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Summary

In spite of the ever-increasing incidence and poor outcome
of invasive fungal infections in immune compromised pa-
tients, there is currently no reliable method to accurately
predict the risk, to monitor the outcome and to treat these
infections. Protective immunity against Candida and
Aspergillus depends on a highly coordinated interaction
between the innate and adaptive immune systems. Genetic
and immunological defects in components of these net-
works result in increased risk of invasive fungal infections
among patients undergoing chemotherapy or transplant re-
cipients.
We review the most important genetic and immunological
factors that influence human susceptibility to Candida and
Aspergillus infections and discuss the potential role of ba-
sic research to promote precision medicine for infectious
diseases. We discuss how immunogenetic studies can help
to provide tools for improved identification of high-risk pa-
tients and the development of tailored antifungal therapies.
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Epidemiology of invasive fungal
diseases in immune compromised
patients

Invasive fungal infections caused by Candida species or
Aspergillus fumigatus and other filamentous moulds are
devastating in immune compromised patients. Patients at
risk include transplant recipients, patients receiving
chemotherapy, patients infected with human immunodefi-
ciency virus-1 (HIV1) or patients with underlying autoim-
mune diseases. Allogeneic haematopoietic stem cell trans-

plant (HSCT) recipients and patients treated for acute leuk-
aemia are predominately affected [1–5].
In these populations, Candida infections are associated
with a mortality of around 20 to 40%, whereas invasive
mould infections carry even higher mortality reaching up
to 80% [6–11]. Prior to the routine use of antifungal pro-
phylaxis, Candida species (spp.) accounted for the majority
of fungal infections among these patients. However, over
the last two decades, the incidence of Aspergillus infections
has surpassed that of Candida infections. This mainly res-
ults from the use of effective antifungal prophylaxis target-
ing Candida spp. [12, 13].
In recent years, posaconazole and voriconazole prophylax-
is have led to a great reduction of invasive mould and
yeast infections in randomised controlled trials [14, 15] and
are therefore recommended in high-risk populations (e.g.,
during neutropenia or graft-versus-host diseases [GVHD]).
However, these prophylaxes are not uniformly adopted in
Switzerland and other countries because of concerns about
high costs, drug interactions, toxicity and, most import-
antly, limited clinical efficacy with the emergence of res-
istant fungal strains and breakthrough infections [14, 15].
Indeed, new and highly treatment-resistant fungal species,
including yeasts resistant to azole therapies like Candida
krusei and Candida glabrata, as well as highly resistant
moulds such as Aspergillus fumigatus with mutations in the
cyp51A gene, Aspergillus terreus, Fusarium spp., Zygomy-
cetes spp. and Scedosporium spp. have emerged as serious
pathogens in transplant recipients [13, 16–20]. Hence, reli-
able tools to identify patients at risk and tailored treatment
strategies to improve patient outcome are urgently needed.
The introduction of precision medicine, which takes into
account individual genetic and environmental factors in
the choice of the most promising therapy for each patient,
has led to impressive achievements, especially in the field
of oncology [21]. Large-scale efforts, such as the United
States Precision Medicine Initiative or the United Kingdom
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100 000 Genomes Project, aim at enhancing the impact of
this concept in oncology and extending its application to
other clinical areas including infectious diseases [22, 23].
A comprehensive understanding of the genetic and func-
tional basis of immune protection in fungal infection will
promote precision medicine for infectious diseases through
classification of patients according to a specific risk score
and personalised therapy to restore the impaired host im-
munity in high-risk patients [24].

Host immune response to fungal
infection

The innate immune system plays a pivotal role in protec-
tion from acute fungal infections [25–27]. Innate immune
cells including neutrophils, monocytes/macrophages and
dendritic cells rapidly detect the presence of fungi and in-
duce an antimicrobial response. Fungal recognition is me-
diated by a variety of surface-bound and soluble pattern
recognition receptors (PRRs) recognizing fungal cell wall
components and nucleic acids including Toll-like receptors
(TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR9), C-type
lectins (Dectin-1, Dectin-2, Mincle, dendritic cell-specif-
ic intercellular adhesion molecule-3-grabbing non-integ-
rin [DC-SIGN], mannose binding lectin 2 [MBL2]), and
long pentraxin 3 (PTX3) [28–33]. The importance of these
PRRs for fungal control has been demonstrated in a variety
of animal studies [34–39]
Neutropenia is a critical risk factor for the development
of invasive fungal infections. Neutrophils possess a wide
range of effector mechanisms that contribute to intra- and
extracellular elimination of fungi, including production of
reactive oxygen species, release of antimicrobial peptides,
or the formation of neutrophil extracellular traps (NETs) to
restrict fungal spread [27, 40–43]. However, recent find-
ings show that neutrophil function is not only restricted
to elimination of microorganisms. These cells can show
extensive heterogeneity and plasticity, can greatly extend
their life span and have important functions in immunore-
gulatory networks through contact-dependent mechanisms
or by de novo production of cytokines [44, 45]. Neutrophils
can further prevent morphotypic switching (e.g., transition
from yeast to filamentous growth), a key virulence trait of
C. albicans [46–48]. Taken together, although a large ar-
senal of different antifungal activities of neutrophils have
been described, it is still not well understood which ones
are most relevant in vivo in infected tissues.
Innate antifungal defence also relies on mononuclear pha-
gocytes. Tissue-infiltrating monocytes have been described
in the context of Candida and Aspergillus infections [49,
50] and tissue-resident macrophages, such as CX3CR1+

macrophages in the kidney, were protective against system-
ic candidiasis [51]. Monocytes and macrophages display
a remarkable ability to internalise fungi, to secrete sever-
al proinflammatory cytokines and chemokines and to ex-
ert significant fungicidal activity [27]. Their contribution to
antifungal defence may be of particular relevance in neut-
ropenic settings [52].
Natural killer (NK) cell recruitment was previously repor-
ted to be essential for antifungal defence in neutropenic
mice [53, 54] and NK cell proliferation was associated

with inhibition of fungal growth [55]. Moreover, adoptive
NK cell transfer led to enhanced fungal clearance in neut-
ropenic animals [56]. NK cells might also be important in
the context of invasive fungal infections in patients after
HSCT, as we observed that patients with invasive aspergil-
losis had reduced NK cell counts, and lower NK cell counts
were associated with a poor outcome [57]. NK cells may
exert direct antifungal activity by secretion of interferon-γ
(IFN-γ) and perforin [58, 59], or contribute to fungal clear-
ance by regulation of other innate and adaptive immune
cells via cytokine production [60] such as granulocyte mac-
rophage colony stimulating factor (GM-CSF), which pro-
motes the mobilisation and antimicrobial activity of
granulocytes and macrophages [54, 59, 61–63]. In humans,
NK cells may directly respond to fungal stimuli via the NK
receptor NKp30 and a still unknown fungal ligand [64] or
become activated through accessory cells such as mono-
cytes/macrophages or dendritic cells [65–67]. It will be in-
teresting to determine whether particular NK cell subsets
are important for fungal control, as we have previously
shown for the control of viral infections [68].
Additionally to innate immunity, adaptive immune re-
sponses seem to play a crucial role in fungal control. The
protective role of T cell responses in Candida and Asper-
gillus infections has been studied intensively in different
experimental systems and some human studies [69–72].
Fungus-specific T helper (Th) 1 responses characterised by
production of IFN-γ, GM-CSF and tumour necrosis factor
(TNF-α) are protective, and impaired Th1 cell numbers
and cytokine responses correlate with higher fungal burden
[73–75]. A protective role of Th17 cells in fungal immu-
nity has also been observed, in particular in mucocutaneous
Candida infections [76]. Moreover, it has been recently
demonstrated in a mouse model of oropharyngeal candidi-
asis that other sources of interleukin (IL)-17, including in-
nate lymphoid cells, also contribute to fungal control [77].
Whereas the contribution of CD4+ T cells in anti-fungal ad-
aptive immunity is well characterised, recent studies have
also unrevealed protective CD8+ T-cell immunity against
Aspergillus and Candida infections [78]. We have recently
shown that after HSCT patients have a defective A. fumig-
atus-specific T cell response for up to a year after trans-
plantation, correlating with the period when patients are at
highest risk for infection [57]. Moreover, A. fumigatus-spe-
cific T cell responses to different cell-wall and cytosolic
antigens were higher in patients recovering from invasive
aspergillosis than in patients with progressive disease [79].
Consistent with the observations in transplant patients, an
inverse correlation between CD4+ T cell numbers and the
incidence of invasive fungal infections has been observed
in HIV-infected patients [73, 80].
In summary, antifungal immunity relies on many different
immune pathways and functional defects in many of those
have been associated with the occurrence or severity of in-
vasive fungal infections in animal as well as human stud-
ies.
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Association of genetic polymorphisms
with increased risk for invasive
candidiasis and aspergillosis

It is striking that despite similar clinical risk factors such
as chemotherapy, graft source or GVHD and/or similar im-
munosuppressive conditions, some patients rapidly devel-
op invasive fungal infections, while others seem to be pro-
tected and never do so. Such differences may result, at least
in part, from the individual genetic makeup that would in-
crease or decrease susceptibility to infection. Based on this
hypothesis, many investigators analysed whether single
nucleotide polymorphisms (SNPs) in genes involved in im-
mune responses against fungal pathogens influenced sus-
ceptibility to infections (table 1 and fig. 1) [81].
Among the most studied candidate genes are those encod-
ing PRRs, as well as those encoding cytokines, chemokines
and their receptors and/or antagonists. So far, more than
35 association studies of such polymorphisms with invas-
ive fungal infections have been published [81]. However,
many studies were limited by several factors, including
small sample size, lack of replication, and/or lack of func-
tional evidence supporting the association. Many studies
also had a problematic design, such as cases and controls
not exposed to the same risk, inhomogeneous ethnic back-
ground, failure to account for relevant non-genetic risk
factors or time at risk and/or lack of correction for multiple
testing to obtain definite evidence. However, some studies
reported relatively robust associations, which were either
replicated by several investigators and/or are supported by
strong functional evidence.
One of the first studies that included a replication group
identified an association between two missense poly-
morphisms within TLR4 (D299G and T399I) and suscept-

Figure 1

Single nucleotide polymorphisms pathways of innate and adaptive
antifungal immunity associated with increased risk for invasive
fungal infections.
NK cell = natural killer cell; MR = mannose receptor; MBL =
mannose-binding lectin; TLR = Toll-like receptor; PTX3 = pentraxin
3; ROI = reactive oxygen intermediates; IFN = interferon; GM-CSF
= granulocyte macrophage colony stimulating factor; TNF = tumour
necrosis factor; IL = interleukin ; IFI = invasive fungal infection

ibility to invasive aspergillosis after HSCT [82]. The rel-
evant polymorphisms were issued from the donor, i.e., af-
fected the engrafted immune cells, but not the recipient,
and could be combined with other risk factors such as cyto-
megalovirus serostatus for pretransplant risk stratification.
Both polymorphisms were also associated with dissemin-
ated candidiasis in a small cohort of non-neutropenic pa-
tients [83]. However, the association of these TLR4 poly-
morphisms with invasive aspergillosis was not universally
confirmed in other HSCT studies [84–86], possibly as a
result of differences in the patients’ characteristics, condi-
tioning and/or antifungal prophylactic regimen across dif-
ferent studies or over time. The limited reproducibility
could also be due to the very low frequencies of both TLR4
polymorphisms, thereby requiring very large patient num-
bers for replication.
A further study supported by strong functional evidence
was the association of a stop-codon polymorphism in
Dectin-1 (Y238X) in both recipient and donor with an in-
creased risk for invasive aspergillosis after HSCT [87]. In
vitro studies showed that Dectin-1 silencing in respirat-
ory epithelial cells resulted in impaired Aspergillus-driven
proinflammatory responses. The Dectin-1 polymorphism
was associated with diminished IFN-γ and IL-10 secretion
in peripheral blood mononuclear cells (PBMCs) upon stim-
ulation with this fungus in vitro [87]. In vivo mouse studies
further revealed that both donor (haematopoietic cells) and
recipient (nonhaematopoietic cells) Dectin-1 was needed to
complement a protective role against invasive aspergillos-
is after HSCT [87]. In addition to its relevance for mould
infections, the polymorphism in Dectin-1 was further asso-
ciated with inherited forms of chronic mucocutaneous can-
didiasis [88] and oral and gastrointestinal Candida colon-
isation, but not with invasive candidiasis after HSCT [89].

Polymorphisms and/or haplotypic combinations of three
IL-1 cluster genes including IL-1β (-31T/C and -511C/
T), natural IL-1 receptor antagonist (IL1RN; 2018T/C,
VNTR2) as well as IL-1α (-889C/T) were associated with
invasive aspergillosis in solid organ transplant recipients
[90] and acute leukaemia patients [91]. IL-1β is a key
proinflammatory cytokine, involved in promoting both in-
nate and adaptive responses during infection with A. fu-
migatus, and its action can be controlled by its natural ant-
agonist IL1RN. PBMCs from individuals carrying one or
two copies of the -511C/T polymorphism in the promoter
of IL-1β or the 2018T/C polymorphism in IL1RN showed
decreased production of IL-1β and TNF-α upon stimulation
with Aspergillus [90].
Moreover, polymorphisms in the chemokine receptors
CXCR1 (CXCR1-T276) and CX3CR1 (CX3CR1-M280)
were associated with an increased risk for disseminated
candidiasis [92, 93]. These factors regulate neutrophil- and
macrophage-mediated innate defence against fungal infec-
tions as discussed above.
The most promising results in the field of fungal immuno-
genetics have been provided by recent studies uncovering
two frequent polymorphisms (281A/G and 734A/C) in the
long PTX3 gene as susceptibility markers of invasive as-
pergillosis in two different populations: HSCT [94] and
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solid organ transplant [95] recipients. The associations with
invasive aspergillosis resulted from the presence of the risk

allele in the donor for HSCT and in the recipient for sol-
id organ transplants, which is consistent with the source

Table 1: Genetic risk factors for invasive fungal infections.

Genetic association1Gene SNPs ID
IA IC

Replication Functional
evidence

Pattern recognition receptors
TLR1 rs574361 ↑ ↑ Controversial +/–

rs4833095, rs5743618 ↑ ↓ Controversial +/–

TLR6 rs5743810 ↑ NA Controversial –

TLR4 rs4986790, rs4986791 ↑ ↑ Controversial +/–

TLR2 rs5743708 NA ↑ Controversial +

TLR3 rs3775296 ↑ NS No +

TLR5 rs5744168 ↑ NS No –

TLR9 rs5743836 NA NA No –

CLEC7A rs16910526 ↑ NA Controversial +

rs7309123, rs3901533 ↑ NS No +

CD209 rs4804800, rs11465384, rs7248637, rs7252229 ↑ NS No –

MBL Low genotype ↑ ↑ No +/–

PTX3 rs2305619/rs3816527 ↑ NS Yes +

Cytokines and related genes
IL1A rs1800587 ↑ NS No +

IL1B rs1143627, rs16944 ↑ NA Controversial +

IL1RN 82bp VNTR ↑ NS No +

rs419598 ↑ NS No +

IL4 rs2243250, rs2070874, rs2243248 NS ↑ No –

IL8 rs2227307 ↑ NS No –

IL10 rs1800896, rs1800871, rs1800872 ↑ ↑ Controversial +/–

IL12B rs41292470 NA ↑ No +

rs3212227 ↓ NS No –

IL23R rs11209026 ↓ NS No +/–

TNFA rs1800629 NA ↑ No –

TNFR1 rs4149570 ↑ NS No +

TNFR2 -322 VNTR ↑ NS No –

IFNG rs2069705 ↓ NS Yes +

rs2430561 NA NS No –

CCL8 1-kg-17-29697448 NS ↑ No +

CXCL10 rs3921, rs1554013, rs4257674 ↑ NS No +

CXCR1 rs2234671 NS ↑ No +

CX3CR1 rs3732378 NS ↑ Yes +

Other
VEGFA rs3024994 ↑ NS No –

rs2146323, rs6900017 ↑ NS No –

DEFB1 rs1800972 ↑ ↑ No –

MASP2 rs72550870 ↑ NS No –

RAGE rs1800624 ↑ NS No +

S100B rs9722 ↑ NS No +

PLG rs4252125 ↑ NS No +/–

STAT1 rs16833172 NS ↑ No +

SP110 rs3769845 NS ↑ No +

PSMB8 rs3198005 NS ↑ No +

CD58 rs17035850, rs12025416 NS ↑ Controversial +

LCE4A/C1orf68 rs4845320 NS ↑ Controversial –

TAGAP rs3127214 NS ↑ Controversial +

C1orf68 = chromosome 1 open reading frame 68; CCL8 = chemokine C-C motif ligand 8; CD209 = cluster of differentiation 209 (known as DC-SIGN); CLEC7A = C-type
lectin domain 7 (known as Dectin-1); CXCL10 = CXC-chemokine ligand-10; CXCR1 = Chemokine C-X-C Motif Receptor 1; CX3CR1 = Chemokine C-X3-C Motif Receptor
1; DEFB1 = β-defensin 1; IA = invasive aspergillosis; IC = invasive candidiasis; IL = interleukin; IL1RN = interleukin-1 receptor antagonist; IL23R = interleukin 23 receptor;
IFNG = interferon gamma; LCE4A = late cornified envelope (LCE) protein 4 A; MASP2 = mannan-binding lectin serine peptidase 2; MBL = mannose banding lectin; PLG =
plasminogen; PSMB8 = proteasome (prosome, macropain) subunit beta type 8; PTX3 = pentraxin 3; RAGE = advanced glycosylation end product-specific receptor; SNP =
single nucleotide polymorphism; S100B = S100 calcium binding protein B; SP110 = speckled 110 KDa; STAT1 = signal transducer and activator of transcription 1; TAGAP
= T cell activation RhoGTPase-activating protein; TLR = toll-like receptor; TNFA = tumor necrosis factor alpha; TNFR = tumour necrosis factor receptor; VAGFA = vascular
endothelial growth factor A
1 Effect of minor allele on susceptibility to either invasive aspergillosis (IA) or invasive candidiasis (IC); the arrow symbol “↑” refers to variants that were associated with
increased susceptibility; the arrow symbol “↓ “ refers to variants that showed protective effect; “NA” refers to variants that were studied but were not associated; “NS” refers
to variants that were not studied.
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of circulating immune cells in both situations. These data
were strongly supported by functional work [94] and con-
firm the protective role of PTX3 observed in animal stud-
ies [34, 37, 38, 96]. The h2/h2 haplotype (composed of
281G and 734A alleles) was associated with lower expres-
sion of PTX3 by neutrophil precursors in vitro upon expos-
ure to Aspergillus, most likely owing to changes in mes-
senger RNA (mRNA) folding [94]. Lower PTX3 levels
were consistently observed in bronchoalveolar lavage and
lung biopsies from patients with invasive aspergillosis car-
rying the h2/h2 haplotype, compared with controls. PTX3
is released by circulating immune cells such as neutrophils
upon infection with Aspergillus to promote fungal recog-
nition and killing. Neutrophils from patients carrying the
D48A PTX3 polymorphism had reduced ability to phago-
cytose and kill Aspergillus conidia as compared with other
neutrophils [94].
In summary, diverse genetic studies linking the presence of
polymorphisms with susceptibility to invasive fungal infec-
tions have considerably contributed to our understanding of
antifungal immune mechanisms and might help to promote
precision medicine for invasive fungal infections.

How immunology and host genetics
could help to identify and improve the
treatment of patients at risk for
invasive fungal infections

Basic research over recent years has provided important in-
sights into the mechanisms of protection against invasive
Candida and Aspergillus infections. These studies demon-
strated the contribution of various immune cells including

Figure 2

Possible risk assessment and personalised therapy scheme for
patients at risk for invasive fungal infections.
*Clinical risk factors include graft-versus-host disease, steroid
treatment, T cell-depleted graft and acute myeloid leukemia.

Figure 3

Advantages and disadvantages of different enrichment strategies
for antigen-specific T cells.
GMP = Good Manufacturing Practice; IFN = interferon

neutrophils, macrophages, dendritic cells, NK cells and T
cells to antifungal immunity, and partly revealed the mo-
lecular mechanisms of protection. Genetic studies demon-
strated how genetic polymorphisms, especially in sig-
nalling pathways of innate immune cells, can predispose to
the development of invasive fungal infections.
Techniques such as high throughput SNP genotyping (e.g.,
large arrays of selected SNPs) or genome-wide association
studies (GWAS) have become more easily accessible in the
clinical setting. Therefore, the chance to assign each pa-
tient an individual risk score based on the genetic back-
ground of the donor and/or the recipient is coming within
reach. This knowledge might lead to personalised prophy-
laxis and treatment schemes comparable to the approach
used in modern oncology and would counter overtreatment
with antifungal therapy (fig. 2).
Early immunotherapeutic approaches such as granulocyte
infusion [97] or administration of GM-CSF or IFN-γ tried
to restore the deficient number and function of innate im-
mune cells in patients with invasive fungal infections. Al-
though these therapies were promising in patients with
chronic granulomatous disease, they were used only reluct-
antly in transplant recipients becaue of their limited clinic-
al efficacy and the potential to induce GVHD or graft loss
[98, 99].
Another approach improving antifungal immunity might be
administration of the soluble PRR PTX3 alone or in com-
bination with antifungal drugs, especially in patients with
the PTX3 h2/h2 haplotype. The protective effect of PTX3
alone or together with amphotericin B was shown in a mur-
ine model of invasive aspergillosis [34]. PTX3-mediated
protection was associated with accelerated recovery of lung
phagocytic cells and Th1 lymphocytes, and a concomitant
decrease of inflammatory pathology. PTX3 administration
also potentiated the therapeutic efficacy of suboptimal
doses of amphotericin B. These encouraging results could
be reproduced in rats treated with PTX3 alone or in com-
bination with posaconazole or voriconazole [37, 38, 96].
Similar to the protective effect of PTX3, administration of
MBL might be another therapeutic option. In mice with in-
vasive aspergillosis, MBL administration significantly in-
creased survival and production of the proinflammatory cy-
tokines TNF-α and IL-1α [36], and human studies showed
significantly lower serum MBL levels in patients with in-
vasive aspergillosis than in control patients [100].
The identification of NK cells and T cells as important
players in antifungal immunity also encourages cellular
therapies such as adoptive transfer of NK cells or antigen-
specific T cells. Many studies have assessed the potency of
NK cell transfer in antitumour therapy [101, 102], but there
is still limited knowledge of this approach in the context of
infectious diseases. However, the observation that HSCT
and solid organ transplant recipients with invasive fungal
infections have lower NK cell counts compared with con-
trol patients, endorses adoptive NK cell transfer.
Adoptive transfer of donor-derived pathogen-specific T
cells is to date the most promising and feasible immun-
otherapeutic strategy in transplant recipients restoring the
lacking T cell function [103–105]. So far, only one study
targeting fungal infections has been performed, in hap-
loidentical HSCT recipients with invasive aspergillosis. In
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this study, infusion of donor-derived Aspergillus-specific
Th1 clones generated by stimulation with inactivated A. fu-
migatus conidia controlled Aspergillus galactomannan and
helped to clear invasive aspergillosis in 9 of 10 patients
[106]. However, reproducibility is difficult due to variation
of stimuli and the elaborate production under good man-
ufacturing practice (GMP). Recent research has therefore

focused on identification of suitable recombinant antigens
for fungus-specific cells and on a simple, reproducible and
reliable isolation or culture method to generate fungus-spe-
cific T cells.
The identification of fungal antigens is challenging and un-
til now, only few immunogenic proteins and T cell epi-
topes specific for A. fumigatus have been characterised in

Table 2: Immunogenic A. fumigatus proteins in mice, healthy individuals and haematopoietic stem cell transplant recipients with invasive aspergillosis.

Antigen Localisation Study design Responding T cells Cytokine profile Additional findings Ref
Rechallenge of vaccinated mice (CTX-
treated or BMT) with A. fumigatus

CD4 IFN-γ, IL-10,
(IL-17)

Protective; cross-
protective against C.

albicans

[111, 120]

Characterisation of PBMC, T cell lines or T
cell clones from healthy donors

CD4, (CD8) IFN-γ,
(TNF-α,
GM-CSF,
IL-10, IL-17, IL-4)

(Cross-reactive to C.

albicans in vitro)
[79, 111, 115,
120–125]

Crf1 (Asp f9/
16)

GPI-anchored cell
wall protein

Characterisation of PBMC or T cell clones
from HSCT recipients with IA

(CD4) (IFN-γ,
IL-10, IL-17)

Patients with better
IFN-γ response show
favourable outcome;
specific T cells appear
at regression of IA
lesion

[79, 107, 123]

Rechallenge of vaccinated mice (CTX-
treated or BMT) with A. fumigatus

CD4 IFN-γ, IL-10,
(IL-17)

Protective; increased
survival

[120]

Characterisation of PBMC or T cell clones
from healthy donors

CD4, (CD8) (IFN-γ,
TNF-α, IL-10,
IL-17)

[79, 120, 121,
123]

Gel1 GPI-anchored cell
wall protein

Characterisation of PBMC from HSCT
recipients with IA

n.d. (IFN-γ,
IL-10)

Patients with better
IFN-γ response show
favourable outcome

[79, 123]

Rechallenge of vaccinated WT, cortisone
acetate-immunosuppressed or PMN-
depleted mice with A. fumigatus or
adoptive transfer of CD4 T cells from
vaccinated mice to naive mice

CD4 Protective in WT
mice, partly protective
in immunosuppressed
and PMN-depleted
mice

[126, 127]

Characterisation of PBMC from healthy
donors

CD4, CD8 IFN-γ, IL-4, IL-17,
(TNF-α,
IL-10)

[79, 121, 122]

Pmp20 (Asp
f3)

Peroxisomal protein

Characterisation of PBMC from HSCT
recipients with IA

n.d. (IFN-γ) Higher response in
patients with
favourable outcome

[79]

Rechallenge of vaccinated mice (CTX-
treated or BMT) with A. fumigatus

CD4 IFN-γ, IL-10,
(IL-17)

Protective [120]

Characterisation of PBMC or T cell clones
from healthy donors

CD4, (CD8) IL-17 (IFN-γ,
IL-10)

[120, 123]

Pep1 Secreted protein

Characterisation of PBMC from HSCT
recipients with IA

n.d. (IFN-γ),
IL-10

Patients with IFN-γ
response show
favourable outcome

[123]

Rechallenge of vaccinated mice with A.

fumigatus

CD4, Th2 IL-4 Non-protective [120]

Characterisation of PBMC or T cell clones
from healthy donors

CD4 IFN-γ, (IL-4, IL-10,
IL-17)

[115, 120, 128]

Cat1 Secreted protein

Characterisation of T cell clones from
HSCT recipients with IA

CD4 IFN-γ
(IL-17)

Specific T cells
appear at regression
of IA lesion

[107]

Rechallenge of vaccinated mice with A.

fumigatus

CD4, Th2 IL-4 Nonprotective [120]

Characterisation of PBMC or T cell clones
from healthy donors

CD4 (CD8) IL-17, IL-10, (IFN-
γ,
TNF-α, IL-4)

[120, 121, 123]

Sod Secreted protein

Characterisation of PBMC from HSCT
recipients with IA

n.d. (IFN-γ),
IL-10

Patients with IFN-γ
response show
favourable outcome

[123]

Crf1 = extracellular cell wall glucanase Crf1; Gel1 = 1 =3-β-glucanosyl-transferase Gel1; Pmp20 = cytosolic peroxisomal peroxiredoxin Pmp20 (Asp f3); Pep1 = aspartic
protease Pep1; Cat1 = mycelial Catalase 1; Sod = superoxide dismutase; GPI = glycosylphosphatidylinositol; CTX = cyclophosphamide; BMT = bone marrow transplanted;
HSCT = hematopoietic stem cell transplantation; IA = invasive Aspergillosis; IFN = interferon; IL = interleukin; n.d. = not determined; PBMC = peripheral blood
mononuclear cells; PMN = polymorphonuclear cells; TNF = tumor necrosis factor; WT = wild type
Data in brackets apply only to a part of the studies.
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healthy individuals and mice (table 2). Only recently, we
and others have shown that T cell responses to some of
these proteins correlate with a beneficial outcome in pa-
tients with invasive aspergillosis [107, 108]. Furthermore,
it would be favourable if the transferred T cells would tar-
get various clinically relevant moulds [3, 109, 110]. We
have previously shown that CD4+ cells specific for the A.
fumigatus Crf1/p41 epitope confer cross-reactivity to C. al-
bicans in a mouse model, thereby targeting the two most
important fungal pathogens in HSCT recipients [111]. In a
further study, we showed that T cell lines specific for A. fu-
migatus Crf1, Gel1 and Pmp20 proteins not only efficiently
recognised naturally processed A. fumigatus, but addition-
ally cross-reacted with different clinically relevant Asper-
gillus and Mucorales species, suggesting that adoptively
transferred T cells could very likely protect the recipients
against a variety of fungal infections [79].
Various isolation and expansion methods for fungus-spe-
cific T cells have been assessed in vitro (fig. 3, reviewed
in [112]). The cytokine capture assay is GMP-compliant
and has been shown to be efficacious and safe for the
isolation of virus-specific T cells [113]. This method has,
however, limited sensitivity when fungus-specific peptide
pools are used (unpublished data N.K.). Therefore other
selection methods based on activation-dependent expres-
sion of CD154 or CD137 have been investigated [79, 107,
114, 115]. Although all isolation strategies were able to en-
rich antigen-specific T cells from PBMC, the relatively low
specificity and cell number after isolation probably hinders
direct infusion and additional in vitro expansion would be
required [116–118].
A thorough understanding of antifungal immune pathways
could further lead to novel treatment approaches such as
the development of bioengineered T cells with antifungal
activity. This was exemplified by Cooper and colleagues
who showed that T cells expressing a chimeric antigen re-
ceptor based on the PRR Dectin-1 were able to inhibit hy-
phal growth of Aspergillus both in vitro and in vivo [119]
and thereby provided an interesting alternative to conven-
tional T cell therapy.

Future challenges in invasive fungal
infections

The identification of patients who are at increased risk for
development of these infections, the lack of biomarkers to
define the net state of immunosuppression and the prob-
lem of treating invasive fungal infections are remaining
difficulties. It is debatable which patients would benefit
the most from antifungal prophylaxis and who should be
treated with combination therapies or even with immun-
otherapy. Ideally, these clinical decisions should be indi-
vidualised based on clinical factors, genetic polymorph-
isms and immune function, which could be integrated into
complex diagnostic algorithms or risk-stratification scores
for personalised therapy. Well-designed intervention stud-
ies are needed to explore whether this concept can be trans-
lated into clinical practice, but previous experience in the
field of oncology and the great progress of precision medi-
cine raise confidence that the outcome of invasive fungal
infections will be improved in the future.
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Figures (large format)

Figure 1

Single nucleotide polymorphisms pathways of innate and adaptive antifungal immunity associated with increased risk for invasive fungal
infections.
NK cell = natural killer cell; MR = mannose receptor; MBL = mannose-binding lectin; TLR = Toll-like receptor; PTX3 = pentraxin 3; ROI =
reactive oxygen intermediates; IFN = interferon; GM-CSF = granulocyte macrophage colony stimulating factor; TNF = tumour necrosis factor; IL
= interleukin ; IFI = invasive fungal infection
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Figure 2

Possible risk assessment and personalised therapy scheme for patients at risk for invasive fungal infections.
*Clinical risk factors include graft-versus-host disease, steroid treatment, T cell-depleted graft and acute myeloid leukemia.

Figure 3

Advantages and disadvantages of different enrichment strategies for antigen-specific T cells.
GMP = Good Manufacturing Practice; IFN = interferon
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