
RESEARCH ARTICLE

Personalized prediction of disease activity in

patients with rheumatoid arthritis using an

adaptive deep neural network

Maria Kalweit1, Ulrich A. Walker2, Axel FinckhID
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Abstract

Background

Deep neural networks learn from former experiences on a large scale and can be used to

predict future disease activity as potential clinical decision support. AdaptiveNet is a novel

adaptive recurrent neural network optimized to deal with heterogeneous and missing clinical

data.

Objective

We investigate AdaptiveNet for the prediction of individual disease activity in patients from a

rheumatoid arthritis (RA) registry.

Methods

Demographic and disease characteristics from over 9500 patients and 65.000 visits from

the Swiss Quality Management (SCQM) database were used to train and evaluate the net-

work. Patient characteristics, clinical and patient reported outcomes, laboratory values and

medication were used as input features. DAS28-BSR served as a target to predict active RA

and future numeric individual disease activity by classification and regression.

Results

AdaptiveNet predicted active disease defined as DAS28-BSR >2.6 at the next visit with an

overall accuracy of 75.6% (SD +- 0.7%) and a sensitivity and specificity of 84.2% (SD +-

1.6%) and 61.5% (SD +- 3.6%), respectively. Prediction performance was significantly

higher in patients with a disease duration >3 years and positive rheumatoid factor. Regres-

sion allowed forecasting individual DAS28-BSR values with a mean squared error (MSE) of

0.9 (SD +- 0.05). This corresponds to a 8% deviation between estimated and real DAS28-

BSR values. Compared to linear regression, random forest and support vector machines,
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AdaptiveNet showed an increased performance of over 7% in MSE. Medication played a

minor role in the prediction of RA disease activity.

Conclusion

AdaptiveNet has a superior capacity to predict numeric RA disease activity compared to

classical machine learning architectures. All investigated models had limitations in low

specificity.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disorder in which disease activity fluctu-

ates over time. The advent of targeted synthetic and biologic medication, along with early and

treat-to-target strategies have substantially improved patient care. However, sustained remis-

sion still is only achieved in around 30% indicating room for improvement either by new

drugs or alternative treatment strategies [1]. EULAR/ACR recommendations suggest treat-

ment modification after three to six months if the set target is not reached, regardless of the

presence or absence of individual risk factors for poor outcome [2]. Given the increasing num-

ber of available drug combinations, the delay in finding the best individual treatment can be

substantial. The practical role of biomarkers to predict individual chances of good therapeutic

response remains limited [3,4]. Classical predictors such as female gender or rheumatoid fac-

tor positivity but also more complex prediction models have been shown to be unreliable to

forecast individual response to methotrexate after 3–6 months [5]. There are also no clear rec-

ommendations on treatment de-escalation in case of stable disease despite disease activity-

guided dose optimization of biologic being efficient and cost-effective [6,7]. In other words,

over- or undertreatment in RA is common, potentially resulting either in destructive disease

flares or unnecessary side effects and costs [8].

Machine learning (ML) is increasingly used for disease detection, stratification and predic-

tion both in at risk populations and established disease in various fields of medicine, including

rheumatology [9,10]. Among conventional ML methods, random forests have shown a higher

accuracy to predict disease activity compared to support vector machines (SVM) or logistic

regression in non-rheumatic disorders such as heart failure or diabetes [11]. Fuzzy cognitive

maps is another increasingly used ML-method for clinical prediction tasks and decision sup-

port [12]. Using data from electronic medical records (EMR), ML has successfully predicted

RA flares in a small number of RA patients by a random forest as a classical ML method

[13,14]. Only few data exist on deep learning (DL) in rheumatology. DL is a specialized sub-

field within ML which relies on neural networks and offers a higher productivity and flexibility

compared to conventional ML techniques [15]. Norgeot et al. applied DL to EMR data in 820

RA patients for the prediction of disease activity by classification [16]. To predict the category

of low disease activity, a remarkable AUC score of 0.91 was achieved in a test set of 116

patients. This study was limited by low patient numbers and lack of complete data on medica-

tion. Using the Swiss Quality Management (SCQM) database [17] for rheumatic diseases, we

recently described a novel adaptive deep neural network (AdaptiveNet), per se showing supe-

rior results compared to a naive rule-based baseline, a random forest and a conventional fully-

connected deep neural network architecture in the prediction of disease activity in RA patients

[18]. AdaptiveNet projects patient data of events such as visits or medication adjustments to

the same latent space using multiple encoder networks. The sorted list of encoded events is
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pooled by a long short-term memory (LSTM) to account for temporal dependencies and gen-

erates a fixed-length encoded patient history [19]. The main advantage of this architecture is

better handling of heterogeneous and missing clinical data.

The study presented here aims to characterize this deep neural network to forecast individ-

ual disease activity both categorically and numerically as a potential tool for clinical decision

support.

Methods

Study design and data source

The dataset used is the Swiss Clinical Quality Management in Rheumatic Disease (SCQM) reg-

istry, a national multicenter database containing longitudinal data from clinically diagnosed

RA patients. The registry was established in 1997 to prospectively follow RA patients [17]. RA

diagnoses are made clinically by board-certified rheumatologists. Follow-up for the registry

involves one to four annual visits with physical examination, (yearly) hand radiographs, dis-

ease activity scores (e.g., DAS28), laboratory tests (e.g., erythrocyte sedimentation rate [esr])

and several patient self-report questionnaires (e.g., SF [short form] 12). Clinical information is

also usually updated every time a patient changes antirheumatic therapy. Clinical characteris-

tics of the patients included in this study are seen in Table 1. The study was approved by the

regional ethics committee “Commission cantonale Vaud d’éthique de la recherche sur l’être

humain” (ID 2020–000333). All individuals willing to participate sign an informed consent

form before enrolment, in accordance with the Declaration of Helsinki.

Prediction target and input features

To predict disease activity, we used the RA activity score DAS28-BSR at next visit as target var-

iable. DAS28-BSR stands for disease activity score and assesses 28 joints for tenderness and

swelling as well as subjective disease activity of the patient and blood sedimentation rate

(BSR) as laboratory marker for inflammation [20]. We only considered visits with complete

DAS28-BSR scores. We used age, gender, weight, disease duration, BSR, CRP (C-reactive pro-

tein), swollen joint count, painful joint count, rheumatoid factor, anti-CCP (cyclic citrullinated

peptide), treatment, smoking status, HAQ (health assessment questionnaire), morning stiff-

ness, EuroQol (as instrument for measuring the generic health status), disease activity and

pain level as potential predictors (Table 1). For antirheumatic therapy, we used the individual

drugs, as well as broader drug categories of biologic (b) or conventional (cs) disease modifying

anti-rheumatic drugs (DMARD) and prednisone dose strata, respectively. Duration of therapy

since adjustment was also assessed. For training and evaluation of the predicted target variable

we considered follow-up visits between 1 month and 1 year. All visits and medication data of

the last 5 years were considered.

Classification and regression

For classification, we defined two disease states, active disease (DAS28-BSR > 2.6) and remis-

sion (DAS28-BSR� 2.6) at next visit [21]. Prediction performance was measured by accuracy,

sensitivity, specificity and area under the curve (AUC) score. For visualization, we used the

Receiver Operating Characteristic Curve (ROC), which shows the tradeoff between sensitivity

(true positive rate) and specificity (1—false positive rate). For statistical difference, we com-

pared the area under the ROC with a Welch’s t-test and considered p�0.05 as significant. In

order to predict numeric values of the target variable (DAS28-BSR), we applied a regression

model and predicted the expected change of DAS28-BSR to the subsequent visit. Performance
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Table 1. Clinical characteristics and input features.

Numerical Missing [%] Mean (+- SD)

Age� 0 58.8 (+- 13.0)

Minimal Disease Activity� 1.6 1.3 (+- 1.1)

Disease Duration� 2.7 12.2 (+- 9.5)

Number swollen joints�� 6.6 3.3 (±4.6)

Number painful joints�� 6.9 3.5 (±5.3)

BSR�� 14.6 18.5 (±17.1)

DAS28-BSR�� 16.4 3.2 (±1.4)

Pain level (0–10)�� 22.4 3.3 (±2.7)

Disease activity index (RADAI)�� 22.7 3.4 (±2.7)

HAQ score�� 27.8 0.8 (±0.7)

Weight [kg]�� 36.5 70.7 (±15.6)

Height [cm]�� 40.8 165.3 (±12.2)

Categorical Values [%]

Female gender� 0 74

Rheumatoid factor positive� 9.1 62.9

Rheumatoid factor negative� 9.1 28

Anti-CCP� 31.6 positive [42.4]

negative [26.0]

Morning stiffness (RADAI)�� 22.7 None [36.8]

All day [1.9]

<0.5 hour [15.4]

0.5–1 hour [12.0]

>4 hours [1.6]

12 hours [6.1]

24 hours [3.5]

Smoker�� 60.2 Never [18.2]

Current [9.3]

Former [12.3]

Treatment��� - Methotrexate [24.1]

Prednisone [16.8]

Adalimumab [7.9]

Etanercept [7.3]

Tocilizumab [4.0]

Abatacept [4.0]

Rituximab [3.5]

Golimumab [2.4]

Other [30.1]

Treatment type��� - Prednisone [18.8]

DMARD [24.1]

Biologic [29.0]

Other [30.1]

Prednisone dose��� - None [41.3]

< 10mg [9.6]

10-15mg [12.6]

>15mg [36.5]

The corresponding number of missing values, mean and standard deviation (SD) for numerical variables, and the

distribution in percent for categorical variables for 28601 visits. All listed characteristics are used as input features for

AdaptiveNet as either general patient features�, visit features�� or medication features���. BSR: blood sedimentation

rate, anti-CCP: anti citrullinated peptide antibodies. HAQ: health assessment questionnaire. DMARD: disease

modifying anti-rheumatic drug.

https://doi.org/10.1371/journal.pone.0252289.t001
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was measured by MSE as an estimator of the deviation between the estimated and actual val-

ues. To evaluate the models, we split the dataset into a training set and 5 different test sets by

using 5-fold cross-validation. The test set contains 20% of the data, the training set 80% of the

data.

Data processing procedure and modelling

Classification and regression was performed with AdaptiveNet, a dynamic and recurrent

deep neural network architecture, designed for chronological clinical data [18]. In short,

AdaptiveNet encodes all former clinical events of a patient (here: visits and medication

adjustments) to the same latent space using multiple fully-connected encoder networks in

order to align the corresponding output vectors (Fig 1). Sorted lists of these encoded clinical

events are pooled by an LSTM to compute a fixed-length encoding, representing the 5-year

patient history and accounting for temporal dependencies. The final output is computed by a

fully-connected network module, using the encoded patient history and additional features

containing general time-independent patient information as input. For preprocessing, all

features were scaled in the range [0, 1]. The architecture of AdaptiveNet is shown in the S1

Table. For regression and classification, the Adam optimizer with a learning rate of 10−4 was

used [22]. Batch size was set to 256. We used loss of MSE for regression and binary cross-

entropy for classification.

As baselines, we used a random forest with a maximum depth of 12 and 100 estimates, lin-

ear and logistic regression models and an SVM with regularization parameter C = 10 for

regression and radial basis function as kernel type. Hyperparameters were tuned for all

approaches, including the baselines, using random search in the configuration space shown in

S2 Table. For feature importance, the influence on the mean decrease in weighted impurity

was calculated for each feature using a Random Forest.

Fig 1. Deep neural network architecture (AdaptiveNet). All visits and medication adjustments are projected to latent vectors of the same size using

encoder networks ϕvisits and ϕmeds. Latent vectors are sorted according to dates and fed into a Long Short-term Memory (LSTM) to create a latent

vector describing the full patient history. The final prediction is computed by the network module ρ, exploiting the patient history with general patient

information.

https://doi.org/10.1371/journal.pone.0252289.g001
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Results

Categorical prediction of disease activity by classification

In total, 28.601 visits with corresponding disease activities were extracted. Over a maximal

observed history length of 5 years, patients had 6.3 (±5.3) visits and 2.5 (±2.7) medication

adjustments. For the classification task DAS28-BSR>2.6 at next visit (mean interval 8.1 +-2.9

months from initial visit), AdaptiveNet had an accuracy of 75.6% (SD +- 0.7%) and an AUC

score of 0.728 (SD +- 0.01) (Table 2). A random forest showed an accuracy of 75.0% (SD +-

0.93%) and an AUC of 0.71 (SD +- 0.01). Using logistic regression, we achieved an accuracy

of 73.5% (SD +- 1.45%) and an AUC of 0.70 (SD +- 0.012). The SVM showed 73.3% accuracy

(SD +- 0.97%) and an AUC of 0.69 (SD +- 0.011).

The Receiver Operating Characteristic Curve (ROC) for AdaptiveNet is shown for all

patients (Fig 2a) and for different clinical variables (Fig 2b-2f). The performance was signifi-

cantly higher in patients with longer disease duration (p = 0.013) and positive rheumatoid fac-

tor (p = 0.001). Male gender showed a positive trend for a better performance (p = 0.079).

Data from patients aged >50 years (Fig 2c) and from anti-CCP positive patients (Fig 2f)

achieved a higher specificity but no significantly increased performance compared to patients

aged<50 years or anti-CCP negative patients.

Numerical prediction of disease activity by regression

AdaptiveNet was applied to predict the numerical DAS28-BSR value at the next visit by regres-

sion on an individual level. When trained on data from all patients, we obtained an overall

MSE of 0.90 (SD +- 0.05), which corresponds to a 8% deviation between estimated and real

DAS28-BSR values (Table 2). Fig 3 shows exemplary results for two patients with individual

forecasts of DAS28-BSR values over time. A general capacity of the model to predict disease

flares as well as response to treatment could be demonstrated. Predicted DAS28-BSR ampli-

tudes during flares were lower than real values and smaller variations of disease activity were

not predictable. We obtained better results for patients with disease duration >3 years, age

>50 and positive anti-CCP antibodies (Table 2). In contrast to classification, regression had

lower MSE values and thus performed better in female and RF-negative patients. The linear

regression model showed a lower performance with a significantly higher MSE compared to

Table 2. Performance of an AdaptiveNet model for prediction of active disease in test sets containing different patient subsets.

No. of visits Accuracy Sensitivity Specificity AUC MSE

All patients (Max. observation time 5 years) 28601 0.75 (+- 0.007) 0.84 (+- 0.01) 0.61 (+- 0.03) 0.72 (+- 0.01) 0.90 (+- 0.05)

Age� 50 years 21653 0.76 (+- 0.01) 0.85 (+- 0.01) 0.59 (+- 0.04) 0.72 (+- 0.01) 0.87 (+- 0.06)

Age < 50 years 6948 0.74 (+- 0.01) 0.80 (+- 0.02) 0.66 (+—0.04) 0.73 (+- 0.01) 0.98 (+- 0.06)

Disease duration < 3 years 3257 0.70 (+- 0.01) 0.83 (+- 0.04) 0.56 (+- 0.07) 0.70 (+- 0.02) 1.05 (+- 0.13)

Disease duration� 3 years 24558 0.75 (+- 0.008) 0.83 (+- 0.01) 0.62 (+- 0.03) 0.73 (+- 0.01) 0.88 (+- 0.05)

Rheumatoid factor positive 21501 0.76 (+- 0.007) 0.85 (+- 0.01) 0.60 (+- 0.04) 0.73 (+- 0.01) 0.91 (+- 0.05)

Rheumatoid factor negative 6607 0.71 (+- 0.02) 0.77 (+- 0.06) 0.64 (+- 0.03) 0.70 (+- 0.01) 0.87 (+- 0.08)

Anti-CCP negative 6228 0.74 (+- 0.01) 0.82 (+- 0.004) 0.626 (+- 0.03) 0.72 (+- 0.01) 0.92 (+- 0.05)

Anti-CCP positive 13084 0.74 (+- 0.02) 0.78 (+- 0.06) 0.67 (+- 0.02) 0.73 (+- 0.02) 0.85 (+- 0.07)

Male 7174 0.75 (+- 0.02) 0.779 (+- 0.03) 0.72 (+- 0.05) 0.75 (+- 0.01) 0.97 (+- 0.07)

Female 21427 0.75 (+- 0.01) 0.85 (+- 0.01) 0.56 (+- 0.02) 0.71 (+- 0.007) 0.88 (+- 0.07)

Accuracy, sensitivity, specificity, and area under the curve (AUC) indicate performance for classification, Mean Squared Error (MSE) for regression. All results show

mean and standard deviation over 5 different cross-validation folds. Anti- CCP: Citrullinated peptide antibodies.

https://doi.org/10.1371/journal.pone.0252289.t002
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Fig 2. Classification performance of AdaptiveNet to predict active disease (DAS28-BSR>2.6) in different patient

subsets shown by Receiver Operating Characteristic Curves. Accuracy and corresponding AUCs are indicated in

Table 1.

https://doi.org/10.1371/journal.pone.0252289.g002
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AdaptiveNet (0.97 SD +- 0.06). MSE of the random forest was 0.963 (SD +- 0.05) and 0.978

(SD +- 0.06) for the SVM. The advantage of AdaptiveNet over a fully-connected neural net-

work has been shown previously [18].

Feature importance

Feature importance was determined by a random forest to define the relative importance of

variables for disease prediction (S1 Fig). Apart from the target variable itself, the number of

painful joints, longer disease duration and age turned out to be the most relevant factors,

Fig 3. Examples of true disease activity and corresponding predictions of AdaptiveNet by regression analysis. Predictions are made step to step

from the current to next visit.

https://doi.org/10.1371/journal.pone.0252289.g003
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followed by medication in general, time point of last medication adjustment, number of swol-

len joints, and HAQ. The importance of medication type (csDMARD vs. bDMARD or cortico-

steroids) for the prediction of DAS28-BSR was only marginal. Infliximab, tocilizumab and

steroids had a slightly higher influence than csDMARDs or other bDMARDs in predicting dis-

ease activity.

Discussion

This study demonstrates a comprehensive classification and regression analysis using a novel

deep learning architecture on a RA dataset. Our algorithm allowed individual predictions of

DAS28-BSR values at next visit with an acceptable deviation of 8% compared to real values.

We postulate that concrete numerical predictions of disease activity, rather than mere classifi-

cation into high or low risk patients might facilitate the application of DL predictions in clini-

cal practice e.g. to optimize treat-to-(predicted)-target strategies or setting control intervals.

AdaptiveNet outperformed linear and logistic regression, a random forest and a support

vector machine as basic ML methods. This confirms the problem of incomplete and timely

inhomogeneous data for ML from registries or from electronic medical records [23]. Improve-

ment is required concerning the relatively low specificity, the main limitation of all investi-

gated ML methods in this analysis. Potentially, the combination with other ML methods such

as using pre-trained generative models or K-nearest neighbor (KNN) methods could further

improve performance of AdpativeNet [24,25]. To further improve the performance, larger

datasets through -omics or digital biomarkers e.g. by wearables and patient reported outcomes

could be taken into account. For example, ML algorithms using data from activity tracker

have been described to monitor disease activity in RA and to detect flares as inexpensive data

sources with minimal patient burden [26].

We investigated the influence of different clinical variables on the prediction performance

in RA. As a further new finding, long disease duration and rheumatoid factor positivity

increase the predictability of the active disease by classification. This information could be of

importance e.g. for patient selection in future ML-assisted clinical trials. In contrast to classifi-

cation, the prediction of numeric DAS28-BSR by regression performed better in females and

in anti-CCP positive patients. The reason for the different role of rheumatoid factor and anti-

CCP status in classification versus regression analysis remains to be investigated. Classification

tasks are prone to overfitting to the old class, e.g. predicting no change to the previous situa-

tion. Patients in remission for a long period likely will stay in remission, or vice versa, patients

resistant to multi-line treatment will more likely remain in active disease. Female, anti-CCP

positive patients per se having a higher risk of clinical progression might be less sensitive for

overfitting and thus more suitable for regression analysis. Prediction performance in regards

of treatment history has not been performed in this study. To some extent surprising, medica-

tion was less important for the prediction of disease activity than age or disease duration. The

reason for this might be explained by limited effectiveness after multi-line treatments or vul-

nerability of DAS28-BSR as target variable to confounding factors as e.g. fibromyalgia. The

slightly higher performance of infliximab to forecast disease activity is reasonable from a clini-

cal perspective by intravenous application and higher doses. Whether DL is able to predict

drug survival or individual treatment responses needs to be evaluated.

As a limitation of this study we did not compare AdaptiveNet to statistical prediction mod-

els not based on ML. On the other hand, the weakness of classical prediction models e.g. for

response to methotrexate has been pointed out in a recent meta-analysis, indicating the need

for novel prediction models [5]. Potentially, disease features such as epigenetics but also life-

style, sleep or nutrition contribute to prediction performance more than expected, notably
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when pain is part of the predicted target such as in the DAS28 score. Thus, further studies

need to investigate the performance of DL using alternative input and target features including

other markers for disease activity than DAS28-BSR.

Taken together, AdaptiveNet is superior to conventional ML methods in predicting disease

activity in RA patients. We also provide evidence which clinical features increase predictability

of this model. We are convinced that DL will play an increasing role to improve patient care

and to foster personalized treatment and shared-decision making in patients with RA.

Numeric forecast of disease activity may open the way for a ´treat-to-predicted-target´ stew-

ardship which could be more time-efficient than conventional treat-to-target approaches. Pro-

spective trials will be necessary to prove efficacy, safety and cost effectiveness of ML-assisted

care in arthritis.
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