Received: 28 May 2023 | Revised: 24 November 2023

'.) Check for updates

Accepted: 30 November 2023

DOI: 10.1111/1755-0998.13915

RESOURCE ARTICLE

MOLECULAR ECOLOGY
WILEY

Individual genotypes from environmental DNA: Fingerprinting
snow tracks of three large carnivore species

Marta De Barba'

| Molly Baur® | Frédéric Boyer* | Luca Fumagalli*®® |

Marjeta Konec? | Christian Miquel*® | Elena Pazhenkova® | Nadége Remollino® |
Tomaz Skrbinsek'? | Céline Stoffel® | Pierre Taberlet**

1Department of Biology, Biotechnical
Faculty, University of Ljubljana, Ljubljana,
Slovenia

2DivjaLabs Ltd., Ljubljana, Slovenia

3Laboratory for Conservation Biology,
Department of Ecology and Evolution,
Biophore, University of Lausanne,
Lausanne, Switzerland

“Université Grenoble Alpes, Université
Savoie Mont Blanc, CNRS, LECA,
Laboratoire d'Ecologie Alpine, Grenoble,
France

SUniversity Center of Legal Medicine
Lausanne and Geneva, Lausanne
University Hospital (CHUV) and University
of Lausanne, Lausanne, Switzerland

SUIT - The Arctic University of Norway,
Tromsg Museum, Tromsg, Norway

Correspondence

Marta De Barba, Department of Biology,
Biotechnical Faculty, University of
Ljubljana, Jamnikarjeva 101, SI-1000
Ljubljana, Slovenia.

Email: marta.debarba@bf.uni-lj.si

Funding information

European Commission, Grant/Award
Number: LIFE16 NAT/SI/000634 and
LIFE18 NAT/IT/000972; Javna Agencija za
Raziskovalno Dejavnost RS, Grant/Award
Number: P1-0184; Swiss Federal Office
for the Environment (FOEN)

Handling Editor: Paul Hohenlohe

Abstract

Continued advancements in environmental DNA (eDNA) research have made it pos-
sible to access intraspecific variation from eDNA samples, opening new opportunities
to expand non-invasive genetic studies of wildlife populations. However, the use of
eDNA samples for individual genotyping, as typically performed in non-invasive ge-
netics, still remains elusive. We present successful individual genotyping of eDNA ob-
tained from snow tracks of three large carnivores: brown bear (Ursus arctos), European
lynx (Lynx lynx) and wolf (Canis lupus). DNA was extracted using a protocol for isolat-
ing water eDNA and genotyped using amplicon sequencing of short tandem repeats
(STR), and for brown bear a sex marker, on a high-throughput sequencing platform.
Individual genotypes were obtained for all species, but genotyping performance dif-
fered among samples and species. The proportion of samples genotyped to individu-
als was higher for brown bear (5/7) and wolf (7/10) than for lynx (4/9), and locus
genotyping success was greater for brown bear (0.88). The sex marker was typed in
six out of seven brown bear samples. Results for three species show that reliable in-
dividual genotyping, including sex identification, is now possible from eDNA in snow
tracks, underlining its vast potential to complement the non-invasive genetic methods
used for wildlife. To fully leverage the application of snow track eDNA, improved
understanding of the ideal species- and site-specific sampling conditions, as well as
laboratory methods promoting genotyping success, is needed. This will also inform ef-
forts to retrieve and type nuclear DNA from other eDNA samples, thereby advancing

eDNA-based individual and population-level studies.
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1 | INTRODUCTION

Environmental DNA (eDNA) sampling and analysis, using organismal
DNA extracted from environmental samples (Taberlet et al., 2012),
are revolutionizing the way we assess biodiversity, enhancing the
scope of ecological investigations and conservation studies (Beng &
Corlett, 2020; Cristescu & Hebert, 2018; Deiner et al., 2017, 2021;
Taberlet et al., 2018). So far, eDNA applications have primarily fo-
cused on species detection and ecosystem-level diversity (Beng &
Corlett, 2020), but continued advancements within eDNA research
have resulted in increased effectiveness of approaches for recover-
ing eDNA potentially suitable also for addressing intraspecific diver-
sity and population-level questions (Adams et al., 2019; Sigsgaard
et al,, 2020).

In the context of wildlife studies of macroorganisms, the abil-
ity to access intraspecific genetic variation from various eDNA
sources represents an advancement in non-invasive genetic
methods typically based on the collection of scats, hair, feathers,
urine, etc. (Andrews et al., 2018; Waits & Paetkau, 2005). DNA
traces in the environment, in fact, offer new opportunities to non-
invasively genetically sample animals in their natural setting, with-
out handling or even observing them (Adams et al., 2019). One
main challenge is that environmental samples comprised DNA of
several species and individuals of the same species, all diluted in
the sample matrix and contributing unequal amounts of DNA to
the eDNA mixture (Barnes & Turner, 2016; Sigsgaard et al., 2020).
However, through targeted eDNA sampling aimed at maximizing
DNA retrieval of the target species and sometimes individuals, re-
searchers have been able to assess mitochondrial DNA (mtDNA)
haplotype diversity, frequency and distribution and even com-
pile mitogenomes (Dugal et al., 2022; Farrell et al., 2022; Parsons
et al., 2018; Sigsgaard et al., 2016; Székely et al., 2021). Further,
studies are now showing real potential for calling nuclear variants
in eDNA samples for use in a population genetic framework (e.g.
Andres et al., 2021; Jensen et al., 2021).

Reliable analysis of nuclear DNA (nDNA) is key in enabling
eDNA-based population studies because of the higher informa-
tion content and resolution of nDNA compared to mtDNA (Adams
et al., 2019; Sigsgaard et al., 2020). Typing of nDNA will also allow
for individual identification, which is the basis of wildlife non-
invasive genetic surveys, genetic monitoring programs and foren-
sics (Kelly et al., 2012; Ogden et al., 2009; Schwartz et al., 2007).
However, individual genetic profiling from eDNA sources remains
elusive. Retrieving nDNA of a target species from an environmen-
tal mixture in sufficient quantity and quality is more difficult com-
pared to mtDNA because nDNA is present in significantly lower
copy number (except for the multi-copy regions) and it degrades
faster due to the absence of organellar membranes protection
(Parsons et al., 2018; Sigsgaard et al., 2020).

Snow tracks, that is, footprints left by animals while walking
in the snow, are an ideal setting for targeted eDNA sampling in
population-level wildlife studies. eDNA from animal tracks origi-
nates from cells present on the animal paw and deposited on the

snow surface due to friction against the ground. Therefore, a first
advantage of snow track eDNA sampling in terrestrial ecosystems
is that an animal's DNA is found in a well-delimited area as op-
posed to samples from aquatic environments where eDNA dilution
and mixing from multiple sources is greater (Dalén et al., 2007,
Franklin et al., 2019; Howell et al., 2021). This feature also in-
creases the chances of collecting DNA from single individuals of
the target species. Secondly, snow limits DNA degradation by act-
ing as a natural freezer (Dalén et al., 2007; Howell et al., 2021) and
hence facilitates the preservation of nDNA. Finally, snow tracks
of terrestrial animals are commonly found in winter in snowy eco-
systems (Kinoshita et al., 2019), potentially allowing for adequate
sample sizes in population studies.

Snow track eDNA has already been used for species detec-
tion of several predators through mtDNA analysis (Barber-Meyer
et al., 2020; Dalén et al., 2007; Franklin et al., 2019; Kinoshita
et al,, 2019). A number of published studies have attempted to
analyse nDNA with varying results for lynx (Hellstrém et al., 2019),
wolf (Barber-Meyer et al., 2020, 2022) and polar bear (Von Duyke
et al., 2023) with only this latter recent study being successful in
achieving reliable multilocus genotyping for individual identifica-
tion in a single species. However, individual genotyping from snow
track eDNA as a wildlife non-invasive genetic method still remains
elusive. Several reasons have been called into play for the earlier
failures, spanning from field conditions and collection methods to
laboratory protocols. All these previous works evaluated the ampli-
fication and genotyping performance of existing microsatellite loci
(i.e. short tandem repeats - STR) either on agarose gel or by capillary
electrophoresis.

In this study, we present the first successful individual genotyp-
ing from eDNA in snow tracks of three large carnivore species in
temperate ecosystems: brown bear (Ursus arctos), wolf (Canis lupus)
and Eurasian lynx (Lynx lynx). We sampled snow tracks in the field
and used an extraction protocol for water eDNA samples and a ge-
notyping approach based on amplicon sequencing of STRs and a sex
marker on a high-throughput sequencing (HTS) platform (Figure 1a).
We discuss genotyping success in relation to field conditions, the
ecology of eDNA (Barnes & Turner, 2016) of the three species and
laboratory protocols with implications for advancing the use of
eDNA approaches for population-level wildlife studies (Wilcox &
Jensen, 2022).

2 | MATERIALS AND METHODS
2.1 | Snow track eDNA sampling

Snow tracks were collected opportunistically during winter in
2019, 2020 and 2022 in the Slovenian Alps and Dinaric Mountains
(seven brown bear samples and nine lynx samples) and in the
French Alps (10 wolf samples) (Table 1). Field personnel including
volunteers, field biologists and park/forest rangers performed the
sampling in areas known for the stable presence of the species.
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FIGURE 1 Workflow of snow track eDNA genotyping. (a) Components of the workflow from eDNA sampling to individual identification,
with main steps of the data analysis outlined. (b) Flowchart of the matching and validation of individual assignment process for pairs of
sample genotypes, detailing how brown bear, lynx and wolf snow track samples were assigned to individuals. In (b) blue text indicates the
sample genotypes for each specific case described, while grey dashed arrows indicate cases not represented in the sample genotypes
analysed. ADO, allelic dropout; FA, false allele; MM, mismatches; Ql, quality index. Snow tracks photo credits: Miha Krofel.

Samples were collected upon discovery of trails of snow tracks
visually attributed to the target species. Brown bear is the only
ursid in southern Europe and it occurs at high density in the study
area. Footprints of adult brown bears are readily distinguishable
from other wildlife. Lynx and wolves are closely monitored as part
of ongoing projects. Therefore, to locate trails on snow for these
species, we took advantage of available fine-scale information on
presence and movement from GPS-telemetry and camera trapping
for individual lynx and wolves within previously identified packs.
A sterilized spoon was used to scrape the surface of a snow track
and place the snow in a sterile plastic bag (Fisherbrand Sterile
Polyethylene Sampling Bags, 10” x 12”). Multiple bags were used
when larger volumes of snow were collected for a sample. The

number of tracks collected for a given sample ranged from 1 to
17. Sampling location, sample characteristics and environmental
conditions at the sampling site were recorded by field operators
(Table 1, Table S1). Plastic bags containing the snow were labelled
and transported frozen to the genetic laboratory, where they were
kept at —20°C until DNA extraction.

2.2 | Snow track eDNA extraction

We extracted DNA from snow track samples using the DNeasy
PowerWater Sterivex Kit (Qiagen, Germany) following manufac-
turer's instructions (DNeasy PowerWater Sterivex Kit Handbook
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FIGURE 1 (Continued)

05/2019) with slight modifications as described below. We pro-
cessed 10-12 samples at a time, with each set of extractions taking
3 working days: the first day for snow melting, the second day for
water filtering and the third day to complete the DNA extraction.
Snow samples in plastic bags were completely thawed at room
temperature (this took up to 24h, depending on the amount of
snow). The following day, melted snow was left to settle until
large forest debris was deposited on the bottom of the bag. For
each sample, the resulting water was filtered through a Sterivex
filter (Millipore cat. no. SVGPL10RC) using a 60-mL volume sy-
ringe (Omnifix Luer Lock Solo 50mL). We measured the amount
of water filtered by collecting it in a graduated container. For
two brown bear samples, we performed two extractions for each
sample using two filters because the first filter clogged before fil-
tering all the available water (this resulted in a total of nine DNA
extractions analysed for the brown bear) (Table 1). Once all sam-
ples were filtered (this step took up to a full working day), filters
were stored in a freezer at -20°C until the next morning. DNA
extraction was completed following the kit protocol, omitting the
incubation step at 90°C and the steps with the PowerBead Tubes
as recommended for samples containing easy-to-lyse organisms
or where less DNA shearing is desired. The centrifuge was used
instead of the vacuum manifold with kit handbook settings and
collection tubes provided with the kit. DNA was eluted in 100-
pL volume. An extraction negative control was included with all
sets of extractions to monitor contamination and was processed
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with the snow samples in all subsequent stages of the analysis.
DNA extraction and the following PCR set-up were carried out in
aroom dedicated to low-quantity/quality DNA samples.

2.3 | STR amplicon sequencing

We performed individual profiling using genotyping by HTS of STR
amplicons (De Barba et al., 2017; Fordyce et al., 2011). For each spe-
cies, we used a set of STR markers designed for optimal multiplex
amplification and HTS genotyping. The brown bear set includes 13
STR recently described and used for individual profiling from fae-
cal DNA (De Barba et al., 2017), with the addition of a sex-specific
marker (Pageés et al., 2009). For wolf and lynx, we used 13 new
STRs (Table S2) developed following criteria outlined in De Barba
et al. (2017).

For each species, STRs (and a sex-specific marker for brown
bears) were co-amplified in a single multiplex PCR. Reactions were
carried out in a 20-pL volume and contained 1x concentrated
Platinum Multiplex PCR Master Mix, 1% GC enhancer (brown
bear) or 0.0032mg of BSA (lynx, wolf), 0.035-0.1uM of each
primer (Table S2) and 2-uL DNA template. The thermocycling pro-
file had an initial denaturation step of 2min at 95°C, followed by
50cycles of 30s at 95°C, 90 s at 57°C (brown bear)/60s at 55°C
(wolf, lynx), 60s at 72°C and a final elongation step of 10min
at 72°C. Amplifications were performed in eight replicates per
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sample, following a full multitube approach (Taberlet et al., 1996).
Tagged primers, modified by the addition of molecular identifiers
on the 5’ end, were used in each PCR to uniquely label any given
PCR product for retrieving the respective sequence data in post-
sequencing bioinformatic analysis. Tags consisted of eight nucle-
otides enabling a minimum of five mismatches between any pair
of tags (Coissac, 2012). An additional 1-2 specified nucleotides
were added to the tags 5’ end to increase complexity for clus-
ter detection on the flow cell. PCR negative (water) and positive
(a non-invasive DNA sample previously successfully genotyped)
controls and “tagging system” controls (corresponding to unused
tag combinations) were included in the PCR set-up to facilitate the
detection of potential contamination, false positive caused by tag-
jumps (Schnell et al., 2015), and monitor the performance of the
amplification and the sequencing process (De Barba et al., 2014;
Zinger et al., 2019).

For each species, PCR products were pooled equivolume, pu-
rified using the MinElute PCR purification kit (QIAGEN, Germany)
(all samples) and Spribeads kit (SPRIselect, Beckman Coulter,
Indianapolis) (lynx and wolf samples only) and then quantified with
Qubit vO3 Fluorometer (Life Technologies). Separate sequencing
libraries were constructed for each pool targeting approximately
500-2000 reads/marker/PCR. As samples were processed in dif-
ferent laboratories, different library preparation protocols and se-
quencing platforms were used. Brown bear samples analysed at the
University of Ljubljana were sent to a commercial service (www.
eurofinsgenomics.eu) for library preparation and sequencing on
a NovaSeq platform (2x150bp) (lllumina Inc.). In contrast, at the
University of Lausanne, the Tagsteady protocol, a procedure for li-
brary preparation that significantly reduces the impact of tag-jumps
(Carge & Bohmann, 2020), was implemented with lynx and wolf
snow tracks, and samples were sequenced on a Miniseq platform
(2x150bp) (Ilumina Inc.).

2.4 | Bioinformatics analysis of the sequence data

DNA sequence data analysis was performed using a modified ver-
sion of the pipeline published in De Barba et al. (2017) (Figure 1a),
implemented using in-house Python and R scripts, on a standard
desktop computer running Linux or MacOSX (pipeline description
available at https://github.com/PazhenkovaEA/ngs_pipelines.py).
Initially, lllumina reads were processed using the OBITools3 (Boyer
et al., 2016) to assemble paired-end reads, filter out unaligned se-
quences, demultiplex sequences by markers and samples discard-
ing sequences without a perfect tag match and at least three primer
mismatches. STR alleles were inferred from the observed sequences
and relative read counts in each PCR product following the process
already described in De Barba et al. (2017). In summary, alleles were
defined as the most abundant sequences containing the STR motif
of the locus and associated with their relative stutter sequence. If a
sequence had no stutter and a lower number of reads than the user-
defined threshold (default 100 reads), it was discarded. Consensus

genotypes at each locus for a sample were determined based on STR
sequence alleles observed across the eight PCR replicates, requiring
that an allele be observed at least twice for heterozygotes and three
times for homozygotes. Similarly, with the sex marker, males were
scored by the detection of the homologous X and Y sexual chromo-
some sequences in at least two replicate PCRs, while females were
scored by the detection of the X chromosome sequence in at least

three replicate PCRs.

2.5 | Genotyping performance and individual
identification

For each sample, we estimated i. amplification success (AS), as the
proportion of positive PCR replicates at each STR locus, that is, rep-
licates yielding reads assigned to at least one allele sequence, aver-
aged across loci; ii. rate of allelic dropout (ADO) and iii. rate of false
alleles (FA) averaged across loci following formulas in Broquet and
Petit (2004) using data for each PCR replicate compared to the con-
sensus; iv. locus genotyping success (GS), as the proportion of loci
analysed for which a consensus genotype was obtained and vi. the
quality index (Ql), as the proportion of PCR replicates at each locus
in which the consensus genotype was observed, averaged across loci
(Miquel et al., 2006).

For each species, we calculated overall multilocus genotyping
success (MGS), as the proportion of samples that were identified
to individual. Sample individual assignment was a multistep pro-
cess that considered all genotypic, field and ecological information
available for the analysed samples and the species in the study area
(Figure 1a,b). We first required that samples had a consensus geno-
type obtained at >50% of the STR loci analysed and excluded sam-
ples with more than two alleles detected at several loci. Then, to
reliably assign samples to different individuals, we evaluated sample
genotype similarity by calculating the number of locus mismatches
between pairs of sample genotypes (Paetkau, 2003) using a custom
R script (provided in Supplementary Information). With moderate/
high allelic diversity (i.e. >2 alleles at most loci for the genotypes
compared) and sample Ql 20.5, sample genotypes with 24 mis-
matches (4 MM) were considered as originating from different indi-
viduals. Pairs of similar genotypes presenting 1-3 locus mismatches
(1-3MM) were scrutinized to determine whether mismatches could
have been caused by genotyping errors, assuming that samples with
no mismatches (OMM) were left by the same individual. However,
with fewer alleles observed (i.e. 1-2 at several loci) and error-prone
samples (i.e. Ql <0.5), we adopted more stringent criteria for indi-
vidual assignment, as, under these premises, genotyping errors
could be difficult to distinguish from true genotypic differences. In
these cases, we specifically checked if mismatches between pairs
of genotypes involved different alleles at some of the loci (i.e. MM
not compatible with ADO/FA) before assigning samples to different
individuals. In addition, we used field notes (Table S1) and available
monitoring data, that is, about the presence or transit of single/mul-
tiple individuals at the sampling site, to ascertain dubious individual
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assignment and the ability for accurate individual genotyping. For
lynx, we also disposed of genotyping data previously obtained at
the same markers from samples collected from collared animals that
were compared with snow track genotypes.

Genotypes were organized in a custom Microsoft Access data-
base. All calculations were performed in R (v.4.2.1) and Microsoft

Excel.

3 | RESULTS

Sequencing of the snow track samples generated 4,818,564 reads
assigned to markers and samples, 3,667,315 for brown bear, 224,061
for wolf and 927,188 for lynx, with an average of 1529 (bear), 228
(wolf), 876 (lynx) reads/marker/PCR that were used for genotyping.
The average proportion of reads cumulatively attributed to alleles
for all loci multiplexed in an amplification reaction was 59% (14%-
82%) across all samples. Remaining sequences included stutter
sequences and a variable number of less abundant sequences origi-
nating from PCR and sequencing errors. The level of reads observed
in the negative and tagging system controls was very low in general,
and negligible in the samples prepared with the Tagsteady protocol
(Appendix S1).

Short tandem repeats genotyping performance differed among
samples analysed and for the three species (Tables 1 and 2). Brown
bear samples showed generally higher genotyping success, resulting
in a consensus genotype for 6-13 of 13 loci (GS=0.46-1). However,
among the five lynx samples that had non-zero GS, three samples
had 12 out of 13 loci genotyped (GS 20.92), and among the eight
wolf samples that had non-zero GS, seven samples had at least 11
out of 13 loci genotyped (GS 20.85). Number of alleles per locus in
the samples analysed was 2-5 for brown bear, and 1-3 for both lynx
and wolf (Tables S2 and S3).

A consensus genotype at 27 loci was reached for eight of the
brown bear DNA extracts corresponding to six snow track samples
(Table 2). One sample genotype (CX.113E) had >2 alleles at three
loci (UAO6, UA16 and UA51) indicating a possible mixed sample con-
taining DNA from multiple individuals. Each of the genotypes of the
remaining five samples had at least four-locus mismatches with gen-
otypes of other samples and was assigned to an individual, result-
ing in MGS=71.4% (5/7 samples) for individual identification. The
genotype identified from the brown bear tracks extracted using two
filters matched between duplicate extractions, except for one allele
difference at one locus, due to ADO or FA (locus UA14 and UA64,
respectively, in each of the duplicate extraction sets). Sex was suc-
cessfully identified from all five (one female and four males) of the six
brown bear samples for which an individual genotype was obtained,
and was concordant among duplicate DNA extracts (Table 2). The
sex marker was typed also for the mixed sample, but sex ID could not
be ascertained in this case (Table 2).

For the lynx, four samples were genotyped at >7 loci (Table 2).
Despite low QI values for most samples (Table 1) and low allelic di-
versity (Tables S2 and S3), three could be reliably assigned to three

Wl LEYJ—7 of 13
differentindividuals L1, L2 and L3 (24 MM, including differing alleles).
A fourth sample (CX.1158), collected in the same area and day of
one of the unique genotypes (L1), was considered having originated
from the same individual after accounting for possible ADO at three
loci (LLO043, LLO044 and LLO125) and given differing alleles at two
loci from the other unique genotypes. This resulted in MGS=44.4%
(4/9 samples genotyped to individual). L1 genotype matched that of
a lynx sampled the same day from a hair tuft collected in the area
(lynx monitoring data not shown). The other two unique genotypes
(L2 and L3) were identified from samples that, based on field notes
(Table S1), were left by an adult lynx and a younger individual possi-
bly stepping on the same tracks, initially raising concerns on the abil-
ity of distinguishing their genotypes. However, these two genotypes
matched those previously determined from buccal swabs collected
from a GPS-collared female lynx monitored in the area and from her
kitten, supporting reliable individual identification.

For the wolf, seven samples were genotyped at 27 loci (Table 2).
These samples were collected from the area occupied by a single
pack (Table S1) and presented low allelic diversity, that is, 1-2 al-
leles at most loci (Tables S2 and S3). In addition, they had low QI
values (Table 1). After accounting for genotyping errors and consult-
ing field notes, sample genotypes could be assigned to at least two
individuals detected in two and five samples, respectively, resulting
in 70% MGS (7/10 samples). Specifically, the two sample genotypes
assigned to one individual (W1) matched at all genotyped loci ex-
cept two (CI285 and ClI291), with allelic differences compatible with
ADOY/FA. In addition, they had, respectively, 3-6 (sample Neige-2,1)
and 5-7 (sample Neige-2,3) locus mismatches with sample geno-
types assigned to the other individual, with mismatches involving
different alleles. The other five samples were all conservatively as-
signed to a second individual (W2). Their sample genotypes differed
at six loci (1-6 mismatches between pairs of sample genotypes) with
mismatches compatible with ADO (loci CI233, CI285, CI291, CI308,
ClI527) and FA (locus CI375). However, field notes reported the pos-
sible presence of two individuals in some of the samples (Table S1).
Therefore, we could not exclude that mismatches are actually true
genotypic differences or that the DNA profile obtained from some
samples resulted from DNA mixing within a track of related indi-
viduals with highly similar genotypes. Consequently, W2 genotype
remains to be validated and the wolf snow tracks analysed can only
indicate the detection of at least two individuals.

Figure 1b provides a schematic illustration of the subsequent
decision-making steps described above for assigning sample geno-

types to individuals.

4 | DISCUSSION

In this study, we successfully performed individual genotyping
of STRs for three large carnivore species, and of a sex marker for
one of these species, using snow track eDNA. Multilocus genotyp-
ing success rates for individual identification were in the range of
those reported for the species using non-invasive genetic sampling
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being deposited on the snow. In addition, brown bears are known to
exhibit pedal marking behaviour, actively twisting their feet on the
ground (Sergiel et al., 2017). The amount of DNA left on snow by
individuals of a species could be affected by other behaviours, such
as animals licking their paws for self-grooming. Beside the amount
of DNA, animal behaviour could also affect the accuracy of individ-
ual genotyping. For example, it is not unusual for some species, in-
cluding large carnivores, to step on tracks left by other individuals
(Liberg et al., 2011; Sergiel et al., 2017), potentially resulting in eDNA
sampling from multiple individuals (mixed samples). If not considered
during sample collection or in the sampling design of a study, such
instances can imperil individual genotyping efforts and bias results.
While using STR genotyping in an outbred, genetically diverse pop-
ulation, mixed DNA profiles would typically be revealed through the
presence of >2 alleles at several loci (as in one of the brown bear
samples in this study), their detection could be subtler when related
individuals are involved. This was a concern with the samples from a
parent-offspring lynx pair and from a wolf pack in our study, as high
genotype similarity could have resulted in the detection of an erro-
neous profile resembling that of a single individual. In such cases,
field information about track characteristics and knowledge of the
study system (i.e. presence of individuals of the target species), as
available in our study, could be very important for ascertaining ge-
notyping data and assessing if accuracy can be ensured. Under some
circumstances, mixed samples could be resolved at the individual
level (e.g. with animals known to be in the area and whose genotype
has already been determined). Nonetheless, even if individual iden-
tification is prevented, detection and reporting of mixed samples will
benefit data accuracy in population studies and support wildlife fo-
rensics, management and conservation, for example, indicating the
presence of >1 individual at the sampling site, or informing on the
efficiency of a sampling method for detecting individuals.

Beside the sampling conditions discussed above, laboratory pro-
tocols, from DNA extraction and amplification to the genotyping
approach, differed compared to previous snow track genotyping
studies (Barber-Meyer et al., 2020, 2022; Hellstrom et al., 2019; Von
Duyke et al., 2023) and may have contributed to genotyping suc-
cess. A major difference was the adoption of an HTS approach for
amplicon sequencing of STRs. Markers analysed are short (<120bp)
tetranucleotides, selected for optimal multiplexing, to facilitate am-
plification of degraded DNA and multilocus allele scoring from HTS
data. While there is evidence that reliable genotypes can be obtained
analysing dinucleotide STRs on capillary electrophoresis (Von Duyke
et al., 2023; personal data not shown), HTS sequencing of tetranucle-
otides, provided appropriate sequencing coverage, allows for greater
sensitivity and clearer allele calling that may have enabled genotyp-
ing even with limited DNA quantities (Fordyce et al., 2015). In our
study, sequencing conditions differed between brown bear samples
and wolf/lynx samples, and a higher number of sequence reads was
available for genotyping brown bear samples. Libraries for wolf and
lynx samples were prepared using a protocol especially developed for
minimizing tag-jumps that can form at different steps of the library
preparation (Carge & Bohmann, 2020), while a proprietary protocol

was used for preparing the brown bear samples. High incidence of
tag-jump reads is a concern because it could reduce allele detection
and also lead to inaccurate genotyping. The low level of reads ob-
served in the controls indicates that spurious sequences, including
tag-jumps, were not a problem with both protocols and were actually
negligible with the Tagsteady protocol used for lynx and wolf sam-
ples. Sequencing coverage was, on average, higher for brown than for
lynx (almost twice reads/marker/PCR) and wolf (almost seven times
reads/marker/PCR). Nonetheless, even with low coverage, individual
ID was obtained for a number of samples (up to 70% with wolf that
had the lowest read depth). This underlines the high sensitivity of
an HTS approach, while also suggesting that increasing sequencing
depth to levels similar to the brown bear samples may allow reducing
ADO in lynx and wolf samples and increasing genotyping success in
marginal samples.

Additional features of an HTS-based method are particularly rel-
evant for snow-track genotyping. The main one is to enable access
to the actual allele sequence polymorphism, in addition to length
polymorphism, of highly variable STRs and the sex marker. This of-
fers greater discriminating power for distinguishing individuals as
well as mixed/contaminated samples due to DNA mixing of individu-
als of a species or different species (De Barba et al., 2017). Working
with sequence data also allows for direct exchange and comparison
of genotypes generated by different laboratories and at different
times, which will facilitate the use of the collected datain large-scale,
transboundary and long-term studies. Another important advantage
of the HTS genotyping method is to allow efficient processing of
samples requiring high replication levels, such as eDNA samples,
that is, through a full multitube approach in a single run, rather than
time-consuming screening and selective replication of samples/loci.

The genotyping success reported for the three large carnivores
studied indicates that there is a vast potential for the application
of eDNA sampling on snow tracks for species inhabiting temperate
and polar ecosystems with a snowy season, significantly impacting
wildlife research, management and conservation. The species that
will benefit the most are those of conservation concern that are
extremely elusive and/or difficult to study. Examples include se-
cretive felid species such snow leopard or Siberian tiger (Rodgers
& Janecka, 2013) and the polar bear (Ursus maritimus) (Von Duyke
et al., 2023) among other species for which population data are
lacking. In addition, species commonly monitored through non-
invasive genetic sampling, such as wolves, brown and black bears
and mesocarnivores (Kelly et al., 2012; Mumma et al., 2015), will also
profit from genotype data collected through snow tracking. Snow
track eDNA can complement other genetic sampling methods, by
increasing individual detection and sample sizes, that is, for all age/
sex classes or for the winter season, supporting more effective
population monitoring and identification of targeted individuals for
management purposes (Barber-Meyer et al., 2020). These systems,
where ecological information is already available for the study spe-
cies, are also those that would allow the most robust use of snow
track eDNA for reliable individual identification. Here, the geno-
types obtained from snow tracks can be used in association with
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other available field or genotype data to compensate for possible
bias associated with snow track sampling, specifically high ADO rate
and eDNA sampling of multiple individuals.

To fully leverage the potential of snow track eDNA genotyping,
future studies should work on aspects relating to both sampling in
the field and laboratory analysis. In the field, efforts should be di-
rected towards a thorough understanding of the optimal conditions
for snow track sampling, investigating factors affecting genotyping
success and accuracy related to the sampling site and methods and
considering the eDNA ecology of target species. Previous studies
have already stressed the importance of understanding the effect
of track age, number and conditions of tracks sampled, temperature
and UV exposure, equipment utilized for sampling and storage condi-
tions (Barber-Meyer et al., 2020, 2022; Hellstrom et al., 2019; Howell
et al., 2021). We further recommend that these effects be assessed
for various target species in their ecosystem in order to evaluate
species- and site-specific differences in eDNA deposition and deg-
radation on snow tracks, and ideal sampling conditions for detection
of individuals. In the laboratory, we emphasize the importance of
DNA extraction protocols maximizing the amount and the quality of
DNA retrieved from snow tracks, as well as investigating how sam-
ple treatments, e.g. the effect of thawing snow at room temperature
for several hours, may affect DNA degradation and observed geno-
typing performance. We also recommend using highly discriminating
individual profiling approaches optimized for accurate detection of
low-level allele signals to increase genotyping sensitivity and inform
about mixed samples. This includes the employment of library prepa-
ration protocols specifically developed for minimizing the occurrence
of spurious sequences and therefore the noise-to-allele ratio.

The acquisition of comprehensive knowledge of the multiple
factors affecting genotyping success and accuracy is paramount to
inform the implementation of cost-effective snow track eDNA sam-
pling efforts for large-scale wildlife surveys, monitoring and popula-
tion studies in terrestrial ecosystems. Additionally, understanding of
the drivers of genotyping success in the simplified snow track sys-
tem would also inform efforts of NDNA retrieval and typing in more

complex eDNA samples, such as water and soil samples.
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