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Abstract
Objective.Cardiac arrhythmias are a leading cause ofmortality worldwide.Wearable devices based on
photoplethysmography give the opportunity to screen large populations, hence allowing for an earlier
detection of pathological rhythms thatmight reduce the risks of complications andmedical costs.
Whilemost of beat detection algorithms have been evaluated on normal sinus rhythmor atrial
fibrillation recordings, the performance of these algorithms in patients with other cardiac
arrhythmias, such as ventricular tachycardia or bigeminy, remain unknown to date.Approach.The
PPG-beats open-source framework, developed byCharlton and colleagues, evaluates the performance
of the beat detectors namedQPPG,MSPTD andABD among others.We applied thePPG-beats
framework on two newly acquired datasets, one containing seven different types of cardiac arrhythmia
in hospital settings, and another dataset including two cardiac arrhythmias in ambulatory settings.
MainResults. In a clinical setting, theQPPG beat detector performed best on atrialfibrillation (with a
median F1 score of 94.4%), atrial flutter (95.2%), atrial tachycardia (87.0%), sinus rhythm (97.7%),
ventricular tachycardia (83.9%) andwas ranked 2nd for bigeminy (75.7%) behindABD detector
(76.1%). In an ambulatory setting, theMSPTD beat detector performed best on normal sinus rhythm
(94.6%), and theQPPG detector on atrial fibrillation (91.6%) and bigeminy (80.0%).
Significance.Overall, the PPGbeat detectorsQPPG,MSPTD andABD consistently achieved higher
performances than other detectors. However, the detection of beats fromwrist-PPG signals is
compromised in presence of bigeminy or ventricular tachycardia.

1. Introduction

Cardiac arrhythmias (CAs) have a prevalence of 3.2%–6.6% in the elderly European andUS populations (aged
65–73 years) (Khurshid et al 2018) and are associatedwith highmorbidity andmortality (Tsao et al 2023).
Indeed, ventricular arrhythmias are amajor cause of sudden cardiac deaths, which are estimated to 10%–20%of
all deaths in Europe (Zeppenfeld et al 2022). Due to the asymptomatic and intermittent nature of certain CAs in
their early stages (Rho and Page 2005, GorenekChair et alGorenek (chair) 2017), they are often diagnosed late, at
time of hospitalization for stroke or heart failure.

Photoplethysmography (PPG) is a promising technology for long-term and continuous ambulatory
monitoring of cardiovascular parameters such as blood pressure and heart rhythm. PPGmeasures changes in
blood volume by opticalmeans and is often integrated inwearable devices like smartwatches (Lemay et al 2020,
Allen andKyriacou 2021). Consequently, PPG-based devices have great potential for the early detection of CAs,
leading to improved diagnosis, treatment and a reduction in complications.
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Numerous studies have investigated the detection of atrialfibrillation (AF), themost commonCA, affecting
up to 34million people worldwide (Chugh et al 2014,Hindricks et al 2021).Most of these studies relied on the
analysis of irregularities in inter-beat intervals (IBIs). Besides IBIs, CAs also distort themorphology of individual
PPGpulses. Such information can be extracted by pulse wave analysis (PWA) (Proença et al 2019) to improve the
detection of CAs (Jeanningros et al 2022, Basza et al 2023). However, both IBIs and PWA rely on an accurate
detection of heartbeats in the PPG signal. A suboptimal beat detectionwould introduce IBIs that contain two
pulses (false negative detections) and pulses split in two IBIs (false positive detections). This would bias IBI-
basedmeasures of irregularity (Shannon entropy, RMSSD, pNN50,K) and compromise PWAcomputation.

Whereas beat detectors can be very accurate for healthy subjects (Charlton et al 2022), their performance has
not been studied in the presence of different CAs.Only few studies focused on the evaluation of PPGbeat
detection performance during AF.Harju et al (2018) reported amean absolute error (MAE) of 51ms on IBI
estimation fromwrist-worn PPG in 21 subjects withAF. Their detection performance corresponds to an F1
score of 96.5%. Väliaho et al (2019) reported performance equivalent to 94.5% F1 score for pulse detection on
106 patients withAF. Recently, Charlton et al (2022) compared fifteen open-source beat detectors onmultiple
datasets associatedwith various conditions. Among them, the eight detectors that performed best overall
achieved F1 scores between 91.8% and 97.1%on 19 patients suffering fromAF.Han et al (2022) developed a
complex beat detector designed forHR estimation in presence of CAs. Their SWEPD algorithmdetected IBIs
with an F1 score of 97.2% in 21 patients withAF and 97.8%when analyzing performance in the presence of
frequent atrial and ventricular premature contractions.

To the best of our knowledge, there is no study that compared the performance of various beat detectors on
various types of CAs. Considering CAs other thanAF is important when screening large populations potentially
displaying pathological rhythms, such as ventricular and atrial bigeminy or ventricular tachycardia. Hence, the
choice of beat detectors can be a determining factor for the performance of CAs classificators based on IBIs
and PWA.

In this study, we used the open-source PPG-beats framework developed byCharlton et al (2022) to
benchmark the performance of 15 open-source beat detectors. The frameworkwas applied on two newly
acquired datasets containing 8 different types of CAs. The goals of this work are (1) to evaluate which beat
detectors are effective and reliable in presence of verious types of CAs, and (2) to identify CAs forwhich
heartbeat detection fromwrist-PPG signals is limited.

2.Materials andmethods

2.1.Datasets
This researchwas conducted in accordancewith the principles embodied in theDeclaration ofHelsinki, as well
as local statutory requirements. All participants gavewritten informed consent to participate in the study.
Subjects were offered to take part in the study regardless of their sex.Hence, the proportion ofmales and females
is supposed to reflect the frequency ofmedical interventions for each sex.

2.1.1. Clinical dataset
Thefirst dataset includes 58 patients referred for diagnostic or therapeutic electrophysiological procedures at the
LausanneUniversityHospital (CHUV). This study has been accepted by the local ethics committee of Lausanne
(CER-VD, Project-ID 2021–00586) and registered on http://ClinicalTrials.gov (NCT04884100).

PPG signals were acquired at 100 Hz from a proprietary wrist-bracelet (CSEM,Neuchâtel, Switzerland).
Concurrently, 12-lead ECG signals were recorded using the AxiomSensis XP® System (Siemens®,Munich,
Germany) at 2 kHz sampling frequency and bandpass filter settings of 0.5–200Hz. ECG signals were used for
gold standard annotations of both R-peaks (beats) andCAs.

2.1.2. Ambulatory dataset
The second dataset includes 44 subjects referred for an ambulatoryHolter ECG recording for either 24 h (40
subjects) or 7 days (4 subjects). The clinical study has been conducted at Inselspital in Bern and is still ongoing. It
has been accepted by the local ethical committee KEK-BERN (Project-ID 2021–02117). PPG signals were
recordedwith the same proprietary wrist-bracelet fromCSEMas for the clinical dataset, togetherwith a 3-lead
Holter ECGmonitor LifecardCF (SpacelabsHealthcare®, Issaquah,Washington, USA). R-peaks andCAswere
annotated by the software Sentinel from SpacelabsHealthcare®. To exclude PPG signals corrupted bymotion
artifacts, only periods forwhichmotionwas continuously lowwere selected. To this end, amoving average filter
of 2000 swindowwas applied every 60 s on the absolute value of the differences in normed 3D accelerometer
signals. Periods where themoving averagewas below 0.15 mG s−1 were considered as lowmotion. Only periods
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lastingmore than 10 minwere kept for analysis. PPG signals with amoving average below and above 0.15
mG s−1 are shown infigure 1.

2.1.3. Cardiac arrhythmia labelling
ECG signals of the clinical dataset were annotated by amedical expert whomanually identifiedCAs. In contrast,
ECG signals from the ambulatory dataset have been automatically annotated by the software Sentinel from
SpacelabsHealthcare® and corrected by a cardiologist. Independently of the dataset, both atrial and ventricular
bigeminy, as well as trigeminy and quadrigeminy, or any combination of these rhythms, were indistinctly labeled
as bigeminy. The label AVRT includes both atrioventricular reetrant tachycardia and atrioventricular nodal
reentrant tachycardia. Finally, single atrial and ventricular premature contractions were not considered as CAs
andwere therefore ignored in this study.

2.2. PPGbeat detector evaluation
ThePPG-beats framework5 provided byCharlton and colleagues (Charlton et al 2022)was applied. Themethods
used to evaluate PPGbeat detectors are identical to those of the original paper (Charlton et al 2022). The essential
steps are summarized in the following.

The PPG signals underwent bandpass filtering between 0.67 and 8.0Hz to eliminate non-cardiac
frequencies. Then, beats were detected using thirteen open-source detectors listed in table 1. ThePPG-beats
framework (Charlton et al 2022) provides two additional detectors (SPAR andPWD)which had to be removed
fromanalysis because of runtime errors for several signals. To apply PPGbeat detection, the PPG signals were

Figure 1.Example ofmotion influence on PPG signals from the ambulatory dataset. The top row shows a PPG signal with amotion
level of 0.18mG s−1 (with respect to themoving average described in section 2.1.2). The bottom row shows a PPG signal from the
same patient with amotion level of 0.11mG s−1. The threshold to reject periods corrupted bymotionwas set at 0.15mG s−1.

Table 1.PPGbeat detectors evaluated in the present study.

Beat detector Original author

ABD: automatic beat detection Aboy et al (2005)
AMPD: automaticmultiscale peak detection Scholkmann et al (2012)
ATM: adaptative thresholdmethod Shin et al (2009)
COPPG: percentile peak detector Orphanidou et al (2015)
ERMA: event-relatedmoving averages Elgendi et al (2013)
HEARTPY vanGent et al (2019)
IMS: incrementalmerge segmentation Karlen et al (2012)
MSPTD: multi-scale peak and trough detection Bishop and Ercole (2018)
PDA: peak detection algorithm Argüello Prada and SernaMaldonado (2018)
PULSES: PPGpulses detector Lázaro et al (2014)
QPPG: adapted onset detector Zong et al (2003)
SWT: stationarywavelet transform Vadrevu andManikandan (2019)
WFD: wavelet foot delineation Conn andBorkholder (2013)

5
http://github.com/peterhcharlton/ppg-beats
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segmented into 20 s windowswith a 5 s overlap. Duplicate beats within overlapping segments were removed.
Thismethod guaranteed that no beat detectors were penalized formissing beats at the end or the start of the
window (e.g. during initialization of the detector).

Depending on the detector, timings of detected beats could either correspond to the pulse foot, the systolic
peak, or themaximumof the first derivative. In order to perform an analysis that is comparable for all detectors,
themiddle-amplitude point of systolic upslope, defined as the timing associatedwith themean amplitude of the
pulse foot and the systolic peak, was used for analysis. To do so, for each beat, the precedingminimum (pulse
foot) and subsequentmaximum (systolic peak)were extracted if not yet provided by the detector. To
synchronize PPGbeats with reference ECGbeats, ECGbeats were considered correctly identified if at least one
PPGbeat was closer than 150ms. The lag associatedwith themaximumnumber of correctly identified ECG
beats was used to align the two beat time series. The synchronization stepwas directly applied on the full records
of the clinical dataset and on low-motion periods (>10 min) of the ambulatory dataset. The performance of the
beat detectors was evaluated based on the number of reference ECGbeats (nref ), estimated PPGbeats (nPPG), and
correctly identified beats (ncorrect) to calculate sensitivity (Se), positive predictive value (PPV) and F1 score (F1) as
follows:Se 100n

n
correct

ref
= ´

PPV
n

n
100correct

PPG

= ´

F
2 PPV Se

PPV Se
100.1 =

´ ´
+

´

The performancemetrics were calculated on a per-rhythmbasis, both for the entire cohort and individually
for each subject. To achieve this, reference ECGbeats, estimated PPGbeats, and correctly identified beats were
aggregated by rhythm if they belonged to a homogeneous rhythmic event lasting at least 25 s.

3. Results

3.1.Datasets
Table 2 details the seven different types of CA thatwere recorded in the clinical dataset and the two types of CA
present in the ambulatory dataset together with the corresponding cumulative duration of arrhythmic events
and the number of patients experiencing the specific CA. Among 58 subjects involved in the clinical dataset, 40
weremen and 18werewomenwith amean age of 56± 16 years. Skin color was categorized according to
Fitzpatrick scale, as I (5 patients), II (26), III (9), IV (1), V (1), VI (1) and 1 patient hadmissing data. The
ambulatory dataset consisted of 24men and 20women, with amean age of 56± 16 years. Their skin colors were
I (24), II (18), III (11), IV (1), VI (1) and 3 patients withmissing data. The imbalance between the number ofmale
and female is in accordance with the prevalence of CAs that affectmalesmore frequently than females (Khurshid
et al 2018). However the imbalance is very large in the clinical dataset, but no other reason than randomness can
be identified to explain this difference.

Table 2. List of cardiac arrhythmiaswith corresponding demographic and
quantitative statistics. Demographic statistics are specified formales (M)
and females (F). Durations include onlymotion-free periods.

Cardiac arrhythmia

Subjects

(F/M) Duration (h)

Clinical dataset 58 (18/40) 81.4

AF Atrialfibrillation 12 (5/7) 5.4

AFL Atrialflutter 9 (1/8) 7.8

AT Atrial tachycardia 3 (1/2) 1.2

AVB Atrioventricular block 2 (1/1) 0.5

AVRT Atrioventricular reen-

trant tachycardia

8 (3/5) 0.3

Bi Bigeminy (atrial or
ventricular)

10 (3/7) 4.6

SR Sinus rhythm (normal) 58 (18/40) 58.8

VT Ventricular tachycardia 10 (2/8) 2.9

Ambulatory dataset 44 (20/24) 684.5

AF Atrial Fibrillation 8 (4/4) 69.9

Bi Bigeminy (atrial and
ventricular)

11 (3/8) 17.4

SR Sinus rhythm (normal) 37 (16/21) 597.2
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3.2. Beat detector performance
Given the unequal proportions between the number of subjects of the two sexes for themajority of CA (see
table 2), the restricted total number of subjects, and the important variability of inter-subject performance, the
results are not separately detailed for both sexes.

3.2.1. Clinical dataset
F1 scores obtained from the clinical dataset are shown infigure 2 and detailed in table 3, alongwith additional
metrics.Medians of F1 scores on normal sinus rhythm range from89.6% to 97.7%,withfive beat detectors that
show similar scores (>97.3%):QPPG,ABD,MSPTD,AMPD andERMA. The loss of accuracywhen detecting
beats during AF or atrialflutter is visible.QPPG andMSPTD are the best detectors with respectively 94.4% and
94.1%medians of F1 scores during AF. Beat detection ismore unequal across subjects during atrialflutter for
whichQPPG stands out fromother detectors with amedian F1 score of 95.2%. Atrial tachycardia and ventricular
tachycardia obtain themost spread-out performances of beat detectors. F1 scores ofQPPG (87.0%) andMSPTD
(85.1%) slightly stand out fromothers on atrial tachycardia. Performances on ventricular tachycardia are highly

Figure 2.Beat detector performance (F1 score) comparison by cardiac arrhythmia on the clinical dataset. The number of reference
beats (N) perCA iswritten next to each subtitle in thousands (k). Black dots represent outlier subjects, boxes show themedian, 1st and
4th quartiles, 10th and 90th percentiles of F1 scores obtained per subjects while the black cross indicates F1 score calculated across all
subjects. Detectors are ordered by decreasingmedian of F1 score.
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Table 3.Beat detector performance on clinical dataset. Themedians across subjects of F1 score, sensitivity (Sens.), and positive predictive value (PPV) in percent (%) are detailed for each cardiac arrhythmia: atrialfibrillation (AF), atrial
flutter (AFL), atrial tachycardia (AT), atrioventricular blocks of 2nd and 3rd degree (AVB), atrioventricular reentrant (nodal and non-nodal) tachycardia (AVRT), atrial and ventricular bigeminy (Bi), normal sinus rhythm (SR) and
ventricular tachycardia (VT).

ABD AMPD ATM COPPG ERMA HEARTPY IMS MSPTD PDA PULSES QPPG SWT WFD

AF F1 score 93.6 92.9 85.3 84.9 92.6 85.7 89.4 94.1 90.9 92.8 94.4 72.9 93.1

Sens. 89.5 89.8 80.6 77.6 89.8 79.7 82.8 91.3 87.4 87.2 92.0 63.6 90.0

PPV 98.3 95.8 93.2 96.3 96.0 94.4 97.8 96.2 95.4 98.2 98.6 92.7 97.5

AFL F1 score 93.5 92.5 78.7 85.3 91.8 85.9 91.5 92.9 87.8 89.6 95.2 70.4 90.0

Sens. 95.0 92.6 70.3 80.4 94.6 82.5 85.6 94.6 84.5 83.6 96.5 62.8 89.7

PPV 98.4 96.1 90.7 95.6 94.8 94.1 97.1 96.6 97.1 96.6 99.2 88.7 96.2

AT F1 score 83.4 82.2 64.7 70.0 82.9 76.2 72.9 85.1 80.3 79.0 87.0 52.4 78.5

Sens. 76.7 75.4 48.9 55.3 75.9 67.5 59.9 80.3 72.3 70.1 81.1 37.1 70.4

PPV 99.8 98.6 93.9 98.6 96.7 92.8 98.4 98.6 92.2 99.8 98.9 92.1 97.9

AVB F1 score 97.9 91.0 85.6 72.2 94.3 85.4 95.5 93.3 88.7 79.8 97.9 88.4 97.2

Sens. 96.7 90.4 82.5 62.7 96.9 84.4 91.8 94.4 87.7 70.7 96.7 80.8 95.2

PPV 99.2 92.3 90.1 85.1 92.0 86.6 99.5 92.6 90.7 91.8 99.2 98.4 99.2

AVRT F1 score 92.6 92.3 64.6 80.5 90.9 87.4 81.9 93.5 92.7 92.1 92.7 49.0 87.2

Sens. 88.2 86.4 49.8 67.4 84.1 80.6 70.3 88.5 86.8 86.2 87.3 33.3 79.7

PPV 100.0 99.7 94.2 99.9 99.2 99.4 99.9 100.0 100.0 99.9 100.0 97.6 100.0

Bi F1 score 76.1 73.8 65.6 73.9 73.7 67.8 70.1 74.4 63.1 66.9 75.7 68.4 73.5

Sens. 72.6 71.4 52.4 63.6 71.9 58.8 56.2 72.3 53.6 50.6 68.6 52.4 67.3

PPV 88.5 88.9 87.2 93.1 86.9 86.7 97.1 88.5 74.1 98.2 90.8 98.1 91.7

SR F1 score 97.6 97.4 91.0 96.0 97.3 96.4 96.1 97.6 95.6 92.2 97.7 89.6 96.9

Sens. 96.7 96.7 88.4 93.7 96.9 95.0 93.9 97.0 93.9 90.1 97.1 84.5 96.5

PPV 98.4 98.0 94.4 98.0 97.7 97.8 99.0 98.1 97.4 97.3 98.5 96.5 98.2

VT F1 score 79.5 78.5 64.9 66.6 75.5 76.7 61.8 81.4 79.3 79.0 83.9 51.9 80.7

Sens. 67.2 66.9 49.6 50.9 62.4 63.3 45.4 71.2 69.7 66.0 73.4 36.4 69.4

PPV 95.6 94.7 91.4 94.6 94.4 94.4 95.9 95.0 93.7 97.6 97.3 90.3 95.2

6

P
hysiol.M

eas.45
(2024)025005

Loïc
Jean

n
in
grosetal



variable across subjects with some very inaccurate detections.QPPG is again top rankedwith 83.9%median F1
score. Bigeminy beats often remain undetected aswell depending on the subject. Indeed, bigeminy shows the
worst performance, the best detectors beingABD andQPPGwithmedian F1 scores of 76.1% and 75.7%
respectively. Finally, top ranked beat detectors achieve high performance for both atrioventricular blocks and
atrioventricular reentrant tachycardias.QPPG,ABD andWFD getmedians F1 scores between 97.2% and 97.9%
for AVblocks.MSPTD is the best detector for AVRTwith amedian F1 scores of 93.5% closely followed by PDA,
QPPG,ABD,AMPD andPULSES (>92.1%).

3.2.2. Ambulatory dataset
To assess detector performance, only periods characterized by lowmotionwere retained, leading to the
exclusion of 695.7 h of signals, which accounted for 51.9%of the total duration. The subsequent assessment of
performancewas carried out on the remaining 684.5 h ofmotion-free PPG, as outlined in table 2.

The evaluation of beat detector performance on the ambulatory dataset is shown infigure 3, with
comprehensivemetrics provided in table 4.OnAF segments,QPPG is top rankedwith amedian F1 score of
91.6%, closely followed byABD andMSPTD (>90.8%). Half of the beat detectors perform similarly well on
normal sinus rhythm,withMSPTD top-ranked at 94.6% andQPPG,AMPD,ABD, andWFD achievingmedians
of F1 scores superior to 94.0%. The beats of bigeminy are once again poorly detected.QPPG,PULSES andWFD
slightly stand out fromother detectors withmedians of F1 scores between 80.0% and 78.8%.

4.Discussion

The aimof this studywas to assess the performance of several open-source detectors for various types of CAs.
Ourfindings help determine the type of detectorsmost suitable for themonitoring of CA in every-day life, but
also highlight potential limitations in the detection of heartbeats for givenCAs.

4.1. Beat detector performance
ABD,MSPTD andQPPG detectors were consistently ranked among the best detectors for various CAs in both
clinical and ambulatory conditions without any failure on specific CAs. These results are in linewith the study of
Charlton and colleagues (Charlton et al 2022), which concluded thatMSPTD andQPPG detectors were
performing best within various conditions (hospital, daily-life, emotions, atrialfibrillation, neonates and skin
colors). Our analyzes highlighted the superior performance of theQPPG beat detector performance in hospital
conditions (clinical dataset). This is likely due to the excellent sensitivity ofQPPG, which is optimal for detecting
beats occurring early in the cardiac cycle. It provides a clear advantage for CAs such as atrial and ventricular
tachycardias, atrial flutter andAFwithout a significant loss in PPV, as it is the case with bigeminy for other
detectors. This hypothesis was supported by the performance results obtained from the ambulatory dataset.
Indeed,QPPGwas top ranked in an ambulatory setting for CAs showing premature contractions (AF and
bigeminy) andwas very good for detecting normal sinus beats.MSPTDwas the best beat detector for sinus
rhythm. It showed very good performance during AF aswell butwas less efficient for detecting bigeminy beats.

Figure 3.Beat detector performance (F1 score) by cardiac arrhythmia on the ambulatory dataset. The number of reference beats (N) is
indicated in thousands (k)next to each subtitle. Black dots represent outlier subjects, boxes show themedian, 1st and 4th quartiles,
10th and 90th percentiles of F1 scores obtained per subjects while the black cross indicates F1 score calculated across all subjects.
Detectors are ordered by decreasingmedian of F1 score.
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Table 4.Beat detector performance on ambulatory dataset. Themedians across subjects of F1 score, sensitivity (Sens.), and positive predictive value (PPV) in percent (%) are detailed for each cardiac arrhythmia: atrialfibrillation (AF), atrial
and ventricular bigeminy (Bi) and normal sinus rhythm (SR).

ABD AMPD ATM COPPG ERMA HEARTPY IMS MSPTD PDA PULSES QPPG SWT WFD

AF F1 score 91.5 90.5 82.7 83.7 90.5 83.4 84.3 90.8 86.1 89.0 91.6 68.9 90.4

Sens. 88.0 87.9 76.5 77.5 86.8 79.3 77.5 89.7 81.6 84.8 90.8 55.5 88.4

PPV 91.5 90.5 89.2 90.3 90.3 88.0 93.7 90.4 89.3 90.7 90.7 91.1 90.6

Bi F1 score 75.5 73.9 63.4 65.7 75.4 72.0 75.5 75.5 60.0 79.7 80.0 65.0 78.8

Sens. 73.7 65.5 54.1 50.0 73.8 64.3 64.1 74.1 49.5 66.7 71.2 49.4 70.5

PPV 85.5 82.1 74.1 86.5 84.9 75.9 95.9 85.3 77.7 94.8 88.2 95.1 84.0

SR F1 score 94.0 94.2 90.8 92.4 93.4 93.5 92.2 94.6 90.4 91.8 94.3 88.6 94.0

Sens. 94.7 94.3 88.7 90.3 94.4 91.7 88.6 95.1 88.5 89.9 94.8 81.2 94.3

PPV 95.4 95.7 94.4 96.1 95.2 96.1 97.1 95.4 93.5 94.7 95.2 97.4 94.6
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BothQPPG andMSPTD require low computational efforts andmight be suited for embedding in awearable
device. This last point is crucial for the screening of large populationwith small devices and low battery
consumption.

4.2. Limitations of beat detection in cardiac arrhythmias
All beat detectors show lower sensitivity in presence of ventricular tachycardia (VT), one of the fastest CAs. The
onset of VT can be very abrupt, which results in PPGwaves of decreased amplitude as illustrated in the last row
offigure 4. This certainly induces strong differences between outputs of detectors that use different adaptive
scalingmechanisms. Slow adaptation to abrupt changes in amplitude, such as those due to onsets of ventricular
tachycardia, results in numerousmissed detections.

The detection of bigeminy beats in both datasets was particularly poor compared to that of other types of
CAs. This is due to premature contractions that occur very early in the cardiac cycle, leading to heartbeats that do
not necessarily generate a pressure wave. The resulting changes in the PPG signal—reflecting blood volume
changes in the peripheral arteries—areminimal, comparable to that of a dicrotic notch. Examples of bigeminy
infigures 4 and 5 show that it is very difficult to detect such premature beats. It is therefore rather an intrinsic
physiological limitation for the detection of heartbeats fromblood volume variations in the peripheral vascular
system. This opinion is in linewith thework ofHan et al (2020), which identified patterns formed by successive
IBIs in a Poincaré plot to detect premature contractions. If thismethodwas conclusive for the detection of

Figure 4.Example signals of the 8 distinct cardiac arrhythmias from the clinical dataset. Each row shows the ECG signal (top curve)
and the simultaneous PPG signal (bottom curve). Dotted vertical lines indicate the timing of detected ECGbeats, and dots on PPG
show the timing of detected beats by theQPPG detector. Each row shows the example of one cardiac arrhythmia: sinus rhythm (SR),
atrial fibrillation (AF), atrialflutter (AFL), atrial tachycardia (AT), atrioventricular block (AVB), atrioventricular (nodal or not) re-
entrant tachycardia (AVRT), bigeminy (Bi), and ventricular tachycardia (VT).
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isolated premature contractions, trigeminy and quadrigeminy, it was not the case for the detection of bigeminy
with silent premature contractions. However, one possibility would be an in-depth analysis of the PPG
waveform, to characterize it as typical bigeminy and deduce that it contains a hidden premature contraction.

4.3. Study limitations
Ourwork is limited by the inclusion of only five different types of CAs. The number of arrhythmic events of
atrioventricular blocks (of any degree) and atrioventricular re-entrant (nodal or not) tachycardias was too small
to draw significant conclusions in these two groups of CA. In addition, for the ambulatory dataset, the present
analysis was limited tomotion-free periods resulting in the rejection of 51.9%of data. In a future study, the
influence ofmotion on the heartbeat detection performance should be investigated inmore detail. Finally, ECG-
based labelling of CAs have been annotated by one single expert (for the clinical dataset) or software annotations
have been corrected by a single cardiologist (for the ambulatory dataset). Annotations that aremore reliable
could be obtained by systematically involving two cardiologists and keeping only periods of the data where both
annotators agree.

5. Conclusion

In this work, we evaluated the performance of thirteen open-source PPGbeat detectors in the presence of CAs.
QPPG showed highest performance in terms of F1 score. In addition, our evaluation revealed the reduced
performances of beat detectors in presence of bigeminy and ventricular tachycardia.

This study provides solid support for selecting a beat detector for continuousmonitoring of cardiac
arrhythmias in every-day life.

Data availability statement

The data cannot bemade publicly available upon publication due to legal restrictions preventing unrestricted
public distribution. The data that support the findings of this study are available upon reasonable request from
the authors.

ORCID iDs

Adrian Luca https://orcid.org/0000-0002-0040-8191

Figure 5.Example signals of the 3 distinct cardiac arrhythmias from the ambulatory dataset. Each row shows the ECG signal (top
curve) and the simultaneous PPG signal (bottom curve). Dotted vertical lines indicate the timing of detected ECGbeats, and dots on
PPG show the timing of detected beats by theQPPG detector. Each row shows the example of one cardiac arrhythmia: sinus rhythm
(SR), atrialfibrillation (AF) and bigeminy (Bi).
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