggnal ler, U. Haselmann, V.  

Sourj ik,  M. Weiss, A. S. Frangakis, A.  Mogk, and B. Bukau. 2010. 

Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and 

consequences on protein quality control and cellular ageing. Embo J 29:910-923. 

 

 



RANDOM ICECLC TRANSFER COMPETENCE FORMATION IN INDIVIDUAL CELLS OF PSEUDOMONAS 
 

257 

 

 

 

 

 

 

 

 

 

 

 

 

ANNEX: SUPPORTING INFORMATION 



CHAPTER 5 
 

258 

 

 

 

 

 

 

 

 

 

 

SI  Figure 1. Class if icat ion of ICEc lc  t ransfer competent ce l l s .  Boxplots summarize eGFP 

fluorescence intensities in cells of microcolonies 1A (n = 157), 7A (n = 172) and 17F (n = 255). White 

circles represent outliers and correspond to the eGFP intensities of ICEclc transfer competent cells. 

Outliers were classified as values higher than a value of the Q3 (upper quartile) + 3 times the 

interquartile range. The dotted line represents background maximum fluorescence.  
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SI Figure 2 (previous page). Random and Independent Appearance of ICEc lc  Transfer 

Competence and Lys is  dur ing la te M icrocolony Growth. (A) Lineage tree of 172 cells of 

microcolony 7A. Arrows point to cells (tree tips) with above-threshold eGFP fluorescence intensities (SI 

Figure 1) and classified as ICEclc transfer competent (TC) cells. Crosses point to lysed cells (shorter 

tree tips). Capital letters (A, B, …, H) name lineage tree clusters (see Table 9, 10). Small letters (a, b, 

…, p) name lineage tree sub-clusters (see Table 11). (B) Phase contrast visualisation of microcolony 

7A after 70 hours of growth. Note absence of cell shapes of lysed cells. White bar indicates 2 µm. 

(C) Overlay of green and red fluorescence of microcolony 7A after 70 hours of growth. Non-TC cells 

appear as red because of constitutive mCherry expression from the Ptac promoter while below-

threshold (see SI Figure 1) expression of eGFP from the Pint promoter. TC cells appear as yellow 

because of constitutive mCherry expression from the Ptac promoter while above-threshold (see SI 

Figure 1) expression of eGFP from the Pint promoter. Note absence of fluorescence in lysed cells. (D) 

Region map of microcolony 7A after 70 hours of growth showing randomly defined areas with 

respective occurrences of lysed cells. (E) Region map of microcolony 7A after 70 hours of growth 

showing randomly defined areas with respective occurrences of ICEclc competent cells. 
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SI Figure 3 (previous page). Random and Independent Appearance of ICEc lc  Transfer 

Competence and Lys is  dur ing la te M icrocolony Growth. (A) Lineage tree of 255 cells of 

microcolony 17F. Further legend description, see SI Figure 2. 
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SI  Figure 4. Growing Pseudomonas knackmussi i  B13 microcolony 1A. This film shows 70 

hours (21 frames) of the growth of a P. knackmussii B13 microcolony harbouring the Pint-egfp and 

Ptac-egfp constructs. For all frames, images were taken at the time as indicated at the top left corner. 

The complete lineage history of the entire microcolony from the single initial cell to all descendents at 

70 hours has been tracked and recorded, allowing pole ages and cell fates to be assigned to every 

cell. The data derived from this microcolony were used for Figure 1, and Tables 2-11. White bar 

indicates 2 µm. 
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SI  Figure 5. Growing Pseudomonas knackmussi i  B13 microcolony 7A. The data derived 

from this microcolony were used for SI Figure 2, and Tables 2-11. White bar indicates 2 µm. Further 

legend description, see SI Figure 4. 
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SI  Figure 6. Growing Pseudomonas knackmussi i  B13 microcolony 71F (top) . The data 

derived from this microcolony were used for SI Figure 3, and Tables 2-11. Further legend description, 

see SI Figure 4. 
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SI  Figure 7. Threshold ing of ROS-  and tc-ce l l s  in stat ionary phase suspended batch 

cul ture of P. put ida  UWC1-3415. A) Phase contrast image of individual cells. B) Corresponding 

overlay image of eCherry (red) and ROS-channels (green), highlighting active or positive cells. C) 

Theoretical quantile plotting of eCherry fluorescence values across all cells in a population organized 

in increasing order. The line at ~210 distinguishes cells that are considered having expressed Pint-

echerry above normal and thus are considered tc-cells. Panels distinguish the proportion of tc-cells 

among those that are ROS-positive. D) Similar as C, but for ROS fluorescence intensity. Note that 

the ROS-positive threshold is placed on the basis of the lower outliers of H2O2-treated cells 

{Reinhard, 2013}. 
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SI  Figure 8. Threshold ing of ROS-  and tc-ce l l s  in stat ionary phase suspended batch 

cul ture of P. put i da  UWC1-3414 and P. put ida  UWC1-3416. Same as SI Figure 7 C and D 

but for strains P. putida UWC1-3414 and P. putida UWC1-3416. 
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SI  Figure 9. Threshold ing of PI- and ICEc lc  act ive cel l s in sta t ionary phase suspende d  

batch cul ture  of P.  put ida  UWC1-2508. A) Phase contrast image of individual cells. B)  

corresponding overlay image of eGFP (green) and PI-channels (red), highlighting active or positive 

cells. C) Theoretical quantile plotting of eGFP fluorescence values across all cells in a population 

organized in increasing order. The line at ~95 distinguishes cells that are considered having 

expressed Pint-egfp above normal and thus classify as tc-cells. Panels distinguish the proportion of 

tc-cells among those that are PI-positive. D) Similar as C, but for PI fluorescence intensity. Note that 

the PI-positive threshold is placed on the basis of the lower outliers of isopropanol-killed cells 

{Reinhard, 2013}. 
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SI  F igure  10.  Threshold ing of PI -  and  tc-ce l l s  in sta t ionary phase suspended  batch 

cul ture  of P.  put i da  UWC1-2507 and  P.  put i da  UWC1-2510.  Same as SI Figure 9 C and D 

but for strains P. putida UWC1-3407 and P. putida UWC1-2510. 
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SI Tab le  1.  Table for Chi-square test of independence. 

Strain   

tc-cells, 

ROS+ 

tc-

cells, 

ROS-  

no n-tc 

cells, 

ROS+ 

no n-tc 

cells, 

ROS-   p-value X2  

P.putida UWC1-

3414 

P
int

-

eCherry 57 79 1 4708 < 2.2x10-16 1925.851* 

P.putida UWC1-

3415 

P
int

-

eCherry 3 3  58 1 513 8  < 2.2x10-16 1762.9 8* 

P.putida UWC1-

3416 

P
int

-

eCherry 17 208 6 8015 < 2.2x10-16 413.8541* 

  

tc-cells, 

PI+  

tc-

cells, 

PI-  

no n-tc 

cells, 

PI+  

no n-tc 

cells, 

PI-     

P.putida UWC1-

2507 P
int

-egfp 19 582 35 506 8 < 1.2x10-8 32.5473* 

P.putida UWC1-

2508 P
int

-egfp 2 109 27 43 37  0.35 0.8745 

P.putida UWC1-

2510 P
int

-egfp 5 42 14 3 8 61 < 2.2x10-16 81.5 317* 

P.knackmus s ii 

B1 3-1 34 3  P
int

-egfp 0 122 21 439 3    0.9 3  0.0077 

* significant at the 1 % level. 
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At the start of thesis it was suspected that ICEclc activation is the consequence of a 

bistable decision. This was inferred from the finding that the expression of ICEclc’s integrase 

gene, an essential factor facilitating the element’s excision from the chromosome, is detectable 

only in a small fraction (3%) of stationary phase cells (31). Later we discovered that the 

proportion of integrase-expressing cells is influenced by gene expression noise and can 

increase to 20% in cells carrying a second gene copy of the chromosomally located 

stress/starvation sigma factor gene rpoS (26). True for all bistable biological phenomena is that 

these cannot be explained by studying average population behaviour. Instead, the detection 

requires observation and analysis at the single cell level, which can be achieved through 

fluorescence microscopy in combination with production of GFP variants expressed from key 

bistable promoters (18, 31). A major goal of this thesis was to develop fluorescence 

microscopy-based imaging techniques to describe the fate and life history of single ICEclc-

active cells (in comparison to non-ICEclc-active cells). To realize this goal, two methodologies 

of single-cell investigation were needed. First, an analytical tool was required that could reliably 

distinguish ICEclc-active from ICEclc-inactive cells on the basis of single cell fluorescence 

values (Chapter 2). Second, an observation set-up was needed that would allow the tracking of 

individual cellular growth over time (Chapter 3). Equipped with these tools, investigations on 

fate (Chapter 4) and life history (Chapter 5) of single ICEclc-active cells could then be carried 

out yielding new and unexpected insights into ICEclc behaviour. Below, I summarize the main 

findings and significance of each chapter and put them into broader perspective taking the 

most recent research in the field into consideration. Further, I provide ideas how the 

contributions of each chapter could provide a basis for future studies. Where relevant I also 

provide an evolutionary perspective on our results. 

Chapter 2. The study of bistability by genetic manipulation of key regulator genes, or 

change of environmental conditions, requires first and foremost a reliable method of response 

quantification. Underlying bistability phenomena are bimodal population structures. These can 

be described best when the subpopulations involved are disentangled and characterized 

separately. However, this becomes increasingly challenging the more subpopulations of 

bimodal populations tend to overlap. To date, only limited, detailed documentation exists 

specifying such undertaking (4, 5, 23). Our aim in Chapter 2 was therefore, to develop tools for 

subpopulation detection with special reference to the proportionality effect seen in ICEclc 

activity (18). As an outcome, we presented several statistical methods for use in the free 

statistical software environment R, all of which could reliably approximate population 

parameters of overlapping subpopulations in bimodal populations. The methods were primarily 
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developed as a pragmatic, standardized solution to distinguish ICEclc-active from ICEclc non-

active cell fractions on basis of fluorescence data from promoter-reporter gene fusions, but in 

essence could be applied to any bimodal population data.  

Comparison of the different proposed methods, applied on real data sets, showed that 

there can be several ways to correctly quantify subpopulation sizes and, hence, bistability 

effects. For example, in a comparison of ICEclc activation during growth on 3CBA versus 

fructose and glucose in P. knackmussii B13, all of the proposed methods in this chapter 

quantified subpopulation sizes more accurately than population independent methods which 

had been employed previously (24, 31) such as the 95th percentile, or the mean top five percent 

of a population. Some of the novel proposed methods were simply based on outlier detection 

as is commonly used in boxplots (35). Boxplot-based outlier detection proved particularly useful 

when a large number of data sets needed to be analyzed in a short period of time because the 

subpopulation determination procedure in this case did not require user input as an extra 

manual step. Further, because of the widespread popularity of boxplots as a general 

descriptive statistical tool (9), such method is easily comprehensible. Importantly, however, we 

found that boxplot-based outlier determination was inaccurate under certain subpopulation 

constellations; typically where boxplot representations failed to indicate bimodality (8). Indeed, 

simulations revealed that inaccuracies in boxplot estimations generally appeared as soon as 

subpopulations constitute more than 25% of the total population. In these instances alternative 

methods based on visual assessment of Q-Q plot visualisations were found to be more reliable, 

which, however, require manual user input and therefore represent a more time-consuming 

procedure. Also, we found that manual tools are prone to bias by user input. However, such 

error could be statistically accounted for by calculation of confidence intervals through repetitive 

assessments of the same but re-sampled data sets (bootstrapping). Overall, in most cases of 

small subpopulation detection (<25%) any of the developed analysis methods proved 

sufficiently accurate as tested on a wide range of simulated bimodal populations. Indeed, we 

successfully employed our boxplot outlier method earlier to quantify proportions of ICEclc 

activity (3%) using PinR- and Pint reporter gene fusions (24). Other examples of experimental 

phenotype characterisation using this method concern the mutants shown in Supporting 

Information (SI) Table 1. This table shows the effect of disrupting ICEclc’s integrase intB13 or its 

left attachment site attL, both of which were previously shown to have no effect on ICEclc 

integrase promoter activity (29). The table also shows that a mutation in orf18502, a potential 

regulator of ICEclc transfer genes in a wide variety of ICE (18, 24), abolished ICEclc integrase 

promoter activity (29). Thirdly, SI Table 1 shows an augmentation of the proportion of cells with 
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ICEclc activity as a result of an additional gene for the global transcription factor RpoS added to 

the host genome. The latter was used to describe how the expression level of the global 

transcription factor RpoS in individual cells across a population can modulate the frequency of 

cells activating excision of the ICEclc element (26).  

When studying ICEclc bistability in future research, be it as a function of genetic 

modification of key regulator genes, host genome environment, or environmental condition, the 

detection of ICEclc-active proportions as a measure of phenotype characterisation will remain 

invaluable. To achieve this task, a uniform algorithm, rigorously tested, and with sound 

statistical/mathematical founding, will help to standardize subpopulation estimation and make 

possible the direct comparison between intra- and inter-research group results. Together the 

results of Chapter 2 provide new approaches to subpopulation quantification that are well 

suited as a basis for future bistability phenotype characterisations.  

Chapter 3. The innovation of Chapter 3 of this thesis lies in the design of a 

methodology that allows the tracking of single cells during microcolony growth whilst allowing 

change in medium conditions. This innovation provided the basis for experiments on cell fate 

(Chapter 4) and cell age (Chapter 5) in single ICEclc-active cells. Although similar systems had 

already existed at the start of this work, few of these were described in sufficient technical 

detail to be easily reproduced, or were unsuitable for studying the fate of ICEclc activated cells. 

This was primarily due to a sealed sample environment in these set-ups, which would disallow 

medium conditions to be manipulated during an experiment (10, 14, 34, 36). Our research, 

however, required the possibility of adding liquid suspensions such as dissolved carbon source 

or of diluted dyes (ROS, PI) to the growth medium during the course of an experiment, in order 

to draw conclusions on the effect of physiological growth difference on ICEclc activation (see 

Chapter 4). Crucially, since another objective was to analyze the life history of each cell 

(Chapter 5), any online manipulation of culture conditions needed to be designed in such a way 

that the original structural integrity of the observed microcolony was to be preserved during 

medium manipulation; an unpredictable positional change of single cells within the microcolony 

would have rendered cell tracking, and therefore lineage tree calculation very complicated if not 

impossible. Alternatively, a capillary flow set-up such as used by Balaban and colleagues (3) 

and Wang and collegues (37) would have elegantly resolved the problem of maintaining 

positional information of growing single cells whilst changing growth medium. Still, lineage-

genealogy in such capillary flow system is generally limited since relatives are pushed out of the 

observation channels after a few divisions already. A true alternative, however, would have 

represented a capillary flow system such as designed in the McKinney lab (11). Here, the 
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growth of microcolonies can be followed on a glass surface covered with a transparent semi-

permeable membrane through which nutrients can diffuse from a liquid medium solution (11). 

We, however, remained with the simpler and cheaper system of a microcolony growth 

procedure (10, 14, 34, 36), but which we modified substantially. The pancake-like turning of a 

gel patch (hence termed “pancake” method), inoculated with a diluted cell suspension on one 

side, allowed the entrapment of isolated single cells at the interface between observation glass 

and gel patch. Further, since the “top” side of the gel patch in this case is exposed to a 

headspace, nutrient or dye suspensions such as ROS- or PI stains can be applied form this 

side as droplets onto the patch surface, and without interfering with the original positions of the 

cells on the other side. Also, oxygen can diffuse freely from the headspace to the cell layer that 

forms in between the gel and the glass. Furthermore, since the whole system is placed within 

an air-tight observation chamber, nutrient patches are prevented from drying out over long 

periods of time, lasting up to several weeks depending on how often the system is opened and 

if the gel patch is re-hydrated. At the same time, volatile nutrients can be released into the 

headspace within the closed chamber, such as naphthalene or toluene, which are then 

absorbed by the gel patch and diffuse towards the cells. 

In the future, the pan-cake set-up may be employed also to study the role of ICEclc 

activation in more complex, multi-layered biofilms. For this purpose, it is especially useful that 

our set-up was originally designed for confocal laser scanning microscopy (CLSM), which 

mostly represent inverted microscopes. For example Seoane and collegues used our set-up in 

combination with CLSM for studying plasmid invasion (32). A downfall, however, is that waste 

products are not removed in our system, the accumulation of which might influence gene 

expression patterns. 

Chapter 4. In Chapter 4 we provide evidence for the existence of a transfer-

competent (tc) ICEclc state, which ultimately leads to reproductive inhibition of tc-state cells. 

Key to this unexpected finding was the use of single cell observation and analysis tools as 

described in Chapters 2 and 3 of this thesis, respectively. The result of reproductive inhibition in 

tc cells was particularly exciting as it represented a new phenomenon in horizontal transfer and 

raised many questions regarding the possible mechanism of reproductive inhibition in transfer 

competent cells: could ICEclc somehow sense cellular damage and try to escape from the host 

cell as a last resort strategy? Did reproductive inhibition in transfer competent cells represent a 

consequence of ICEclc activation rather than a starting signal, and was this perhaps caused by 

costly expression of transfer genes, an elevated integrase activity, ICEclc excision, or a mating 

apparatus that damages the host cell membrane? Was it possible that host cell death resulted 
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from the killing effect of a toxin-antitoxin (TA) addiction system to ensure ICE stability? Although 

some answers could be provided to the many questions, a complete elucidation of the 

mechanism was not possible within time frame of this thesis (but will hopefully provide a few 

years of exciting single cell research in this field). Nevertheless, we could show for the first time 

how individual bacterial donor cells can become competent for horizontal transfer of a mobile 

DNA (ICEclc), which, both in the presence and absence of a non-ICE carrier recipient species, 

leads to strongly impaired reproductive capabilities of the ICEclc transfer competent (tc) donor 

cell and finally cell death. Interestingly, the effect was similar in nature and magnitude in four 

different Pseudomonas species that we used as ICEclc donors, but was absent in a host strain 

without ICEclc, which showed that reproductive inhibition is not host dependent and requires 

the presence of ICEclc. Previous results suggested that ICEclc excision can take place in 

stationary phase cultures (24), but from the experiments presented in this chapter we cannot 

exclude that ICEclc transfer only occurs once cells receive sufficient nutrients for cell division to 

commence. Simultaneously, whereas the reproductive inhibition system initiates in non-dividing 

cells, it only restricts cell division once substrates are again sufficiently abundant for growth. tc 

cells accumulated significantly more reactive oxygen species (ROS) even when non-dividing. 

Once tc cells received enough carbon to resume division, membrane damage and cell death 

(exemplified by propidium iodide-staining) rapidly occurred often resulting in lysis. Since 

rehabilitation of tc cells to full reproductive mode was not detected, these traits strongly 

suggested that development of the tc state is a terminal phenotype. This, however, is in 

apparent contradiction to the earlier finding that ICEclc can excise and re-integrate at different 

chromosomal locations (30). An explanation to this paradox might be, since ICEclc re-

integration dynamics was detected by use of PCR on populations, that ICEclc activation must 

be possible without invoking a terminal phenotype, but at frequencies lower than what can be 

observed microscopically (30). Importantly, we could show that the process of reproductive 

inhibition is dependent on the presence of ICEclc and on expression of the excision and 

transfer functions (18), but we could rule out that ICEclc excision or transfer itself are required, 

which also rules out the possibility that tc cell inhibition and lysis is due to a temporary 

overexpression of the ICEclc’s integrase as was shown previously in Escherichia coli (28). Two 

possibilities remained. Either ICEclc induces two independent ‘pathways’ in transfer competent 

cells during stationary phase: (i) the enzymes and factors for ICEclc excision and transfer and (ii) 

a reproductive inhibition system. Or reproductive inhibition is a consequence of horizontal gene 

transfer itself, that is, of the costly energy requirements associated with expressing a transfer 

apparatus, and/or of a transfer apparatus that damages the host cell membrane, perhaps in a 
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manner analogous to the holins that can facilitate phage release (38). Interestingly, two loci, shi 

and parAICEclc, were identified within ICEclc that appear to slow down growth, prolong shape of 

tc cells, and ensure an elevated level of horizontal transfer (29). This conclusion was derived 

from two lines of evidence. Firstly, lac-induced expression of shi and parAICEclc in ICEclc-free 

host invoked strong growth inhibition during batch growth (29). Microscopic investigation of 

these cultures indeed revealed slow growing cells with aberrant shapes and cellular damage as 

identified by PI staining (29). Such cells also formed similar small microcolonies (TCM) as have 

been observed from tc cells in wild-type (29). Secondly, parAICEclc or shi mutants showed a 

significantly lower proportion of TCM compared to wild-type (29). Interestingly, parAICEclc and shi 

mutants also showed significantly lower ICEclc transfer rates compared to wildtype (5 times 

lower) (29). This suggested that differentiation of a single tc cell into TCM must be significantly 

augmenting ICEclc transfer rates. However, more extensive phenotypic descriptions of shi and 

parAICEclc mutants are needed. This may be achieved via time-lapse microscopy at the single 

cell level. At least in shi mutants such investigation could be focussing on the ICEclc-active 

proportion, since these mutants were shown to exhibit the same proportion of Pint-eGFP-

expressing cells as wildtype (29). Also, ROS stains may be performed at the single cell level to 

see if ROS staining in mutants is reduced with regard to the integrase-active cell proportion, 

and vice versa, if ROS staining is augmented at the population level when shi and parAICEclc are 

expressed from plasmid vectors in ICEclc free host cells. Further, reporter gene fusions with the 

promoter of shi and parAICEclc may show if this promoter is indeed synchronized with Pint (and 

PinR), and therefore underlies the same bistable switch, which in part is regulated by RpoS (26). 

An idea on the potential mode of action of shi and parAICEclc might be gained from sequence 

comparisons. Both genes are highly conserved amongst the core regions of proteobacterial 

ICEclc relatives (21, 24, 25), which suggests that generally in ICEs a similar mechanism of 

horizontal transmission is employed. The parAICEclc is encoding a domain similar to the ATPase 

domain of ParA/Soj and might interfere somehow with the cell division proteins, as suggested 

for ParA/ParB of Caulobacter, in which ParB modulates ATPase activity of ParA, and ParA-ADP 

is supposed to act in cytokinesis (13). The shi open reading frame encodes a small hypothetical 

protein that possesses very low but discernible homology to a eukaryotic voltage-gated 

calcium channel domain, suggesting that it may influence bacterial membrane potential.  

Another important conclusion from this chapter is that ICEclc mediated reproductive 

inhibition must be unlike plasmid addiction systems. Plasmids prevent reproduction of plasmid-

free daughter cells that accidentally arise upon improper partitioning of replicated plasmid 

DNAs during cell division, via TA addiction modules (16, 19, 39). In this case, daughter cells 
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without plasmid cannot produce the antitoxin while the more stable toxin remains present 

inhibiting cell division. Recently, also ICESXT was shown to operate a TA system (mosAT) to 

prevent ICE-free cells to proliferate, which can arise when cells with excised ICE would divide 

(16, 19, 39). Our results with ICEclc suggest a different path. By single cell eGFP intensity 

quantification we demonstrated that the integrase promoter of ICEclc remains active in transfer 

competent starter cells and their siblings. Since Pint was not induced in the absence of ICEclc 

this indicates that such daughter cells had not lost ICEclc, yet they arrested further cell division 

and lysed. Moreover, mutations of the ICEclc integrase gene intB13 and left attachment site 

attL abolished ICEclc excision but still led to continued Pint-activation and cell division arrest in 

transfer competent cells. We therefore conclude that the process of reproductive inhibition by 

ICEclc must be fundamentally different from TA addiction modules, which inhibit plasmid- (or 

ICE-) free daughter cells to reproduce (16, 19, 39). Noteworthy, ICEclc does not code for any 

TA system significantly similar to the known seven classes of TA-systems from plasmids, ICE 

and chromosomes (16). Interestingly, this also tells us that even if a spontaneous mutation 

would occur that immobilized ICEclc, cell death could still occur. In this way programmed cell 

death systems might have been imported and stabilized in bacterial genomes via mobile DNA 

(15).  

Another key question remains if the observed reproduction inhibition is somehow 

contributing to, rather than resulting from, ICEclc activation. Although the evidence of this 

chapter supports a hypothesis that ICEclc is activated independently of the observed growth 

inhibition, it cannot be excluded that bacterial damage acts in conjunction with RpoS to 

generate an ICE-inducing stimulus, which then leads to further damage of the host cell (see 

Chapter 5). It has been shown previously that expression of ICEclc’s integrase is largely 

dependent upon the stress/starvation sigma factor RpoS, which becomes active at the onset 

of stationary phase. Other studies, both of ICEs and of phages, have revealed that lateral gene 

transfer can be induced by agents that generate cellular damage, such as treatments that 

induce the bacterial SOS response to DNA damage (7). Such “rats leaving the sinking ship” 

hypothesis is attractive in a sense that ICEclc regulates its activity to stage an escape from a 

cell signifying limited survival potential, however, it is in contrast to our finding that ICEclc-free 

strains do not show TCM formation or increased levels of ROS staining indicative for cellular 

damage. Furthermore, previous work had found no link between different stresses and 

stimulation of ICEclc’s integrase promoter, including UV radiation, heat shock, or chemical 

stress, and thus excluded ICEclc activation as part of the classical SOS response (31).  
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Finally, the findings of this chapter raise interesting evolutionary questions regarding the 

ICEclc host-symbiont relationship. Clearly, ICEs rely on the host for DNA replication and 

maintenance, and therefore their fitness is tightly coupled to that of the host cell (20). 

Consequently, it can be safely assumed that increasing host cell fitness would also increase 

ICE fitness and vice versa, and it is therefore no surprise to see that many ICEs follow a 

strategy of contributing beneficial genes to the host cell genome (12, 22). For example ICESXT 

of Vibrio cholera and ICEHin1056 of Haemophilus influenza confer antibiotic resistance to their 

hosts. ICEclc confers the ability to metabolize chloro-aromatic compounds such as 3-CBA, 

and 2-aminophenol. It was further shown that under non-selective growth conditions (e.g. 

growth with succinate or acetoin), where there is no implication of ICEclc encoded metabolic 

pathways, there seems no strong selective pressure against maintaining ICEclc (18). The low 

impact of ICEclc on host fitness under non-selective conditions was assumed to be due to the 

fact that ICEclc is integrated in the host chromosome with regeneration of the integration site 

(17), and is silent during exponential phase (18). 

Another strategy for an ICE to increase its fitness is to swap hosts by transferring to 

another host that potentially benefits more from ICE genes than the current host does. For 

example, Springael et al. (33) showed that in situ horizontal transfer of ICEclc from the inoculum 

to contaminant bacteria in the reactors was involved in the establishment of novel 3-

chlorobenzoate degrading populations that were more competitive under the defined reactor 

conditions than the inoculum strain. Thus, while ICE-encoded beneficial genes and a low 

energetic impact on host metabolism under non-selective growth conditions ensure an optimal 

vertical transmission of the ICE, the ability to horizontally transfer to another host allows to 

constantly “probe” for a potentially more reproductive partnership. This combination of 

“serving” in the current host but “probing” for a potentially better host, ensures maximal ICE 

fitness for any given environment and provides an explanation for their evolutionary success.  

With the above understood, the main question that remained after the surprising results 

of Chapter 4 was: how does a general strategy of an ICE to not compromise host cell fitness 

comply with the observed ICE-caused reproductive inhibition and cell lysis? At least 

theoretically, two mutually non-exclusive explanations can be imagined. Firstly, the discovered 

reproductive inhibition/cell death system may, in fact, represent a beneficial rather than a 

negative trait to the host. For example might fractional cell death be part of an extreme form of 

division of labour such as self-destructive cooperation (2). In this case cell lysis would somehow 

increase the average fitness of individual cells. For example, it has been shown in pathogens 

previously, that subpopulations are sacrificed thereby facilitating successful infection by the 
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remaining subpopulation (2). A self-destructive cooperation strategy regarding ICEclc-mediated 

cell death may be envisioned in context of biofilm development, where cell lysis may contribute 

favourably towards the structural integrity and heterogeneity of biofilms. For example, one 

could imagine that randomly dispersed lysis events throughout a biofilm, either of single tc cells 

or aggregates of tc cells (as a result of TCM formation), may influence biofilm architecture 

through release of signalling molecules and structural components (DNA), as well as the 

creation of spaces and micro-channels influencing nutrient and signal circulation (6).  

The second possibility why we see cell death may be because it represents a 

prerequisite of achieving efficient horizontal gene transfer, but whose negative impact upon 

host fitness is kept low enough so as to not be selected against. The important role of cell 

death in this case might be due to a variety of reasons. For example could the transfer 

mechanism itself be causing damage; for example through membrane disruption of the host 

cell, or indirectly, through the high energetic costs required for the expression of the 

conjugation machinery. Alternatively, growth inhibition and death may represent adaptations 

allowing for transfer rates at the required level. For example could nutrients released from donor 

cell lysis be available for recipients cells and thereby contribute to a successful integration of 

ICEclc into the new host genome. In addition, the few divisions that tc cells still undergo before 

lysis to form TCM, which we termed “mating bodies”, may serve to increase the chance of 

contact of a suitable recipient on a surface. Indeed, we have shown that in mutants that had 

lost the ability to form mating bodies (shi, parAICEclc) transfer efficiency was reduced up to five-

fold. However, independent of the possible role of cell death in horizontal gene transfer, and 

given the complete dependence of ICEclc maintenance on the host, the question still remains, 

how at all can a disadvantage conferred by the ICE upon the host represent an evolutionary 

stable strategy? For instance, one could imagine that spontaneous mutants lacking the 

reproductive inhibition process could arise. Mathematically, such mutants would outgrow the 

wildtype after a few hundred cycles already, despite a rare occurrence of reproductively 

inhibited cells at non-growing phase (SI Explanation). An explanation why no such mutants 

have been seen yet must be due to the important role of genetic drift as an evolutionary 

mechanism (SI Explanation, Chapter 4). Genetic drift can be simulated by modelling simple 

serial batch growth, where after each cycle (reaching stationary phase), a random sub-sample 

is taken and diluted with fresh medium. As a consequence a bottle-neck in genetic diversity 

occurs after each growth cycle (the genetic drift) due to the filtering out of mutants that have 

failed to become abundant enough to be represented in the sub-sample. Indeed, modelling 

suggests that at a sub-sampling rate of 0.001, proportions of below 20% of transfer competent 
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cells, and at appearance of mutants at rates of 10-8 per generation, mutants are unlikely to 

establish (Chapter 4, SI Explanation). The reason for this may be twofold: firstly and more 

importantly, since ICEclc-related growth inhibition is only expressed in stationary phase (i.e., 

non-growing cells) there is no fitness loss for the host in terms of exponential growth rate of the 

population. Secondly and less importantly, reproductive inhibition in tc cells is confined to a 

small proportion (3%) of all cells in the population. In this respect, it is interesting to note that in 

the model (Chapter 4, SI Explanation), as long as cell damage is confined to the non-growing 

phase and genetic drift is kept at a constant level, a much higher fraction of reproductively 

inhibited cells would theoretically be allowed (up to 20%) than currently observed in the 

wildtype (3-5%) before mutants would start to replace wiltype. This leads to the rather difficult-

to-answer questions how determinants lead to the tc cell/non-tc cell ratios currently observed, 

and why different proportions of tc cells are seen under different growth conditions (Chapter 2). 

Some answers may lie hidden in the evolutionary dynamics of host-parasite interactions (22). 

For example Lipsitch predicts that increasing efficiency in horizontal gene transfer in parasites 

that can also vertically transfer, will result in reduced virulence of the parasite. The surprising 

finding of the presence of two functional origins of transfer in ICEclc augmenting horizontal 

transfer efficiency (27) might, according to this theory, have been selected for because such 

increase in transfer efficiency would allow for a low proportion of cells to engage in horizontal 

gene transfer, thus reducing virulence on the host as defined by reproductive inhibition in tc 

cells. 

However, a clearer picture of the pathways of growth inhibition and transfer 

competence in tc cells will certainly help to define also clearer evolutionary questions related to 

the tc cell growth inhibition phenomenon.  

Further, it should also be interesting to see if the ICEclc-inherent cell death system 

might be exploited for the design of novel antibiotic drugs. For example one could imagine that 

factors that prevent the activation of the inherent cell death mechanism in a higher proportion 

of cells than naturally seen might represent interesting novel targets for bacteriostatic or 

bacteriocidal drugs. 

Chapter 5 . Previously, we showed that the proportion of cells expressing PinR and Pint 

depends on RpoS levels, with cells having higher than population-average RpoS levels showing 

a higher likelihood of activating the tc-cascade (26). These results thus suggested that the 

decision to activate or not PinR and Pint in an individual cell is a stochastic process. However, 

apparent stochasticity (e.g., the distribution of RpoS among cells) may have underlying causes, 

such as, some cells being in a slightly different growth phase or having experienced more 
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previous biochemical damage, and thus producing more RpoS. The specific hypotheses we 

thus wanted to test in the work of Chapter 5 were whether ICEclc activation in individual cells 

was dependent on cell pole age, whether it was confined to specific cellular lineages, or 

occurred as a consequence of pre-existing detectable biochemical damage. We also tested 

whether tc cell formation occurs spatially at random within a microcolony. For this purpose, 

most of the experiments in this chapter were based on time-lapse imaging of individual cells in 

growing microcolonies (see Chapter 2). This had the advantage of tracing the behaviour and life 

history of all cells throughout exponential and stationary phases, when the colony stops 

growing and ICEclc tc-formation was initiated.  

Although it has been shown previously in Caulobacter crescentus (1) that cell age is 

correlated to slow growth and an increased probability of lysis, in our case we could exclude 

cell pole age to be the reason for growth inhibition and lysis phenomena in tc cells. We further 

showed that initiation of transfer competence is not the result of the physiological state of 

ancestor cells, or of a close relative (sister cell). Further, although tc-cells showed higher levels 

of reactive oxygen species and membrane damage than non-tc cells (as indicated by higher 

ROS and PI staining, respectively), we could not discern whether tc-initiation occurs because of 

damage, or whether damage occurs as a consequence of tc-initiation. Thus, in essence, none 

of our hypotheses was supported by the experimental observations, from which we concluded 

that ICEclc activation is a random process depending on stochastic variation among individual 

cells. Indeed, random ICEclc activation would be in accordance with our observation that 

ICEclc activation occurs spatially randomly in a microcolony. One could imagine that a spacially 

random arrangement of tc cells in a mixed culture biofilm might increase efficiency of horizontal 

gene transfer by maximising the chances to contact potential recipients. Similarly, one could 

imagine that a spatially random occurrence of lysis might represent an important feature in 

shaping biofilm structure and landscape, perhaps through the release of signalling and 

structural molecules, or the increase of biofilm porosity influencing medium flow and nutrient 

circulation (6).  

For future studies, being able to differentiate between pre-existent or induced damage 

might be an interesting avenue to pursue. Specifically interesting tools in this regard would 

allow identification over time of the tc-state of cells as well as of reactive oxygen species 

presence. One possibility here would be reporter gene fusions to promoters in P. knackmussii 

or P. putida reactive to oxygen radicals, which, however, still need to be identified in these 

organisms.  
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Summary. In summary, the research of this thesis has provided novel analytical and 

observational solutions to single cell research. It has also led to proof for existing hypotheses of 

ICEclc activation and transfer competence. But perhaps most interestingly, this thesis has led 

to the unexpected discovery and characterisation of a novel phenotype corresponding to a 

severe fitness cost in transfer competent cells. This discovery undoubtedly poses many new 

exciting questions concerning the role of mobile DNA in manipulating host cell behaviour and 

differentiation in order to optimize horizontal transmission. 

Finally, I am grateful and hopeful to have been witnessing the unfolding of an exciting 

story in microbial research. 
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SI Table 1. Varying sub-population sizes in different strains of Pseudomonas putida and Pseudomonas 

knackmussii B13. 

Category Strain 
% Sub-

populat ion1 
Mean2 Strain descript ion 

Signi f icant ly 

diffe rent 

category3 

A 
P.knackmussii 

B13- 32014 
16.2 18.3 ± 4.0 

Pint-egfp, Pint-

eCherry, PrpoS-rpoS 
B*, C*, D*, E*, F* 

 
P.knackmussii 

B13- 32024 
15.9    

 
P.knackmussii 

B13- 32064 
22.9    

B 
P.putida UWC-

25075 
8.2 4.6 ± 3.2 ICEclc, Pint-egfp A* 

 
P.putida UWC-

25085 
2.3    

 
P.putida UWC-

25105 
3.2    

C 
P.putida UWC-

34145 
2.1 5.4 ± 5.4 ICEclc, Pint-eCherry A* 

 
P.putida UWC-

34155 
2.5    

 
P.putida UWC-

34165 
11.7    

D 
P.putida UWC-

34035 
2.1 2.6 ± 0.6 

ICEclc, Pint-eCherry, 

∆attL 
A* 

 
P.putida UWC-

34045 
2.5    

 
P.putida UWC-

34055 
3.2    

E 
P.putida UWC-

34065 
7.3 6.0 ± 1.8 

ICEclc, Pint-eCherry, 

∆intB13 
A* 

 
P.putida UWC-

34075 
3.9    

 
P.putida UWC-

34085 
6.7    
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SI Table 1 Cont inued     

Category Strain 
% Sub-

populat ion1 
Mean2 Strain descript ion 

Signi f icant ly 

diffe rent 

category3 

F 
P.putida UWC-

34095 
0.1 0.1 ± 0.1 

ICEclc, Pint-eCherry, 

∆orf18502 
A*, D*, E* 

 
P.putida UWC-

34105 
0    

  
P.putida UWC-

34115 
0.1      

1) ICEclc transfer competent sub-population of cells (percent of total) expressing egfp or echerry from 

Pint. Sampled 15 - 20 h after onset of stationary phase. Determined via R command find.sub.pop() in 

Default mode.  

2) Mean ICEclc transfer competent sub-population of cells (percent of total) ± standard deviation 

calculated from strains within the same category. 

3) * indicates a significant difference between the means of different categories at P<0.05 as determined 

by the Welch Two Sample t-test. 

4) these strains have been constructed and analyzed previously in a paper by Miyazaki and collegues (3) 

5) these strains have been published by Reinhard and collegues (4) 

 

SI Explanat ion: Modell ing of Development of Reproductive 

Inhibi t ion-Independent Mutants in Populat ions of ICEclc-Containing 

Hosts 

 

SUMMARY. A recent study by Reinhard et al. (4) described a phenomenon by which 

3%-5% of cells in a population of the genus Pseudomonas lyse as a result of the induction of 

ICEclc, an integrating and conjugative element. Here we investigate how reproductive inhibition 

in a subpopulation may represent an evolutionary favourable strategy. By use of algebraic 

theoretical theory and computer simulations, we show that under conditions where genetic drift 

is absent a mutant showing no fractional reproductive inhibition of transfer-competent cells in 

populations of ICEclc-containing hosts would out-compete the wildtype. However, under 

conditions where genetic drift is prevailing, as shown in simulations of serial batch transfer 

growth experiments, out-competition does not occur.  

AIM. The goal of this model was to assess if the selective advantage of a mutant 

lacking fractional reproductive inhibition as described by Reinhard et al. (4) would have been 
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sufficiently high to allow competitive replacement of the wildtype. If no, this would be one 

explanation of why we have not seen any such mutants yet. If yes, this indicates that fractional 

cell death might in fact provide a fitness advantage to the host population rather than a 

disadvantage and would therefore represent a selectable trait in analogy to destructive 

cooperation (1). To achieve this goal, we used two approaches, an algebraic theoretical 

analysis predicting the change of mutant-to-wildtype ratio as a function of growth rate, and a 

computer-based simulation, mimicking batch transfer events. 

 

SI METHODS 

Computer Simulations in R. For computer simulations the function death.sim() was 

created in R (R Development Core Team (2009). Version R 2.9.2. http://www.R-project.org). 

The function is based on a similar model as described by Reinhard et al. (2013) (4). Output of 

the previous model (limited to 21 growth cycles) and death.sim() was compared across 

different parameters and was found identical indicating the correct translation of the previous 

model into R language. death.sim() provides graphical as well as numerical output. Graphical 

output shows mutant-to-wildtype ratio as a function of growth cycles whilst including a legend 

of the simulation parameter settings used. Numerical output includes raw data used to 

construct the graph as well as the simulation parameter settings. After each simulation output 

is stored as R objects named my.data , my.ratio and my.parameters. death.sim() parameters 

are shown in Table SI 2. If no parameter is set in the function, the function calls default 

parameters as shown in Table SI 2.  
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R code 

 
rm(list=ls(all=TRUE)) 

death.sim <- function (cycles = 300, probability = 3.00E-2, mutation_rate = 1.00E-5, Nm_start = 1.00E1, N_start = 5.00E4, 

GenT_g = 2.00E0, GenT_ng = 1.00E0, death_rate=4.00E-1, Total_C = 1.00E-4, Per_cell = 2.00E-12, yield = 3.00E-1, Ks = 2.00E-

5, dilution = 1.00E-3, Ks.m = 2.00E-5, deltaT = 3.00E-1) { 

my.list<-list() 

 

N_start   <- N_start # N cells at start 

probability  <- probability # Probability of a cell becoming transfer-competent 

deltaT  <- deltaT # as described in Jan's simulation in Excel: ExcelSim 

Nm_start  <- Nm_start # Number of mutants at start 

GenT_ng   <- GenT_ng # Generation time non-active cells (h) 

GenT_g  <- GenT_g # Generation time ICEclc transfer-competent cells (h) 

death_rate <- death_rate # Death rate of ICEclc transfer-competent cells (1/h) 

Total_C   <- Total_C # Total amount of substrate per cycle (g /mL) 

Per_cell  <- Per_cell # Amount of carbon per cell (g) 

yield  <- yield # Biomass yield (g/g) 

N3    <- Per_cell/yield # as described in Jan's simulation in Excel: ExcelSim 

N5   <- Total_C/N3 # as described in Jan's simulation in Excel: ExcelSim 

Total_cells <- Total_C/Per_cell*yield # (g/ml) 

Ks    <- Ks # Ks (g/ml) 

MuMax   <- log(2)/GenT_ng # μ(max) (1/h) 

dilution  <- dilution # Population dilution factor per cycle 

mutation_rate <- mutation_rate # mutation rate (per generation) 

Ks.m   <- Ks.m # g/ml, as described in Jan's simulation in Excel: ExcelSim  

MuMax.m  <- MuMax # μ(max, mutant) (1/h) 

cycle   <- numeric() # empty vector for later use 

gen.cyc   <- numeric() # empty vector for later use 

gen.tot   <- numeric() # empty vector for later use 

 

# define ExcelSim's first cycle's first row 

NN1    <- numeric() 

NN2    <- numeric() 

NN3    <- numeric() 

Carbon    <- Total_C 

Mu     <- MuMax*(Carbon/(Carbon+Ks))  

Time    <- seq(0,14,0.5) 

N1     <- N_start  

Netto_new   <- N1 

N2     <- if (Mu<0.1) {probability*N1} else {0}       

   

Mu.m    <- MuMax.m*(Carbon/(Carbon+Ks))  

N1.m    <- N1*mutation_rate  

N2.m    <- if (N1.m>1) {floor(N1.m)} else {0} 

Ntot2.m   <- Nm_start 
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Ntot1.m    <- N2.m + Ntot2.m 

Netto_new.m   <- Ntot2.m 

 

 

# define ExcelSim's first cycle's successive rows 

for (i in 2:29) { 

# i<-2 

NN1[i]   <- NA 

NN2[i]   <- NA 

NN3[i]   <- NA 

N1[i]   <- if(Mu[i-1]>0) {N1[i-1]*2^((Time[i]-Time[i-1])/(log(2)/Mu[i-1]))} else {N1[i-1]} # 4 

Netto_new[i]  <- N1[i]-N1[i-1] # 5 

N1.m[i]    <- N1[i]*mutation_rate #8 

N2.m[i]    <- if (N1.m[i]>1) {floor(N1.m[i])} else {0}#9 

Ntot2.m[i]  <- if (Mu.m[i-1]>0) {Ntot1.m[i-1]*2^((Time[i]-Time[i-1])/(log(2)/Mu.m[i-1]))} else {Ntot2.m[i-1]}#10 

Ntot1.m[i]   <- N2.m[i] + Ntot2.m[i]#11 

Netto_new.m[i]  <- Ntot2.m[i] - Ntot2.m[i-1]#12 

Carbon[i]   <- if(Carbon[i-1]-((Netto_new[i]+Netto_new.m[i])*N3)<0) {0} else {Carbon[i-1]-

(Netto_new[i]+Netto_new.m[i])*N3} 

Mu[i]    <- if(Carbon[i]>0) {MuMax*(Carbon[i]/(Carbon[i]+Ks))} else {0} 

N2[i]    <- if (Mu[i]<0.1) {probability*N1[i]} else {0} #6 

Mu.m[i]    <- MuMax.m*(Carbon[i]/(Carbon[i]+Ks)) #7 

cycle[1]   <- 1#j 

cycle[i]   <- 1#j 

gen.cyc[1]  <- 1 

gen.cyc[i]  <- i 

 

} 

 

 

my.list[[1]] <-  

  data.frame( 

   Carbon, 

   Mu, 

   Time, 

   N1, 

   Netto_new, 

   N2, 

   Mu.m, 

   N1.m, 

   N2.m, 

   Ntot1.m, 

   Ntot2.m, 

   Netto_new.m, 

   NN1, 

   NN2, 

   NN3, 
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   cycle, 

   gen.cyc 

   ) 

    

# define ExcelSim's successive cycle's first row 

m<-cycles 

for (j in 2:m) { 

 

 

NN1    <- floor(dilution*N2[i]) 

NN2    <- NN1 

NN3    <- if (NN2>0) {NN2} else {0} 

Carbon    <- Total_C 

Mu     <- MuMax*(Carbon[1]/(Carbon[1]+Ks))  

Time    <- seq(0,14,0.5) 

N1    <- floor(dilution*(N1[i-1]-N2[i-1]))  

Netto_new   <- N1 

N2     <- if (Mu[1]<0.1) {probability*N1} else {0}       

   

Mu.m    <- MuMax.m*(Carbon/(Carbon+Ks))  

N1.m    <- N1*mutation_rate  

N2.m    <- if (N1.m>1) {floor(N1.m)} else {0} 

Ntot2.m   <- floor(dilution*Ntot2.m[i]) 

Ntot1.m    <- N2.m + Ntot2.m 

Netto_new.m   <- Ntot2.m 

 

# define ExcelSim's successive cycle's successive rows 

n<-29 

for (i in 2:n) { 

#i<-2 

  

NN1[i]   <- if (NN1[i-1]-NN1[i-1]*(death_rate*Time[i])+(NN1[i-1]-(NN1[i-1]*death_rate*Time[i]))*2^((Time[i]-Time[i-

1])/GenT_g) > 0) {NN1[i-1]-NN1[i-1]*(death_rate*Time[i])+(NN1[i-1]-(NN1[i-1]*death_rate*Time[i]))*2^((Time[i]-Time[i-1])/GenT_g)} else 

{0} 

NN2[i]   <- NN1[i]-NN1[i-1] 

NN3[i]   <- if (NN2[i]>0) {NN2[i]} else {0} 

N1[i]   <- if(Mu[i-1]>0) {N1[i-1]*2^((Time[i]-Time[i-1])/(log(2)/Mu[i-1]))} else {N1[i-1]} # 4 

Netto_new[i]  <- N1[i]-N1[i-1] # 5 

N1.m[i]    <- N1[i]*mutation_rate #8 

N2.m[i]    <- if (N1.m[i]>1) {floor(N1.m[i])} else {0}#9 

Ntot2.m[i]  <- if (Mu.m[i-1]>0) {Ntot1.m[i-1]*2^((Time[i]-Time[i-1])/(log(2)/Mu.m[i-1]))} else {Ntot2.m[i-1]}#10 

Ntot1.m[i]   <- N2.m[i] + Ntot2.m[i]#11 

Netto_new.m[i]  <- Ntot2.m[i] - Ntot2.m[i-1]#12 

Carbon[i]   <- if(Carbon[i-1]-((Netto_new[i]+Netto_new.m[i]+NN3[i])*N3)<0) {0} else {Carbon[i-1]-

(Netto_new[i]+Netto_new.m[i]+NN3[i])*N3} 

Mu[i]    <- if(Carbon[i]>0) {MuMax*(Carbon[i]/(Carbon[i]+Ks))} else {0} 

N2[i]    <- if (Mu[i]<0.1) {probability*N1[i]} else {0} #6 
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Mu.m[i]    <- MuMax.m*(Carbon[i]/(Carbon[i]+Ks)) #7 

cycle[1]   <-  j 

cycle[i]   <-  j 

gen.cyc[1]  <- 1 

gen.cyc[i]  <- i 

} 

 

my.list[[j]] <-  

  data.frame( 

   Carbon, 

   Mu, 

   Time, 

   N1, 

   Netto_new, 

   N2, 

   Mu.m, 

   N1.m, 

   N2.m, 

   Ntot1.m, 

   Ntot2.m, 

   Netto_new.m, 

   NN1, 

   NN2, 

   NN3, 

   cycle, 

   gen.cyc 

   ) 

} 

 

 

# create a data.frame from the list 

my.data <- rbind(my.list[[1]],my.list[[2]]) 

 

for (k in 3:m) { 

  my.data <- rbind(my.data,my.list[[k]]) 

  } 

   

# store data in general directory 

my.data <<- my.data 

my.ratio <<- my.data$Ntot2.m[my.data$gen.cyc==29]/my.data$N1[my.data$gen.cyc==29] 

 

# find the cycle closest to below ratio = 1 

#close.to.1<<-1-min(1-my.ratio[1-my.ratio>0]) 

#my.ratio.dat <- data.frame (my.ratio, 1:length(my.ratio)) 

#my.ratio.dat 

#cycle.below.ratio.1<<-my.ratio.dat[,2][my.ratio.dat$my.ratio==close.to.1] 
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#plot ratio 

#dev.off() 

quartz() 

plot(1:length(my.ratio[my.ratio!=Inf]), my.ratio[my.ratio!=Inf], ylim=c(0,1.2), xlab="Cycles", ylab="Ratio (m/WT)") 

abline(h=1, lty=2) 

#abline(v=cycle.below.ratio.1) 

#text(x=cycle.below.ratio.1+10, y=close.to.1 - 0.03,paste(cycle.below.ratio.1), col="red") 

#points(cycle.below.ratio.1,close.to.1, col="red") 

cex<-0.7 

mtext(side=3, line=3, adj=0, cex=cex, paste("cycles","=",cycles)) 

mtext(side=3, line=3, adj=0.2,cex=cex,paste("probability","=",probability)) 

mtext(side=3, line=3, adj=0.5,cex=cex,paste("mutation_rate","=",mutation_rate)) 

mtext(side=3, line=3, adj=0.8,cex=cex,paste("Nm_start","=",Nm_start)) 

mtext(side=3, line=3, adj=1.0,cex=cex,paste("N_start","=",N_start)) 

 

mtext(side=3, line=2, adj=0,cex=cex,paste("GenT_g","=",GenT_g)) 

mtext(side=3, line=2, adj=0.2,cex=cex,paste("GenT_ng","=",GenT_ng)) 

mtext(side=3, line=2, adj=0.5,cex=cex,paste("death_rate","=",death_rate)) 

mtext(side=3, line=2, adj=0.8,cex=cex,paste("Total_C","=",Total_C)) 

mtext(side=3, line=2, adj=1.0,cex=cex,paste("Per_cell","=",Per_cell)) 

 

mtext(side=3, line=1, adj=0,cex=cex,paste("yield","=",yield)) 

mtext(side=3, line=1, adj=0.2,cex=cex,paste("Ks","=",Ks)) 

mtext(side=3, line=1, adj=0.5,cex=cex,paste("dilution","=",dilution)) 

mtext(side=3, line=1, adj=0.8,cex=cex,paste("Ks.m","=",Ks.m)) 

mtext(side=3, line=1, adj=1.0,cex=cex,paste("deltaT","=",deltaT)) 

 

mtext(side=3, line=0.1, adj=0,cex=cex,paste("µ(max)","=",round(MuMax,3))) 

mtext(side=3, line=0.1, adj=0.2,cex=cex,paste("µ(max, mutant)","=",round(MuMax.m,3))) 

 

# print parameter settings and ratios 

my.parameters <<- 

data.frame(cycles,probability,mutation_rate,Nm_start,N_start,GenT_g,GenT_ng,death_rate,Total_C,Per_cell,yield,Ks,dilution,Ks.m,

deltaT,MuMax,MuMax.m) 

my.list<-list (my.parameters, my.ratio) 

names(my.list)<-c("Parameters","End ratio after cycle (mutant/WT)") 

my.list 

}  

 

R commands 

 

#..Step 1. Clean work directory 

rm(list=ls(all=TRUE)) 

 

#..Step 2. Create a workfolder 
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#..Step 3. Place into the workfolder the file death_sim_function.R 

 

#..Step 4. Set your workfolder. Open R. Type below command 

setwd("type you work folder address here") # example setwd("/Users/fedor/R_workfolder") 

 

#..Step 5. import death.sim function 

source("death_sim_function_code.R") 

 

#..Step 6. Run a demonstration of death.sim() with default parameters 

death.sim() 

 

#..Step 7. Call output 

my.parameters # function parameters 

my.ratio # ratios at end of each cycle 

my.data # raw data 

 

#..Step 8. Set the parameters to your liking. All parameters you do not set will run with default parameters. 

death.sim (cycles = 100, mutation_rate = 1E-3, dilution = 1) 

 

 

#..Parameter  Default setting Parameter description 

#..cycles   300   Growth cycles 

#..probability 0.03   Probability of a cell becoming transfer-competent 

#..mutation_rate 10-5   mutation rate (per generation) 

#..Nm_start  10   Number of mutants at start 

#..N_start  50000  N cells at start 

#..GenT_g   2.0   Generation time ICEclc transfer-competent cells (h) 

#..GenT_ng  1.0   Generation time non-active cells (h) 

#..death_rate  0.4   Death rate of ICEclc transfer-competent cells (1/h) 

#..Total_C  1e-4   Total amount of substrate per cycle (g /mL) 

#..Per_cell  2e-12  Amount of carbon per cell (g) 

#..yield   0.3   Biomass yield (g/g) 

#..Ks   2e-5   Ks (g/ml) 

#..Ks.m   2e-5   Ks (g/ml, mutant) 

#..deltaT   0.3 

#..dilution  0.001  Population dilution factor per cycle 

#..MuMax   0.963  μ(max) (1/h) 

#..MuMax.m  0.963  μ(max, mutant) (1/h) 
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Table SI 2.  Simulation parameter default settings in the R function death.sim() 

death.sim()  

parameter  

Default  

sett ing Parameter  descr iption 

cycles 300 Growth cycles 

probability 0.03 Probability of a cell becoming transfer-competent 

mutation_rate 10-5 mutation rate (per generation) 

Nm_start 10 Number of mutants at start 

N_start 50000 N cells at start 

GenT_g 2.0 Generation time ICEclc transfer-competent cells (h) 

GenT_ng 1.0 Generation time non-active cells (h) 

death_rate 0.4 Death rate of ICEclc transfer-competent cells (1/h) 

Total_C 10-4 Total amount of substrate per cycle (g /mL) 

Per_cell 2*10-12 Amount of carbon per cell (g) 

yield 0.3 Biomass yield (g/g) 

Ks 2*10-5 Ks (g/ml) 

dilution 0.001 Population dilution factor per cycle 

MuMax 0.963 µ(max) (1/h) 

MuMax.m 0.963 µ(max, mutant) (1/h) 

 

RESULTS & DISCUSSION 

 

Algebraic analyt ical theory shows that  an ICEclc-containing hosts 

showing fractional reproduct ive inh ibit ion of transfer-competent cel ls would be 

outcompeted by mutants that shows no such reproduct ive inh ibit ion under  

cond it ions wi th no genetic  dri ft .  It was suggested previously (4) that because ICEclc-

mediated lysis in genus Pseudomonas takes place only in a small proportion of cells (3%-5%) 

under non-growing conditions, it does not represent a significant growth disadvantage to the 

host as to compromise population fitness. Here, we complement this finding by showing 

algebraic theory that suggests that this hypothesis does not hold for conditions without genetic 

drift (resampling with replacement or dilution). Consider bacterial growth expressed as 

(1) 

! 

y = 2
x , 

where y is the number of cells, and x is the number of cell divisions. Assuming that after each 

division a certain percentage of cells would become reproductively inhibited, the growth 

formula changes to 

(2) 

! 

y = 2x 1" a( )
x
, 
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with the added constant a representing the proportion of cells reproductively inhibited. 

However, we know that ICEclc-mediated reproductive inhibition is only ever activated under 

non-growing conditions and after an exponential growth phase (4) (2) (5). To suit such scenario 

the formula needs to be modified to: 

(3) 

! 

y = 2
x
(1" a)[ ]

b

, 

where x now becomes cell divisions per exponential growth phase and b is the number of 

exponential growth cycles after each of which fractional reproductive inhibition manifests. With 

this formula at hand, we can now calculate the number of growth cycles after which the ratio of 

mutant cell numbers to wildtype cell numbers reaches 1. For this, we equalize the equations for 

wildtype and mutant,  

(4) 

! 

2
x
(1" a)[ ]

b

= 2
x( )

b

c , 

and resolve for the number of growth cycles b, 

(5) 

! 

b =
log c( )
log 1" a( )

, 

where c is the mutation rate determining the mutant to wildtype ratio at the start of growth. 

Note that x is cancelled out in equation (5) indicating that number of cell divisions per growth 

cycle do not affect the rate of change of wildtype-to-mutant ratio with respect to the number of 

growth cycles. 

Assuming a 3% reproductive inhibition after each growth cycle, and mutant to wildtype ratios 

ranging from 10-4 to 10-9, we see that mutants will start out-competing wildtype after between 

300 and 700 growth cycles (Fig.1). 

 

 

Fig .1.  Growth cyc les at mutant-to-wildtype ratio 1 as a function o f  mutat ion 

rate. 
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The function shows, mutants could still out-compete wildtype even though reproductive 

inhibition is restricted to stationary phase. It is also shown that the number of cell divisions in 

exponential phase (x, formulas 3 and 4), does not affect and is independent of the number of 

growth cycles (b, formulas 3 to 5) until catch-up.  

Computer simulations show that  genetic dri f t (d i lut ion factor)  is  key to  

suppress mutant compet it iveness. As a second approach to assess whether small 

proportion reproductive inhibition in non-growth phase represents a fitness cost we used 

computer simulation to predict mutant to wildtype ratios over growth cycles. Hereto, we 

translated the excel-based computer model as designed by (4) into R code creating the 

function death.sim() (SI R script). While previous results showed data for 21 growth cycles we 

used death.sim() to simulate results up to 1000 growth cycles. Like the previous model, 

death.sim() includes several settable parameters affecting the outcome. We found that the 

single most influential parameter determining whether mutant out-competes wildtype or not 

was the population dilution factor, which is a variable representing genetic drift.  

When the population dilution factor was set sufficiently low (10-3), both parameters mutation 

rate, and proportion of ICEclc-active cells, influenced the outcome such that when either was 

set to a low value, the mutant would fail to outgrow wildtype (as tested over 1000 cycles) 

(Fig.1.A). In contrast, at high proportion (0.25) or high mutation rate (10-5) the simulation 

showed that mutant started to out-compete wildtype between after 20 and 200 cycles 

regardless of a low dilution factor (10-3). Another series of simulations with the same parameter 

settings as above but this time at a high dilution factor setting (1) showed that mutants always 

outcompeted wildtype no matter if a low mutation rate or low proportion were set. Together, 

these results show that the dilution factor (genetic drift) is key to whether mutants will outgrow 

wildtype or not. Since genetic drift is always present, one can assume that transfer-competent 

mediated reproductive inhibition does not represent a high enough fitness disadvantage as to 

be selected against.  
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Fig. 2.  Simulat ions with populat ion d i lut ion factor set to 0.001 showing rat io of mutant  

versus wildtype as a funct ion of growth cycles. Coloured curves indicate output of different 

simulations with different parameter settings. Corresponding parameter settings for each curve are 

shown in matching colours. The numbers correspond to the probability of a cell becoming transfer-

competent, the mutation rate per generation, and the number of mutants at the start of the simulation, 

respectively. All other simulation parameters correspond to the default parameters as described in (Table 

SI 2). Dotted horizontal line indicates a ratio of 1. The population dilution factor of all simulations was set 

to 0.001. A.  Curves indicating no tendency of mutants to out-compete wildtype. B. Curves with a 

tendency of mutants to out-compete wildtype. 
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Fig. 3. Simulat ions with populat ion di lut ion factor set to 1 showing rat io of mutant  

versus w ildtype as a funct ion of growth cycles. Same as Fig.2.A and B but with population 

dilution factor set to 1. Dotted horizontal line indicates a ratio of 1, beyond which mutants out-compete 

wildtype. 
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