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Abstract	
Epigenetic	modifications	have	drawn	 significant	 attention	due	 to	 their	 crucial	 roles	 in	

development	and	disease.	The	recent	emergence	of	epigenome	editing	tools	provides	an	

attractive	 strategy	 for	 manipulating	 chromatin	 structure	 and	 gene	 expression.	 They	

have	been	shown	to	successfully	activate	and	silence	targeting	genes	in	conjunction	with	

chromatin	modifying	 enzymes.	A	major	 gap	 in	 knowledge	pertains	 to	how	epigenome	

editing	differs	in	efficiency	at	distinct	DNA	contexts.	The	focus	of	this	thesis	was	to	build	

a	 novel	 system,	 chromatin	 inducible	 targeting	 (CIT),	 to	 test	 the	 effect	 of	 sequence	

context	 on	 the	 efficiency	of	 chromatin	modifying	 enzymes	 to	 control	 gene	 expression.	

Specifically,	 I	 tested	 the	 effect	 of	 CAG/CTG	 repeat	 expansion	 on	 the	 ability	 of	HDAC5,	

HDAC3,	and	DNMT1	targeting	to	modify	chromatin	structure.	

CIT	can	be	divided	into	three	major	components.	First,	a	GFP-based	reporter	monitors	

gene	expression.	 It	 contains	an	 intron	carrying	a	varying	number	of	CAG/CTG	triplets.	

Second,	I	adapted	the	ParB-INT	targeting	system	such	that	any	protein	of	interest	can	be	

recruited	 within	 300bp	 of	 the	 expanded	 CAG/CTG	 repeat	 tract.	 Third,	 an	 ABA-based	

chemical	 inducible	 proximity	 system	 that	 allows	 for	 spatiotemporal	 and	 reversible	

targeting	 of	 proteins	 to	 chromatin.	 Notably,	 CIT	 is	 also	 well	 suited	 to	 ask	 whether	

chromatin	modifying	enzymes	work	locally	to	regulate	gene	expression	or	in	trans.		

I	 found	 that	HDAC5	 targeting	silences	 the	GFP	reporter	while	decreasing	 local	histone	

acetylation.	 Interestingly,	 HDAC5	 preferentially	 silences	 the	 reporter	with	 the	 shorter	

repeat	 tract,	probably	because	of	 the	 lower	 levels	of	histone	acetylation	present	at	 the	

expanded	 repeat	 tract	 before	 targeting.	 HDAC5	 is	 thought	 to	 deacetylate	 histones	 by	

recruiting	 another	 HDAC,	 HDAC3.	 Surprisingly,	 however,	 HDAC3	 targeting	 increased	

GFP	expression,	and	its	effect	is	insensitive	to	the	size	of	the	repeat	tract.	This	effect	is	

controversial	to	the	current	models	of	HDAC3	function	that	deacetylation	of	histone	tails	

by	HDAC3	in	gene	body	improves	transcriptional	output.	Moreover,	I	found	that	Dnmt1	

targeting	has	a	similar	effect	on	gene	silencing	as	HDAC5	targeting:	it	is	more	efficient	in	

the	context	of	shorter	CAG/CTG	repeats.	

CIT	provides	a	novel	strategy	to	optimize	the	efficiency	of	epigenome	editing	in	a	highly	

controlled	and	flexible	manner.	Our	data	uncover	novel	mechanisms	of	gene	regulation	

by	these	chromatin	modifiers	and	guides	their	use	in	manipulating	chromatin	structure.	

CIT	 is	 suitable	 for	 screening	 and	 can	 be	 adapted	 to	 study	 the	 effect	 of	 virtually	 any	

sequences	on	epigenome	editing.	
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Sommaire	

Les	modifications	épigénétiques	ont	attiré	une	grande	attention	en	raison	de	 leurs	rôles	cruciaux	

dans	 le	 développement	 et	 dans	 plusieurs	 pathologies.	 L'émergence	 récente	 d'outils	 d'édition	 de	

l'épigénome	constitue	une	stratégie	 intéressante	pour	manipuler	 la	structure	de	 la	chromatine	et	

l'expression	 des	 gènes.	 Il	 a	 été	 démontré	 qu'il	 est	 possible	 d’activent	 et	 de	 bloquer	 avec	 succès	

l’expression	des	gènes	en	recrutant	des	enzymes	modifiant	la	chromatine.	Une	lacune	majeure	dans	

la	 compréhension	 de	 ce	 processus	 concerne	 la	 façon	 dont	 l'édition	 de	 l'épigénome	 diffère	 en	

efficacité	 dans	 des	 contextes	 d'ADN	 distincts.	 L'objectif	 de	 cette	 thèse	 était	 de	 construire	 un	

nouveau	système	de	ciblage	de	la	chromatine	inductible	(CIT),	pour	tester	l'effet	du	contexte	de	la	

séquence	sur	 l'efficacité	des	enzymes	modifiant	 la	chromatine	à	contrôler	 l'expression	des	gènes.	

Spécifiquement,	j'ai	testé	l'effet	de	l'expansion	de	répétition	CAG	/	CTG	sur	la	capacité	du	ciblage	de	

HDAC5,	HDAC3,	et	DNMT1	de	modifier	la	structure	de	la	chromatine.	CIT	peut	être	divisé	en	trois	

principaux	composants.	Tout	d'abord,	un	rapporteur	basé	sur	 la	GFP	pour	quantifier	 l'expression	

des	gènes.	Il	contient	un	intron	portant	un	nombre	variable	de	triplets	CAG	/	CTG.	Deuxièmement,	

j'ai	 adapté	 le	 système	de	 ciblage	ParB-INT	de	 telle	 sorte	que	 toute	protéine	d'intérêt	puisse	 être	

recrutée	 à	 moins	 de	 300	 pb	 de	 l’expansion	 de	 triplets.	 Troisièmement,	 notre	 outil	 contient	 un	

système	de	proximité	inductible	chimique	à	base	d'ABA	permettant	un	recrutement	spatiotemporel	

et	 réversible	 des	 protéines	 à	 la	 chromatine.	 Notamment,	 CIT	 est	 également	 bien	 adapté	 pour		

déterminer	si	les	enzymes	modifiant	la	chromatine	travaillent	localement	pour	réguler	l'expression	

des	 gènes	 ou	 en	 trans.	 J'ai	 trouvé	 que	 le	 ciblage	 HDAC5	 fait	 taire	 le	 rapporteur	 GFP	 tout	 en	

diminuant	 l'acétylation	 locale	 des	 histones.	 Fait	 intéressant,	 HDAC5	 diminue	 l’expression	 du	

rapporteur	GFP	de	manière	préférentielle	avec	la	répétition	la	plus	courte,	probablement	en	raison	

des	 niveaux	 inférieurs	 d'acétylation	 des	 histones	 présents	 près	 des	 expansion	 avant	 le	 ciblage.	

HDAC5	est	censé	de	désacétyler	les	histones	en	recrutant	une	autre	HDAC,	HDAC3.	Étonnamment,	

cependant,	le	recruitment	de	HDAC3	au	rapporteur	a	augmenté	son	expression	peu	importe	la	taille	

de	 la	région	répétée.	Cet	effet	est	en	désaccord	avec	 les	modèles	actuels	de	 la	 fonction	de	HDAC3	

qui	 stipulent	 que	 la	 désacétylation	 des	 queues	 d'histones	 par	 HDAC3	 dans	 le	 corps	 de	 gènes	

améliore	la		transcription.	De	plus,	j'ai	trouvé	que	le	ciblage	de	Dnmt1	a	un	effet	similaire	à	HDAC5	

sur	 l’expression	 génique:	 il	 réduit	 le	 niveau	 de	 GFP	 plus	 efficacement	 dans	 le	 contexte	 de	

répétitions	CAG	/	CTG	plus	courtes.	CIT	fournit	une	nouvelle	stratégie	pour	optimiser	l'efficacité	de	

l'édition	de	 l’épigénome	d'une	manière	hautement	 contrôlée	et	 flexible.	Nos	données	 révèlent	de	

nouveaux	mécanismes	de	régulation	des	gènes	par	ces	modificateurs	de	 la	chromatine	et	guident	

leur	utilisation	dans	la	manipulation	de	la	structure	de	la	chromatine.	Le	CIT	convient	au	criblage	et	

peut	 être	 adapté	 pour	 étudier	 l'effet	 de	 pratiquement	 toutes	 les	 séquences	 sur	 l'édition	 de	

l'épigénome.
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The	 human	 genome	 is	 highly	 organized	 in	 the	 nucleus	 and	 packaged	 into	 a	

structure	 called	 chromatin.	 About	 147bp	 of	 negatively	 charged	 DNA	 wrapped	

around	a	positively	charged	histone	protein	complex	containing	two	copies	of	each	

H2A,	 H2B,	 H3	 and	 H4,	 to	 form	 one	 nucleosome	 (Margueron	 and	 Reinberg,	 2010;	

Rando	and	Chang,	2009;	Shahbazian	and	Grunstein,	2007;	Venkatesh	and	Workman,	

2015).	Nucleosomes	are	 further	packaged	 into	a	 complex,	and	controversial	 three-

dimensional	(3D)	chromatin	structure.		Based	on	distinct	compaction	levels	based	on	

the	density	of	DNA	staining	during	interphase,	chromatin	is	further	grouped	into	two	

forms:	 euchromatin	 and	 heterochromatin.	 Euchromatin	 is	 lightly	 stained	 and	 is	

transcriptionally	 highly	 active,	 accompanied	 by	 typical	 histone	 marks	 like	

acetylation	in	histone	H3	tail.	Heterochromatin,	by	contrast,	shows	more	condensed	

staining,	 low	 transcriptional	 activity	 and	 more	 DNA	 methylation	 at	 CpG	

dinucleotides.	Heterochromatic	histone	marks	 include	trimethylation	of	histone	H3	

at	 lysine	9	and	27,	among	others.	Nevertheless,	how	chromatin	modifying	enzymes	

alter	 gene	 regulations	 is	 still	 unclear.	 It	 has	 been	 shown	 chromatin	 structure	 is	

tightly	correlated	with	cancer	and	neurological	disorders	(Beltran	et	al.,	2008;	Dion	

and	Wilson,	 2009;	 Egger	 et	 al.,	 2004;	 Feinberg,	 2007;	 Portela	 and	 Esteller,	 2010;	

Robertson,	 2005;	 Robertson	 and	 Wolffe,	 2000).	 The	 hypothesis	 is	 manipulating	

chromatin	structure,	and	gene	expression	 in	a	controllable	manner	may	contribute	

to	 the	 alleviation	 of	 disease	 symptoms.	 However,	 having	 chromatin	 modifying	

enzymes	to	influence	gene	expression	at	will	is	not	trivial.	This	is	the	main	reason	I	

am	interested	in	epigenome	editing	and	gene	regulation.		

	

I	 will	 focus	 on	 newly	 developed	 epigenome	 editing	 tools	 and	 inducible	

proximity	 systems	 to	 evaluate	 their	 applicability	 to	 manipulating	 chromatin	 and	

gene	 expression.	 I	will	 also	describe	 a	 novel	 inducible	 chromatin	 targeting	 system	

that	 I	 have	 developed	 to	 study	 the	 relationship	 between	 sequence	 context	 and	

epigenome	 editing	 as	 well	 as	 to	 uncover	 novel	 mechanisms	 regulating	 gene	

expression.			
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1.	Epigenome	editing	tools	
	

Chromatin	 modifications	 have	 long	 been	 known	 to	 correlate	 with	 gene	

expression	 tightly.	 However,	 the	 mechanisms	 of	 gene	 regulation	 by	 chromatin	

structures	were	difficult	to	assess,	especially	through	loss-of-function	studies.	This	is	

because	chromatin	modifying	enzymes	 loss	of	activity	often	has	pleiotropic	effects.	

The	 recent	 rise	 of	 epigenome	 editing	 tools,	 with	 their	 potential	 for	 spatial	 and	

temporal	regulation	as	well	as	reversibility,	has	created	a	significant	opportunity	for	

both	 basic	 research	 and	 translational	 studies.	 The	 discovery	 and	 development	 of	

customizable	sequence-specific	DNA	binding	peptides	make	it	possible	to	recognize	

endogenous	DNA	sequences	 and	bring	 chromatin	modifying	 enzymes	 to	 a	 locus	of	

choice	and	catalyze	histone	or	DNA	modifications	(Groote	et	al.,	2012).		

	

Three	 primary	 epigenome	 editing	 techniques	 are	 currently	 in	 use	 are	 zinc	

finger	 proteins	 (ZFs),	 transcription	 activator-like	 effectors	 (TALEs)	 and	 Clustered	

Regularly	 Interspaced	 Short	 Palindromic	Repeats	 (CRISPR)	 and	 CRISPR-associated	

(Cas)	proteins	 (Waryah	et	 al.,	 2018).	 	 In	 the	 following	 sections,	 these	 tools	will	 be	

discussed	from	their	history,	structural	properties,	mechanisms	of	action,	as	well	as	

their	applications	and	limitations.	

	

	

	

	

	

	

	

	

	

	

	
Figure II. 1. Epigenome editing tools applications. Epigenome editing 
tools can be used to study gene function, chromatin biology, cell 
reprogramming and further medical fields. (Derived from Kungulovski,	G.	
et	al.	Trends	Genet,	2016)	
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1.1	Zinc	Finger	proteins	(ZFs)	
1.1.1	Discovery,	working	mechanism,	and	design	

A.	 Klug	 and	 colleagues	 first	 reported	 zfs	 in	 1985	 (Miller	 et	 al.,	 1985).	 They	

found	a	small	protein	containing	repetitive	zinc-binding	domains	with	7	 to	11	zinc	

atoms	that	could	bind	to	the	5S	RNA	genes	in	Xenopus	Laevis	oocytes	extracts	(Miller	

et	 al.,	 1985).	 This	 small	 protein	 Zif268	 can	 bind	 to	 DNA	 tightly	 and	 RNA	 as	 well	

(Blancafort	et	al.,	1999;	Moore	et	al.,	2001).	The	ZFs	bind	to	the	major	groove	of	DNA	

via	 an	α-helix	 of	 the	 ZFs	with	 the	N-terminal	 close	 to	 the	DNA	and	 the	C-terminal	

located	away	from	the	binding	site	(Elrod-Erickson	et	al.,	1996;	Fairall	et	al.,	1993;	

Pavletich	and	Pabo,	1991).	Each	zinc	finger	protein	can	recognize	three	bps	of	DNA	

so	that	individual	finger	can	be	assembled	to	match	more	extended	target	sequences	

(Segal	 et	 al.,	 1999).	 After	 zinc	 finger	 nucleases	 (ZFNs)	 screening,	 the	 efficiency	 of	

FokI	cleavage	driven	by	ZFs	recognition	are	successfully	reach	15.7%	(Wang	et	al.,	

2013).	The	high	efficiency	of	targeting	has	been	observed	in	human	embryonic	stem	

cells	OCT4	gene,	which	on-target	efficiency	can	reach	94%	(Hockemeyer	et	al.,	2009).	

In	one	word,	ZFs	can	be	engineered	to	target	DNA	locus	with	high	efficiency.	

	

1.1.2	ZFs	in	gene	activation	

Since	ZFs	or	multiple	ZFs	complexes	can	not	modulate	epigenome	themselves,	

gene	 activators	 or	 repressors	 need	 to	 be	 linked	 to	 ZFs	 to	 do	 the	 work.	 Synthetic	

transcription	 activation	 domain	 VP64	 had	 been	 used	 as	 effector	 domains	 in	

conjunction	 with	 ZFs	 to	 achieve	 an	 erbB-2-luciferase	 reporter	 activated	

transcription	in	HeLa/tet-off	cell	line	(Beerli	et	al.,	2000;	Beltran	et	al.,	2007;	Liu	et	

al.,	 2001;	 Zhang	 et	 al.,	 2000).	Human	histone	 acetyltransferase	P300	 core	 fused	 to	

ZFs	 also	 managed	 to	 target	 ICAMI	 promoter	 and	 activate	 gene	 transcription	 in	

HEK293T	 cells	 (Hilton	 et	 al.,	 2015).	 All	 of	 those	 show	 ZFs	 can	 be	 fused	 to	

transcription	activators	and	induce	gene	activation.		

	

1.1.3	ZFs	in	gene	silencing	

ZFs	 have	 been	 widely	 used	 in	 conjunction	 with	 DNA	 methyltransferases	 to	

induce	 local	 methylation	 and	 transcription	 silencing.	 One	 early	 report	 in	 1997	

showed	 ZFs	 fused	 to	 the	 bacterial	 DNA	 methyltransferase	 M.SssI	 successfully	

methylated	the	5’	side	of	the	ZF	binding	site	(Xu	and	Bestor,	1997).	After	this,	several	
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ZFs-DNA	methyltransferases	fusions,	for	instance,	using	the	catalytic	domain	of	DNA	

methyltransferase	3a	(DNMT3a)	and	DNMT3b,	all	increased	DNA	methylation	levels	

locally	 and	 repress	 transcription	 (Li	 et	 al.,	 2007;	Nunna	et	 al.,	 2014).	Beyond	DNA	

methyltransferases,	 histone	methyltransferases	 G9a	 and	 SUV39-H1	 also	 efficiently	

silenced	their	target	genes	when	recruited	via	synthetic	ZFs	(Snowden	et	al.,	2002;	

Falahi	 et	 al.,	 2013).	 A	 ZF	 fusion	 with	 Kruppel-associated	 box	 domain	 (KRAB)	

recruited	 cofactor	 KAP1	 and	 resulted	 in	 the	 loss	 of	 histone	 acetylation,	 a	 gain	 in	

histone	 methylation,	 and	 a	 long-range	 gene	 silencing	 (Groner	 et	 al.,	 2010;	

Stolzenburg	 et	 al.,	 2012).	 Interestingly,	 a	 genome-wide	 study	on	 zinc	 finger	 fusion	

protein	 with	 artificial	 transcription	 factors	 (ATFs)	 super	 KRAB	 domain	 (SKD)	

targeting	 to	 the	 human	 SOX2	 promoter	 in	 MCF7	 breast	 cancer	 cells	 revealed	

thousands	of	off-target	binding	sites	by	ChIP-seq	(Grimmer	et	al.,	2014).	Majority	of	

the	 off-target	 genes	 showed	 no	 expression	 differences.	 Also,	 ATF-SKD	 induced	

transcription	 repression	 did	 not	 affect	 histone	 modifications	 like	 H3K4me3	 and	

H3K9ac	(Grimmer	et	al.,	2014).	Above	all,	ZFs	shows	usage	widely	in	silencing	gene	

with	a	variety	of	factors	combined.			

	

1.1.4	ZFs	in	the	clinical	trial	

ZFs	show	potential	clinical	usage	thanks	to	its	small	size,	high	expression	level	

and	 toleration	 of	 variable	 chromatin	 contexts	 (Beltran	 et	 al.,	 2008;	 Gregory	 et	 al.,	

2013).	 Clinical	 trials	 have	 been	 conducted	 using	 ZFs	 for	 diabetic	 neuropathy	 and	

completed	 in	2016	(Eisenstein,	2012).	Sangamo	Biosciences	conducted	this	clinical	

phase	2	trial	with	ZF	proteins	linked	to	the	P65	transcription	activator	to	induce	the	

expression	 of	 the	 vascular	 endothelial	 growth	 factor	 A	 (VEGFA)	 in	 diabetic	

neuropathy	patients.	Unfortunately,	the	trial	failed	because	the	treated	group	failed	

to	display	significant	improvements	compared	to	placebo	(Eisenstein,	2012).			

	

1.1.5	ZFs	limitations	

Despite	the	ZFs'	high	efficiency	of	epigenome	editing	capabilities,	the	off-target	

effects	remain	a	significant	concern	(Grimmer	et	al.,	2014).	Off-target	rates	 for	ZFs	

can	reach	8%,	which	is	18	fold	more	than	the	empty	vector	with	no	ZFs.	Its	off-target	

binding	 sites	 can	 be	 located	 in	 other	 promoters	 and	 thus	 enact	 changes	 in	 gene	

expression	 (Huisman	 et	 al.,	 2015).	 Optimization	 could	 significantly	 increase	 the	
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specificity	 of	 ZFs	 and	 help	 epigenome	 editing	 become	 safe	 enough	 for	 clinical	 use	

(Hurt	et	al.,	2003).	However,	newer	technologies	appear	to	be	more	flexible	in	design	

and	more	comfortable	to	use,	and	thus	ZF	technologies	are	being	phased	out.	

	

1.2	Transcription	Activator-Like	Effectors	(TALEs)	
1.2.1	Discovery,	working	mechanism	and	design	

TALEs	 are	 another	 customizable	 DNA	 binding	 domains	 used	 for	 epigenome	

editing.	 TALEs	 are	 proteins	 secreted	 by	Xanthomonas	 spp	 bacteria	 that	 alter	 gene	

expression	in	their	host	plants	(Joung	and	Sander,	2013).	Then	how	TALEs	recognize	

DNA	 was	 uncovered	 in	 2009	 by	 the	 Bonas	 group	 (Boch	 et	 al.,	 2009).	 One	 TALE	

repeat	can	bind	one	base	of	DNA	via	amino	acids	12	and	13.	This	recognition	site	is	

also	 located	 in	 the	major	 groove	 of	 DNA,	 similar	 to	 ZF-mediated	 binding,	 thereby	

making	base-specific	contacts	with	the	target	sequence	(Deng	et	al.,	2012).	Changing	

amino	 acids	 at	 position	 12	 and	 13	 changes	 the	 specificity	 of	 binding,	 allowing	 for	

recognition	of	a	wide	array	of	sequences	through	multiplexing	of	TALE	repeats.	This	

protein-DNA	 recognition	 can	 be	 widely	 used	 for	 genome	 editing	 and	 epigenome	

engineering	 by	 assembling	 specific	 TALE	 repeats	 based	 on	 targeting	 sequences.	

Using	 a	 puromycin	 expression	 driven	 by	 TALEN	 cleavage	 and	 recombination,	 the	

efficiency	 of	 TALENs	 on-target	 cleavage	 varies	 between	 different	 tissues	 and	

genomic	 locations.	 It	 shows	 similar	 efficiency	as	ZFs,	 reaching	more	 than	90%	on-

target	 cleavage	with	 a	mean	 of	 22.2%	 (Hockemeyer	 et	 al.,	 2011).	 An	 endogenous	

EGFP	 transgene	 disruption	 test	 with	 48	 engineered	 TALENs	 in	 human	 cells	 also	

revealed	 the	 highest	 on-targeting	 cleavage	 rate	was	 around	 60-70%	 (Reyon	 et	 al.,	

2012).	 In	 conclusion,	 TALEs	 could	 be	 another	 epigenome	 editing	 tool	 with	 the	

relatively	high	efficiency	of	recognizing	on-targeting	sequences.	

	

1.2.2	TALEs	in	gene	activation	

Similar	 to	 the	 applications	 described	 above	 with	 ZFs,	 TALEs	 are	 used	 to	

activate	 gene	 expression	 by	 fusing	 them	 to	 synthetic	 transcription	 activation	

domains	like	VP16	and	VP64	(Bultmann	et	al.,	2012;	Konermann	et	al.,	2013;	Zhang	

et	 al.,	 2011).	 TALEs	 themselves	 can	 activate	 transcription.	 At	 promoter	 regions	 of	

SOX2,	KLF4,	c-MYC,	and	OCT4	targeted	by	TALEs	in	293FT	cells,	TALEs	were	able	to	

increase	Sox2	and	KLF4	transcription	by	5.5	fold	and	2.2	fold	respectively	(Zhang	et	
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al.,	 2011).	 This	 may	 indicate	 that	 epigenome	 editing	 by	 TALEs	 depends	 on	 the	

sequence	 context.	 Studies	 using	 TALE-VP16	 fusions	 showed	 that	 multiple	 TALEs	

have	 the	 better	 efficiency	 to	 promote	 gene	 transcription	 (Maeder	 et	 al.,	 2013a;	

Perez-Pinera	 et	 al.,	 2013a).	 Ten-Eleven	 Dioxygenase-1	 (TET1)	 had	 been	 shown	 in	

conjunction	with	TALEs	 and	 optogenetic	 tools,	 two	 light	 inducible	 complementary	

fusion	 protein	 constructs	 (Konermann	 et	 al.,	 2013),	 to	 demethylate	 DNA	 and	

increase	the	levels	of	Ascl1	mRNA	by	2.5	fold	in	rat	striatal	neural	stem	cell	(Lo	et	al.,	

2017).	Thus,	TALEs,	 like	ZFs,	can	efficiently	modify	chromatin	and	DNA	to	activate	

gene	expression.	

	

1.2.3	TALEs	in	gene	repression	

TALEs	 have	 been	 used	 for	 epigenome	 silencing	 by	 fusing	 them	 to	KRAB	 and	

mSin	 interaction	 domain	 (SID).	 They	 were	 shown	 to	 repress	 endogenous	 SOX2	

expression	 in	 HEK293FT	 cells	 (Cong	 et	 al.,	 2012).	 	 SID	 can	 further	 assemble	 into	

SID4X,	 which	 in	 turn	 reduces	 H3K9	 acetylation	 and	 silences	 transcription	

(Konermann	et	al.,	2013).	DNA	methyltransferase	3a	(DNMT3a)	fused	to	TALEs	was	

similarly	 shown	 to	 induce	 DNA	 methylation	 at	 the	 Ascl1	 gene	 in	 dorsal	 root	

ganglion-derived	neural	stem	cell	(NSC),	which	resulted	in	gene	silencing	(Lo	et	al.,	

2017).	 TALEs-lysine-specific	 demethylase	 1	 (LSD1)	 fusion	 reduced	 both	 H3K4	

methylation	and	H3K27	acetylation,	presumably	due	to	crosstalk	with	HDACs	(Lee	et	

al.,	2006;	Shi	et	al.,	2004).	The	TALEs-LSD1	fusion	was	capable	of	reducing	H3K4me2	

and	 H3K27ac	 levels	 and	 further	 repressing	 genes	 by	 targeting	 their	 enhancer	

regions	in	K562	erythroleukemia	cells	(Mendenhall	et	al.,	2013).	So	TALEs	show	not	

only	 the	 gene	 activation	 ability	 but	 also	 silencing	 gene	 with	 chromatin	modifying	

enzymes	cooperation.		

	

1.2.4	TALEs	in	the	clinical	trial	

There	has	been	no	report	of	clinical	trials	involving	TALE-mediated	epigenome	

editing,	 only	 one	 patient	 test	with	 its	 nuclease	 version.	What	 has	 been	 done	 is	 to	

transplant	TALEN	edited	universal	 CAR19	T	 cell	 to	 leukemia	patient	 (Qasim	et	 al.,	

2015).	 TALEN	 induced	 T	 cell	 receptor	 alpha	 constant	 chain	 expression	 disruption	

and	CD52	gene	silencing	 in	T	cell	 transplantation	showed	no	significant	 toxicity	 in	
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this	patient.	It	provides	an	early	proof-of-concept	for	the	strategy,	but	a	 large-scale	

study	remains	to	be	conducted	to	confirm	or	refute	clinical	efficacy	and	safety.	

	

1.2.5	TALEs	limitations	

TALEs	 targeting	 showed	off-target	 effects	 due	 to	 a	 particular	 subset	 of	 TALE	

repeat	by	high	 throughput	 sequencing	or	protein-binding	microarray	 (Guilinger	 et	

al.,	2014;	Juillerat	et	al.,	2014;	Meckler	et	al.,	2013;	Rogers	et	al.,	2015).	However,	the	

off-targeting	effect	is	not	always	the	case	depend	on	TALE	length	and	targeting	loci.	

TALE	fused	to	histone	demethylase	LSD1	successfully	removed	enhancer-associated	

modification	 to	 downregulate	 gene	 expression	 but	 not	 in	 control	 TALE	 construct	

treatment	group	in	K562	cells	(Mendenhall	et	al.,	2013).	In	a	genome-wide	ChIP-seq	

study,	 TALEs-VP64	 activated	 IL1RN	 or	 HBG1/2	 have	 been	 shown	 31	 off-target	

binding	sites	and	 four	off-target	binding	sites	respectively.	However,	no	significant	

changes	 in	 gene	 expression	were	detected	on	 these	off-target	 sites	 (Polstein	 et	 al.,	

2015).	They	also	 found	all	off-target	sites	contain	a	GC-rich	3’	end	that	overlapped	

with	 TALEs	 recognition	 motif.	 Off-target	 effects	 could	 be	 reduced	 by	 engineering	

longer	 TALENs	 (between	 15	 to	 19	 repeats)	 to	 achieve	 significantly	 increased	

specificity	 (Rinaldi	et	al.,	2017).	TALEs	also	appears	closely	related	 to	sequence	or	

chromatin	contexts	like	DNA	methylation	(Chen	et	al.,	2013;	Cong	et	al.,	2012).	Using	

a	different	TALE	repeat	N*	with	no	extensive	 involvement	 into	DNA	major	groove,	

TALEN	 can	 successfully	 disrupt	 endogenous	 methylated	 XPC1	 in	 HEK293H	 cells	

(Valton	et	al.,	2012).	Above	all,	TALEs	also	obsess	off-target	effect	 like	ZFs,	and	 its	

DNA	context	sensitivity	may	affect	targeting	efficiency.	

	

Compare	 to	 ZFs,	 the	 modular	 assembly	 of	 TALEs	 improves	 the	 rapidity	 and	

simplicity	of	design	and	production.	However,	the	resulting	TALEs	DNA	sequence	is	

highly	 repetitive,	 which	 promotes	 deletion	 and	 recombination	 when	 propagating	

them	in	bacteria	and	after	viral	delivery	(Holkers	et	al.,	2013).			

	

1.3	Catalytic	dead	CRISPR-associated	(dCas9)	
1.3.1	Discovery,	working	mechanism	and	design	

CRISPR-Cas9	has	been	developed	into	a	widely	used	genome	engineering	tool	

in	the	last	five	years.	Nakata	and	colleagues	first	discovered	it	in	1987,	but	it	was	not	
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extensively	used	until	it	was	shown	to	be	an	RNA-targeted	nuclease	that	its	genome	

editing	 potential	 was	 uncovered	 (Ishino	 et	 al.,	 1987;	 Jinek	 et	 al.,	 2012).	 This	 was	

quickly	 followed	 by	 genome	 editing	 in	 mammals	 (Cong	 et	 al.,	 2013;	 Mali	 et	 al.,	

2013a).	 Cas9	 is	 guided	 by	 a	 noncoding	 trans-activating	 crRNA	 (tracrRNA)	 and	

mature	 crRNA	 to	 target	 DNA	 and	 perform	 cleavage.	 This	 is	 dramatically	 different	

from	 the	 protein-DNA	 recognition	mechanisms	 of	 ZFs	 and	 TALEs.	 CRISPR-Cas9	 is	

widely	applicable	in	different	models	including	yeast	(Jacobs	et	al.,	2014),	zebrafish	

(Chang	et	al.,	2013;	Hruscha	et	al.,	2013;	Hwang	et	al.,	2013),	Drosophila,	mice,	and	

human	(Cho	et	al.,	2013).	This	efficient	and	versatile	nuclease	can	be	turned	into	a	

targeting	 system	 thanks	 to	 4	 point	mutations	 that	 inactivate	 the	 nuclease	 domain	

without	 affecting	 the	 efficiency	 of	 targeting	 (dCas9)	 (Jinek	 et	 al.,	 2012;	 Qi	 et	 al.,	

2013)(Qi	 et	 al.,	 2013).	 Protospacer	 adjacent	 motifs	 (PAMs)	 are	 short	 sequences	

adjacent	 to	 protospacer,	 and	 they	 have	 shown	 to	 be	 critical	 for	 Cas9	 spacer	

acquisition	 and	 interference	 (Mojica	 et	 al.,	 2009;	 Shah	 et	 al.,	 2013).	 Further	

understanding	 about	 Protospacer	 Adjacent	 Motif	 (PAM)	 and	 single	 guide	 RNA	

development	 make	 CRISPR-Cas9	 system	 efficiently	 designed	 for	 any	 target	 DNA	

sequence	for	engineering.	

	

1.3.2	dCas9	in	gene	activation	

CRISPR-Cas9	 based	 targeting	 systems	 have	 become	 the	 standard	 tool	 for	

altering	gene	expression	 (Braun	et	al.,	2017;	Hilton	et	al.,	2015;	Kwon	et	al.,	2017;	

Maeder	et	al.,	2013b;	Mali	et	al.,	2013b;	Morita	et	al.,	2016,	2016;	Perez-Pinera	et	al.,	

2013b;	Vojta	et	al.,	2016).	Synthetic	transcriptional	activator	VP16	or	VP64	fused	to	

catalytic	 dead	 Cas9	 has	 moderate	 gene	 activation	 capabilities	 with	 one	 sgRNA	

guidance.	Using	multiple	sgRNAs	can	 further	 increase	activation	rates	(Konermann	

et	 al.,	 2013;	 Maeder	 et	 al.,	 2013b;	 Mali	 et	 al.,	 2013b;	 Perez-Pinera	 et	 al.,	 2013b).	

Epigenome	editing	using	a	fusion	between	dCas9	and	the	histone	methyltransferase	

PRDM9	 increased	 H3K4me3	 and	 intercellular	 adhesion	 molecule	 1	 (ICAM1),	 Pas	

association	 domain-containing	 protein	 1	 (RASSF1a)	 and	 epithelial	 cell	 adhesion	

molecule	(EpCAM)	gene	expression	in	HEK293T	and	A549	cells	(Cano-Rodriguez	et	

al.,	2016).	This	report	also	indicates	the	importance	of	local	chromatin	modifications	

in	 altering	 gene	 expression.	 Ten-eleven	 translocation	 dioxygenases	 (TET)	 acts	 as	

DNA	demethylase	also	showed	gene	activation	ability	in	conjunction	with	dCas9	(Liu	
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et	 al.,	 2016;	 Morita	 et	 al.,	 2016).	 dCas9-TET1	 fusion	 targeting	 endogenous	

hypermethylated	BDNF	 gene	promoter	and	MyoD	 enhancer	 showed	demethylation	

and	 gene	 activation	 in	 neurons	 and	myoblast	 respectively	 (Liu	 et	 al.,	 2016).	Using	

two	 copies	 of	 bacteriophage	MS2	RNA	 elements	 as	 a	 linker	 for	 the	 TET1	 catalytic	

domain	 (TET-CD)	 with	 sgRNA,	 dCas9-TET-CD	 and	 sgRNA-MS2-TET-CD	 can	

significantly	 upregulate	 transcription	 in	 RANKL,	 MAGEB2	 and	 MMP2	 gene	 in	

HEK293FT	and	HeLa	cells	(Xu	et	al.,	2016).	SunTag	was	reported	in	2014	which	is	a	

ten	 copies	 repeating	 GCN4	 peptide	 array	 for	 recruiting	 multiple	 proteins	 by	 an	

antibody	 (Tanenbaum	 et	 al.,	 2014).	With	 amplification	 effect	 by	 SunTag	 inclusion,	

dCas9-TET1-CD	can	efficiently	demethylate	7	out	of	9	loci	in	ESCs,	cancer	cell	lines,	

primary	neural	precursor	cells	and	mouse	 fetuses	(Morita	et	al.,	2016).	One	recent	

publication	 using	 dCas9	 fused	 to	 Tet1	 successfully	 reversed	 the	 hypermethylation	

within	 CGG	 repeats	 and	 the	 upstream	 promoter	 region	 of	 Fragile	 X	 syndrome	

induced	Pluripotent	Stem	Cells	(iPSCs)	and	the	derived	neurons	(Figure	II.2,	Liu	et	al.,	

2018).	This	correction	of	the	chromatin	state	accompanied	by	increases	of	the	FMR1	

mRNA	 and	 FMRP	 upregulation	 in	 iPSC	 and	 transgenic	 mice	 as	 well	 as	

electrophysiological	 abnormalities	 rescue	 by	 MEA	 assays	 in	 editing	 FXS	 neurons.	

Interestingly,	the	acetyltransferase	domain	of	P300	works	more	efficiently	than	V64	

to	 activate	 genes,	 and	 this	 gene	 upregulation	 ability	 bias	 only	 exists	 in	 dCas9	

epigenetic	 engineering,	 not	 ZFs	

nor	TALEs	 (Hilton	et	 al.,	 2015).	

On	the	one	hand,	it	showed	that	

histone	 acetylation	 is	 sufficient	

to	activate	gene	transcription,	at	

least	 in	 the	 loci	 IL1RN,	 MYOD	

and	 OCT4	 in	 HEK293T	 cells	

Hilton	and	colleagues	looked	at.	

On	 the	 other	 hand,	 this	 also	

indicates	 different	 epigenome	

engineering	 tools	 have	 a	

variable	 binding	 affinity	 or	

Figure II. 2. dCas9-Tet1 reactivates FMR1 gene expression. Tet1 driven by dCas9 
reverses hypermethylation in FMR1 gene and reactivates transcription in FXS iPSC. 
The FMR1 gene reactivation remains in iPSC derived FXS neuron and in vivo. 
(Derived from Liu	et	al.,	2018)	
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protein	folding	properties.	Above	all,	dCas9	can	be	used	as	an	epigenome	editing	tool	

to	activate	gene	expression.		

	

1.3.3	dCas9	in	gene	silencing	

dCas9	 can	 induce	 gene	 silencing	 without	 the	 help	 of	 any	 transcriptional	

repressor	 in	 some	 circumstances	 due	 to	 steric	 hindrance	 (Qi	 et	 al.,	 2013).	 More	

efficient	 silencing	 is	 the	 use	 of	 dCas9	 fusion	 proteins	 linked	 to	 KRAB	 or	 Mxi1,	 a	

mammalian	 transcriptional	 repressor	 domain	 (Gilbert	 et	 al.,	 2013).	 CTCF	 DNA	

recognition	 site	 can	 be	 methylated	 by	 dCas9	 linked	 to	 the	 de	 novo	 DNA	

methyltransferase	3a	(DNMT3a)	and	further	blocked	CTCF	binding	(Liu	et	al.,	2016).	

The	 SunTag-mediated	 oligomerization	 strategy	 was	 applied	 to	 dCas9-DNMT3a	 in	

HEK293T	 with	 equal	 success	 (Huang	 et	 al.,	 2017).	 Unlike	 transient	 transcription	

alternation	 as	 reported	 for	 KRAB,	 dCas9-DNMT3a	 can	 achieve	 long-term	 gene	

silencing	 to	 25	 days	 in	 K-562	 (Amabile	 et	 al.,	 2016)	 and	 23	 days	 in	HEK293	 cells	

(Vojta	et	al.,	2016).	Using	a	different	effector,	histone	deacetylase	3	(HDAC3),	dCas9	

could	increase	or	decrease	the	expression	of	target	genes	in	murine	neuroblastoma	

cell	 line,	 N2a	 (Kwon	 et	 al.,	 2017).	 The	 authors	 proposed	 that	 this	 be	 due	 to	 the	

chromatin	context.	All	of	those	indicate	dCas9	can	be	used	to	manipulate	chromatin	

structure	and	gene	silencing	by	fusing	to	chromatin	modifying	enzymes.	

	

1.3.4	Cas9	in	clinical	trial	and	limitation	

The	 primary	 concern	 for	 translational	 application	 is	 the	 same	 as	 for	 the	 ZFs	

and	TALEs:	the	off-target	effects.		sgRNAs	can	bind	genomic	locations	with	multiple	

mismatches	 and	 often	 require	 delicate	 screening	 and	 optimization.	 Several	 trials	

focusing	on	 targeting	 sequence	optimization	of	 the	 sgRNA,	and	modification	of	 the	

Cas9	enzyme	to	better	bind	the	sgRNA	or	to	alter	PAM	requirements	as	well	as	the	

use	of	Cas9	variants	or	nickase	variants	have	been	shown	to	reduce	off-target	effects	

(Doench	et	al.,	2014,	2016;	Hruscha	et	al.,	2013;	Hsu	et	al.,	2013;	Kleinstiver	et	al.,	

2015,	 2016;	 Mali	 et	 al.,	 2013b;	 Slaymaker	 et	 al.,	 2016).	 	 With	 the	 benefit	 of	

convenient	 design	 to	 virtually	 any	 locus	 of	 interest,	 Cas9-derived	 genome	 editing	

and	epigenome	engineering	has	exciting	potential	for	novel	therapeutic	approaches	

in	cancers	and	neurodegenerative	diseases	(Cinesi	et	al.,	2016;	Gori	et	al.,	2015;	Kick	



	 25	

et	al.,	2017;	Lin	et	al.;	Liu	et	al.;	Long	et	al.,	2014;	Niu	et	al.,	2014;	Park	et	al.,	2015;	

Pinto	et	al.,	2017).			

	

All	the	clinical	trials,	for	now,	are	nuclease	version	Cas9,	not	the	dCas9.	Clinical	

studies	using	Cas9-mediated	gene	editing	to	target	several	types	of	cancer	have	been	

initiated	 in	 China,	 including	 HPV-related	 Cervical	 intraepithelial	 Neoplasial,	

Leukemia	 and	Lymphoma	 (Baylis	 and	McLeod,	 2017;	Kick	 et	 al.,	 2017).	 It	 is	 likely	

that	 Cas9-mediated	 treatment	 of	 two	 types	 of	 blood	 disorders,	 β-thalassemia	 and	

sickle	cell	disease,	may	start	 their	clinical	 trials	 this	year	 in	Europe	and	the	United	

States	(Baylis	and	McLeod,	2017).	 It	 is	still	early	to	speculate	the	outcome	of	 these	

trials.	 If	Cas9	proved	to	be	efficient	and	safe	 to	apply,	 it	would	give	hope	to	cure	a	

wide	range	of	devastating	diseases.	

	

In	 conclusion,	 epigenome	 editing	 tools	 have	 been	widely	 involved	 in	 driving	

chromatin	 modifying	 enzymes	 to	 specific	 genomic	 loci	 for	 gene	 regulation.	 These	

targeting	tools	provide	a	convenient	way	to	tackle	the	interplay	between	chromatin	

structure	and	gene	regulation	and	make	it	possible	to	manipulate	epigenome	at	will.	

	

Thus	 far,	 the	majority	 of	 the	 studies	 use	 a	 continuous	 expression	 of	 the	 ZFs,	

TALEs,	or	dCas9	 fusions.	 It	 is	 therefore	unclear	how	permanent	 the	changes	to	 the	

epigenome	might	be.	The	key	 is	 to	use	 reversible	 systems,	 such	 as	many	 chemical	

induced	and	light-induced	proximity	systems.	
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2.	Chemical	and	light-induced	proximity	system	
	
To	gain	a	better	understanding	and	 to	manipulate	gene	expression,	 	multiple	

approaches	 have	 been	 developed	 to	 control	 cell	 in	 a	 switchable	 way	 like	 light	

inducible	proximity	(LIP)	and	chemical	inducible	proximity	(CIP).	The	systems	that	

have	 been	 developed	 to	 alter	 gene	 expression	 are	 listed	 in	 Table	 I.1	 and	 I.2.	

Invariably,	 they	 are	 composed	of	 two	 same	or	different	 components	 that	dimerize	

with	 each	 other	 upon	 addition	 of	 a	 small	 molecule	 or	 by	 the	 light	 of	 a	 specific	

wavelength.	 One	 component	 binds	 chromatin,	 and	 the	 other	 is	 fused	 to	 some	

transcriptional	activator	or	repressor.	

	

Light	induction	for	protein-protein	interactions	was	developed	within	the	past	

ten	years	with	different	systems	using	different	wavelengths	of	light	(Kennedy	et	al.,	

2010;	Levskaya	 et	 al.,	 2009;	Yazawa	et	 al.,	 2009).	The	Zhang	group	 further	 adapts	

light	induced	dimerization	into	transcription	control	usage	with	TALEs	DNA	binding	

motif	 fusion	 (Konermann	 et	 al.,	 2013).	 In	 Gao	 et	 al.,	 they	 compared	 the	

transcriptional	 efficiency	 of	 LIP	 and	 CIP	 systems	 side	 by	 side	 and	 found	 that	 LIP	

systems	 are	 less	 potent	 than	 CIP	 ones	 in	 activating	 transcription,	 reaching	 a	

maximum	induction	of	126	fold	(Gao	et	al.,	2016).	

	

CIP	 systems	 have	 been	 used	 widely	 to	 study	 transcriptional	 activation,	

signaling	 transduction,	 protein-protein	 interactions,	 apoptosis,	 glycosylation,	

splicing,	and	mouse	development	(Belshawl	et	al.,	1996;	Graef	et	al.,	1997;	Gruber	et	

al.,	2006;	Ho	et	al.,	1996;	Holsinger	et	al.,	1995;	Kohler	and	Bertozzi,	2003;	Liu	et	al.,	

2007;	 Mootz	 and	 Muir,	 2002;	 Stankunas	 et	 al.,	 2003;	 Stanton	 et	 al.,	 2018).	 The	

original	 CIP	 system	 is	 the	 FK1012	 system	 (Holsinger	 et	 al.,	 1995;	 Spencer	 et	 al.,	

1993).	It	involves	the	chemical	inducer	FK1012	with	two	ligand-binding	domains	of	

FKBP12	 (Holsinger	 et	 al.,	 1995).	More	 recently,	 Zhang	 and	 colleagues	 produced	 a	

split	Cas9	and	dCas9	 constructs	 fused	 to	FKBP	 (FK506	binding	protein)	 and	FKBP	

rapamycin	 binding	 (FRB)	 domains	 and	 the	 addition	 of	 rapamycin-induced	 the	

dimerization	of	a	protein	of	 interest	(POI)	 fused	to	FRB	(Zetsche	et	al.,	2015).	This	

reconstruction	of	Cas9	functioned	as	a	normal	Cas9	and	enabled	the	experimenters	
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to	 restrict	 the	 activity	 to	 specific	 tissues	 by	 putting	 each	 fragment	 under	 different	

tissue-specific	promoter	while	maintaining	a	low	off-target	rate.	Further	results	from	

Qi	and	colleagues	showed	that	multiple	CIP	systems	could	be	combined	and	used	for	

programming	 complex	 transcription	 in	 vitro	 and	 in	 vivo	 (Gao	 et	 al.,	 2016).	 Taking	

advantage	 of	 the	 reversible	 properties	 of	 Frb-FKBP-Rap	 and	 Pyl1-Abi1-ABA,	

targeting	 a	 truncation	 of	 heterochromatin	 protein	 1	 alpha	 (HP1α)	 to	Oct4	 in	 ESC	

induced	H3K9me3-dependent	 gene	 silencing.	 This	 silencing	 remained	 for	multiple	

cell	generations	after	HP1α	targeting	was	relieved	(Hathaway	et	al.,	2012).	A	recent	

study	 using	 FKBP-FrB-Rap	 system	 linked	 to	 dCas9	 led	 to	 the	 recruitment	 of	

mSWI/SNF	 (BAF)	 and	 activated	 bivalent	 gene	 transcription	 in	 mouse	 ESCs	 in	 a	

reversible	way	(Braun	et	al.,	2017).	Frb-FKBP	dimerized	dCas9	with	HP1	and	histone	

methyltransferase	 Suv39h1	 induced	 H3K9me3	 deposit,	 and	 the	 effect	 can	 be	

reversed	 by	 washing	 out	 inducer	 rapamycin	 (Braun	 et	 al.,	 2017).	 As	 a	 potent	

immunosuppressant,	 Rap	 inhibits	 mammalian	 target	 of	 Rap,	 mTOR,	 and	 showed	

toxicity	 in	 the	 beta	 cell	 (Barlow	 et	 al.,	 2012,	 2013).	 The	 Crabtree	 lab	 developed	

another	 CIP	 system	 based	 on	 abscisic	 acid	 (ABA),	 a	 phytohormone	 (Liang	 et	 al.,	

2011).	ABA	 insensitive	1	 (ABI)	 can	 form	a	dimer	with	pyrabactin	 resistance	1-like	

(PYL)	 in	 the	presence	of	ABA	 into	 the	cell	medium.	Here	again,	 the	dimerization	 is	

reversible.	 It	 is	 non-toxic,	 and	 ABA	 is	 reasonably	 prized.	 Also,	 it	 is	 an	 entirely	

exogenous	system,	reducing	the	potential	for	side	effects	in	mammalian	cells.	

	

CIP	system	has	been	used	to	build	a	safety	switch	for	adoptive	cell	therapy	(Di	

Stasi	 et	 al.,	 2011).	Human	caspase	9	 fused	 to	FK-binding	protein	became	active	by	

adding	 AP1903	 in	 T	 cells	 with	 haploidentical	 stem-cell	 transplants	 patients.	 This	

iCasp9	suicide	system	improved	cellular	therapies	safety	in	graft-versus-host	disease.	

This	being	said,	the	spatiotemporal	characteristic	of	CIP	system	may	have	significant	

benefit	for	understanding	cellular	functions	and	even	for	clinical	usage.	

	

In	conclusion,	with	its	power	for	spatiotemporal	control	of	cellular	processes,	

CIP	and	LIP	systems	may	contribute	significantly	to	the	study	of	chromatin	structure	

and	gene	regulation.	To	take	one	step	further,	it	could	be	interesting	to	apply	the	CIP	

system	to	one	type	of	human	diseases	to	investigate	their	molecular	mechanisms.	
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Table	I.1.	Chemical-induced	proximity	system	comparison	
	

Proteins	 Ligands	 Toxicity	 Receptors	in	human	

FKBP	 FRB	 Rapamycin	 Immunosuppression	
(Kang	et	al.,	2008)	

mammalian	target	of	
rapamycin	(mTOR)	
(Kang	et	al.,	2008)	

FKBP	 FKBP	 FK1012	

Immunosuppression	
(Kang	et	al.,	2008)	 CaM-dependent	

phosphatase	
calcineurin	(CaN)	
(Kang	et	al.,	2008)	

FKBP	 Calcineurin	 FK506	

FKBP	 CyP	 FKCsA	

Calcineurin	 CyP	 Cyclosporine	A	 Immunosuppression	
(Kang	et	al.,	2008)	

PYL	 ABI1	 Abscisic	Acid	

Non-toxic	for	human	
(Liang	et	al.,	2011)	
Organ	toxicity	in	rat	
(Celik	et	al.,	2007)	

No	report	

GID1	 GA1	

GA	
Organ	toxicity	in	rat	
(Celik	et	al.,	2007)	

Teratogenic	to	Xenopus	
laevis	embryos	

(Boga	(Pekmezekmek	
et	al.,	2009)	

Gibberellin3-
AM	

FKBP	F36V	 FKBP	F36V	

AP1903	 Pancytopenia	
(Zhou	et	al.,	2016)	

FKBP	

AP20187	 Non-toxic	
(Je	et	al.,	2009)	

IAA17	 TIR1	 Auxin	 Non-toxic	
(Ester	et	al.,	2009)	 No	report	
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Table	I.2.	Light-induced	proximity	system	comparison	
	
Proteins	 Ligands	 Toxicity	 Receptors	in	human	

GI	 FKF1	

450nm	blue	
light	

(Yazawa	et	al.,	
2009)	

No	report	 No	report	

CIB1	 CRY2	

488nm	blue	
light	

(Kennedy	et	
al.,	2010)	

PhyB	 PIF3	

650nm	red	
light	

(Levskaya	et	
al.,	2009)	
750nm	red	

light	
(Levskaya	et	
al.,	2009)	
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3.	Potential	applications	-	Trinucleotide	repeat	diseases	

	
Tandem	 repeats	 are	 common	 in	 genomes	 from	 yeast	 to	 human.	 At	 least	 20	

neurological	diseases	are	caused	by	trinucleotide	repeat	(TNR)	expansion	(Table	I.3).	

Since	 the	 first	 report	 of	 a	 CGG/CCG	 repeat	 expansion	 causing	 Fragile	 X	 syndrome	

(FXS)	(Oberlé	et	al.,	1991;	Verkerk	et	al.,	1991),	 it	has	been	shown	that	Huntington	

Disease	(HD),	Myotonic	Dystrophy	Type	1	(DM1)	and	Friedreich’s	ataxia	(FRDA)	are	

due	to	CAG,	CTG,	and	GAA	expansions,	respectively	(Brook	et	al.,	1992;	Campuzano	

et	al.,	1996;	MacDonald	et	al.,	1993).	Decades	of	research	focus	on	understanding	the	

molecular	 mechanisms	 by	 which	 trinucleotide	 repeats	 cause	 the	 diseases.	 These	

diseases	 are	 caused	 by	 the	 expression	 of	 a	 toxic	 RNA	 and/or	 a	 toxic	 protein.	

Therefore,	 preventing	 their	 expression,	 for	 example	 by	 manipulating	 gene	

expression,	 or	 by	 reducing	 repeat	 sizes	 may	 be	 suitable	 therapeutic	 avenues.	

Currently,	the	knowledge	of	these	phenomena	is	not	well	characterized	and	prevents	

the	rational	development	of	effective	treatments.	

Table I.3. Neurological disease caused by TNR expansion 
Disease name repeats Repeat location 
Huntington disease (HD) CAG Exon 
Spinocerebellar ataxia 1 (SCA1) CAG Exon 
Spinocerebellar ataxia 2 (SCA2) CAG Exon 
Spinocerebellar ataxia 3 (SCA3) CAG Exon 
Spinocerebellar ataxia 6 (SCA6) CAG Exon 
Spinocerebellar ataxia 7 (SCA7) CAG Exon 
Spinocerebellar ataxia 12 (SCA12) CAG 5’-UTR 
Spinocerebellar ataxia 17 (SCA17) CAG Exon 
Spinal and bulbar muscular atrophy (SBMA) CAG Exon 
Dentatorubral–pallidoluysian atrophy (DRPLA) CAG Exon 
Huntington disease-like 2 (HDL2) CTG 3’-UTR 
Spinocerebellar ataxia 8 (SCA8) CTG 3’-UTR 
Myotonic dystrophy 1 (DM1) CTG 3’-UTR 
Fuchs endothelial corneal dystrophy (FECD) CTG Intron 
Fragile X syndrome (FXS) CGG 5’-UTR 
Fragile X–associated tremor/ataxia syndrome (FXTAS) CGG 5’-UTR 
Fragile X–associated primary ovarian insufficiency (FXPOI) CGG 5’-UTR 
FRA7A CGG Intron 
Fragile XE mental retardation syndrome (FRAXE MR) GCC 5’-UTR 
Friedreich’s ataxia GAA Intron 
Data were obtained from (Dion and Wilson, 2009; Mirkin, 2007; Schmidt and Pearson, 
2016; Zhao and Usdin, 2015) 
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3.1	Mechanism	of	repeat	instability	
3.1.1	Trinucleotide	repeats	form	a	non-B	structure	that	causes	instability	

Expanded	TNRs	are	unstable.	Below	35	units,	the	repeats	loci	tend	to	be	stable,	

which	would	not	cause	disease.	However,	once	the	numbers	of	repeat	units	reach	35,	

the	TNR	expansion	derived	neurological	disease	appears	(Castel	et	al.,	2010).	Worse	

still,	 longer	 repeats	 cause	 more	 severe	 phenotypes	 and	 passing	 down	 unstable	

expanded	repeats	 to	 the	offspring	causes	a	more	severe	disease	phenotype	and	an	

earlier	 age	 of	 onset,	 a	 phenomenon	 coined	 anticipation	 (McMurray,	 2010;	Mirkin,	

2007).	

	

The	 subset	 of	 trinucleotide	 repeats	 can	 form	 aberrant	 secondary	 DNA	

structures	 during	 transcription,	 DNA	 repair,	 and	 translation	 (Castel	 et	 al.,	 2010;	

Mirkin,	2007).	The	structures	include	mismatched	hairpins,	slipped-strands,	R-loops,	

G-quadruplex,	et	al.	(Mirkin,	2007;	Usdin	et	al.,	2015).	The	current	models	stipulate	

that	the	DNA	repair	machinery	recognize	these	non-B	structures	as	DNA	lesions	and	

initiate	repair.	The	repetitive	nature	of	the	sequences,	as	well	as	their	ability	to	form	

non-B	DNA	structure,	make	the	repair	error-prone,	leading	to	instability.	One	of	the	

first	observation	of	non-B	DNA	structures	formed	by	CAG/CTG	repeats	was	done	in	

vitro	 using	 chemical	 probing	 (Kohwi	 et	 al.,	 1993).	 They	 showed	 that	 even	 a	 single	

AGC	 could	 form	 unusual	 DNA	 structures	 independently	 of	 flanking	 sequences.	

Another	milestone	 occurred	when	McMurray	 and	 colleagues	 in	 1995	 showed	 that	

CAG/CTG	and	CGG/CCG	repeats	could	 form	hairpins	 in	vitro	 in	a	 length-dependent	

and	 sequence-specific	 manner	 (Gacy	 et	 al.,	 1995).	 Melting	 temperature	 profiles	

revealed	that	CAG,	CGG	and	AT	repeats	could	form	stable	hairpins,	but	AAG	and	AC	

cannot.	 In	vivo	evidence	came	first	 in	2010	from	the	Leffak	 lab.	They	used	 isogenic	

HeLa	cells	with	CAG/CTG	multiple	repeats	 inserted	after	the	Myc	replication	origin	

to	 uncover	 hairpins	 formation	 in	 102	 CAG/CTG	 repeats	 cells.	 Using	 ZFNCTG	 and	

ZFNCAG,	secondary	structure	formed	cell	 lines	would	be	cleaved	and	showed	repeat	

length	 change	 by	 small	 pool	 PCR	 (SP-PCR).	 Liu	 and	 colleagues	 revealed	 102	

CAG/CTG	repeats	cells	formed	hairpins	but	hardly	in	12	repeats	counterpart	(Liu	et	

al.,	 2010).	Moreover,	Axford	et	 al.	 showed	 that	 they	 could	precipitate	 slipped	DNA	

from	 the	 expanded	 repeat	 locus	 in	 DM1	 patient-derived	 lymphoblastoid	 cell	 lines	
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(Axford	 et	 al.,	 2013).	 Similar	 hairpin	 forming	 feature	 with	 CGG	 repeat	 was	 also	

observed	in	vitro	(Nadel	et	al.,	1995;	Usdin	and	Woodford,	1995).		

	

Slipped-strand	 DNA	 (S-DNA)	 is	 also	 extensively	 studied.	 Using	 electron	

microscopy	 as	 well	 as	 chemical	 and	 enzymatic	 probing	 followed	 by	 gel	

electrophoresis,	slipped	strands	are	readily	visible	under	microscopy	(Pearson	et	al.,	

1998,	 2002).	 R-loops	 are	 DNA:	 RNA	 hybrids	 formed	 during	 transcription.	 They	

preferentially	form	at	GC	rich	sequences,	including	CAG	and	CGG	repeats	(Lin	et	al.,	

2010;	Loomis	et	al.,	2014;	Reddy	et	al.,	2011,	2014).	This	structure	also	depends	on	

sequence	 context	 since	 R-loops	 are	 not	 detected	 when	 AGG	 or	 AAG	 repeats	 are	

studied.		

	

3.1.2	DNA	repair	is	involved	in	TNR	instability	through	processing	of	the	non-B	

structure	

Multiple	 lines	 of	 evidence	 show	 that	 virtually	 all	 DNA	 repair	 pathways	

influence	 trinucleotide	 repeat	 instability.	 The	 involvement	 of	 mismatch	 repair	

(MMR),	 nucleotide	 excision	 repair	 (NER),	 and	 base	 excision	 repair	 (BER)	 has	 a	

particularly	important	function	in	this	process.	

	

Mismatch	Repair	(MMR)	

The	 primary	 substrates	 for	 the	 mismatch	 repair	 machinery	 are	 base	

mismatches	and	small	DNA	loops	that	lead	to	insertion	and	deletions	(INDLs).	They	

are	typically	formed	during	DNA	replication	(Kunkel	and	Erie,	2005).	Depending	on	

whether	the	lesions	are	single	base	mismatches	or	loops	of	mismatched	DNA,	MMR	

complexes	MutSα	 (composed	 of	 MSH2/MSH6)	 or	MutSβ	 (MSH2/MSH3)	 are	 called	

into	play	respectively	to	recognize	and	bind	the	bases	and	then	recruit	MutL	proteins	

to	 repair	 the	 mismatches	 with	 the	 collaboration	 of	 several	 other	 enzymes.	 The	

primary	 procedure	 follows	 from	 recognition,	 intermediate	 binding,	 excision,	

amplification	and	DNA	ligation.	Both	MutSα	and	MutSβ	complexes	with	components	

involved	in	MutL	indicate	the	role	to	destabilize	CAG/CTG	repeats	from	E.coli,	yeast	

to	HD	and	DM1	mouse	models	(Broek	et	al.,	2002;	Dandelot	and	Tomé,	2017;	Foiry	

et	al.,	2006;	Jaworski	et	al.,	1995;	Manley	et	al.,	1999;	Pinto	et	al.,	2013;	Schmidt	and	

Pearson,	2016;	Schweitzer	and	Livingston,	1997;	Tomé	et	al.,	2009,	2013).		
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Nucleotide	Excision	Repair	(NER)	

NER	can	be	divided	into	two	sub-pathways:	transcription-coupled	repair	(TCR)	

in	 transcriptionally	 active	 regions	 and	 global	 genomic	 repair	 (GGR)	 that	 can	 take	

care	 of	 lesions	 in	 both	 silent	 and	 active	 loci	 (Hanawalt,	 2002).	 GGR	 proteins	 are	

typically	maintained	in	a	relatively	low	abundance	(Usdin	et	al.,	2015).		In	contrast,	

TCR	targets	lesions	in	the	transcribed	strands	of	genes.	The	repair	process	also	starts	

with	 the	 recognition	 of	 the	 lesion,	 which	 is	 different	 between	 the	 TCR	 and	 GGR	

pathways,	but	they	both	merge	at	the	level	of	TFIIH	recruitment.	The	lesion	is	then	

excised,	 creating	a	DNA	gap	 that	 is	 then	 filled	 in	by	a	polymerase	and	 ligated.	The	

NER	pathway	has	significant	impacts	on	repeat	instability	both	in	vivo	and	in	cells.	

For	 example,	 Xpa	 knockout	 mice	 carrying	 145	 CAGs	 at	 the	 SCA1	 locus	 showed	

dramatically	 reduced	 levels	of	 instability	 in	neuronal	 tissues,	but	not	 in	peripheral	

organs	compared	to	Xpa+/+	mice	(Hubert	et	al.,	2011).	Besides,	RNAi	knockdown	of	

XPA	 reduced	 high	 contraction	 frequencies	 in	 human	 cells	 (Lin	 et	 al.,	 2006).	

Moreover,	 Lin	 et	 al.	 found	 that	 the	NER	and	MMR	pathway	 components	 appear	 to	

crosstalk	 to	 cause	 contractions	 during	 a	 transcription-coupled	 NER-like	 reaction	

(Lin	 et	 al.,	 2006).	 The	 same	 is	 true	 if	 ERCC1	 or	 XPG	 are	 knocked	 down	 (Lin	 and	

Wilson,	 2007).	 	 RNAi	 knockdown	 of	 CSB,	 which	 recognizes	 the	 stalled	 DNA	

polymerase	that	triggers	TCR,	in	human	cells	also	decreased	contraction	frequencies	

(Lin	 and	 Wilson,	 2007).	 By	 contrast,	 knockdown	 of	 XPC	 in	 these	 cells	 (Lin	 and	

Wilson,	 2007)	 or	 knockout	 of	 Xpc	 in	 an	 HD	 mouse	 model	 did	 not	 affect	 repeat	

instability	(Dragileva	et	al.,	2009).	These	results	implicate	the	TCR	pathway	in	repeat	

instability	and	suggest	that	GGR	has	only	a	minor	role	if	any.		

	

Base	Excision	Repair	(BER)	

Base	excision	repair	(BER)	is	the	primary	pathway	that	repairs	oxidized	bases	

(Banerjee	et	al.,	2011;	Zharkov,	2008).	Loss	of	OGG1,	a	glycosylase	that	excises	the	

common	oxidized	base	8-oxoguanine,	decreased	somatic	expansions	in	a	transgenic	

HD	mouse	model	 (Kovtun	et	al.,	2007).	This	presumably	worked	by	 increasing	 the	

repair	 rates	 within	 the	 repeat	 tract.	 Moreover,	 oxidative	 stress	 induced	 by	 H2O2	

treatment	 in	 human	 HD	 fibroblasts	 resulted	 in	 an	 MSH2	 enrichment	 at	 the	 CAG	

repeats	 (Kovtun	 et	 al.,	 2004).	 These	 results	 indicate	 that	MMR	 and	BER	pathways	

show	crosstalk	during	TNR	instability.	
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3.2	TNR	expansion	affects	chromatin	structure	and	gene	expression	
One	intriguing	observation	 is	 that	changes	 in	chromatin	structure	accompany	

repeat	expansion	through	mechanisms	that	remain	unclear	(Dion	and	Wilson,	2009).	

Specifically,	 expansions	 tend	 to	 acquire	 heterochromatic	 marks.	 The	 first	

correlations	between	long	trinucleotide	repeat	and	heterochromatic-like	chromatin	

marks	were	observed	in	FXS	(Hornstra	et	al.,	1993;	Oberlé	et	al.,	1991;	Sutcliffe	et	al.,	

1992).	 	Indeed,	in	FXS	patient	cells,	the	FMR1	gene	is	abnormally	methylated	at	the	

DNA	 level,	 which	 is	 thought	 to	 silence	 the	 gene.	 This	 is	 not	 seen	 in	 healthy	

individuals.	Meanwhile,	the	hypermethylation	in	the	FMR1	promoter	in	male	patient	

cells	was	even	more	significant	than	that	observed	in	the	inactive	X	of	normal	female	

cells	 (Stöger	 et	 al.,	 1997).	 ChIP	 experiments	 in	 FXS	 patient	 cells	 showed	 the	

accumulation	 of	 H3K9	 methylation,	 a	 heterochromatic	 mark,	 together	 with	 a	

decrease	 in	 euchromatic	 histone	marks	 H3K4me	 and	 H3K4ac	 (Coffee	 et	 al.,	 1999,	

2002).	 As	 predicted	 by	 the	model	whereby	 chromatin	 structure	 changes	 decrease	

FMR1	 expression,	 reversal	 of	 this	 heterochromatic	 state	 using	 histone	 deacetylase	

and	DNA	methyltransferase	inhibitors	led	to	a	transient	reactivation	of	the	expanded	

repeat.	(Abel	and	Zukin,	2008;	Biacsi	et	al.,	2008;	Didonna	and	Opal,	2015).		

	

Heterochromatinization	 of	 expanded	 repeats	 is	 not	 only	 restricted	 to	 CGG	

repeats.	In	DM1	patient	cells,	the	expanded	CTG	tract	is	associated	with	the	loss	of	a	

DNase	 I	hypersensitive	site	 in	 the	nearby	promoter	 region	of	 the	SIX5	 gene	 (Otten	

and	Tapscott,	1995).	Taking	advantage	of	methylation-sensitive	restriction	enzymes,	

Steinbach	 et	 al.	 showed	 that	 abnormal	 CpG	methylation	 is	mapped	 in	 the	 flanking	

sequence	 of	DMPK	 gene	 in	 DM1	 patients	 with	 the	 congenital	 form	 of	 the	 disease	

(Steinbach	et	al.,	1998).	This	was	further	confirmed	by	deep	sequencing	of	bisulfite-

treated	DNA	 (Barbé	 et	 al.,	 2017).	 Further	 observations	 show	 that	 in	DM1	patients	

fibroblasts,	 the	 CTG	 expanded	 repeat	 region	 sees	 an	 increase	 in	 antisense	

transcription,	loss	of	CTCF	binding,	decreased	H3K4	methylation,	and	an	increase	in	

H3K9me	(Cho	et	al.,	2005).	

Moreover,	 inserting	 arrays	 of	 CD2	 transgenes	 containing	 CTG	 or	 GAA	

expansions	 in	 the	 mouse	 genome	 led	 to	 silencing	 independently	 of	 the	 site	 of	

integration	 (Saveliev	 et	 al.,	 2003).	 By	 contrast,	 wild-type	 CD2	 transgene	 arrays	
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displayed	position-effect	variegation.	These	data	suggest	 that	expansions	cause	the	

changes	in	chromatin	structure.	

	

Similarly,	 FRDA	 cells	 show	 hypoacetylation	 of	 H3	 and	 H4	 and	 H3K9	

hypermethylation	 (Herman	 et	 al.,	 2006a).	 Moreover,	 several	 different	 histone	

deacetylase	inhibitors	could	revert	the	acetylation	loss	and	promote	FXN	expression	

in	 FRDA	 derived	 cells	 (Herman	 et	 al.,	 2006a).	 FRDA	 patients	 lymphoblast	 also	

underpinned	 three	 novel	 CpG	 methylations	 compare	 to	 non-affected	 patients	

(Greene	et	al.,	2007).	One	of	the	three	sites	is	known	to	be	crucial	for	transcription	

initiation.	 It	 provides	 further	 evidence	 that	 the	 triplet	 repeat	 is	 causing	

heterochromatic	 structure	 influence	 not	 only	 transcription	 elongation	 but	 also	

initiation	 (Greene	 et	 al.,	 2007).	 All	 of	 these	 tell	 us	 TNR	 tract	 can	 produce	 a	

correlation	with	heterochromatic	structure	formation.	

	

3.3	TNR	disease	treatment	strategy	
Until	now,	there	is	no	cure	for	any	of	the	expanded	repeat	diseases.	Palliative	

treatments	 for	expanded	TNR	disorders	mainly	 focus	on	alleviating	 the	symptoms.	

Importantly,	the	longer	the	trinucleotide	repeat	is,	the	earlier	the	age	of	onset.	This	

was	noted	in	HD	patients	as	early	as	1993	(Andrew	et	al.,	1993;	Duyao	et	al.,	1993;	

Lee	et	al.,	2012;	Stine	et	al.,	1993).	About	50%	variation	 in	the	age	of	onset	can	be	

attributed	to	repeat	size	in	the	blood	(Holmans	et	al.,	2017).	The	rest	is	attributed	to	

repeat	 interruptions	 (Goldberg	 et	 al.,	 1995),	 cis	 elements	 (Warby	 et	 al.,	 2009),	

and/or	trans	acting	genetic	factors	(Genetic	Modifiers	of	Huntington’s	Disease	(GeM-

HD)	Consortium,	 2015),	 all	 of	which	 could	 be	 acting	 via	 altering	 repeat	 expansion	

rates.	This	association	between	age	of	onset	and	repeat	 length	 is	not	 limited	to	HD	

but	has	also	been	 reported	 for	other	expanded	 repeat	disorders	 (Filla	et	 al.,	 1996;	

Harley	et	al.,	1993;	Koide	et	al.,	1994;	Orr	et	al.,	1993).		 	However,	since	all	of	them	

are	a	repeat-driven	problem,	would	that	be	more	effective	and	sufficient	to	focus	on	

repeat	 itself?	 In	 another	 word,	 can	 removal	 of	 repeat	 expansion	 reverse	 disease	

phenotype?		

3.3.1	Genome	editing	may	be	possible	to	provide	efficient	treatment	

The	 most	 obvious	 approaches	 to	 reducing	 repeat	 size	 are	 either	 to	 induce	

repeat	contractions	or	to	remove	the	track	altogether	using	gene	editing	tools.	The	
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Wilson	group	first	tried	this	with	ZFNs	recognizing	CAG/CTG	repeats	to	induce	DSBs.	

They	 found	 that	 this	 treatment	 dramatically	 increased	 the	 frequencies	 of	

contractions	 in	 a	 human	 cell	 line	 systems	 (Mittelman	 et	 al.,	 2009).	 It	was	 unclear	

whether	the	cells	also	accumulated	expansions	because	the	assay	could	only	detect	

contractions.	 Another	 approach	 used	 to	 contract	 the	 repeat	 tract	 in	 HD-derived	

iPSCs	 was	 by	 homologous	 recombination	 using	 a	 donor	 DNA	with	 a	 short	 repeat	

tract.	 Although	 the	 frequencies	 of	 correction	 were	 extremely	 low,	 corrected	 cells	

showed	 improved	 cell	 survival	 and	 pathogenic	 HD	 signaling	 pathways	 recovery	

(caspase	activity,	cadherin,	TGF-b,	and	BDNF).	Importantly,	the	corrected	cells	were	

readily	 differentiated	 into	 neurons	 (An	 et	 al.,	 2012).	 These	 experiments	 open	 the	

door	 to	a	cell-based	 therapy.	Our	 lab	has	shown	that	 targeting	 the	Cas9	nickase	 to	

CAG	 repeats	 within	 a	 GFP	 reporter	 can	 induce	 contractions	 without	 a	 significant	

increase	 in	 expansions	 (Cinesi	 et	 al.,	 2016).	 	 If	 targeting	 the	 Cas9	 nickase	 to	 CAG	

repeats	 in	vivo	 can	also	 induce	a	bias	 towards	contraction,	 then	this	strategy	could	

prove	to	be	useful	in	correcting	the	mutation	leading	to	these	devastating	diseases.	

	

Another	possible	approach	of	correcting	expanded	TNRs	is	to	remove	the	TNR	

region	 altogether.	 AAV	 virus-mediated	 Cas9,	 and	HTT	 exon1	 specific	 sgRNA	were	

injected	 into	 HD140Q-KI	mice	 striatum	 at	 the	 age	 of	 3	 or	 9	months	 (Yang	 et	 al.).		

They	 achieved	 permanent	 suppression	 of	 endogenous	mHTT	 expression	with	HTT	

aggregates	 depletion	 and	 neuropathology	 recovery.	 A	 self-inactivating	 system,	

KamiCas9,	 with	 an	 additional	 sgRNA	 to	 block	 Cas9	 translation,	 has	 been	 used	 to	

suppress	mHTT	expression	and	reverse	aggregates	formation	in	Ki140CAG	HD	mice	

(Merienne	et	al.,	2017).	To	tackle	the	mutated	HD	allele-specific	editing	goal,	6	SNPs	

in	HTT	gene	promoter	regions	were	screened	and	applied	to	engineer	mHTT	exon	1	

removal	altogether	specifically	but	not	in	normal	HTT	in	HD	patients	fibroblasts	and	

Bac	HD	mice	which	 contains	modified	human	HD	allele	 and	SNPs.	Dabrowska	 and	

colleagues	showed	to	use	Cas9	nickase	to	excise	all	the	CAG	repeats	from	HD	patient-

derived	 fibroblasts	 can	 inactivate	 HTT	 expression	 in	 variable	 repeat	 length	 cells	

(Dabrowska	et	al.,	2018).	Not	only	in	HD	system,	but	similar	Cas9	based	gene	editing	

to	 repeat	 expansion	 also	 achieved	 expansion	 tract	 removal	 and	 pathological	

recovery	 in	 myogenic	 capacity,	 nuclocytoplasmid	 distribution,	 RNA-binding	

capability	in	DM1	patient-derived	myoblasts	cells	(van	Agtmaal	et	al.,	2017).	Taken	
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together,	 removing	 CAG/CTG	 repeats	 from	 HD	 and	 DM1	 locus	 showed	 promising	

improvement	in	molecule	level	and	part	of	pathology	status.	

	

Expanded	GAA	repeats	were	excised,	 rather	 than	contracted,	using	ZFNs	 that	

flanked	 the	 expansion	 in	 FRDA	 patient	 fibroblasts	 and	 iPSC-derived	 neurons.	 The	

GAA	 repeat	 in	 these	 patients	 is	 found	 within	 the	 intron	 of	 FRDA	 and	 leads	 to	

silencing	 (Campuzano	 et	 al.,	 1996;	 Filla	 et	 al.,	 1996).	 Thus,	 excision	 of	 the	 repeat	

region	 led	 to	 an	 increase	 in	 FRDA	 expression	 along	 with	 disease-associated	

biomarkers	 normalization	 and	 aconitase	 activity	 and	 intracellular	 ATP	 levels	

increase	 (Li	 et	 al.,	 2015).	 Ouellet	 and	 colleagues	 took	 advantage	 of	 Cas9	 to	 excise	

GAA	repeat	expansion	from	FRDA	gene	and	increase	frataxin	gene	transcription	and	

protein	level	in	YG8R	and	YG8sR	mouse	models	and	their	derived	cell	lines	(Ouellet	

et	al.,	2017).	

	

Taking	advantage	of	CRISPR/Cas9-based	gene	editing,	Park	et	al.	induced	a	DSB	

within	the	expanded	CGG	repeat	of	FXS-derived	iPSCs.	In	those	clones	that	contained	

a	 contraction,	 they	 saw	 an	 increase	 in	 the	 FMR1	 mRNA	 and	 the	 up-regulation	 of	

FMRP.	 This	 was	 presumably	 due	 to	 the	 loss	 of	 heterochromatic	 marks	 in	 the	

promoter	of	FMR1	(Park	et	al.,	2015).		

Thus,	it	is	becoming	feasible	to	precisely	edit	the	repeat	region.	It	remains	to	be	

seen	 whether	 these	 approaches	 will	 work	 in	 vivo	 and	 when	 during	 disease	

development	they	would	be	efficient	and	safe	to	use.		

	

3.3.2	Epigenome	editing	may	also	provide	a	potential	treatment	

As	discussed	previously,	 chromatin	 structure	 changes	have	been	observed	 in	

TNR	expansion	causing	diseases	mice	models,	and	patients	derived	cells	(Dion	and	

Wilson,	2009).	It	would	be	logical	to	suspect	chromatin	modifying	enzymes	may	take	

action	during	disease	onset	and	progression	based	on	those	observations.	Moreover,	

here	 histone	 deacetylases	 and	 DNA	 methyltransferases	 involvement	 in	 TNR	

disorders	will	be	discussed.	

3.3.2.1	Histone	deacetylases	(HDACs)	

HDACs	appear	to	play	a	central	role	in	neurodegeneration	and	thus	have	been	

considered	 for	 treatment	 of	 multiple	 expanded	 TNR	 disorders	 (Butler	 and	 Bates,	
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2006;	Soragni	and	Gottesfeld,	2016).	For	instance,	HDAC	inhibitors,	TSA	and	SAHA,	

have	 been	 shown	 to	 reduce	 cell	 death	 and/or	 neurodegeneration	 in	mouse	motor	

neuron-neuroblastoma	 fusion	 cell	 lines	 (MN-1),	 Drosophila,	 and	 transgenic	

Huntington	mouse	model	R6/2	(Hockly	et	al.,	2003;	McCampbell	et	al.,	2001;	Steffan	

et	 al.,	 2001).	 HDAC3	 selective	 inhibitor,	 RGFP966,	 can	minimize	 cognitive	 defects	

and	 suppress	 somatic	 repeat	 expansion	 in	HdhQ111	 transgenic	mice	 (Suelves	 et	 al.,	

2017).	 FRDA	 is	 another	 prime	 candidate	 for	 HDAC	 inhibition	 treatment.	 As	

described	 previously,	 FRDA	 is	 an	 autosomal	 recessive	 neurodegenerative	 disease	

due	to	GAA	triplet	expansion	located	in	the	first	intron	of	FXN	gene,	which	ends	up	

with	 declined	 frataxin	 production	 (Yandim	 et	 al.,	 2013).	 Gottesfeld	 and	 colleagues	

demonstrated	 that	 one	 specific	 HDAC	 inhibitor,	 a	 2-aminobenzamide	 derived	

compound,	can	increase	levels	of	frataxin	mRNA	and	protein	in	lymphoblastoid	and	

primary	 lymphocytes	 (Herman	 et	 al.,	 2006b).	 Another	 HDAC	 inhibitor,	 109,	 also	

showed	 to	 lead	 an	 increase	 in	 chromatin	 accessibility	 and	 FXN	 transcription	

production	 (Chutake	 et	 al.,	 2016).	 All	 these	 promising	 HDACi	 as	 drug	 treatment	

share	a	slow-on/slow-off	kinetic	profile	and	target	class	I	HDAC	primarily	(Soragni	

and	Gottesfeld,	2016).	Compound	109	has	been	 tested	 in	FRDA	patient	 fibroblasts,	

iPSCs,	 and	 neurons	 and	 proved	 successful	 in	 increasing	 frataxin	 expression	 at	

concentrations	that	were	not	significantly	toxic	(Soragni	et	al.,	2014).	In	the	context	

of	 DM1,	 a	 new	 flow	 cytometry-based	 screening	 in	 Hela	 cells	 revealed	 two	 more	

HDAC	inhibitors,	ISOX,	and	vorinostat,	that	can	dramatically	increase	MBNL1	mRNA	

level	(Zhang	et	al.,	2017).	MBNL1	is	a	splicing	factor	that	gets	sequestered	by	mRNAs	

with	an	expanded	CUG	repeat,	leading	to	mis-splicing	of	mRNAs	in	trans	(Echeverria	

and	Cooper,	2012).	The	two	HDAC	inhibitors	also	up-regulated	MBNL1	protein	levels	

and	partially	reversed	the	splicing	defect	in	DM1	patient-derived	fibroblasts	(Zhang	

et	al.,	2017).		

	

From	all	of	these	losses	of	function	approaches,	they	failed	to	answer	whether	

HDACs	work	locally	to	affect	TNR	or	affect	other	protein	transcription	in	trans.	(Jia	et	

al.,	2016).		

3.3.2.2	DNA	methyltransferase	(DNMTs)	

There	are	 five	paralogues	of	DNA	methyltransferases	 (DNMTs)	 in	 the	human	

genome,	DNMT1,	DNMT2,	DNMT3a,	DNMT3b,	 and	DNMT3L	 (Lyko,	2018).	DNMT1,	
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3a,	 and	 3b	 are	 cytosine-5	 DNMTs,	 which	 catalyze	 and	maintain	 DNA	methylation.	

Their	action	closely	tracks	with	gene	silencing.	By	contrast,	Dnmt2	targets	RNA	(Goll	

et	al.,	2006)	and	Dnmt3L	(Bourc’his	et	al.,	2001)	does	not	possess	catalytic	activity.	

Aberrant	DNA	methylation	and,	by	extension,	DNMTs	activity,	are	 found	 in	several	

expanded	 TNR	 diseases.	 	 For	 instance,	 as	 early	 as	 1993,	 Knight	 et	 al.	 described	

aberrant	CpG	island	hypermethylation	at	the	FRAXE	mental	retardation	locus	upon	

CGG	expansion	(Knight	et	al.,	1993).	The	Usdin	group	found	three	hypermethylated	

CpG	 residues	 in	 the	 FXN	gene	promoter	 region	 only	 in	 FRDA	patient-derived	 cells	

(Greene	et	al.,	2007).	They	also	showed	that	expanded	GAA	repeats	could	influence	

transcription	 initiation	 (Kumari	 et	 al.,	 2011;	 Punga	 and	 Bühler,	 2010).	 CpG	

hypermethylation	was	also	found	around	the	CTG	expansion	in	DM1	cells,	where	it	

correlates	with	the	congenital	form	of	the	disease	(Barbé	et	al.,	2017).		In	a	knock-in	

mouse	model	of	SCA1,	CpG	methylation	levels	at	three	sites	around	the	CAG	repeat	

tract	were	found	to	be	sensitive	to	DNMT1	levels.	Although	there	was	a	correlation	

between	high	levels	of	CpG	methylation	at	these	sites	and	instability	in	the	germlines,	

there	did	not	seem	to	be	a	drastic	effect	on	the	pathogenesis	of	the	disease	(Dion	et	

al.,	2008).			

	

Treating	 patients	 with	 HDAC	 inhibitors	 and/or	 DNMT	 inhibitors	 is	 likely	 to	

lead	to	serious	side	effects	given	that	HDACs	and	DNMTs	are	involved	in	regulating	

gene	 expression	 genome-wide.	 A	more	 precise	 approach,	 therefore,	will	 be	 to	 use	

epigenome	editing.	However,	as	seen	above,	the	chromatin	context	can	influence	the	

efficiency	 of	 epigenome	 editing	 and	 expanded	 repeats	 come	 with	 an	 altered	

chromatin	state.	Thus,	 it	 is	 crucial	 to	understand	how	repeat	expansion	affects	 the	

ability	of	chromatin	modifying	enzymes	to	modify	gene	expression	locally.	

	

3.4	How	to	study	TNRs	with	an	inducible	targeting	system	
To	 understand	 how	 sequence	 contexts	 affecting	 epigenome	 editing,	 it	 is	

necessary	to	be	able	to	target	chromatin	modifies	to	a	locus	that	differs	only	by	the	

size	of	 the	repeat	 tract.	Classically	 targeting	systems	have	used	bacterial	operators	

like	LacO,	TetO,	and	LexA.	For	instance,	inserting	arrays	of	LacOs	allows	visualizing	

chromatin	 dynamics,	 gene	 expression,	 and	 chromatin	 structure	 (Belmont,	 2001;	

Carpenter	 et	 al.,	 2005;	 Rafalska-Metcalf	 and	 Janicki,	 2007;	 Verschure	 et	 al.,	 2005).	
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However,	 the	 LacO	 array	 is	 prone	 to	 breakage	 (Jacome	 and	 Fernandez-Capetillo,	

2011)	 and	 a	 repetitive	 sequence	 inserted	 near	 a	 CAG	 repeat	 may	 influence	 the	

latter’s	stability	(Blackwood	et	al.,	2010).	Thus,	we	concluded	that	a	repetitive	array,	

like	 LacO	 or	 TetO,	 would	 not	 be	 ideal	 as	 a	 targeting	 system	 to	 study	 expanded	

CAG/CTG	repeats.		

	

The	Bystricky	 lab	 described	 a	 non-repetitive	 alternative	 in	 2014	 (Saad	 et	 al.,	

2014).	It	involves	a	chromosome	partitioning	system	form	B.	cenocepacia,	in	which	a	

sequence	 of	 roughly	 1kb,	 INT,	 that	 contains	 four	 binding	 sites	 for	 dimers	 of	 ParB	

(Dubarry	et	al.,	2006).	This	 initial	binding	 initiates	 the	oligomerization	of	 the	ParB	

protein,	leading	to	the	recruitment	of	up	to	200	molecules,	at	least	in	vitro	(Khare	et	

al.,	 2004).	 After	 optimization	 for	 usage	 in	 yeast,	 INT-ParB	 system	 was	 used	 to	

monitor	DSB	repair	in	live	cells	(Saad	et	al.,	2014).	The	authors	found	no	increase	in	

fragility	 and	 no	 effect	 on	 gene	 expression.	 We	 concluded	 that	 this	 was	 a	 better	

system	to	use	for	our	purpose.		

	

The	problem	remained	that	directly	comparing	the	overexpression	of	a	protein	

to	 a	 constitutive	 targeting	 at	 the	 expanded	 repeat	would	 require	 two	 independent	

cell	lines.	This	is	not	ideal	and	can	be	overcome	by	the	use	of	a	CIP	system.		We	opted	

for	the	exogenous	ABA-based	CIP	(Liang	et	al.,	2011).	

	

Finally,	 we	 needed	 an	 efficient	 and	 scalable	 way	 of	 monitoring	 the	 effect	 of	

targeting	 chromatin	modifying	 enzymes	on	 gene	 expression	 and	 repeat	 instability.	

One	 of	 the	main	 challenges	when	working	with	 expanded	 repeats	 is	 to	 size	 them	

accurately	and	rapidly.	The	gold	standard,	but	tedious,	a	method	to	determine	repeat	

length	 is	 small-pool	 polymerase	 chain	 reaction	 (SP-PCR)	 (Monckton	 et	 al.,	 1995).	

Since	PCR	amplification	 is	biased	 towards	 shorter	 repeats,	 in	 SP-PCR	 the	 template	

DNA	 is	 diluted	 to	 just	 a	 few	 genomes	 per	 reaction.	 Since	many	 reactions	 are	 then	

necessary	to	have	a	following	number	of	allele	measured,	this	is	not	an	efficient	way	

of	 screening	 the	 effect	 of	 chromatin	 modifiers.	 More	 recently,	 new	 long-read	

sequencings	methods	have	been	applied	to	tandem	repeats	(Bustos	et	al.,	2016;	Liu	

et	al.,	2017;	Loomis	et	al.,	2013;	McFarland	et	al.,	2015;	Tsai	et	al.,	2017).		However,	
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the	number	 of	 quantifiable	 events	 remains	 low	and	 the	 cost	 high.	 Thus	 this	 is	 not	

suitable	for	our	purposes.	

	

Some	plasmid-based	 instability	 assays	 exist	 that	 are	 average	 throughput	 and	

labor-intensive	 (Claassen	 and	 Lahue,	 2007;	 Cleary	 and	 Pearson,	 2003;	 Farrell	 and	

Lahue,	 2006).	 These	would	 have	 the	 added	 issues	 that	 they	 cannot	measure	 both	

expansions	and	contractions	at	the	same	time	and	that	the	chromatin	structure	may	

be	entirely	different	than	if	the	sequence	is	integrated	stably	in	the	genome.	A	better	

approach,	therefore,	is	to	use	a	chromosomal	reporter	developed	by	the	Wilson	lab.	

The	first	generation	was	based	on	the	observation	that	inserting	a	large	CAG	repeat	

within	the	intron	of	selectable	genes	like	APRT	and	HPRT	decreased	their	expression	

(Gorbunova	et	al.,	2003;	Lin	et	al.,	2006).	This	works	because	the	CAG	repeat	acts	as	

an	alternative	exon	whose	strength	depends	on	the	size	of	the	repeat,	which	acts	as	a	

splicing	enhancer	(Blencowe,	2000;	Elrick	et	al.,	1998;	Hong	and	Li,	2002;	Yeakley	et	

al.,	1996).	When	this	CAG	exon	is	included,	it	also	includes	38bp	downstream	of	the	

repeat	 tract	 that	 throws	 off	 the	 reading	 frame.	 Thus,	 starting	 with	 a	 large	 repeat	

tract,	 and	 thus	an	 inactive	gene,	massive	 contractions	 can	be	 readily	quantified	by	

selecting	for	the	activity	of	the	selectable	marker.		Here	again,	one	caveat	is	that	the	

assay	 only	 measures	 one	 class	 of	 events,	 in	 this	 case,	 rare	 massive	 contractions.	

Attempts	 to	 modify	 the	 assay	 such	 that	 expansions	 can	 be	 detected	 had	 limited	

impact	and	was	impractical	(Lin	et	al.,	2005).		

	

The	 latest	 generation	 of	 the	 assay	 is	 GFP-based.	 It	 contains	 an	 inducible	

promoter,	and	a	GFP	split	 into	 two	exons	with	 the	 intron	of	 the	mouse	Pem1	gene	

inserted	in	between	(Santillan	et	al.,	2014).	It	was	initially	designed	as	a	contraction	

assay,	but	our	lab	has	shown	that	it	can	monitor	both	expansions	and	contractions	at	

the	 same	 time	 within	 only	 a	 few	 days	 (Cinesi	 et	 al.,	 2016).	 The	 system	 will	 be	

introduced	in	detail	in	Chapter	III	Results.	

	

The	goal	 of	 this	 thesis	was	 to	build	 an	 inducible	 targeting	 assay	 to	 study	 the	

effect	of	repeat	expansion	on	epigenome	editing.	I	describe	herein	the	engineering	of	

the	 system	 and	 the	 use	 of	 this	 synthetic	 biology	 approach	 for	 uncovering	 novel	

mechanisms	by	which	chromatin	modifiers	affect	gene	expression.		
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Plasmids	

The	plasmids	used	to	make	the	cell	lines	or	transient	transfection	are	found	in	

Table	II.1.		

	

Cell	culture	conditions	

The	majority	of	the	cell	lines,	including	all	the	parental	lines,	used	(Table	II.1)	

were	 genotyped	 by	 Microsynth,	 AG	 (Switzerland)	 and	 found	 to	 be	 HEK293.2sus.	

They	were	 free	 of	mycoplasma	 as	 assayed	 by	 the	Mycoplasma	 check	 service	 from	

GATC	Biotech.	The	cells	were	maintained	 in	DMEM	containing	10%	FBS,	penicillin,	

and	 streptomycin,	 as	 well	 as	 the	 appropriate	 selection	 markers	 at	 the	 following	

concentrations	15	µg	ml-1	 blasticidin,	 1µg	ml-1	puromycin,	150µg	ml-1	hygromycin,	

400	µg	ml-1	G418,	400	µg	ml-1	zeocin	at	37	°C	with	5%	CO2.	The	ABA	concentration	

used	was	500	µM,	unless	otherwise	indicated.	Dox	was	used	at	a	concentration	of	2	

µg	ml-1		

	

Cell	line	construction	

A	schematic	of	cell	 line	construction	is	 found	in	Figure	III.	7	and	the	 lines	are	

listed	 in	 Table	 S1.	 For	 each	 line,	 single	 clones	 were	 picked	 and	 verified	 for	

expression	 of	 ParB-ABI	 and	 PYL-fusions	 by	 western	 blotting	 using	 the	 protocol	

described	 before	 (Cinesi	 et	 al.,	 2016).	 Proteins	were	 extracted	 in	 RIPA	Buffer	 and	

scrapped	 from	 the	 plate.	 Centrifugation	 removed	 the	 cell	 debris.	 The	 supernatant	

was	 collected	 and	 further	 quantified	 using	 the	 Pierce	 BCA	 Protein	 Assay	 Kit	

(ThermoScientific).	 	 Proteins	were	 then	mixed	with	 loading	 buffer	 and	 run	 onto	 a	

Tris-glycine	 10%	 SDS	 PAGE	 gels.	 The	 proteins	 were	 then	 transferred	 to	

nitrocellulose	 membrane	 (Axonlab).	 The	 membranes	 were	 blocked	 using	 the	

Blocking	 Buffer	 for	 Fluorescent	 Western	 Blotting	 (Rockland)	 and	 then	 primary	

antibodies	were	added	overnight.	Membranes	were	 then	washed	with	PBS	+	0.1%	

Tween	 at	 room	 temperature	 followed	 by	 the	 addition	 of	 the	 secondary	 antibody	

(1:2000).	 After	 washing	 with	 PBS,	 the	 fluorescent	 signal	 was	 detected	 using	 an	

Odyssey	 Imaging	 System	 (Li-CoR).	 All	 antibodies	 used	 are	 found	 in	 Table	 II.2.	

Besides,	repeat	sizes	were	verified	using	oVIN-0459	and	oVIN-0460	with	the	UNG-

based	PCR	reaction	described	before	(Aeschbach	and	Dion,	2017)	and	then	Sanger-

sequenced	by	Microsynth	AG	(Switzerland).		
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PaB-ABI	 (pBY-008),	 PYL	 (pAB-NEO-PYL),	 PYL-DNMT1	 (pAB(EXPR-PYL-

DNMT1-NEO)),	 PYL-HDAC5	 (pAB(EXPR-PYL-HDAC5-NEO))	 and	 PYL-HDAC3	

(pAB(EXPR-PYL-HDAC3-NEO))	were	 randomly	 inserted.	The	GFP-reporter	 cassette	

was	 inserted	 using	 the	 Flp-mediated	 method	 as	 the	 manufacturer's	 instructions	

(https://www.thermofisher.com/ch/en/home/references/protocols/proteins-

expression-isolation-and-analysis/protein-expression-protocol/flp-in-system-for-

generating-constitutive-expression-cell-lines.html#prot3	 Thermo	 Scientific).	 Single	

colonies	were	picked	and	screened	for	zeocin	sensitivity	to	ensure	that	the	insertion	

site	was	correct.		

	

Targeting	assays	

For	 targeting	 assays	 involving	 transient	 transfections,	 cells	were	 plated	 onto	

poly-D-lysine-coated	 12	 well	 plates	 with	 600'000	 per	 well	 on	 the	 first	 day.	

Constructs	 were	 transfected	 using	 Lipofectamine	 2000	 or	 Lipofectamine	 3000	

(Thermofisher	 Scientific)	 with	 1	 µg	 per	 well	 on	 the	 same	 day.	 6	 hours	 after	

transfection,	the	medium	was	replaced	with	one	containing	dox	and	ABA	or	DMSO.	

48h	 after	 the	 transfection,	 the	 cells	 were	 split,	 and	 dox	 with	 ABA	 or	 DMSO	were	

added	again.	On	 the	 fifth	day,	 samples	were	detached	 from	 the	plate	with	PBS	+	1	

mM	EDTA	for	flow	cytometry	analysis.	

	

In	 the	 case	of	 stable	 cell	 lines,	 cells	were	 seeded	 at	 a	 density	 of	 400'000	per	

well	in	12-well	plates.	The	media	includes	dox	and	ABA	or	DMSO.	The	medium	was	

changed	48	hours	later,	and	the	cells	were	resuspended	in	500µl	PBS	+	1	mM	EDTA	

for	Accuri	(BD)	flow	cytometry	analysis	with	12517	events	recorded.		

	

For	 dCas9	 targeting,	 CIT0	 and	 CIT40	 cells	 were	 seeded	 into	 coated	 12	 well	

plates	to	a	density	of	600’000	cells	per	well.	dCas9-KRAB	(pBY-040),	dCas9-HDAC5	

NT	(pBY-038),	or	dCas9-HDAC5	CD	(pBY-039)	were	transfected	using	Lipofectamine	

2000	 (Life	 technology)	 together	with	 the	 sgRNAs	 in	 a	 1:1	 ratio.	 6	 hours	 later,	 the	

medium	was	changed	for	one	containing	dox.	The	medium	was	changed	again	on	the	

third	day,	and	fresh	dox	was	added.	The	cells	were	then	recovered	and	analyzed	by	

flow	cytometry.		
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Flow	cytometry	and	analysis	

We	used	an	Accuri	C6	flow	cytometer	from	BD	and	measured	the	fluorescence	

in	at	least	12517	events	for	each	treatment.	The	raw	data	was	exported	as	FCS	files	

and	analyzed	using	FlowJo	version	10.0.8r1.	The	statistical	analysis	was	done	using	

R	studio	version	3.4.0.	All	R	scripts	are	attached	in	the	Appendix.	

	

Chromatin	immunoprecipitation	

For	chromatin	immunoprecipitation,	CIT	cells	were	treated	as	for	the	targeting	

experiments	 except	 that	 the	 number	 of	 cells	 used	was	 10	 times	 higher	 and	 10cm	

plates	 were	 used.	 At	 the	 end	 of	 the	 five	 days,	 formaldehyde	 was	 added	 to	 the	

medium	 to	 a	 final	 concentration	 of	 1%	 and	 incubated	with	 gentle	 shaking	 for	 10	

minutes	at	room	temperature.	The	samples	were	then	quenched	with	0.125M	PBS-

glycine	 for	 5	 minutes	 at	 room	 temperature.	 Samples	 were	 then	 centrifuged,	 the	

supernatant	was	discarded,	and	the	cell	pellets	were	washed	with	ice-cold	PBS	twice.	

The	samples	were	split	into	10	million	cells	per	aliquot	and	either	used	immediately	

or	stored	-75	°C	for	later	use.	

	

Sonication	was	done	using	a	Bioruptor	in	1	ml	of	cell	lysis	buffer	(10	mM	Tris-

HCl	pH	8.0,	200mM	NaCl,	1mM	EDTA,	0.5	mM	EGTA,	0.1%	Na-Deoxycholate,	0.25%	

Sodium	lauroyl	sarcosinate,	protease	inhibitor	Complete	EDTA	free	(Roche))	for	25	

to	 30	 min.	 DNA	 shearing	 was	 visualized	 by	 agarose	 gel	 electrophoresis	 after	

crosslink	reversal	and	RNase	treatment.		20%	of	sonicated	supernatant	was	used	per	

IP	with	3	μg	anti-Flag	(M2,	Sigma),	anti-PAN	acetylated	H3	(Merck),	or	anti-IgG	(3E8,	

Santa	Cruz	Biotechnology)	in	800	μl	IP	dilution	buffer	(1.25%	Triton-X,	1	mM	EDTA	

pH	 8.0,	 0.5	 mM	 EGTA,	 16.25	 mM	 Tris-HCl,	 137.5	 mM	 NaCl,	 1x	 protease	 inhibitor	

Complete	EDTA	free	(Roche))	with	50	µl	blocked	50%	slurry	of	Protein	G	Sepharose	

4	Fast	 Flow	beads	 (GE	healthcare).	 The	 samples	were	 incubated	 at	 4	 °C	 overnight	

and	then	washed	with	progressively	more	stringent	conditions	(wash	1:	0.1%	SDS,	

1%	 Trition,	 20mM	 Tris-HCl,	 2mM	 EDTA,	 300mM	 NaCl;	 wash	 2:	 0.1%	 SDS,	 1%	

Trition,	 20mM	 Tris-HCl,	 2mM	 EDTA,	 500mM	 NaCl;	 wash3:	 1%	 NP-40,	 1%	 Na-

deoxycholate,	 10mM	 Tris-HCl,	 1mM	 EDTA,	 250mM	 LiCl;	 wash4:	 10mM	 Tris-HCl,	
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1mM	 EDTA).	 After	 the	 IP,	 the	 samples	 were	 de-crosslinked	 and	 purified	 using	 a	

QIAquick	PCR	purification	kit	(Qiagen)	and	analyzed	using	a	qPCR.	

	

Quantitative	PCR	

qPCR	was	performed	with	the	FastStart	Universal	SYBR	Green	Master	(Roche)	

using	 a	 7900HT	Fast	 Real-Time	PCR	 System	 in	 a	 384-Well	 Block	Module	 (Applied	

Biosystems™).	 Primers	 used	 to	 detect	 enrichment	 at	 the	 INT	 sequence	 and	ACTA1	

gene	are	listed	below	and	in	Table	S3.	

	

oVIN-0969	(INT)	

5’	TGAATACCATGCGCTCTA	

oVIN-0970	(INT)	

5’	GCCGTTCGTGGCAGAGAT	

oVIN-1075	(ACTA1)	

5’	AGCGCGGCTACAGCTTCAC	

oVIN-1076	(ACTA1)	

5’	CAGCCGTGGCCATCTCTT		

	

Ct	 values	 were	 analyzed	 using	 the	 SDS	 Software	 v2.4.	 The	 reported	

enrichments	were	obtained	using	the	ΔCt	method:	

	

ΔCt[normalized	ChIP]	=	(Ct[ChIP]-	(Ct[input]	–	log2(input	dilution	factor))	

	

%	input	=	2-	ΔCt[normalized	ChIP]	

	

ΔΔCt[ABA	PYL	INT	ChIP]	=	Ct[	normalized	ABA	PYL	INT	ChIP]	-	Ct[	normalized	

DMSO	PYL	INT	ChIP]	

	

Fold	difference	=	2-	ΔΔCt[ABA	PYL	INT	ChIP]	

	

	

	

Small-pool	PCR	
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CIT40BYH5	and	CIT89BYD	cells	were	treated	as	for	the	targeting	experiments	

but	 split,	 and	 the	 medium	 replaced	 every	 three	 days	 for	 one	 month.	 Cells	 were	

harvested,	 and	 genomic	DNA	was	 extracted	 using	NucloSpin	Tissue	Kit	 (Macherey	

Nagel).		

	

Small	Pool	PCR	was	performed	as	previously	described	(Aeschbach	and	Dion,	

2017).	Seven	PCR	reactions	per	sample,	plus	one	negative	control,	were	set	up	using	

the	 Phusion	 U	 Green	 Hot	 Start	 DNA	 Polymerase	 kit	 (Thermo	 Fisher	 Scientific)	 as	

follow:	 1X	 reaction	 buffer,	 0.2mM	dNTP	mix	 (without	 dTTP),	 0.4mM	dUTP,	 0.5μM	

oVIN-460,	0.5μM	oVIN-1425,	3%	DMSO,	0.1U	Uracil-DNA	N-Glycosylase	heat	 labile	

(Roche	#11775367001),	0.4U	Phusion	Taq,	1ng	of	DNA,	and	H2O	to	10μL.	The	PCR	

program	used	consist	of	20°C	 for	10	min,	95°C	 for	7	min,	 followed	by	35	cycles	at	

95°C	for	30	s,	60°C	for	30	s,	and	72°C	for	1	min	30	s,	at	the	end	a	final	extension	of	

72°C	for	10	min.	After	the	PCR	run	finish,	100μg	ml-1	of	Proteinase	K	was	added	to	

each	reaction	and	incubated	at	37°C	for	1	hour.	

	

PCR	products	were	separated	on	a	2%	agarose	gel.	The	gel	was	washed	twice	

for	 20	 min	 in	 alkaline	 transfer	 buffer	 (0.4M	 NaOH,	 1M	 NaCl).	 The	 gel	 was	 then	

transferred	 overnight	 onto	 a	 charged	membrane	 (Zeta-Probe	 GT	 Genomic	 Tested,	

Bio-Rad)	 using	 capillary	 action	 in	 alkaline	 transfer	 buffer.	 After	 transfer,	 the	

membrane	was	washed	with	a	neutralization	buffer	(1.5M	NaCl,	0.5M	Tris	base,	pH	

7.4)	 for	 5	 min,	 and	 added	 into	 a	 hybridization	 cylinder	 along	 with	 pre-warmed	

Ultrahyb	 buffer	 (Thermo	 Scientific).	 Salmon	 sperm	 DNA	 was	 added	 and	 the	

membrane,	which	was	then	incubated	for	at	least	one	hour	at	52°C.	

	

The	 probe	 for	 hybridization	 was	 prepared	 using	 T4	 PNK	 (New	 England	

BioLabs)	as	follow:	1X	Reaction	buffer,	50pmol	of	oVIN-100,	10mM	[γ-32P]	ATP,	10U	

T4	PNK,	and	H20	to	25μL.	The	probe	was	incubated	at	37°C	for	1	hour,	followed	by	

10	 minutes	 at	 65°C.	 The	 probe	 was	 then	 added	 directly	 to	 the	 membrane	 and	

incubated	 at	 52°C	 for	 2	 hours.	 After	 incubation,	 the	 membrane	 was	 washed	 four	

times	for	20	min	with	a	washing	buffer	(0.5X	SSC,	0.1%	SDS).	Finally,	the	membrane	

was	washed	with	 2X	 SSC,	 exposed	 to	 a	 phosphoscreen	 for	 24	 hours,	 and	 revealed	

with	a	Typhoon	scannersphoimager.		
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Cas9	T7E1	test		

CIT40	cells	were	seeded	into	coated	12	well	plates	to	a	density	of	600’000	cells	

per	well.	Cas9	(pcDNA3.3-TOPO-hCas9)	with	sgRNAs	were	transfected	in	a	1:1	ratio	

using	Lipofectamine	2000	(Life	technology)	for	6h	followed	after	which	the	medium	

was	 changed	 and	 included	 dox.	 Cells	 were	 harvest	 72h	 after	 transfection,	 and	

genomic	 DNA	 was	 extracted	 using	 the	 NucloSpin	 Tissue	 Kit	 (Macherey	 Nagel).	

Genomic	regions	targeted	by	the	sgRNAs	were	amplified	with	oVIN-0755	and	oVIN-

0970,	which	listed	in	Table	II.3.	PCR	products	were	purified	with	the	NucloSpin	Gel	

and	PCR	Clean-up	Kit	(MN)	and	quantified	using	the	Nanodrop	spectrophotometer.	

200ng	 of	 purified	 PCR	 product	 was	mixed	with	 NEB	 buffer	 2	 and	 ddH2O	 to	 19µl,	

followed	 by	 5	 min	 95°C,	 then	 a	 slow	 2°C	 per	 second	 decrease	 from	 95	 to	 85	 °C	

followed	by	0.1°C	per	second	decrease	in	temperatures	to	25°C	and	then	paused	at	

15°C.	The	reaction	mix	was	incubated	with	1µl	of	T7	endonuclease	I	(NEB)	for	15min	

at	37	°C.	Treated	samples	were	visualized	on	a	1%	agarose	gel.	

	

Statistics	

When	 analyzed	 flow	 cytometry	 data	 between	 ABA	 and	 DMSO	 treatment,	 we	

could	not	be	certain	they	were	normally	distributed.	I	performed	paired	Student's	t-

test	for	all	the	mean	values	of	each	sample.	The	same	statistics	analysis	was	applied	

to	 different	 repeat	 length	POI	 cell	 lines	 comparison.	All	 the	 statistical	 analysis	 has	

been	done	in	R	studio	3.4.0.	We	used	p-value	<	0.05	as	significant	difference	exist.	
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Table	II.2.	Antibodies	used	
	

Epitope	 Company	 Catalog	
number	 Dilution	 Assay	

FLAG	 Sigma-Aldrich	 F1804-5MG	 3	μg	per	IP	
1:1000	

ChIP	
WB	

IgG	 Santa	Cruz	
Biotechnology	 sc-69786	 3	μg	per	IP	 ChIP	

Pan-
acetylation	of	

H3	
Merck	 #06-599	 3	μg	per	IP	 ChIP	

HA	 Roche	 11	867	423	
001	 1:1000	 WB	

Histone	H3	 Abcam	 ab1791	 3	μg	per	IP	 ChIP	

Actin	 Sigma-Aldrich	 A2066-.2ML	 1:2000	 WB	

PolII	 Abcam	 ab26721	 3	μg	per	IP	 ChIP	
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Table	II.3.	Primers	used	
	
Name	 Sequence	 Locus	 Purpose	 Reference	

oVIN-
0969	 5’-	TGAATACCATGCGCTCTA-3’	 INT	 ChIP-Q-PCR	 This	study	

oVIN-
0970	 5’-	GCCGTTCGTGGCAGAGAT-3’	 INT	 ChIP-Q-PCR	 This	study	

oVIN-
1075	 5’-	AGCGCGGCTACAGCTTCAC-3’	 Actin	 ChIP-Q-PCR	 This	study	

oVIN-
1076	 5’-	CAGCCGTGGCCATCTCTT-3’	 Actin	 ChIP-Q-PCR	 This	study	

oVIN-
0459	 5’-	AAGAGCTTCCCTTTACACAACG-3’	 GFP	

reporter	
CAG	repeat	
amplification	

(Cinesi	et	
al.,	2016)	

oVIN-
0460	 5’-	TCTGCAAATTCAGTGATGC-3’	 GFP	

reporter	
CAG	repeat	
amplification	

(Cinesi	et	
al.,	2016)	

oVIN-
1425	 5’-GACCTCATACGAAGATAGGCTT-3’	 GFP	

reporter	
CAG	repeat	
amplification	 This	study	

oVIN-
0100	

5’-
AGCAGCAGCAGCAGCAGCAGCAGCAGCAGC-

3’	

GFP	
reporter	

CAG	repeat	
probe	 This	study	

oVIN-
0755	 5’-GACCTCATACGAAGATAGGCTT-3’	 GFP	

reporter	
INT	

amplification	 This	study	

oVIN-
0970	 5’-GCCGTTCGTGGCAGAGAT-3’	 GFP	

reporter	
INT	

amplification	 This	study	
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Chapter	III	
	

Results	
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1.	Targeting	system	design	and	construction		
The	 inducible	 targeting	 system	 can	 be	 divided	 into	 three	 major	 parts.	 It	

contains	 a	GFP	 reporter	 assay	 to	monitor	CAG	 repeat	 instability	 and	 expression,	 a	

ParB-INT	 protein-DNA	 binding	 system	 and	 the	 ABA-induced	 proximity	 system	

(Figure	 III.	 1	 A-C).	 Each	 component	was	 engineered	 in	 vitro	and	 stably	 integrated	

into	Flp-in	T-REX	(HEK293)	cells.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

Figure III. 1. Three components of the inducible targeting system. 
A. Abscisic acid (ABA)-inducible proximity system. PYL can bind to 

ABI when ABA is present. 
B. ParB-INT protein DNA binding assay. Bacteria-derived ParB can 

bind to INT in a sequence-dependent manner and nucleate the 
oligomerization of ParB at the locus. 

C. GFP reporter. Doxycycline addition can induce transcription along 
the locus and thus GFP expression. 

D. Illustration of the CIT system structure. INT sequence is integrated 
into GFP reporter intron where ParB could bind. PYL forms a 
dimer with ParB-ABI fusion protein when ABA is present in the 
system. 
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We	took	advantage	of	the	GFP-based	reporter	assay	published	by	Santillan	and	

colleagues	in	2014	and	further	broadened	its	usage	to	monitor	CAG	repeat	instability	

(Cinesi	et	al.,	2016;	Santillan	et	al.,	2014)	(Figure	III.	2).	This	GFP	reporter	consists	of	

a	TetO2	CMV	 inducible	promoter	with	a	mouse	Pem1	 intron	 flanked	by	 two	exons	

coding	 for	 GFP.	 One	 DM1	 patient-derived	 CTG	 repeats	 containing	 fragment	 was	

cloned	into	the	Pem1	intron	in	the	CAG	orientation,	including	72	bp	upstream	and	93	

bp	downstream	of	patient-derived	material.		As	being	a	splicing	signal	enhancer,	CA	

dinucleotide	 influence	GFP	splicing	with	a	reverse	correlation	between	CAG	repeat	

length	 and	GFP	expression	 (Tacke	 and	Manley,	 1999).	A	 similar	 strategy	based	on	

the	HPRT	mini-gene	 showed	 that	 as	CAG	 repeats	 increase	 in	 length,	 they	promote	

the	 inclusion	of	 an	 alternative	 ‘CAG	exon’	 that	 contains	 the	 repeat	 tract	minus	 the	

first	CAG	and	38bp	downstream	of	the	CAG	repeat.	mRNAs	containing	the	CAG	exon	

are	degraded,	presumably	via	nonsense-mediated	decay	(Gorbunova	et	al.,	2003).	In	

conclusion,	 GFP	 intensity	 can	 act	 as	 a	 readout	 of	 CAG	 repeats	 instability	 and/or	

expression	and	is	easily	detected	by	flow	cytometry.	
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Figure III. 2. GFP reporter. The report contains an inducible CMV TetO2 
promoter (black box) and a split GFP gene (exons in green, the intron in 
grey) with a varying repeat size (orange). 

A. After the induction of transcription by the addition of dox, the short 
repeat construct produces high levels of GFP. 

B. Expanded CAG repeats tend to be included into mRNA during 
transcription. This CAG repeat containing transcript would end up 
with degradation. The longer the CAG repeat, the lower the amount 
of GFP produced. 
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To	 build	 an	 inducible	 targeting	 system	 with	 as	 little	 interference	 with	 the	

repeat	 tract	 as	 possible,	 we	 opted	 for	 a	 non-repetitive	 bacterial-derived	 system	

developed	 by	 the	 Saad	 et	 al.	 in	 yeast	 (Saad	 et	 al.,	 2014)	 and	 adapted	 it	 here	 for	

mammalian	 use.	 	 This	 system	 (Figure	 III.	 1B),	 called	 ParB-INT,	 was	 first	 used	 to	

visualize	 the	 dynamics	 in	 double-strand	 break	 resection.	 Initially,	 P31	 from	

Burkholderia	 cenocepacia	 J231	 binds	 to	 chromosome	 2	 via	 a	 parS	 DNA	 motif	 to	

activate	mitotic	 segregation	 in	bacteria	 (Dubarry	et	al.,	2006).	Saad	and	colleagues	

named	the	optimized	DNA	binding	sequence	INT	and	DNA	binding	protein	as	ParB.	

ParB	 initially	 binds	 to	 4	 nucleation	 sites	 within	 INT	 and	 leads	 to	 oligomerization	

beyond	 INT	 itself	 such	 up	 to	 two	 hundred	 ParB	 molecules	 can	 be	 recruited	 to	 a	

single	site	 in	vitro	 (Khare	et	al.,	2004).	The	relatively	small	size	of	 INT	(<	1kb)	and	

the	 absence	 of	 fragility	 seen	 in	 yeast	 or	 toxicity	 make	 ParB-INT	 ideal	 for	 our	

purposes	(Mariamé	et	al.,	2018).		

	

We	 chose	 sequence	 optimized	 ParBc2	 for	 use	 in	 human	 cells.	 	 The	 INT	

fragment	was	cloned	in	the	intron	of	the	GFP	reporter	construct	289	bp	downstream	

of	 the	 first	 GFP	 exon	 and	 308	 bp	 upstream	 of	 the	 CAG	 repeat.	 Using	 the	 Flp-in	

integration	method,	we	 generated	 stable	 cell	 lines	 in	 Flp-in	 T-Rex	 (HEK293)	 cells,	

called	 chromatin	 Inducible	 Targeting	 (CIT),	 harboring	 the	 GFP-INT	 construct	

containing	varying	numbers	of	CAG	repeats.	

	

To	test	the	effect	of	inserting	the	INT	sequencing	within	the	Pem1	intron	of	the	

GFP	 construct,	we	monitored	GFP	 expression	 in	GFP(CAG)0,	which	do	not	 have	 an	

INT	sequence,	 and	CIT0	cells	by	 flow	cytometry.	This	was	done	 in	 the	presence	of	

dox	 to	 activate	 transcription	 of	 the	 reporter.	We	 found	 that	 there	 was	 a	 minimal	

effect	(Figure	III.	3)	and	conclude	that	INT	sequence	insertion	has	a	minor	effect,	 if	

any,	on	GFP	expression.		
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Figure III. 3. INT has a minor effect on GFP expression. Comparison 
between GFP(CAG)0 and CIT0 cells.  

A. Illustration of GFP constructs with and without the INT sequence. 
INT sequence (blue) is located in GFP reporter intron (grey) in 
CIT0 cell line. 

B. Density plot of GFP in cells with and without INT. Black: 
GFP(CAG)0 cells, blue:  CIT0 cells. The x-axis indicates log10 
scale GFP intensity. Y-axis is normalized cell count.  
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We	 next	 tested	 whether	 the	 ParB-ABI	 fusion	 by	 itself	 interfered	 with	 GFP	

expression.	 We,	 therefore,	 have	 transfected	 plasmid	 expressing	 the	 fusion	 in	

GFP(CAG)0	and	GFP(CAG)101	cells	and	measured	GFP	produced	five	days	later	in	the	

presence	of	dox.	We	found	that	ParB-ABI	had	no	detectable	effect	on	GFP	expression	

in	the	conditions	(Figure	III.	4ABC).	However,	when	both	the	INT	sequence	and	the	

ParB-ABI	proteins	are	stably	integrated	into	the	cells'	genome	to	create	CITnB,	which	

n	is	the	number	of	repeats,	GFP	expression	decreased	with	increasing	amount	of	the	

fusion.	This	 is	evidence	 that	ParB-ABI	 is	 indeed	binding	 to	 the	 INT	 in	human	cells.	

However,	the	effect	on	expression	suggests	that	ParB-ABI	binding	to	INT	may	block	

transcription	or	alter	splicing,	which	is	in	contrast	to	what	was	found	in	yeast	(Saad	

et	al.,	2014).		
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Figure III. 4. ParB expression and its effect on GFP expression. 
A. Illustration of ParB-INT targeting. ParB-ABI fusion proteins 

(brown and orange) bind to INT sequence (blue). 
B-C. Transient transfection of the ParB-ABI constructs to GFP(CAG)0 

(B), GFP(CAG)101 (C) hardly affects GFP intensity compare to the 
transfection of empty vectors.  

D.     Cell line construction. Flp-in T-REX cells were stably transfected 
with GFP-INT reporter in a site-specific manner to construct CIT0 
cell lines. CIT0 cell line was further stably transfected with the 
ParB-ABI construct to achieve CIT0B cell line. 

E.   ParB-ABI expression level in CIT0B clones. Numbers below 
CIT0B indicate clone numbers. 

F-J. Stably expressed ParB-ABI construct in CIT0 induces GFP 
intensity shift. As ParB-ABI expression levels shown in E, clones 
with more ParB-ABI expression show greater GFP intensity 
difference compare to CIT0 control. 
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Since	showed	ParB-INT	binding	could	affect	GFP	 intensity,	 it	was	essential	 to	

determine	whether	any	further	effect	was	seen	upon	targeting	of	a	control	protein.	

Given	that	the	presence	of	ABA	drives	the	targeting,	we	first	tested	whether	ABA	by	

itself	 modified	 GFP	 expression.	 We	 found	 that	 adding	 up	 to	 500µM	 of	 ABA	 to	

GFP(CAG)0	 and	GFP(CAG)101	 cells	 did	 not	 affect	GFP	 expression	 (Figure	 III.	 5).	We	

used	 500µM	 of	 ABA	 in	 all	 our	 experiments	 because	 we	 found	 that	 this	 induced	

dimerization	 by	 co-immunoprecipitation	 (not	 shown)	 and	 is	 in	 line	 with	 the	

concentrations	used	by	Liang	et	al.	(Liang	et	al.,	2011).	
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Figure III. 5. ABA does not affect GFP expression.  
A. Cartoon of CIT. The fusion of ABI (brown) with ParB (orange) 

make CIP system and ParB-INT system into inducible. The 
presence of ABA brings PYL to INT sequence showing on the 
right. 

B. Schematics of ABA-induced dimerization and the tags found on 
ParB-ABI and PYL-fusions. 

C-D.ABA titration test in GFP(CAG)0 (C) and GFP(CAG)101 (D). 
None of the ABA concentration tested change GFP intensity 
compare to the untreated group. 
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Next,	we	 introduced	PYL	alone	or	PYL	 fusion	proteins	 (all	 containing	3	FLAG	

tags	and	an	NLS)	 into	 the	genome	of	HEK293	T-Rex	FlpIN	cells	already	containing	

ParB-PYL	 (HEKB	cells)	 to	 generate	HEKBY	cells.	To	 these,	we	 introduced	 the	GFP-

INT	constructs	with	either	16	CAGs	or	an	expanded	repeat	(CITnBY	cells	–	Figure	III.	

6A).	This	was	done	in	collaboration	with	Alicia	Borgeaud.	This	strategy	allows	us	to	

compare	the	effect	on	targeting	next	to	different	repeat	lengths	directly.	We	used	the	

same	 strategy	 to	 generate	 PYL-HDAC5	 (CITnBYH5),	 PYL-HDAC3	 (CITnBYH3)	 and	

PYL-DNMT1	 (CITnBYD)	 expressing	 cells.	 All	 cell	 lines	 were	 verified	 with	 western	

blot	for	ParB-ABI	and	PYL	levels,	the	repeat	tract	was	sequenced,	and	the	cells	were	

tested	 for	Zeocin	 sensitivity	 to	 ensure	 that	 the	 integration	 site	was	 correct	 for	 the	

Flp-IN	insertions.	All	stable	cell	lines	generated	are	listed	in	Table	II.1	and	Figure	III.	

7.		
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Figure III. 6. Cell line construction with protein expression analysis. 
A.  CIT cell lines construction. ParB-ABI, PYL/PYL-protein of interest 

and GFP reporter constructs are stably transfected into Flp-in T-
REX cells in a sequential manner. 

B.  HEKB clones and their levels of ParB-ABI. Actin is shown as a 
loading control. The chosen clone is shown with a red box. 

C.  PYL expression in HEKBY clones. Actin is shown as a loading 
control. The chosen clone is shown with a red box. 

D.  PYL-HDAC5 expression in HEKBYH5 clones. Actin is shown as a 
loading control. The chosen clone is shown with a red box.  

E.  PYL-HDAC3 expression in HEKBYH3 cells. Actin is shown as a 
loading control. The chosen clone is shown with a red box.  

F. PYL-DNMT1 expression in HEKBYD cells. Actin is shown as a 
loading control. The chosen clone is shown with a red box. 
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Figure III. 7. Stable cell line generation process with example cell line 
cartoons. 
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2.	PYL	targeting	does	not	change	GFP	expression	in	CIT	system	
I	next	determined	the	effect	of	targeting	PYL	alone	to	the	INT	locus	(Figure	III.	

8A).		The	working	procedure	is	showing	in	Figure	III.	8B.	We	found	that	there	was	no	

significant	effect	on	 the	amount	of	GFP	produced	with	or	without	ABA	 in	CIT40BY	

cells.	As	expected,	PYL	was	efficiently	 recruited	 to	 the	 INT	sequence	by	ChIP	upon	

addition	of	ABA	by	over	nine-fold	in	CIT40BY	cells	but	remained	unchanged	and	at	

deficient	 levels	 at	 the	 ACTA1	 locus,	 showing	 the	 specificity	 and	 robustness	 of	 the	

targeting	(Figure	III.	9).	These	results	led	me	to	conclude	that	targeting	of	PYL	does	

not	interfere	further	with	GFP	expression.			

	

Due	to	unforeseen	issues,	the	PYL	control	cells	with	16	CAG	and	89	CAG	are	on-

going	as	of	this	writing.	Therefore,	I	use	below	CIT40BY	cells	as	a	comparison.	
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Figure	III.	8.	Transient	transfection	of	PYL	does	not	change	GFP	
intensity	upon	targeting	in	CIT0B	and	CIT40B	cells.	

A. Illustration	of	PYL	targeting.	With	ABA	addition,	PYL	(blue)	
forms	 a	 dimer	 with	 ParB-ABI	 protein	 (brown	 and	 orange)	
and	further	target	to	INT	sequence	in	GFP	reporter.	With	no	
ABA	presence,	the	PYL	targeting	would	not	occur.	

B. Experimental	 design.	 Cells	 were	 transfected	 with	 PYL	
construct	and	drugs	being	added.	After	48	hours,	drugs	were	
changed	 with	 cell	 medium.	 On	 the	 fifth	 day,	 cells	 passed	
through	the	flow	cytometer	and	GFP	intensity	was	recorded.	

C-D.	PYL	targeting	showed	no	GFP	intensity	shift	in	CIT0B	(C)	and	
CIT40B	(D)	cell	lines	compared	to	DMSO–treated	cells.	
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Figure III. 9. PYL targeting in CITnBY cells do not affect GFP 
expression. 

A. Cell line construction. ParB-ABI, PYL and GFP reporter 
constructs are stably transfected into Flp-in T-REX cells in a 
sequential manner. 

B.   Protein expression pattern in the cells.  
C. ChIP-qPCR experiment at INT and Actin locus upon ABA 

addition or not using an antibody against PYL construct. N=4. 
Error bars stand for standard error. 

D. Illustration of PYL targeting and non-targeting scenarios. 
E.   Typical flow cytometry profile for targeting of PYL. 
F-G Quantification of data in E for CIT40BY cells treated with ABA or 

DMSO. N=4. The error bars represent the standard error and the 
mean.  
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3.	 Histone	 deacetylase	 5	 (HDAC5)	 targeting	 decreases	 GFP	

expression	
HDAC5	was	found	to	promote	CAG	repeat	expansion	in	a	plasmid-based	assay	

for	 repeat	 instability	 in	 immortalized	 astrocytes	 (Gannon	 et	 al.,	 2012).	 The	

mechanism	of	action	remains	unclear,	and	Gannon	et	al.	postulated	that	it	might	not	

be	 because	 of	 local	 changes	 in	 chromatin	 structure.	 CIT	 is	 ideal	 to	 test	 this	

hypothesis	directly.	If	indeed	targeting	of	HDAC5	acts	locally,	we	expected	to	find	a	

shoulder	on	the	dark	side	of	the	GFP	curve	that	corresponds	to	expansions	(Cinesi	et	

al.,	2016).	We	first	tested	the	hypothesis	by	transient	transfection	of	PYL-HDAC5	in	

CIT40B	cells	(Figure	III.	10A).	We	found	that	a	bulge	appears	in	the	GFP	distribution	

upon	ABA	addition	(Figure	III.	10D),	which	prompted	us	to	sort	individual	cells	with	

less	 GFP,	 expecting	 to	 find	 expansions.	 However,	 all	 clones	 generated	 in	 this	

experiment	had	40	repeats.	Besides,	we	found	that	the	culture	lost	the	characteristic	

shoulder,	as	expected	if	this	effect	depended	on	expansions	when	the	targeting	was	

released,	and	the	GFP	was	degraded	over	a	time	course	of	3	weeks	(Alicia	Borgeaud	

Master	Thesis).	Together	these	results	suggest	that	the	GFP	intensity	decrease	seen	

upon	targeting	HDAC5	is	not	due	to	CAG	instability.			

	

To	 control	 for	 efficient	 HDAC5	 targeting	 efficiency	 when	 adding	 ABA,	 I	

performed	ChIP-qPCR	after	transient	transfection	to	determine	if	the	INT	sequence	

is	enriched.	Unfortunately,	 I	 could	never	manage	 to	achieve	ChIP-qPCR	signal	over	

background	 level	or	co-immunoprecipitating	PYL	and	ParB-ABI	 in	these	conditions		

(data	not	shown).	This	is	likely	due	to	a	low	abundance	of	HDAC5	being	introduced	

into	the	cell	by	transient	transfection.	
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Figure III. 10. Transient transfection and targeting of PYL-HDAC5 
downregulate GFP expression.  
A. Illustration of PYL-HDAC5 targeting. With ABA addition, PYL-

HDAC5 (blue and purple) forms dimer with ParB-ABI protein (brown 
and orange) and further target to INT sequence in GFP reporter. With 
no ABA presence, the PYL-HDAC5 targeting would not occur. 

B. Experimental design. Cells were transfected with PYL-HDAC5 
construct and drugs being added. After 48 hours, drugs were changed 
with cell medium. On the fifth day, cells passed through the flow 
cytometer and GFP intensity was recorded. 

C. Effect of targeting PYL-HDAC5 on GFP expression in CIT0B. 
D. Effect of targeting PYL-HDAC5 on GFP expression in CIT40B cells. 

Arrowhead indicates the change in expression seen upon targeting. 



	 73	

To	 overcome	 some	 of	 the	 limitations	 of	 transient	 transfections,	 I	 generated	

CIT16BYH5	and	CITBY59H5	stable	cell	lines	(Figure	III.	11AB).		

		

	

	

	

	 	

Figure III. 11. CITnBYH5 stable cell line making. 
A. Cell line construction. ParB-ABI, PYL-HDAC5 and GFP reporter 

constructs are stably transfected into Flp-in T-REX cells in a 
sequential manner. 

B. Transgene expression in CITnBYH5 cells.  
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In	CIT16BYH5	cells,	I	found	a	robust	enrichment	of	39	fold	in	targeting	of	PYL-

HDAC5	upon	addition	of	ABA	by	ChIP-qPCR	(Figure	III.	12B).	This	was	specific	to	the	

INT	locus	because	the	levels	of	PYL-HDAC5	remained	unchanged	at	the	ACTA1	locus.	

We	conclude	that	PYL-HDAC5	is	robustly	targeted	upon	ABA	addition	in	our	stable	

cell	lines.		

	

To	 test	 the	effect	of	PYL-HDAC5	 targeting	on	GFP	expression,	 I	 added	dox	as	

well	as	ABA	or	DMSO	to	CIT16BYH5	cells	(Figure	III.	12C).	I	found	over	a	three-fold	

decrease	 in	expression	upon	ABA	addition	compared	 to	DMSO	controls	 (Figure	 III.	

12DE	–	P	<	0.01).		

	

The	HDAC5	targeting	dependent	silencing	I	observed	may	occur	due	to	HDAC5	

deacetylase	 activity.	 To	 test	 this	 hypothesis,	 I	 quantified	 acetylated	 histone	 H3	

locally	 at	 the	 INT	 insertion	 using	 ChIP-qPCR,	 using	 an	 antibody	 recognizing	 pan-

acetylated	 histone	 H3	 in	 CIT16BYH5	 cells,	 I	 found	 a8n	 eight-fold	 decrease	 in	 the	

acetylation	 levels	 upon	 ABA	 addition.	 ChIP	 using	 an	 antibody	 against	 histone	 H3	

indicated	that	this	acH3	enrichment	was	not	due	to	changes	in	H3	levels	at	this	locus	

(Figure	 III.	 12F).	 This	 indicates	 that	 targeting	 HDAC5	 to	 the	 INT	 sequence	 led	 to	

deacetylation	of	H3	and	suggested	that	the	PYL-HDAC5	construct	is	functional.			
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Figure III. 12. PYL-HDAC5 silencing of GFP expression in 
CIT16BYH5 cells. 

A. Cartoon of CIT16BYH5 with and without ABA. 
B. ChIP-qPCR experiment at INT and Actin locus in CIT16BYH5 cell 

line upon ABA addition or not using the antibody against PYL-
HDAC5 construct. N=4. Error bars stand for standard error.  

C. Experimental design. 
D. Typical flow cytometry profile for targeting in CIT16BYH5 cells. 
E. Quantification of the data shown in D. N=4 for each condition. 

Error bars stand for standard deviation. 
F. ChIP-qPCR experiment at INT and Actin locus in CIT16BYH5 cell 

line upon ABA addition or not using the antibody against acH3 
(N=2) and and H3 (N=1). Error bars stand for standard error.  
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Interestingly,	 the	 results	 upon	 targeting	 PYL-HDAC5	 in	 CIT59BYH5	 cells	

suggested	 a	 repeat-size-dependent	 effect	 on	GFP	 expression.	 	 I	 first	 quantified	 the	

shift	 in	 GFP	 expression	 upon	 PYL-HDAC5	 targeting	 	 (Figure	 III.	 13C).	 I	 found	 that	

HDAC5	targeting	in	this	cell	line	led	to	a	two-fold	decrease	in	expression,	which	was	

significantly	less	than	the	threefold	seen	in	CIT16BYH5	cells	(Figure	III.	12E,	P<0.01).	

This	was	not	due	to	differences	in	protein	levels	between	the	two	cell	 lines	(Figure	

III.	11B)	or	differences	in	targeting	efficiencies	(Figure	III.	13E).	ChIP	efficiency	was	

higher	 in	 the	cell	 line	with	 the	 longer	CAG	 tract	 (Figure	 III.	12B,	13E).	 	These	data	

suggest	 that	 the	 efficiency	 of	 HDAC5	 deacetylation	 is	 dependent	 on	 the	 sequence	

context.	To	test	 this	directly,	 I	ChIPed	acetylated	H3	 in	CIT59BYH5	cells	and	found	

that	 the	decrease	was	only	two-fold,	 i.e.,	not	as	dramatic	as	 the	sevenfold	decrease	

seen	in	CIT16BYH5	cells	(Figure	III.	12F,	13F).	Here	again,	my	H3	ChIP	indicates	the	

acH3	 enrichment	 difference	 was	 not	 due	 to	 H3	 default	 level	 (Figure	 III.	 13F).	 In	

another	word,	the	addition	of	a	129	bp	(59	CAG	vs	16	CAG)	can	significantly	induce	

local	chromatin	modifications	and	affect	how	HDAC5	deacetylates	its	target.		 	
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Figure III. 13. PYL-HDAC5 targeting reduces GFP expression.  
A. Experimental design.  
B. Typical flow cytometry profile for targeting in CIT59BYH5 cells. 
C. Quantification of the data shown in B. N=4 for each condition. 
D. The ratio of the mean comparison of the targeting effect in 

CIT16BYH5 and CIT59BYH5 cells. 
E. ChIP-qPCR of PYL-HDAC5 in CIT59BYH5. N=4 
F. ChIP-qPCR of acH3 (N=2) and H3 (N=1) in CIT59BYH5. 
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There	 is	 still	 a	 possibility	 that	 the	 effect	 we	 observed	 is	 not	 due	 to	 the	

dimerization	 of	 ParB-ABI	 and	 PYL-HDAC5	 at	 the	 INT	 sequence.	 To	 test	 this	

possibility,	 I	generated	cell	 lines	without	an	INT	sequence	but	expressing	ParB-ABI	

stably:	 GFP(CAG)0B	 and	 GFP(CAG)101B	 cells	 (Figure	 III.	 14A).	 I	 then	 transiently	

transfected	PYL-HDAC5	into	GFP(CAG)0B	cells	and	GFP(CAG)101B	cells	and	measured	

GFP	intensity	after	five	days	culture	with	dox	and	ABA	or	DMSO	(Figure	III.	14B).	I	

found	no	change	in	GFP	expression	(Figure	III.	14CD)	in	contrast	to	what	was	seen	in	

CIT40B	cells	(Figure	III.	10D).			

Overall,	 our	 results	 suggest	 that	 HDAC5	 deacetylation	 activity	 depends	 on	

sequence	context.		
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Figure III. 14. The effect of PYL-HDAC5 targeting on GFP expression 
depends on the presence of the INT sequence.   

A. Cell line construction. GFP reporter and ParB-ABI constructs are 
stably transfected into Flp-in T-REX cells in a sequential manner. 

B.    Experimental design.  
C-D. Representative flow cytometry profiles for GFP(CAG)0B (C) and 

GFP(CAG)101B (D) cells. 
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N-terminal	of	HDAC5	may	be	responsible	for	gene	silencing	
To	gain	further	insights	into	the	mechanisms	of	action	of	HDAC5,	we	sought	to	

determine	 which	 domains	 are	 necessary	 and/or	 sufficient	 for	 silencing.	 We,	

therefore,	 constructed	 a	 series	 of	 truncation	 mutants	 and	 transfected	 them	 into	

CIT40B	cells.	We	 found	 that	 the	HDAC5	N-terminus	 is	 sufficient	 for	decreasing	 the	

expression	of	the	GFP	reporter,	whereas	targeting	the	catalytic	domain	alone	did	not	

have	 an	 effect.	 Indeed,	 using	 mutants	 in	 the	 catalytic	 domain	 that	 dramatically	

improves	acetylation	 levels	or	entirely	abolish	 them	did	not	have	an	effect	on	GFP	

expression	 upon	 targeting.	 This	 is	 not	 entirely	 unexpected	 given	 that	 HDAC5,	 like	

other	types	IIa	HDACs,	is	thought	to	function	by	recruiting	other	factors	rather	than	

carrying	out	the	deacetylation	itself	(Fischle	et	al.,	2002;	Kao	et	al.,	2000;	Lahm	et	al.,	

2007).	Further	truncation	of	the	N-terminus	suggests	that	the	coiled-coil	domain	of	

HDAC5	 responsible	 for	 homo-	 and	 heterodimerization	 (Backs	 et	 al.,	 2008),	 is	

essential	 for	 the	 function	 of	 HDAC5.	 These	 experiments	 show	 that	 our	 targeting	

system	 is	 highly	 useful	 in	 gaining	 significant	 insights	 into	 the	mechanism	 of	 gene	

silencing.		
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Figure III. 15. Targeting of the N-terminal of HDAC5 is sufficient to 
shift the expression of GFP. (Adapted from Alicia Borgeaud Master 
Thesis) 

A. HDAC5 mutant constructs. The HDAC5 catalytic domain is shown 
in orange. All the truncation forms have amino acid sizes indicated 
on the left and names on the right.   

B. Experimental design.  
C. Data quantification for GFP intensity differences in ABA or DMSO 

in CIT40B cells transfected with PYL-HDAC5 truncations. N=4. 
Error bars indicate standard deviation. 



	 82	

4.	HDAC3	targeting	promotes	local	gene	expression	
HDAC5	is	thought	to	recruit	Class	I	HDACs,	including	HDAC3.	HDAC3	is	part	of	

the	 nuclear	 co-repressor	 complexes	 Nco-R	 and	 SMRT	 and	 acts	 as	 the	 deacetylase	

(You	 et	 al.,	 2013).	 Moreover,	 both	 HDAC3	 and	 HDAC5	 were	 shown	 to	 promote	

trinucleotide	 repeat	 expansion	 in	 human	 astrocyte	 cells	 by	 Lahue’s	 laboratory	

(Debacker	et	al.,	2012;	Gannon	et	al.,	2012).	Thus,	I	expected	that	targeting	HDAC3	

would	have	a	similar	effect	to	HDAC5	targeting.	

Transient	 transfection	 of	 PYL-HDAC3	 in	 CITnB	 cells	 (Figure	 III.	 16A),	 unlike	

PYL-HDAC5,	changed	GFP	expression	in	neither	CIT0B	nor	CIT40B	cells	(Figure	III.	

16BC).		

	 	

Figure III. 16. The PYL-HDAC3 transient expression did not change 
GFP intensity upon targeting. 

A. Experimental design. 
B. Typical flow cytometry profile for targeting of PYL-HDAC3 in 

CIT0B cells. 
C. Typical flow cytometry profile for targeting of PYL-HDAC3 in 

CIT40B cells. 
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Since	the	effect	we	saw	with	HDAC5	was	dramatically	smaller	than	that	seen	in	

stable	cell	lines,	we	build	CITnBYH3	cells	that	were	isogenic	except	for	the	size	of	the	

repeat	tract	in	the	GFP-INT	reporter	(Figure	III.	17AB,	Table	1).		

	

	

	

	

	 	

Figure III. 17. CITnBYH3 stable cell line making. 
A. Cell line construction. ParB-ABI, PYL-HDAC3 and GFP reporter 

constructs are stably transfected into Flp-in T-REX cells in a 
sequential manner. 

B. Transgenes expression in CITnBYH3 cells.  
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I	found	that	PYL-HDAC3	was	robustly	recruited	to	INT	with	a	four-fold	increase	

when	ABA	was	added	to	the	media	for	five	days	compared	to	DMSO	alone	(Figure	III.	

18A).		

	

Surprisingly,	 PYL-HDAC3	 targeting	 in	 CIT16BYH3	 cells	 showed	 a	 slight	 but	

significant	 shift	 towards	 more	 GFP	 expression	 as	 measured	 after	 five	 days	 of	

targeting	using	flow	cytometry	(Figure	III.	18	CD).	This	is	surprising,	but	HDAC3	was	

shown	to	bind	preferentially	to	promoters	of	highly	expressed	genes,	and	targeting	it	

with	a	catalytically	null	Cas9	had	locus-specific	effects	that	are	currently	unexplained	

(Kwon	et	al.,	2017;	Wang	et	al.,	2009).		

	

To	test	whether	PYL-HDAC3	targeting	affected	histone	H3	acetylation,	I	ChIPed	

acetylated	 H3	 in	 CIT16BYH3	 cells.	 	 After	 five	 day-treatment	 with	 either	 ABA	 or	

DMSO,	 I	 found	 that	 the	 INT	 sequence	 showed	 significant	 2.5	 fold	 enrichment	 of	

acetylated	H3	upon	targeting	(Figure	III.	18E).	H3	ChIP	excluded	the	possibility	that	

acH3	 increased	 because	 of	 an	 increase	 in	 H3	 (Figure	 III.	 18E).	 The	 ACTA1	 locus	

remained	 unaltered	 by	 these	 treatments,	 showing	 that	 the	 targeting	 was	 specific.	

The	increase	in	acH3	upon	targeting	explains	well	the	concomitant	increase	in	GFP	

expression.	Why	HDAC3	 targeting	would	 increase	 acH3	 is	 not	 clear,	 and	 it	will	 be	

further	speculated	about	in	the	Discussion	section.		
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Figure III. 18.  PYL-HDAC3 targeting increases GFP expression. 
A. ChIP-qPCR experiment at INT and Actin locus in CIT16BYH3 cell 

line upon ABA addition or not using the antibody against PYL-
HDAC3 construct. N=4. Error bars stand for standard error.  

B. Experimental design.  
C. Typical flow cytometry profile for targeting in CIT16BYH3 cells. 
D. Quantification of the data shown in C. N=4 for each condition. 

Error bars stand for standard deviation. 
E. ChIP-qPCR experiment at INT and Actin locus in CIT16BYH3 cell 

line upon ABA addition or not using the antibody against acH3 and 
H3. Error bars stand for standard error. N=4 
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To	 determine	 whether	 HDAC3,	 like	 HDAC5,	 had	 a	 repeat-length	 dependent	

effect	on	gene	expression,	I	performed	the	ChIP	and	flow	cytometry	experiments	in	

isogenic	CIT89BYH3	cells.	 	The	cells	were	cultured	 for	 five	days	 in	 the	presence	of	

dox	 as	 well	 as	 either	 ABA	 or	 DMSO	 (Figure	 III.	 19A).	 I	 found	 that	 PYL-HDAC3	

targeting	in	this	context	also	increased	GFP	expression	significantly	(Figure	III.	19BC	

–	P<0.01).	To	determine	whether	HDAC3	acts	differently	when	the	repeat	tract	is	in	

the	 normal	 or	 the	 expanded	 range,	 I	 performed	 a	 statistical	 analysis	 on	 the	

expression	 results	 of	 CIT16BYH3	 and	 CIT89BYH3	 cells.	 I	 found	 that	 PYL-HDAC3	

targeting	increased	slightly	from	a	1.2	fold	effect	in	CIT16BYH3	cells	to	a	1.5	fold	in	

CIT89BYH3	 cells,	 but	 this	 increase	was	 not	 statistically	 different.	 (p-value	 =	 0.07)	

(Figure	 III.	 19D).	Thus,	 unlike	HDAC5,	which	had	a	 repeat-length-dependent	 effect	

on	gene	expression,	HDAC3	did	not.		

	

HDAC3	targeting	and	functionality	were	also	tested	by	ChIP-qPCR	of	the	fusion	

protein	 to	 INT	 and	 by	 the	 levels	 of	 acH3	 and	 H3	 ChIP-qPCR	 in	 CIT89BYH3.	 The	

results	 were	 similar	 to	 those	 with	 the	 shorter	 repeat	 tract:	 PYL	 pull	 down	 was	

enriched	3.2	fold	when	cultured	in	the	presence	of	ABA	compared	to	the	untargeted	

DMSO	 (Figure	 III.	 19E).	 Concomitantly,	 the	 levels	 of	 acetylation	were	 increased	by	

2.1	fold,	while	the	H3	levels	did	not	change	(Figure	III.	18F).	It	may	be	useful	to	test	

whether	the	catalytic	activity	of	HDAC3	is	required	using	specific	HDAC3	inhibitors.	
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Figure III. 19. PYL-HDAC3 targeting increases GFP expression 
independently of repeat size.  

A. Experimental design.  
B. Typical flow cytometry profile for targeting in CIT89BYH5 cells. 
C. Quantification of the data shown in C. N=4 for each condition.  
D. Comparison of the effect of targeting on GFP expression in 

CIT16BYH3 and CIT89BYH3 cells. 
E. ChIP-qPCR of PYL-HDAC3 in CIT89BYH3. N=4 
F. ChIP-qPCR of acH3 and H3 in CIT89BYH3.  N=4 
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As	it	was	the	case	with	PYL-HDAC5	targeting,	I	found	that	transient	expression	

of	PYL-HDAC3	in	GFP(CAG)0B	and	GFP(CAG)101B		cells	(Figure	III.	20A)	did	not	affect	

gene	 expression	 (Figure	 III.	 20BC).	 I	 conclude	 that	 local	 targeting	 of	 PYL-HDAC3	

increases	acetylated	H3	and	GFP	expression	regardless	of	repeat	size.		

	 	

Figure III. 20. The effect of PYL-HDAC5 targeting on GFP expression 
depends on the presence of the INT sequence.  

A.     Experimental design.  
B-C. Representative flow cytometry profiles for GFP(CAG)0B (B) and 

GFP(CAG)101B (C)cells expressing PYL-HDAC3. 
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5.	DNA	methyltransferase	1	targeting	increases	GFP	expression	in	a	

repeat-size-dependent	manner	
DNA	methyltransferase	1	 (DNMT1)	has	been	shown	 to	 stabilize	an	expanded	

repeat	 in	SCA1	mice	and	human	cells	 (Dion	et	al.,	2008).	The	mechanism	of	action	

remains	 unclear.	We,	 therefore,	 tested	whether	DNMT1	 had	 a	 local	 effect	 on	DNA	

methylation	 to	 affect	 instability	 as	 suggested	by	Dion	et	 al.,	 or	 through	an	 indirect	

effect.	 I,	 therefore,	built	CITnBYD	cells	that	express	stably	PYL-DNMT1	and	contain	

the	GFP-INT	reporter	with	either	16	or	89	CAGs		(Figure	III.	21A	and	Table	1).	The	

two	isogenic	cell	 lines	had,	as	expected,	similar	levels	of	ParB-ABI	and	PYL-DNMT1	

(Figure	III.	21B).		

	 	

Figure III. 21. CITnBYD stable cell line making. 
A. Cell line construction. ParB-ABI, PYL-Dnmt1 and GFP reporter 

constructs are stably transfected into Flp-in T-REX cells in a 
sequential manner. 

B. Transgene expression in CITnBYD cells.  
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ChIP-qPCR	experiments	confirmed	PYL-DNMT1	recruitment	when	adding	ABA.	

The	 recruitment	 was	 significant	 with	 a	 19	 fold	 increase	 in	 the	 presence	 of	 ABA	

compared	to	when	DMSO	was	used	in	CIT16BYD	cells	and	26	fold	in	CIT89BYD	cells	

(Figure	 III.	 22A,	 Figure	 III.	 23A).	 Recruitment	 to	 actin	 was	 low	 and	 remained	

unchanged,	suggesting	that	the	targeting	is	both	specific	and	efficient.		

	

I	then	determined	whether	PYL-DNMT1	targeting	in	CIT16BYD	and	CIT89BYD	

influenced	GFP	expression	 (Figure	 III.	 22CD	and	23BC).	 In	both	 cases,	 there	was	a	

significant	decrease	in	GFP	intensity	of	2	fold	and	1.6	fold	(P	=	0.003	and	P	=	0.0005,	

respectively).	 By	 contrast,	 transient	 transfection	 and	 targeting	 of	 PYL-DNMT1	 in	

GFP(CAG)0B	 and	 GFP(CAG)101B	 cells	 did	 no	 show	 changes	 in	 GFP	 expression,	

suggesting	that	the	silencing	observed	is	due	to	direct	binding	of	DNMT1	to	the	INT	

sequence	(Figure	III.	24BC).		

	

Interestingly,	 like	 in	 the	 case	 of	 PYL-HDAC5,	 PYL-DNMT1	 targeting	 led	 to	 a	

significant	 allele-length	 dependent	 silencing	 of	 the	 reporter	 (P=	 0.04).	We	will	 be	

able	 to	 give	 a	 conclusion	 about	 DNMT1	 influence	 DNA	 methylation	 and/or	

chromatin	modification	after	bisulfate	sequencing,	and	acH3	ChIP	finished.	However,	

the	 simplest	 explanation,	 in	 this	 case,	 is	 that	 PYL-DNMT1	 targeting	 was	 more	

efficient	in	the	context	of	a	longer	repeat	tract.	
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Figure III. 22. PYL-DNMT1 targeting silences GFP expression. 
A. ChIP-qPCR experiment at INT and Actin locus in CIT16BYD cell 

line upon ABA addition or not using the antibody against PYL-
Dnmt1 construct. N=4. Error bars stand for standard error.  

B. Experimental design. 
C. Typical flow cytometry profile for targeting in CIT16BYD cells. 
D. Quantification of the data shown in C. N=4 for each condition. 

Error bars stand for standard deviation. 
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Figure III. 23. The effect of PYL-DNMT1 targeting on GFP expression 
is repeat-length dependent. 

A. ChIP-qPCR of PYL-DNMT1 in CIT89BYD. N=4 
B. Typical flow cytometry profile for targeting in CIT89BYD cells. 
C. Quantification of the data shown in B. N=4 for each condition. 

Error bars stand for standard deviation. 
D. Comparison of the effect of targeting on GFP expression in 

CIT16BYD and CIT89BYD cells. Error bars stand for standard 
deviation. 
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Figure III. 24. The effect of PYL-DNMT1 targeting depends on the 
presence of the INT sequence.   

A.  Experimental design.  
B-C. Typical flow cytometry profile for targeting in PYL-DNMT1 in 

GFP(CAG)0B (B) and GFP(CAG)101B (C)cells.  
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6.	GFP	expression	changes	are	not	due	to	CAG	repeat	instability	
The	GFP	assay	was	designed	to	 look	for	repeat	 instability	(Cinesi	et	al.,	2016;	

Santillan	et	al.,	2014).	Moreover,	we	constructed	CIT	to	test	the	hypothesis	that	local	

recruitment	 of	 chromatin	 modifiers	 enzymes	 is	 sufficient	 to	 drive	 CAG	 repeat	

instability.	However,	given	that	the	reporter	requires	transcription	and	that	there	is	

an	 alternative	 CAG	 exon,	 our	 system	 can,	 in	 principle,	 monitor	 three	 processes	

simultaneously:	 instability,	 transcription,	 and	 splicing.	 I,	 therefore,	 tested	 the	

hypothesis	 that	 targeting	of	HDAC5,	HDAC3,	or	DNMT1	may	be	due	 to	CAG	repeat	

expansion	 or	 contraction.	 To	 do	 so,	 Oscar	 Rodriguez	 Lima	 and	 I	 collaborated	 to	

perform	small	pool	PCR	(SP-PCR)	to	detect	CAG	repeats	length	change	(Method).	SP-

PCR	 is	 a	 gold-standard	method	 to	 detect	 CAG	 repeats	 variability.	 Briefly,	 genomic	

DNA	is	diluted	down	to	only	a	few	genomes	per	PCR,	and	multiple	reactions	are	set	

up	for	a	single	sample.	This	minimizes	the	bias	towards	amplifying	shorter	repeats.	

Because	 the	 yield	 is	 weak	 because	 of	 a	 limited	 number	 of	 templates,	 Southern	

blotting	 is	necessary.	To	maximize	 the	chances	of	detecting	changes	 in	CAG	repeat	

instability,	 I	 prepared	 the	 genomic	 DNA	 samples	 after	 four	 weeks	 of	 continuous	

culturing	in	the	presence	of	ABA	or	DMSO	and	compared	the	flow	cytometry	results	

(Figure	III.	25A).		

	

We	first	tested	HDAC5	and	DNMT1	given	that	they	had	the	most	exciting	effects	

on	GFP	expression.	We	saw	no	significant	changes	in	CAG	repeat	instability	between	

the	 ABA	 and	 DMSO	 treated	 samples	 	 (Figure	 III.	 25BC).	 This	 result	 indicates	 the	

silencing	events	when	targeting	HDAC5	or	DNMT1	in	the	CIT	system	may	not	due	to	

CAG	instability.	It	remains	possible	that	the	frequencies	of	instability	are	too	low	for	

SP-PCR	to	detect	and	that	waiting	longer	would	reveal	then.				
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Figure III. 25. GFP intensity change may not due to CAG repeat 
instability in one-month treatment.  

A. Experimental design. Compare to the typical flow cytometry 
experiment timeline, samples for small pool PCR analysis are 
treated for 1 month.  

B. Southern blot for CIT40BYH5. Arrowhead indicates the original 
repeat number fragment. 

C. Southern blot for CIT89BYD. Arrowhead indicates the original 
repeat number fragment. 
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7.	An	alternative	 targeting	 strategy	 to	 test	HDAC5	direct	 effect	 on	

gene	transcription	and/or	silencing	
Epigenome	editing	is	increasingly	done	via	dCas9	fusions.	We,	therefore,	tested	

whether	we	 could	 reproduce	 the	 results	 found	here	with	dCas9	 fusion.	 To	build	 a	

dCas9-dependent	 targeting	 of	 HDAC5,	 I	 used	 CITn	 cells	 	 (Figure	 III.	 26A).	 The	

experimental	 design	 was	 to	 have	 dCas9	 fused	 to	 a	 protein	 of	 interest,	 guided	 by	

single	 guide	 RNA	 to	 the	 GFP	 locus	 to	 achieve	 targeting.	 There	 were	 significant	

challenges	 to	 overcome	 to	 achieve	 this.	 First,	 the	 molecular	 weight	 of	 dCas9	 is	

limiting,	and	a	dCAS9-HDAC5	fusion	protein	would	be	280kDa,	which	is	not	practical	

to	work	with.	Besides,	since	ParB	oligomerizes,	there	is	a	large	number	of	molecules	

of	ParB	that	get	recruited,	which	is	not	necessarily	the	case	for	dCas9.			

	

We	first	designed	seven	different	sgRNAs	targeted	to	the	GFP	locus	as	showed	

in	Figure	III.	26B	with	one	control	sgRNA	being	used.	To	test	how	well	they	worked	

in	 cells,	 I	 transfected	wild-type	Cas9	with	 seven	 sgRNAs	 separately	 into	 the	CIT40	

cells	for	three	days.	Cells	were	then	harvested,	and	genomic	DNA	was	extracted	for	

PCR	amplification.	 If	 a	 sgRNA	successfully	 targeted	Cas9	 to	 its	 target	 site,	 cleavage	

will	produce	indels.	The	PCR	product	of	the	region	after	transfection	is	then	mixed	in	

equal	 molar	 ratios	 with	 the	 same	 PCR	 but	 from	 the	 untransfected	 cells.	 	 After	

denaturation	 and	 slow	 annealing,	 fragments	 will	 form	 mismatches	 due	 to	 on-

targeting	cleavage	and	indel	formation.	The	T7	endonuclease	I	is	then	used	to	digest	

mismatched	fragment,	given	multiple	bands	on	an	agarose	gel.	Figure	III.	26C	shows	

that	at	 least	sgVIN-006	had	a	second	band	after	T7endoI	treatment.	 I	also	included	

sgRNAs	 targeting	 the	 repeat	 tract	 itself,	 sgRNA	sgVIN-050	and	 sgVIN-052,	because	

they	 have	 been	 shown	 to	 bring	 the	 Cas9	 nickase	 to	 the	 repeat	 tract	 (Cinesi	 et	 al.,	

2016).	I	also	included	these	two	sgRNAs	even	though	they	did	not	show	an	evident	

T7endoI	endonuclease	cleavage	(Figure	III.	26C).		
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Figure III. 26.  dCas9 targeting using sgRNAs in CIT0 and CIT40 
cells. 

A. Cell lines construction. GFP reporter is stably integrated into Flp-in 
T-REX cells. 

B. Short lines indicate sgRNA localization within the GFP transgene 
along with their identifying numbers. 

C. T7endI test for editing efficiency. 
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I	 used	 the	 dCas9-KRAB	 fusion	 construct	 first	 to	 see	 whether	 targeting	 of	 a	

silencing	 factor	 to	 the	 INT	sequence,	which	 is	 several	kb	away	 from	 the	promoter,	

could	silence	it.			The	control	is	an	empty	vector	construct	called	pPN10	that	does	not	

encode	a	targeting	sequence.	sgVIN-006	was	used	to	target	the	INT	sequence.	I	found	

that	dCas9-KRAB	targeting	to	INT	had	no	significant	effect	on	the	expression	of	the	

GFP	compared	to	dCas9	expression	without	a	sgRNA	(Figure	III.	27B).	The	same	was	

true	in	CIT40	cells	(Figure	III.	27C).	As	a	further	control,	I	targeted	a	blue	fluorescent	

protein	(BFP)	fused	to	dCas9.	As	expected,	no	GFP	intensity	change	was	seen	for	this	

construct	 (Figure	 III.	 27DE).	 dCas9	 to	 bring	 transcription	 silencing	 factor	KRAB	 to	

INT	sequence	could	induce	minor	GFP	decrease	in	CIT	cells	with	0	CAG	and	40	CAGs.		
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Figure III. 27. dCas9-KRAB and dCas9-BFP targeting in CIT0 and 
CIT40 cells. 

A. Experimental design.  
B. Typical flow cytometry profile for targeting in dCas9-KRAB in 

CIT0 cells. 
C. Typical flow cytometry profile for targeting in dCas9-KRAB in 

CIT40 cells. 
D. Typical flow cytometry profile for targeting in dCas9-BFP in CIT0 

cells. 
E. Typical flow cytometry profile for targeting in dCas9-BFP in 

CIT40 cells. 
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Considering	the	size	of	the	dCas9-HDAC5	fusion	protein,	we	opted	to	use	only	

the	N-terminal	based	on	our	results	with	transient	transfection	(Figure	III.	15).		

The	 dCas9-HDAC5	 truncation	 constructs	 with	 sgRNAs	 were	 transiently	

transfected	 into	 CIT0	 and	 CIT40	 cells.	 	 I	 found	 that	 the	 dCas9-HDAC5	 N	 terminal	

domain	(dCas9-HDAC5NT)	fusion	protein	did	not	affect	GFP	intensity	shift	whether	

the	sgRNA	against	INT	was	included	or	not	(Figure	III.	28B).	Furthermore,	the	dCas9	

fused	to	an	HDAC5	catalytic	domain	(dCas9-HDAC5	CD)	seemed	to	narrow	the	GFP	

intensity	peak	in	sgVIN-006-transfected	compare	to	pPN10-transfected	cells.	(Figure	

III.	 28C).	 The	 same	 experiment	 with	 dCas9-HDAC5NT	 in	 CIT40	 cells	 seemed	 to	

increase	 GFP	 expression	 slightly	 when	 the	 sgRNA	 against	 the	 INT	 sequence	 was	

included,	whereas	dCas9-HDAC5	CD	did	not	have	any	effect	(Figure	III.	28DE).		It	is	

possible	that	this	lack	of	significant	effects	on	GFP	expression	of	the	dCas9-construct	

reflects	 the	 requirement	 to	 recruit	 silencers	 closer	 to	 the	 promoter	 (Gilbert	 et	 al.,	

2014)	or	that	there	is	not	enough	HDAC5	recruited	to	the	INT	sequence	when	dCas9	

is	 used	 compared	 to	 ParB.	 Indeed,	 many	 silencing	 proteins	 appear	 as	 foci	 in	 the	

nucleus	 that	 correspond	 to	 several	 hundred	 molecules	 and	 may	 work	 via	 liquid	

phase	 separation	 (Larson	 et	 al.,	 2017;	 Strom	 et	 al.,	 2017).	 This	 interpretation	 has	

significant	 implications	 when	 it	 comes	 to	 designing	 epigenome	 editing	 strategies	

with	dCas9.		
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Figure III. 28. dCas9-HDAC5 truncation targeting in CIT0 and CIT40 
cells. 

A. Experimental design.  
B–I. Typical flow cytometry profiles for targeting of dCas9-HDAC5 
truncations.   
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Discussion	 	
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Here	 we	 present	 the	 chromatin	 inducible	 targeting	 (CIT)	 system	 and	 its	

application	 to	 understanding	 how	 chromatin	 modifying	 enzymes	 affect	 gene	

regulation.	 CIT	 uses	 cell	 lines	with	 a	 stable	 transgene	 integration	 that	 is	 carefully	

designed	to	make	transgenes	comparable	to	each	other.	We	designed	it	to	make	up	

for	 what	 loss-of-function	 approaches	 could	 not	 tackle:	 whether	 the	 effect	 of	 any	

given	chromatin	modifying	enzyme	is	direct	or	is	due	to	changes	in	gene	expression	

in	trans.	We	used	it	to	investigate	the	effect	of	HDAC5,	HDAC3	and	DNMT1	targeting	

on	 either	 silencing	 or	 promoting	 gene	 expression.	 CIT	 can	 be	 integrated	 into	 any	

genome	locus,	not	restricted	to	usage	we	showed	here.	Furthermore,	it	may	have	an	

extensive	usage	for	screening.	

	

1.	The	advantages	of	CIT			
	

1.1	Protein-DNA	targeting	system	-	ParB-INT	
Targeting	 systems	 have	 been	 used	 widely	 for	 tethering	 specific	 protein	 to	

specific	locus	and	induces	diverse	cellular	functions	(Waryah	et	al.,	2018).	What	we	

have	here	 is	a	 targeting	strategy	with	a	bacteria	derived	ParB-INT	system	fused	 to	

plant	hormone	ABA-induced	proximity	system.	The	feature	of	the	ParB-INT	system	

is	 its	efficient	 targeting	rate	(up	 to	44	 fold),	 insensitive	 to	 the	DNA	contexts	 tested	

here	and	can	attract	multiple	molecules	to	the	target	DNA	sequence.	

	

A	characteristic	of	significant	importance	for	targeting	systems	is	the	tethering	

efficiency.	 Indeed,	 one	 concern	 is	 that	 large	 fusion	 proteins	may	 not	 be	 recruited	

efficiently.	Here,	however,	we	found	that	four	different	POIs	ranging	from	26	kDa	to	

196	 kDa,	 achieved	 robust	 targeting	 efficiency	 upon	 ABA	 addition,	 up	 to	 44-fold	

increase	 compared	 to	 DMSO	 alone,	 in	 PYL	 as	 well	 as	 PYL-HDAC5,	 PYL-HDAC3	 or	

PYL-DNMT1,	 based	 on	 the	 validation	 from	 ChIP-qPCR.	 We	 conclude	 that	 the	

targeting	efficiency	within	the	system	is	robust	regardless	of	the	size	of	the	proteins	

targeted,	at	least	within	the	range	that	we	tested.	

	

Chromatin	context	could	also	affect	targeting	efficiently.	This	is	the	case	within	

other	 existing	 targeting	 systems.	 TALEs	 can	 be	 impaired	 by	 condensed	 chromatin	
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(Bultmann	 et	 al.,	 2012;	 Chen	 et	 al.,	 2013)	 and	 dCas9	 binds	 poorly	 to	

hypermethylated	CpG	islands	(Cano-Rodriguez	et	al.,	2016;	Qi	et	al.,	2013).	Targeting	

efficiency	for	ParB-INT,	by	contrast,	was	unaffected	by	the	presence	of	an	expanded	

CAG	tract.	 	Expanded	TNRs	correlate	with	altered	chromatin	structure	and	make	 it	

more	 heterochromatic	 (Dion	 and	 Wilson,	 2009;	 Nageshwaran	 and	 Festenstein,	

2015),	suggesting	that	 targeting	of	ParB-INT	is	 independent	of	changes	brought	by	

an	expanded	CAG	tract.	 In	CIT59BYH5	DMSO	condition,	acetylated	histone	3	 levels	

dropped	to	below	50%	compared	to	CIT16BYH5	in	DMSO.	With	active	transcription	

marks	significantly	decreased,	HDAC5	still	shows	30-fold	PYL	pull	down	enrichment	

upon	ABA	addition	in	59	CAG	samples	and	40-fold	when	CIT16BYH5	cells	were	used.	

Until	 now,	 we	 observed	 no	 impairment	 of	 targeting	 by	 expanded	 trinucleotide	

repeats	at	the	GFP	reporter.				

	

Last	but	not	 least,	 is	 the	 feature	of	 the	ParB-INT	 targeting	 that	multiple	ParB	

molecules	are	recruited	to	 the	 INT	sequence.	This	may	explain	why	CIT	and	dCas9	

system	 give	 different	 results	 with	 the	 same	 POI	 domain	 treatment.	 Clearly,	 in	

contrast	to	CIT,	dCas9-HDAC5	N	terminal	in	our	system	did	not	show	direct	silencing	

effect.	We	hypothesize	 that	 this	might	be	due	 to	 local	protein	 concentration.	 Since	

ParB	 has	 been	 reported	 to	 accumulate	 100-200	 proteins	 targeting	 to	 INT	 in	 vitro	

(Saad	 et	 al.,	 2014),	 this	may	provide	 a	 dramatic	 difference	with	 having	 one	dCas9	

bringing	 one	 HDAC5	 molecule	 to	 the	 same	 locus.	 Of	 course,	 there	 are	 other	

possibilities	like	the	steric	hindrance	or	that	HDAC5NT	fusion	to	dCas9	prevents	its	

efficient	targeting.	To	test	this,	I	may	perform	a	dCas9-HDAC5NT	ChIP-qPCR	to	test	

the	 targeting	 efficiency.	 Unlike	 the	 dCas9	 targeting	 approach,	 CIT	 system	multiple	

molecules	binding	enlarges	POI	signal,	and	it	may	help	to	fish	out	some	weaker	effect	

using	this	system.	
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1.2	Chemical-induced	proximity	system	-	ABA	system	
It	is	important	to	note	that	different	levels	of	the	PYL	fusions	between	cell	lines	

with	different	repeat	length	would	have	prevented	us	from	making	the	conclusions	

found	herein.	Indeed,	we	took	care	to	design	CIT	such	that	PYL	fusions	are	integrated	

into	the	genome	before	adding	the	GFP	reporter	with	differing	repeat	sizes.	The	FLP-

In	system	further	allows	us	to	integrate	the	reporter	at	a	specific	single	locus.	Thus,	

we	can	make	the	comparisons	directly,	yet	not	between	the	lines	with	different	PYL	

fusions.	

	

We	chose	the	ABI-PYL	system	among	several	CIP	systems	(Liang	et	al.,	2011).	

This	was because	it	did	not	show	evident	toxicity	to	human	and	animals	proved	by	

our	 regular	 vegetable	 consumption	 (Stanton	 et	 al.,	 2018).	 Compared	 to	 ABA,	 the	

commonly	 used	 FKBP-rapamycin	 system	 contains	 endogenous	 proteins	 receptors	

(Kang	et	al.,	2008).	Overexpression	of	FKBP	may	disturb	in	vivo	signal	transduction	

and	make	 it	 less	 ideal	 for	our	purpose.	On	 the	other	hand,	 the	 trivial	 addition	and	

removal	of	ABA	to	induce	or	reverse	proximity	provide	a	convenient	way	to	control	

the	process.	The	light-induced	dimerization	systems	also	show	some	advantages	in	

spatiotemporal	protein-protein	 interaction	studies	 (Kennedy	et	al.,	2010;	Levskaya	

et	al.,	2009;	Yazawa	et	al.,	2009).	Compared	to	expose	cell	culture	under	blue	light,	

which	 requires	 LEDs	 and	 black	 box,	 ABA	 system	 would	 be	 more	 efficient	 to	 be	

applied	in	our	application	and	more	efficiently	to	be	implemented	by	merely	adding	

ABA	to	cell	medium.	In	conclusion,	including	ABA-inducible	proximity	system	in	the	

CIT	system	gives	well-controlled	POI	local	effect	and	is	trivial	to	use	in	daily	research.	

	

1.3	 Convenient	 reporter	 assay	 to	 measure	 transcription	 and	

splicing	alternation	-	GFP	reporter	
A	 widely	 used	 detection	 for	 transcription	 and/or	 splicing	 change	 is	

quantitative	 PCR.	 Instead	 of	 using	 qPCR	 as	 the	 readout	 on	 a	 daily	 basis,	 I	 took	

advantage	of	our	lab	common	tool,	a	GFP	minigene	reporter,	as	a	fast	and	sensitive	

readout	 of	 gene	 expression.	 It	 can	 detect	 repeat	 instability	 (Cinesi	 et	 al.,	 2016;	

Santillan	 et	 al.,	 2014),	 changes	 in	 alternative	 splicing	 and	 transcription,	making	 it	

ideal	for	a	wide	array	of	purposes.	
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Five	 days	 of	 treatment	with	 Cas9	 nickase	 and	 chromatin	modifying	 enzymes	

leads	to	significant	GFP	intensity	shift	shown	in	previous	publications	from	our	lab	

and	others	(Cinesi	et	al.,	2016).	This	indicates	that	a	short	time	frame	treatment	with	

GFP	 reporter	 is	 enough	 to	 reveal	 GFP	 intensity	 difference	 after	 local	 genome	 or	

epigenome	 editing.	 It	 can	 also	 detect	 GFP	 expression	 up-regulation	 and	 down-

regulation	result	at	the	same	time.	This	would	be	very	informative	for	researches	on	

gene	regulation	and/or	repeat	instability.		

	

2.	Testing	chromatin	modifying	enzymes	effect	using	CIT		
	

The	 first	 group	 of	 proteins	 we	 tested	 with	 CIT	 were	 HDAC5,	 HDAC3	 and	

DNMT1.	HDAC5	and	HDAC3	affect	 local	chromatin	modification	and	further	 impact	

on	gene	regulation	and	trinucleotide	repeat	instability(Debacker	et	al.,	2012;	Gannon	

et	 al.,	 2012;	 Suelves	 et	 al.,	 2017).	 DNMT1	 is	 responsible	 for	 maintaining	 DNA	

methylation	 and	 shows	 its	 role	 also	 in	 trinucleotide	 repeat	 instability	 (Dion	 et	 al.,	

2008;	Robert	et	al.,	2003).		

	

Making	 of	 some	 additional	 control	 cell	 lines	 is	 still	 ongoing	 due	 to	 unseen	

technical	 delay.	 It	would	 be	 better	 to	 include	 PYL	 control	 cell	 lines	 (CIT16BY	 and	

CIT89BY)	 with	 the	 same	 CAG	 repeat	 length	 as	 being	 used	 in	 HDACs	 and	 DNMT1	

work.	 Hopefully,	 this	 part	 of	 the	 experiment	 will	 be	 finished	 before	 my	 defense.	

Another	ongoing	work	is	HDAC5,	HDAC3	and	DNMT1	bisulfite	sequencing	for	 local	

gene	DNA	methylation	test.	We	would	be	able	to	tell	the	change	of	DNA	methylation	

upon	POI	targeting	soon.	

	

2.1	The	role	of	HDAC5	N-terminus	in	local	silencing		
Targeting	PYL-HDAC5	has	a	silencing	effect	in	CIT.	As	a	class	IIa	HDAC,	HDAC5	

possesses	a	poor	deacetylase	activity	(Fischle	et	al.,	2002;	Lahm	et	al.,	2007).	While	

in	the	CIT	system	with	16	CAG	and	59	CAG	GFP	reporter,	HDAC5	targeting	induces	

clear	deacetylation	of	histone	H3	without	changing	the	levels	of	H3	locally.	Whether	

the	gene	silencing	 is	due	to	HDAC5	deacetylase	activity	or	HDAC5	binding	to	other	
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endogenous	 HDACs	 and/or	 silencing	 complex	 could	 be	 an	 interesting	 topic	 to	

discuss.	

	

We	 first	 tested	 whether	 the	 catalytic	 activity	 is	 responsible	 for	 HDAC5	

targeting	dependent	silencing.	One	advantage	of	CIT	is	that	we	can	target	truncations	

and	mutants	 to	 understand	 the	mechanism	 of	 action.	 For	 instance,	 we	 found	 that	

HDAC5	 mediated	 silencing	 was	 independent	 of	 its	 catalytic	 activity.	 However,	

HDAC5	 truncations	 revealed	 that	 the	N	 terminal	 appears	 responsible	 for	 silencing	

activity.	 How	 the	 HDAC5	 N	 terminal	 induces	 gene	 silencing	 is	 not	 clear.	 One	

possibility	 is	 that	by	recruiting	other	HDACs	that	would	deacetylate	the	 locus.	This	

could	 be	 done	 via	 the	 coiled-coil	 domain	 in	 the	 N-terminal,	 which	 forms	

heterodimers	and	homodimers	with	HDAC4	and	HDAC5,	 respectively	 (Backs	et	al.,	

2008).	To	test	this	directly,	I	would	perform	immunoprecipitation	on	HDAC5-coiled	

coil	 truncation	 targeting	 samples	 and	 look	 for	 endogenous	 HDAC4	 and	 HDAC5	

presence	by	western	blot.	

	

Current	models	 of	 silencing	 complex	 suggest	 that	 HDAC5	 recruits	 HDAC3	 as	

part	 of	 the	 N-CoR/SMRT	 complex	 to	 deacetylate	 histones	 and	 to	 promote	 gene	

silencing	 (Fischle	et	al.,	2002;	Kao	et	al.,	2000;	You	et	al.,	2013).	 In	support	of	 this	

model,	 the	 C-terminal	 of	 HDAC5	 interacts	 with	 the	 SMRT	 component	 SMRT	

repression	 domain	 3	 (SRD3)	 (Kim	 et	 al.,	 2015).	 Given	 that	 HDAC3	 and	 HDAC5	

targeting	leads	to	different	outcomes	in	CIT,	I	propose	that	HDAC5-dependent	gene	

silencing,	at	least	in	some	contexts,	does	not	function	via	SMRT	recruitment.	To	test	

this	directly,	pulling	down	PYL-HDAC5	in	CITnBYH5	cells	and	looking	for	SRD3	may	

give	 the	 answer.	These	 results	would	 challenge	 the	 current	model	 on	how	HDAC5	

promotes	gene	silencing.			

	

One	 significant	 finding	 is	 that	 HDAC5	 promotes	 gene	 silencing	 in	 a	 repeat-

length	dependent	manner.	In	this	case,	we	could	rule	out	that	the	effect	was	due	to	

different	 targeting	 efficiencies.	 A	 simpler	 model,	 therefore,	 could	 be	 that	 59	 CAG	

repeats	 are	 sufficient	 to	 induce	 the	 accumulation	 of	 heterochromatic	 marks,	 like	

H3K9me2/3	 and	 the	 loss	 of	 acetylated	 H3.	 As	 a	 result,	 HDAC5	 would	 have	 less	
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substrate	to	work	with	and	therefore	exhibit	a	less	pronounced	silencing	effect	than	

that	in	the	context	of	16	CAG	repeats.		

	

Overall,	 HDAC5	 in	 CIT	 uncovered	 its	 direct	 role	 in	 local	 gene	 silencing.	 This	

silencing	 acts	 differently	 depending	 on	 sequence	 contexts.	 Even	 though	 I	 did	 not	

observe	 any	 CAG	 repeat	 expansion	 or	 contraction,	 my	 data	 suggests	 an	 SMRT-

independent	role	of	HDAC5	in	gene	silencing	that	will	be	interesting	to	understand	

further.	

	

2.2	 PYL-HDAC3	 targeting	 increases	 local	 histone	 acetylation	 and	

gene	expression.		
We	chose	to	study	HDAC3	along	with	HDAC5,	because	of	their	roles	to	promote	

CAG	repeat	expansion	in	human	cells	(Debacker	et	al.,	2012).	Moreover,	HDAC3	was	

recently	 shown	 to	 influence	 Huntington’s	 disease	 pathology	 which	 marks	 its	

potential	 for	 clinical	 application	 (Jia	 et	 al.,	 2015,	 2016;	 Suelves	 et	 al.,	 2017).	

Therefore,	we	asked	whether	HDAC3	has	a	direct	role	on	CAG	repeats	and/or	gene	

regulation	 in	 the	 CIT	 system.	 Stable	 CITnBYH3	 cells	 showed	 that	 PYL-HDAC3	

targeting	promoted	GFP	expression	regardless	of	the	size	of	the	repeat	tract,	because	

HDAC3,	as	a	histone	deacetylase,	is	thought	to	promote	silencing.	For	the	first	time,	

we	show	that	HDAC3	targeting	increases	acH3	levels	 locally	upon	targeting.	This	is	

unlikely	due	to	an	inactive	PYL-HDAC3	fusion.	With	its	overexpression	via	transient	

transfection,	non-targeting	PYL-HDAC3	sample	decreased	GFP	intensity	compare	to	

not	 transfected	 control.	 This	 suggests	 a	 genome-wide	 effect	 in	 gene	 silencing	 as	

expected	(data	not	shown)	and	this	 is	the	evidence	that	PYL-HDAC3	fusion	may	be	

functional.			

	

How	 does	 HDAC3	 targeting	 increases	 gene	 expression?	 One	 ChIP-seq	 study	

shows	 that	 HDAC3	 co-localizes	 with	 histone	 acetyltransferases	 (HATs)	 at	 highly	

transcribed	regions	instead	of	at	the	expected	heterochromatin	(Wang	et	al.,	2009).	

HDACs	 are	 associated	 with	 active	 gene	 and	 are	 positively	 correlated	 with	

transcription.	Whereby,	they	proposed	a	model	that	HDAC3	and	HATs	work	together	

to	influence	gene	transcription	dynamics	(Wang	et	al.,	2009).	In	this	system,	HDAC3	

associates	at	genes	also	enriched	by	several	HATs,	suggesting	that	they	may	keep	a	
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balance	between	activation	and	repression	at	any	given	locus.	In	addition,	Rpd3	and	

Hos2	in	yeast	associate	with	highly	transcribed	genes	(Kurdistani	et	al.,	2002;	Wang	

et	 al.,	 2002).	The	observation	 further	 supports	 this	 that	dCas9-HDAC3	 targeting	 in	

MC3T3-e1	pre-osteoblasts	induced	MecP2	mRNA	up-regulation	(Kwon	et	al.,	2017).	

Another	 overlapping	 model	 (Greer	 et	 al.,	 2015)	 is	 that	 HDACs	 promote	 gene	

transcription	 by	 inhibiting	 negative	 elongation	 factor	 (NELF)	 and	 by	 limiting	

acetylation	in	gene	body	and	intergenic	regions,	less	acetylation	within	gene	bodies	

preventing	cryptic	transcription	and	facilitating	transcription	elongation.	This	model	

is,	however,	not	supported	by	ChIP-seq	data	showing	that	HDAC3	associates	mostly	

with	the	promoter	region	of	highly	transcribed	genes	(Wang	et	al.,	2009).		

	

Our	 data	 are	 consistent	 with	 the	 idea	 that	 HDAC3	 targeting	 promotes	 gene	

expression.	However,	it	would	not	do	so	by	deacetylating	histones	in	gene	body	since	

its	 targeting	 increases	 acetylation.	 This	 raises	 the	 question	 of	 the	 necessity	 of	 the	

deacetylase	activity	of	HDAC3.	The	next	step	 is	 to	 test	whether	the	HDAC3	specific	

inhibitor	 RGFP966	 (Malvaez	 et	 al.,	 2013)	 can	 minimize	 the	 increase	 in	 gene	

expression	upon	targeting.	Our	speculative	model	is	that	HDAC3	targets	non-histone	

proteins	(Glozak	et	al.,	2005;	Spange	et	al.,	2009)	which	would	act	as	inhibitors	for	

gene	 expression.	 Those	 proteins,	 when	 being	 acetylated,	 tend	 to	 dissociate	 from	

chromatin,	 allowing	 transcription	 to	 go	 through	 and	 enabling	 HATs	 to	 access	 the	

locus	 better.	 Alternatively,	 deacetylation	 of	 those	 proteins	 could	 activate	 some	

transcription	 factor	 or	 some	 remodeling	 enzyme	 that	 promotes	 transcription	

elongation	and/or	 initiation.	 If	 this	model	were	 correct,	 the	deacetylase	 activity	of	

HDAC3		would	be	required	for	overexpression.	

	

IP-Mass	 spec	 using	 HDAC3	 as	 bait	 has	 been	 reported	 with	 some	 unusual	

potential	 factors	 for	 us	 to	 work	 on	 (Armour	 et	 al.,	 2017).	 Besides	 the	 known	

interactors	 such	as	NCoR,	Armour	and	colleagues	also	 found	proteins	essential	 for	

development	 as	 well	 as	 several	 transcription	 factors.	 These	 candidates	 could	 be	

knockout,	and	their	effect	on	HDAC3-dependent	gene	activation	will	be	determined.	

	

One	 possibility	 is	 that	 HDAC3	 brings	 in	 HATs	 that	 target	 histones	 for	

acetylation.	 This	 model	 predicts	 that	 HDAC3	 has	 a	 structural	 role	 and	 does	 not	
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require	its	deacetylase	activity.	If	this	model	is	correct,	we	may	be	able	to	detect:	1.	

accumulation	 of	 HATs	 around	 the	 GFP	 locus	 upon	 PYL-HDAC3	 targeting;	 2.	 the	

recruitment	of	a	HAT	should	be	indispensable	to	have	the	same	effect	as	HDAC3	and	

should	no	longer	depend	on	HDAC3;	3.	HDAC3-targeting	in	HAT	knockouts	would	be	

predicted	not	to	affect	gene	expression.	

	

2.3	DNMT1	has	a	direct	effect	on	gene	silencing	
Similar	 to	 HDAC5,	 PYL-DNMT1	 stable	 integration	 into	 the	 CIT	 system	 gives	

direct	evidence	that	DNMT1	targeting	to	gene	body	can	induce	further	silencing	of	a	

strongly	 expressed	 gene	 in	 human	 cells.	 Unlike	 promoter	 regions	 with	 low	 CpG	

methylation,	gene	body	usually	 is	highly	methylated	and	correlates	positively	with	

the	transcriptional	output	(Jones,	1999,	2012).	Evidence	comes	from	human	active	X	

chromosome	and	inactive	X	chromosome	DNA	methylation	profiles,	in	which	Xa	has	

at	 least	 two	 times	 more	 allele-specific	 methylation	 than	 Xi	 (Hellman	 and	 Chess,	

2007).	 The	 methylation	 pattern	 concentrates	 on	 gene-bodies	 in	 Xa.	 A	 shotgun	

genomic	 bisulfite	 sequencing	 in	 plants	 and	 animals	 also	 shows	 the	 same	

hypermethylation	 in	 the	 gene	 body	 (Feng	 et	 al.,	 2010).	 The	 role	 of	 gene-body	

methylation	is	highly	debated,	however,	mainly	because	of	the	correlational	nature	

of	the	experiments.	Nevertheless,	it	is	reported	that	DNMT	inhibition	in	HCT116	cells	

reduces	DNA	methylation	in	the	gene	body,	which	leads	to	alleviated	overexpression	

of	tumor-suppressor	genes	and	helps	reactivation	of	oncogenes	like	c-Myc.	(Yang	et	

al.,	 2014).	 This	 complicated	 relationship	 suggests	 that	 gene-body	 methylation	

regulates	gene	expression,	but	the	mechanisms	remain	unknown.		

	

CIT	 would	 be	 ideal	 to	 tackle	 the	 mechanism	 of	 gene	 body	 methylation-

dependent	gene	expression.	For	instance,	if	bisulfite	sequencing	reveals	that	DNMT1	

targeting	leads	to	an	increase	in	DNA	methylation,	it	would	be	interesting	to	see	how	

DNMT1	effect	get	around	classic	understanding	about	gene	body	methylation.	If	local	

DNA	methylation	 increased	after	DNMT1	targeting,	what	can	be	done	 is	 to	make	a	

DNMT1	catalytic	dead	mutant	and	test	whether	the	mutant	construct	is	still	able	to	

induce	 DNA	 hypermethylation	 or	 not.	 This	 may	 indicate	 that	 DNMT1	 targeting	

dependent	 silencing	 is	 due	 to	 its	 catalytic	 activity	 or	 other	 factors	 like	DNMT3a/b	

recruited	by	DNMT1	(Kim	et	al.,	2002)	to	perform	methylation.	
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One	critical	observation	was	that	targeting	PYL-DNMT1	to	INT	led	to	a	repeat-

dependent	silencing	of	the	GFP	reporter.	The	first	potential	explanation	may	be	the	

large	size	of	the	fusion	with	a	molecular	weight	of	196	kDa.	Long	CAG	repeats	may	

induce	heterochromatic	markers	accumulation	and	lower	DNA	accessibility	(Cho	et	

al.,	2005).	This	may	influence	the	efficiency	of	a	big	fusion	protein	binding	to	the	GFP	

intron	like	DNMT1.	We	also	have	stable	cell	lines	with	a	relatively	big	size	(147kDa)	

protein	 expression,	 FANCI,	 and	 targeting	 FANCI	 does	 not	 reproduce	 the	 silencing	

effect	 observed	 in	 HDAC5	 and	 DNMT1.	 This	 may	 indicate	 the	 size	 of	 the	 fusion	

protein	is	not	the	main	reason	for	repeat	dependent	silencing.	

	

Secondly,	 this	 short	 repeat	 specific	 silencing	 may	 merely	 due	 to	 the	 GFP	

intensity	detection	 limitation.	As	 the	GFP	reporter	with	16	CAG	repeats	has	higher	

baseline	intensity	after	transcription	than	the	89	ones,	the	silencing	effect	difference	

of	DNMT1	targeting	compares	to	non-targeting	can	be	less	evident	in	long	repeat	cell	

lines.	To	test	this	hypothesis,	GFP	reporter	mRNA	qPCR	may	give	a	better	resolution.	

If	the	suspect	is	correct,	we	may	observe	similar	fold	difference	between	CIT16BYD	

and	 CIT89BYD	 in	 ABA	 versus	 DMSO	 dataset.	 Polymerase	 II	 ChIP	 can	 also	 provide	

insight	about	local	transcription.			

	

Local	DNA	methylation	may	also	affect	splicing.	 It	has	been	shown	that	exons	

tend	to	have	more	CpG	methylation	than	introns	in	hESC	(Chodavarapu	et	al.,	2010;	

Laurent	 et	 al.,	 2010;	 Shukla	 et	 al.,	 2011).	 Sharp	 methylation	 level	 differences	 on	

exon-intron	boundaries	indicate	the	potential	correlation	between	DNA	methylation	

and	splicing.	The	higher	the	methylation	is,	the	more	likely	the	gene-body	fragment	

gets	 involved	 (Laurent	 et	 al.,	 2010;	 Shukla	 et	 al.,	 2011).	 So	 if	 DNMT1	 targeting	 is	

inducing	 DNA	 methylation	 increase	 locally,	 it	 may	 result	 in	 the	 inclusion	 of	

hypermethylated	INT-CAG	intron.	

	

Our	GFP	reporter	is	a	splicing	driven	assay.	The	longer	the	CAG	repeats	are	in	

the	intron,	the	more	likely	GFP	mRNA	will	be	included	the	CAG	repeat	as	part	of	an	

alternative	 exon,	 resulting	 in	 lower	 GFP	 intensity	 in	 CIT89BYD	 cells	 than	 in	

CIT16BYD	 cells.	 If	 the	 hypothesis	 is	 correct,	 that	 DNMT1	 targeting	 ends	 up	 with	
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more	 intron	 inclusion	 into	 mRNA,	 GFP	 expression	 should	 show	 further	 silencing	

compare	to	non-targeted	cell	samples.			

	

Furthermore,	the	observed	allele	specificity	may	also	due	to	DNA	methylation	

level.	 With	 more	 heterochromatic	 structure	 property	 for	 expanded	 CAG/CTG	

repeats,	DNA	methylation	starting	rate	in	CIT89BYD	cells	may	be	higher	than	that	in	

CIT16BYD	 cells.	 DNMT1	 targeting	 in	 expanded	 CAG	 repeat	 cell	 lines	 would	 have	

fewer	substrates	available	to	catalyze.	It	could	explain	why	the	reporter	with	16	CAG	

repeats	is	more	sensitive	to	DNMT1	targeting	than	89	repeats.	

	

CpG	 methylation	 and	 heterochromatic	 marks	 increase	 upon	 TNR	 expansion,	

regardless	of	the	type	of	repeat	(Dion	and	Wilson,	2009).	It	has	been	widely	accepted	

that	 DNA	 methylation	 interplays	 with	 histone	 modifications	 like	 methylation	 and	

acetylation	(Fuks	et	al.,	2000;	Robert	et	al.,	2003).	If	the	hypothesis	proves	to	be	true,	

that	 in	 extended	 CAG	 repeat-containing	 GFP	 locus	 has	 a	 different	 level	 of	 DNA	

methylation,	it	can	be	interesting	to	determine	whether	heterochromatic	marks	like	

H3K9me2/H3K9me3	appear	upon	PYL-DNMT1	targeting	versus	non-targeting.	This	

observation	can	provide	insights	into	whether	DNA	methylation	is	indispensable	to	

recruit	histone	modifiers,	or	whether	histone	marks	affect	DNA	methylation.		

	

DNMT1	 has	 been	 shown	 to	 cooperate	 with	 other	 DNA	 methyltransferases	

(DNMTs),	histone	methyltransferases	(HMTs),	histone	deacetylases	(HDACs)	(Fuks,	

2005;	Fuks	et	al.,	2000;	Robert	et	al.,	2003).	Considering	that	DNMT1	directly	affects	

gene	 silencing	 with	 low	 repeat	 specificity,	 I	 would	 imagine	 its	 working	 model	 by	

which	 DNMT3a/b	 and	 HDAC1	 and	 2	 involved.	 DNMT3a/b	 are	 responsible	 for	

establishing	 CpG	 methylation	 and	 DNMT1	 maintains	 DNA	 methylation	 after	

replication	 (Robert	 et	 al.,	 2003).	 If	 our	 bisulfate	 sequencing	 data	 shows	 that	 local	

DNA	 methylation	 increases	 upon	 PYL-DNMT1	 targeting,	 it	 may	 indicate	 that	

DNMT3a/b	are	attracted	by	DNMT1	to	the	gene	and	catalyze	CpG	methylation,	which	

further	 results	 in	 gene	 silencing.	 DNMT1	 catalytic	 dead	mutant	 targeting	 can	 also	

provide	 the	 correlation	 between	 DNMT1	 catalytic	 activity	 and	 gene	 silencing.	

HDAC1/2	 are	 also	DNMT1	working	 partners	 for	 removing	 acetylation	marks	 from	

histone	 proteins	 and	 cause	 heterochromatic	 structure	 formation	 and	 gene	 down-
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regulation	 (Fuks	 et	 al.,	 2000).	 We	 can	 perform	 DNMT1	 targeting	 combined	 with	

HDAC	 inhibitor-like	 TSA	 to	 see	 whether	 silencing	 effect	 disappears	 or	 not.	 If	 the	

answer	is	yes,	it	indicates	that	PYL-DNMT1	targeting	induces	silencing	in	an	HDAC-

dependent	manner.	Above	all,	DNMT1	targeting	dependent	silencing	works	in	a	DNA	

context-sensitive	 manner.	 This	 provides	 insight	 into	 the	 DNMT1	 function	 in	 gene	

regulation.	

	

3.	Further	applications	of	CIT	
	

3.1	CIT	can	be	used	in	other	sequence	contexts		
Other	 apparent	 applications	 of	 CIT	 include	 replacing	 CAG	 repeat	 expansion	

with	any	sequence	of	interest,	for	instance,	Friedreich’s	Ataxia's	GAA	repeats	or	the	

CGG	repeats	seen	in	Fragile	X	syndrome	or	even	random	sequence	from	the	genome.	

If	 targeting	 POI	 induces	 GFP	 intensity	 change	 comparable	 to	 the	 DMSO	 group,	 it	

suggests	that	POI	has	a	direct	effect	on	the	targeting	region.	In	conclusion,	CIT	can	be	

transplanted	to	any	locus	of	 interest,	promising	more	extensive	applications	of	this	

inducible	chromatin	targeting	system	to	test	protein	working	mechanism	in	any	loci.	

	

3.2	Screening	of	expanded	allele	silencers	using	CIT	
Here	we	use	a	GFP	reporter	with	different	 lengths	of	CAG	repeats	 to	uncover	

novel	roles	of	chromatin	modifying	enzymes	in	gene	regulation	at	a	disease-relevant	

locus.		Patients	with	CAG	repeat	expansions	are	generally	heterozygous	and	harbor	a	

normal	allele	that	is	important	for	function	(Orr	and	Zoghbi,	2007;	Ross	and	Tabrizi,	

2011).	This	 system	will	be	particularly	useful	 to	 find	 factors	 that	 could	 silence	 the	

expanded	allele	specifically.		

	

The	PYL	 construct	designed	here	 is	 amenable	 to	 large-scale	 studies	 since	we	

can	 use	 a	 simple	 Gateway	 cloning	 reaction	 to	 fuse	 any	 protein	 of	 interest	 to	 PYL	

using	currently	available	cDNA	libraries	(Katzen,	2007).	Here	we	can	take	advantage	

of	 a	 ready-to-use	 database	 of	 epigenetic	modifiers	 (Nanda	 et	 al.,	 2016)	 and	 clone	

them	into	PYL	construct	for	transfection.	After	transfected	into	CITnB	cells,	positive	

transfected	 ones	will	 be	 selected	 by	 proper	 selection	marker.	 Then	 these	 samples	
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will	pass	through	flow	cytometry	and	western	blot	to	further	confirm	their	effect	on	

the	 local	 gene	 expression.	 This	 large-scale	 chromatin	 modifiers	 screening	 will	

provide	 a	 further	 understanding	 of	 chromatin	modifiers	 and	 disease-causing	 TNR	

expansion	interplay.	

	

4.	Conclusion	
	
In	 conclusion,	 the	 whole	 project	 goal	 was	 to	 build	 an	 inducible	 chromatin	

targeting	system.	I	achieved	this	successfully	and	tested	the	effect	of	three	chromatin	

modifying	enzymes	on	gene	expression	and	partially	repeat	instability	(HDAC5	and	

DNMT1).	CIT	system	can	be	further	transplanted	for	mechanistic	studies.		My	results	

challenge	 current	 models	 of	 how	 these	 proteins	 affected	 gene	 expression	 and	

clarified	their	indirect	role	in	repeat	instability.	Moreover,	the	system	can	be	used	for	

further	mechanistic	studies	and	to	uncover	novel	therapeutic	targets	for	devastating	

expanded	repeat	disorders.		
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Abstract	

Epigenome	 editing	 is	 an	 attractive	 way	 to	 manipulate	 gene	 expression.	 However,	

editing	efficiencies	depend	on	the	DNA	sequence	context	 in	a	manner	that	remains	

poorly	understood.	Here	we	developed	a	novel	system	in	which	any	protein	can	be	

recruited	at	will	to	a	GFP	reporter.	We	named	it	ParB/ANCHOR-mediated	Inducible	

Targeting	(PInT).	Using	PInT,	we	tested	how	CAG/CTG	repeat	size	affects	the	ability	

of	 histone	 deacetylases	 to	 modulate	 gene	 expression.	 We	 found	 that	 repeat	

expansion	reduces	the	effectiveness	of	silencing	brought	about	by	HDAC5	targeting.	

This	repeat-length	specificity	was	abolished	when	we	inhibited	HDAC3	activity.	Our	

data	guide	the	use	of	these	histone	deacetylases	in	manipulating	chromatin.	PInT	can	

be	adapted	to	study	the	effect	of	virtually	any	sequence	on	epigenome	editing.	

	

Key	points:	

- PInT:	a	novel	assay	to	test	the	effect	of	DNA	sequence	on	epigenome	editing.	

- HDAC5-mediated	silencing	is	more	efficient	at	short	compared	to	expanded	

CAG/CTG	repeats.	

- HDAC3	activity	is	responsible	for	the	allele-size	effect	of	HDAC5-mediated	

gene	silencing.	
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Introduction:	

Chromatin	structure	impinges	on	every	DNA-based	transaction,	from	replication	and	

DNA	repair	to	transcription.	Thus,	it	is	not	surprising	that	epigenome	editing	is	being	

harnessed	both	to	understand	basic	molecular	mechanisms	and	to	treat	disease	(1).	

Epigenome	editing	is	now	most	commonly	carried	out	via	the	use	of	the	domain	of	a	

chromatin	modifier,	 or	EpiEffector,	 fused	 to	 a	 catalytically	dead	Cas9	 (dCas9).	The	

fusion	protein	is	targeted	to	a	locus	of	choice	by	way	of	a	customizable	single	guide	

RNA	 (sgRNA)	 (2-10).	 Examples	 of	 dCas9-mediated	 epigenome	 editing	 include	

altering	chromatin	states	by	either	targeting	Krüppel-associated	box	(KRAB)	(6)	or	

the	 histone	 acetyltransferase	 domain	 of	 p300	 (2),	 thereby	 reducing	 or	 promoting	

enhancer	 function,	 respectively.	 Moreover,	 epigenome	 editing	 using	 Cas9-based	

approaches	have	been	used	to	modify	disease	phenotypes	in	cells	and	in	vivo	(11,12).	

It	 is	 currently	 not	 possible	 to	 predict	 whether	 targeting	 a	 specific	 locus	 with	 a	

particular	 dCas9-EpiEffector	 fusion	 will	 result	 in	 efficient	 chromatin	 modification	

and	alteration	of	 gene	 expression.	 Several	 reasons	have	been	proposed	 to	 account	

for	this,	ranging	from	the	sequence	of	the	sgRNA	and	the	distance	of	its	target	from	

the	 transcriptional	 start	 site	 (3-5),	 the	 chromatin	 structure	 already	 present	 at	 the	

target	 locus	 (13-18)(BioRxiv:	 https://doi.org/10.1101/228601)	 ,	 and/or	 the	 exact	

EpiEffector	 used	 (2,4,10,16,18).	 Indeed,	 the	 same	 EpiEffector	 targeted	 at	 different	

loci	 can	 have	 very	 different	 effects	 (10,16),	 highlighting	 that	 DNA	 context	 affects	

EpiEffectors	in	ways	that	are	not	understood.		

Some	 DNA	 sequences	 can	 have	 profound	 effects	 on	 nucleosome	 positioning	 and	

chromatin	 structure	 (19).	 A	 prime	 example	 of	 this	 is	 the	 expansion	 of	 CAG/CTG	

repeats,	which	causes	14	different	neurological	and	neuromuscular	diseases	(20,21).	

In	healthy	individuals,	these	sequences	have	less	than	35	repeats	at	any	one	disease	

locus.	 However,	 they	 can	 expand	 and	 reach	 up	 to	 thousands	 of	 triplets.	 Once	

expanded,	CAG/CTG	repeats	lead	to	changes	in	gene	expression	in	their	vicinity	and	

to	a	heterochromatic-like	state	(22-25).	How	these	repetitive	sequences	might	affect	

epigenome	editing	is	unknown.			
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Here,	 we	 developed	 a	 method	 to	 understand	 how	 DNA	 sequence	 context	 can	

influence	 epigenome	 editing	 efficiency.	 We	 named	 the	 system	 ParB/ANCHOR-

mediated	 induced	 targeting	 (PInT).	 With	 PInT,	 any	 protein	 of	 interest	 can	 be	

targeted	near	a	sequence	of	choice.	ParB,	a	bacterial	protein,	forms	oligomers	once	it	

nucleates	at	its	non-repetitive	binding	site,	INT	(26).	Fusing	a	protein	of	interest	to	

ParB	leads	to	the	recruitment	of	many	of	the	desired	molecules	to	the	INT	locus.	The	

targeting	 is	 inducible	 as	 we	 coupled	 ParB/ANCHOR	 to	 a	 chemically	 induced	

proximity	(CIP)	system	derived	from	plants	(27).	The	target	sequence	is	embedded	

in	a	GFP	mini	gene	(28)	such	that	the	effect	of	targeting	on	gene	expression	is	easily	

monitored.	 Using	 PInT,	we	 uncovered	 an	 unexpected	 effect	 of	 expanded	 CAG/CTG	

repeats	 on	 the	 effectiveness	 of	 histone	 deacetylase	 5	 (HDAC5)	 to	 modulate	 gene	

expression	and	found	that	this	was	due	to	the	catalytic	activity	of	HDAC3.		
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Materials	and	Methods:	

Cell	culture	conditions	and	cell	line	construction	

The	majority	of	 the	cell	 lines	used,	 including	all	 the	parental	 lines,	were	genotyped	by	

Microsynth,	 AG	 (Switzerland)	 and	 found	 to	 be	 HEK293.2sus.	 They	 were	 free	 of	

mycoplasma	 as	 assayed	 by	 the	Mycoplasma	 check	 service	 of	 GATC	 Biotech.	 The	 cells	

were	maintained	 in	DMEM	containing	10%	FBS,	penicillin,	and	streptomycin,	as	well	as	

the	appropriate	selection	markers	at	the	following	concentrations:	15	µg	ml-1	blasticidin,	

1µg	 ml-1	 puromycin,	 150µg	 ml-1	 hygromycin,	 400	 µg	 ml-1	 G418,	 and/or	 400	 µg	 ml-1	

zeocin.	The	incubators	were	set	at	37	°C	with	5%	CO2.	Whereas	FBS	was	used	to	maintain	

the	cells,	dialyzed	calf	serum	was	used	at	the	same	concentration	for	all	the	experiments	

presented	here.	The	ABA	concentration	used	was	500	µM,	unless	otherwise	 indicated.	

Doxycycline	(dox)	was	used	at	a	concentration	of	2	µg	ml-1	in	all	experiments.	

A	schematic	of	cell	line	construction	and	pedigree	is	found	in	Figure	S1,	and	the	lines	are	

listed	 in	Table	S1.	This	 table	 includes	 the	plasmids	made	 for	cell	 line	construction.	The	

plasmids	used	for	transient	transfections	are	found	in	Table	S2.	For	each	cell	line,	single	

clones	were	 picked	 and	 tested	 for	 expression	 of	 ParB-ABI	 and	 PYL-fusions	 by	western	

blotting	 using	 the	 protocol	 described	 before	 (29).	 Briefly,	 whole	 cell	 extracts	 were	

obtained,	and	 their	protein	content	was	quantified	using	 the	Pierce	BCA	Protein	Assay	

Kit	 (ThermoScientific).	 Proteins	 were	 then	 run	 onto	 Tris-glycine	 10%	 SDS	 PAGE	 gels	

before	being	transferred	onto	nitrocellulose	membrane	(Axonlab).	The	membranes	were	

blocked	 using	 the	 Blocking	 Buffer	 for	 Fluorescent	 Western	 Blotting	 (Rockland),	 and	

primary	antibodies	were	added	overnight.	Membranes	were	 then	washed	 followed	by	

the	addition	of	 the	secondary	antibody	 (diluted	1	 to	2000).	The	 fluorescent	 signal	was	

detected	 using	 an	 Odyssey	 Imaging	 System	 (Li-CoR).	 All	 antibodies	 used	 are	 found	 in	

Table	 S3.	 To	 assess	 repeat	 sizes,	 we	 amplified	 the	 repeat	 tracts	 using	 oVIN-0459	 and	

oVIN-0460	with	 the	UNG	 and	 dUTP-containing	 PCR	 as	 described(30)	 and	 then	 Sanger-

sequenced	by	Microsynth	AG	(Switzerland).	The	sequences	of	all	the	primers	used	in	this	

study	are	found	in	Table	S4.	

The	 ParB-INT	 sequence	 system	 used	 here	 is	 the	 c2	 version	 described	 previously	 (26),	

except	 that	 the	 ParB	 protein	was	 codon-optimized	 for	 expression	 in	 human	 cells.	 It	 is	

also	called	ANCHOR1	and	 is	distributed	by	NeoVirTech.	 ParB-ABI	 (pBY-008),	PYL	 (pAB-
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NEO-PYL),	 PYL-HDAC5	 (pAB(EXPR-PYL-HDAC5-NEO))	 and	 PYL-HDAC3	 (pAB(EXPR-PYL-

HDAC3-NEO))	 constructs	were	 randomly	 inserted	and	 single	 clones	were	 then	 isolated	

(Table	 S1).	 GFP-reporter	 cassettes	 were	 inserted	 using	 Flp-mediated	 recombination	

according	 to	 the	 manufacturer’s	 instruction	 (Thermo	 Scientific).	 Single	 colonies	 were	

picked	and	screened	for	zeocin	sensitivity	to	ensure	that	the	insertion	site	was	correct.	

Targeting	assays	

For	 targeting	 assays	 involving	 transient	 transfections,	 cells	 were	 plated	 onto	 poly-D-

lysine-coated	12-well	plates	at	a	density	of	6x105	cells	per	well	and	transfected	using	1	

µg	 of	 DNA	 per	 well	 and	 Lipofectamine	 2000	 or	 Lipofectamine	 3000	 (Thermofisher	

Scientific).	6	hours	after	transfection,	the	medium	was	replaced	with	one	containing	dox	

and	ABA	 or	DMSO.	 48h	 after	 the	 transfection,	 the	 cells	were	 split,	 and	 fresh	medium	

with	dox	and	ABA	or	DMSO	was	replenished.	On	the	fifth	day,	samples	were	detached	

from	the	plate	with	PBS	+	1	mM	EDTA	for	flow	cytometry	analysis.		

In	the	case	of	the	stable	cell	lines,	cells	were	seeded	at	a	density	of	4x105		per	well	in	12-

well	 plates.	 The	media	 included	dox	 and	ABA	or	DMSO.	 The	medium	was	 changed	48	

hours	 later	and	 left	 to	grow	for	another	48	hours.	The	cells	were	 then	resuspended	 in	

500µl	PBS	+	1	mM	EDTA	for	flow	cytometry	analysis.		

Flow	cytometry	and	analysis	

We	used	an	Accuri	C6	flow	cytometer	from	BD	and	measured	the	fluorescence	in	at	least	

12	500	 cells	 for	each	 treatment.	 The	 raw	data	was	exported	as	 FCS	 files	 and	analyzed	

using	FlowJo	version	10.0.8r1.		

Chromatin	immunoprecipitation	

For	 chromatin	 immunoprecipitation,	 the	 cells	 were	 treated	 as	 for	 the	 targeting	

experiments	 except	 that	 we	 used	 10	 cm	 dishes	 and	 4x106	 cells.	 After	 96	 hours	 of	

incubation,	paraformaldehyde	was	added	to	the	medium	to	a	final	concentration	of	1%	

and	 the	 cells	were	 incubated	 for	 10	minutes	 at	 room	 temperature.	 The	 samples	were	

then	quenched	with	0.125	M	PBS-glycine	for	5	minutes	at	room	temperature.	Samples	

were	then	centrifuged,	the	supernatant	was	discarded,	and	the	cell	pellets	were	washed	

with	 ice-cold	 PBS	 twice.	 The	 samples	were	 split	 into	 107	 cell	 aliquots	 and	 either	 used	

immediately	or	stored	-75	°C	for	later	use.	Sonication	was	done	using	a	Bioruptor	for	25	

to	 30	min.	 DNA	 shearing	was	 visualized	 by	 agarose	 gel	 electrophoresis	 after	 crosslink	

reversal	and	RNase	treatment.	20%	of	sonicated	supernatant	was	used	per	IP,	with	3	μg	



	 146	

anti-FLAG	 (M2,	 Sigma),	 anti-PAN	 acetylated	 H3	 (Merck),	 or	 anti-IgG	 (3E8,	 Santa	 Cruz	

Biotechnology)	on	Protein	G	Sepharose	4	Fast	Flow	beads	(GE	healthcare).	The	samples	

were	 incubated	 at	 4°C	 overnight	 and	 then	 washed	 with	 progressively	 more	 stringent	

conditions.	After	the	IP,	the	samples	were	de-crosslinked	and	purified	using	a	QIAquick	

PCR	purification	kit	(Qiagen)	and	analyzed	using	a	qPCR.	

Quantitative	PCR	

Quantitative	 PCR	was	 performed	with	 the	 FastStart	Universal	 SYBR	Green	Master	Mix	

(Roche)	using	a	7900HT	Fast	Real-Time	PCR	System	in	a	384-Well	Block	Module	(Applied	

Biosystems™).	 Primers	 used	 to	 detect	 enrichment	 at	 the	 INT	 sequence	 and	 at	ACTA1	

gene	are	 listed	 in	 Table	 S4.	Ct	 values	were	analyzed	using	 the	 SDS	 Software	 v2.4.	 The	

percentage	of	input	reported	was	obtained	by	dividing	the	amount	of	precipitated	DNA	

for	the	locus	of	interest	by	the	amount	in	the	input	samples	multiplied	by	100%.		

Statistics	

We	 determined	 statistical	 significance	 in	 the	 targeting	 experiments	 using	 a	 two-tailed	

paired	Student’s	t-test	because	the	samples	treated	with	DMSO	and	ABA	were	from	the	

same	original	population	and	treated	side-by-side.	For	 the	ChIP	samples,	 the	 test	used	

was	 a	 two-tailed	 Student’s	 t-test.	 All	 the	 statistical	 analyses	were	done	using	R	 studio	

version	3.4.0.	We	concluded	that	there	was	a	significant	difference	when	P	<	0.05.		
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Results:	

ParB/ANCHOR-mediated	induced	targeting	(PInT)	

We	designed	PInT	(Fig.	1)	 to	be	modular	and	highly	controllable.	 It	contains	a	GFP	

mini	gene	that	harbours	two	GFP	exons	flanking	the	intron	of	the	mouse	Pem1	gene	

(28,29).	 A	 doxycycline-inducible	 TetOn	 promoter	 drives	 the	 expression	 of	 the	

reporter.	This	 cassette	 is	 always	 inserted	at	 the	 same	genomic	 location	as	a	 single	

copy	integrant	in	T-Rex	Flp-In	HEK293	cells.	Inside	the	intron,	we	inserted	a	1029	bp	

non-repetitive	 sequence,	 INT,	 that	 contains	 four	 binding	 sites	 for	 dimers	 of	 the	

Burkholderia	cenocepacia	ParB	protein.	Once	bound	 to	 INT,	ParB	oligomerizes	 in	a	

sequence-independent	 manner,	 recruiting	 up	 to	 200	 ParB	 molecules	 (31).	 This	

ParB/ANCHOR	 system	was	 first	 used	 in	 live	 yeast	 cells	 to	 visualize	 double-strand	

break	 repair	 (26).	 More	 recently,	 it	 has	 been	 used	 to	 monitor	 the	 mobility	 of	 a	

genomic	locus	upon	activation	of	transcription	(32)	and	to	visualize	viral	replication	

(33)	in	live	mammalian	cells.	We	made	the	system	inducible	by	fusing	ParB	to	a	plant	

protein	 called	 ABSCISIC	 ACID	 INSENSITIVE	 (ABI),	 which	 dimerizes	 with	

PYRABACTIN	RESISTANCE1-LIKE	(PYL)	upon	addition	of	abscisic	acid	(ABA)	to	the	

culture	medium	(27).	ABA	is	a	plant	hormone	that	is	not	toxic	to	human	cells,	making	

this	 CIP	 system	 especially	

convenient.	 Within	 319bp	 of	 the	

INT	 sequence,	 there	 is	 a	 cloning	

site	that	can	be	used	to	insert	any	

DNA	 motif.	 Thus,	 fusing	 any	

protein	of	interest	to	PYL	allows	for	full	temporal	control	over	the	recruitment	of	a	

protein	of	interest	near	a	DNA	sequence	of	choice.	

Fig.	1:	Schematic	of	PInT.	The	GFP	reporter	is	driven	by	an	inducible	Tet-On	promoter.	
It	contains	an	intron	harbouring	an	INT	sequence,	which	mediates	the	recruitment	and	
oligomerization	of	ParB.	We	fused	ParB	to	ABI,	a	plant	protein	that	binds	PYL	only	in	
the	presence	of	abscisic	acid	 (ABA).	Fusing	PYL	 to	any	protein	of	 interest	 leads	 to	 its	
inducible	 recruitment	 319bp	 away	 from	 a	 cloning	 site	 that	 can	 be	 used	 to	 insert	 a	
sequence	 of	 choice.	 The	 PYL	 construct	 contains	 a	 3xFLAG	 tag	whereas	 the	 ParB-ABI	
fusion	includes	3xHA.	They	both	contain	SV40	nuclear	localization	signals.	
	
It	was	important	to	determine	whether	the	components	of	PInT	affect	the	expression	

of	 the	 GFP	 reporter.	 We	 first	 tested	 whether	 ABA	 changed	 GFP	 expression	 in	
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GFP(CAG)0	cells	(28).	These	cells	carry	the	GFP	mini	gene	without	the	INT	sequence	

or	any	additional	sequences	in	the	intron	(see	Table	S1	and	Fig.	S1	for	details	on	cell	

line	construction).	We	found	that	treatment	with	up	to	at	least	500	µM	of	ABA,	which	

induces	 the	dimerization	between	PYL	and	ABI,	did	not	affect	GFP	expression	(Fig.	

S2AB).	We	also	transiently	transfected	GFP(CAG)0	cells	with	plasmids	expressing	the	

ParB-ABI	fusion.	This	had	no	detectable	effect	on	the	behaviour	of	the	reporter	(Fig.	

S2C).	We	next	inserted	the	INT	sequence	inside	the	Pem1	intron	and	integrated	this	

construct	 using	 site-directed	 recombination,	 generating	 GFP-INT	 cells.	 These	 cells	

contain	INT	but	no	additional	sequence	within	the	intron.	They	do	not	express	ParB-

ABI.	We	 found	 that	 the	 insertion	of	 the	 INT	sequence	had	 little,	 if	 any,	discernable	

effect	 on	 the	 GFP	 expression	 (Fig.	 S2D).	 We	 conclude	 that	 by	 themselves,	 the	

individual	components	of	PInT	do	not	significantly	interfere	with	GFP	expression.		

We	 then	 stably	 integrated	 both	 the	 GFP-INT	 reporter	 and	 the	 ParB-ABI	 fusion	 to	

generate	 GFP-INT-B	 cells.	We	 found	 a	 decrease	 in	 GFP	 expression	 that	 correlated	

with	high	 levels	 of	ParB-ABI	 (Fig.	 S2EFG),	 suggesting	 that	 the	binding	of	ParB-ABI	

has	 a	 predictable	 effect	 on	 the	 GFP	 reporter.	 To	 avoid	 any	 complication,	 we	

integrated	 ParB-ABI	 early	 in	 the	 construction	 pipeline	 such	 that	 all	 the	 cell	 lines	

presented	here	contain	the	same	amount	of	ParB-ABI	(Fig.	S1).	

Next,	 we	 determined	 the	 efficiency	 of	 targeting	 PYL	 to	 the	 INT	 sequence	 and	 the	

consequences	on	GFP	expression.	We	used	nB-Y	 cells,	which	 contain	 the	GFP	mini	

gene	 with	 the	 INT	 sequence,	 stably	 express	 both	 ParB-ABI	 (B)	 and	 PYL	 (Y),	 and	

contain	 n	 CAG	 repeats,	 in	 this	 case	 either	 16,	which	 is	 in	 the	 normal	 range,	 or	 an	

expanded	 repeat	 of	 91	 triplets	 (Fig.	 2A,	 Fig.	 S3A).	 We	 found,	 using	 chromatin	

immunoprecipitation	 followed	 by	 qPCR	 (ChIP-qPCR),	 that	 only	 0.1%	 of	 the	 input	

DNA	could	be	precipitated	when	we	treated	the	cells	with	the	vehicle,	DMSO,	alone.	

By	contrast,	the	addition	of	ABA	to	the	cell	media	increased	the	association	of	PYL	to	

the	 INT	 locus	 significantly,	 reaching	 1.9	 and	 2.5%	 of	 the	 input	 chromatin	 pulled	

down	in	16B-Y	or	91B-Y	cells,	respectively	(Fig.	2B).	These	results	demonstrate	the	

inducible	nature	of	the	system	and	show	that	the	presence	of	the	expansion	does	not	

interfere	with	 the	 targeting	 efficiency.	 Importantly,	 PYL	 targeting	had	no	 effect	 on	

GFP	 expression	 as	 measured	 by	 flow	 cytometry	 (Fig.	 2C).	We	 conclude	 that	 PInT	



	 149	

works	as	an	inducible	targeting	system	and	that	PYL	targeting	is	efficient	and	does	

not	further	affect	gene	expression.	

Fig.	2:	Inducible	targeting	of	PYL	
at	the	GFP	reporter.	A)	Schematic	
representation	 of	 16B-Y	 (left)	 and	
91B-Y	 (right)	 cell	 lines.	 B)	 ChIP-
qPCR	 using	 antibodies	 against	
FLAG	to	pull	down	PYL	at	INT	and	
ACTA1	 in	 16B-Y	 cells	 (left,	 N=4)	
and	 91B-Y	 cells	 (right,	 N=4).	 The	
error	 bars	 represent	 the	 standard	
error.	 C)	 Representative	 flow	
cytometry	 profiles	 as	 well	 as	
quantification	 of	 the	 GFP	
expression	in	16B-Y	(left,	N=6)	and	
91B-Y	 (right,	N=6)	cells.	The	error	
bars	 are	 the	 standard	 deviation	
around	the	mean.		

HDAC5	 silencing	 depends	 on	

CAG/CTG	repeat	size	

We	next	sought	to	test	whether	we	could	manipulate	GFP	expression	using	HDAC5.	

This	class	IIa	deacetylase	impacts	gene	silencing	and	heterochromatin	maintenance	

(34,35)	as	well	 as	 cell	proliferation	 (35,36).	The	PYL-HDAC5	 fusion	was	 functional	

since	 GFP-INT	 cells	 transiently	 expressing	 this	 fusion	 had	 slightly	 lower	 GFP	

expression	 than	 those	 expressing	 PYL	 alone	 (Fig.	 S4A).	We	 created	 isogenic	 nB-Y-

HDAC5	cells	that	express	stably	a	PYL-HDAC5	fusion	and	have	16	or	59	CAG	repeats	

within	the	GFP	reporter	(Fig.	3A).	We	found	that	adding	ABA	to	these	cells	led	to	an	

increase	in	pull-down	efficiency	of	PYL-HDAC5	at	the	INT	locus	from	0.06%	to	2.2%	

in	16B-Y-HDAC5	cells	and	 from	0.1%	to	3%	of	 input	 in	 the	presence	of	59	repeats	

(Fig.	3B).	This	was	accompanied	by	a	significant	2-fold	decrease	in	GFP	expression	in	

59B-Y-HDAC5	cells,	whereas	the	decrease	was	of	3	folds	in	16B-Y-HDAC5	cells	(Fig.	

3C,	P=0.001	and	P=	0.0015	using	a	paired	Student’s	t-test	comparing	conditions	with	

ABA	to	those	with	DMSO	only	in	16B-Y-HDAC5	and	59B-Y-HDAC5	cells,	respectively).	

Remarkably,	the	decrease	in	expression	was	significantly	lower	in	the	context	of	an	

expanded	repeat	(Fig.	3C,	P=0.0001	comparing	the	decrease	in	expression	upon	ABA	

addition	 between	 the	 16B-Y-HDAC5	 and	 59B-Y-HDAC5	 using	 a	 Student’s	 t-test).	
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Targeting	efficiency	of	PYL-HDAC5	does	not	account	 for	 the	repeat	size-dependent	

effect	since	 it	was	slightly	higher	 in	59B-Y-HDAC5	than	 in	16B-Y-HDAC5	cells	 (Fig.	

3B).	 To	 determine	 whether	 the	 effect	 is	 due	 to	 targeting	 at	 the	 INT	 locus,	 we	

transiently	expressed	PYL-HDAC5	 in	GFP(CAG)0B	cells,	which	have	no	 INT	 in	 their	

GFP	 reporter	 but	 express	 ParB-ABI.	 Adding	 ABA	 to	 these	 cells	 did	 not	 affect	 GFP	

expression	(Fig.	S4BC),	suggesting	that	the	presence	of	the	INT	sequence	is	essential.	

Moreover,	PYL-HDAC5	targeting	reduced	the	levels	of	acetylated	histone	H3	(acH3)	

(P=0.0001	 and	 P=0.024	

comparing	 DMSO	 treated	 and	

ABA-treated	 16B-Y-HDAC5	 and	

59B-Y-HDAC5,	 respectively,	 using	

a	Student’s	t-test),	as	measured	by	

ChIP-qPCR.	 The	 decrease	 in	 acH3	

upon	 targeting	 was	 greater	 in	

16B-Y-HDAC5	 than	 in	 16B-Y	 cells	

(P=0.006	using	a	Student’s	t-test),	

consistent	 with	 a	 role	 for	 HDAC5	

in	 silencing	 gene	 expression.	

Interestingly,	 the	 acH3	 levels	 at	

the	 INT	 sequence	 were	 similar	

between	 16B-Y	 and	 91B-Y	 and	

between	 16B-Y-HDAC5	 and	 59B-

Y-HDAC5	 (Fig.	 3DE,	 P=0.95,	 and	

P=0.25,	 respectively	 using	 a	

Student’s	 t-test),	 suggesting	 that	

the	 acH3	 levels	 are	 unaffected	 by	

the	 expansion.	 We	 conclude	 that	

PYL-HDAC5	 targeting	 silences	

better	 the	 lines	 with	 the	 shorter	

repeats.		

Fig.	 3:	 PYL-HDAC5	 targeting	
induces	 silencing	 in	 a	 repeat-length	 dependent	 manner.	 A)	 Schematic	
representation	 of	 16B-Y-HDAC5	 (left)	 and	 59B-Y-HDAC5	 (right)	 cells.	 B)	 ChIP-qPCR	
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using	antibodies	against	FLAG	to	pull	down	PYL-HDAC5	at	 INT	and	ACTA1	 in	16B-Y-
HDAC5	cells	(left,	N=4)	and	59B-Y-HDAC5	cells	(right,	N=4).	The	error	bars	represent	
the	standard	error.	C)	Quantification	of	GFP	expression	upon	 incubation	with	ABA	or	
DMSO	in	16B-Y-HDAC5	(left,	N=6)	and	59B-Y-HDAC5	(right,	N=6)	cells.	The	error	bars	
show	 the	 standard	 deviation	 around	 the	 mean.	 D)	 ChIP-qPCR	 data	 using	 a	 pan-
acetylated	H3	antibody	to	pull	down	the	INT	and	ACTA1	loci	in	16B-Y-HDAC5	(left,	N=4)	
and	59B-Y-HDAC5	 (right,	N=4)	 cells.	The	 error	bars	 represent	 the	 standard	error.	E)	
ChIP-qPCR	data	using	a	pan-acetylated	H3	antibody	to	pull	down	the	INT	and	ACTA1	
loci	 in	 16B-Y	 (left,	 N=4)	 and	 91B-Y	 (right,	 N=4)	 cells.	 The	 error	 bars	 represent	 the	
standard	error.	

The	N-terminal	domain	of	HDAC5	mediates	silencing	

Class	 I	 HDACs	 derive	 their	 catalytic	 activity	 in	 vitro	 from	 a	 conserved	 tyrosine	

residue	that	helps	coordinate	a	zinc	ion	essential	for	catalysis	(37).	By	contrast,	class	

IIa	enzymes,	 like	HDAC5,	have	a	histidine	 instead	of	 tyrosine	at	 the	analogous	site,	

which	considerably	lowers	HDAC	activity	(37).	In	fact,	the	H1006Y	mutant	had	more	

than	30-fold	increase	in	its	HDAC	activity	compared	to	the	wild	type	enzyme	(37).	To	

determine	whether	 the	catalytic	activity	of	HDAC5	potentiates	 the	decrease	 in	GFP	

expression	 upon	 targeting,	 we	 compared	 the	 silencing	 activity	 of	 wild-type	 PYL-

HDAC5,	 the	 H1006A	 loss-of-function	 mutant,	 and	 the	 H1006Y	 gain-of-function	

mutant	 by	 transient	 transfection	 in	 40B	 cells,	which	 contain	 the	GFP-INT	 reporter	

with	 40	 CAGs	 and	 express	 ParB-ABI	 (Fig.	 4A).	 The	 effect	 on	 silencing	 seen	 upon	

targeting	of	the	wild-type	PYL-HDAC5	fusion	was	lower	when	delivered	by	transient	

transfection	compared	to	the	stable	cell	lines.	Nevertheless,	under	these	conditions,	

targeting	 PYL-HDAC5-H1006A	 or	 PYL-HDAC5-H1006Y	 could	 both	 silence	 the	

transgene	compared	to	targeting	PYL	alone	(Fig	4B;	P=	0.01	and	0.0008,	respectively,	

using	 a	 Student’s	 t-test),	 suggesting	 that	 tampering	 with	 the	 catalytic	 activity	 of	

HDAC5	 does	 not	 influence	 silencing	 of	 our	 GFP	 reporter.	Moreover,	 targeting	 PYL	

fused	to	the	catalytic	domain	of	HDAC5	did	not	shift	GFP	expression	(Fig.	4B).	Indeed,	

we	 find	 that	 the	 silencing	 activity	 was	

contained	within	 the	N-terminal	 part	 of	

HDAC5,	 which	 characterizes	 class	 IIa	

enzymes.	Further	truncations	(Fig.	4AB)	

are	consistent	with	a	model	by	which	the	

coiled-coil	 domain	 of	 HDAC5,	 which	 is	

responsible	 for	 homo	 and	
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heterodimerization	of	class	IIa	enzymes	in	vitro	(38),	contains	the	silencing	activity.		

Fig.	4:	The	silencing	activity	of	HDAC5	is	contained	in	its	N-terminal	domain.	A)	
Mutants	 and	 truncations	 of	 HDAC5	 fused	 to	 PYL.	 The	 coiled-coil	 (CC)	 domain	 is	
indicated	 in	purple,	 the	deacetylase	domain	 (HDAC)	 in	orange.	B)	Ratio	of	 the	mean	
GFP	 intensities	 in	 40B	 cells	 between	 ABA	 and	 DMSO	 only	 treatment	 of	 40B	 cells	
transiently	transfected	with	plasmids	containing	the	constructs	shown	in	A.	Construct	1:	
N=7,	 P=0.0002	 versus	 PYL;	 construct	 2:	 N=7,	 P=0.01	 versus	 PYL;	 construct	 3:	 N=7,	
P=0.0008	versus	PYL;	construct	4:	N=7,	P=0.88	versus	PYL;	construct	5:	N=7,	P=0.0012	
versus	PYL;	construct	6:	N=3,	P=0.0003	versus	PYL.	In	all	cases,	we	used	a	Student's	t-
test	to	calculate	the	P-values.	The	error	bars	show	the	standard	deviation	around	the	
mean.	*:	P≤0.01	compared	to	PYL	targeting.	

PYL-HDAC3	targeting	enhances	GFP	expression	independently	of	its	catalytic	activity	

HDAC5	 is	 thought	 to	 mediate	 histone	 deacetylation	 by	 recruiting	 other	 HDACs,	

including	HDAC3	(39).	Therefore,	we	hypothesized	that	PYL-HDAC3	targeting	should	

have	 the	 same	 effect	 on	 GFP	 expression	 as	 PYL-HDAC5	 targeting.	 To	 address	 this	

directly,	 we	made	 a	 PYL-HDAC3	 fusion	 and	 overexpressed	 it	 in	 40B	 cells	without	

targeting	 (Fig.	 S4D).	We	 found	 that	 there	was	a	 slight	decrease	 in	GFP	expression,	

suggesting	that	the	construct	could	silence	gene	expression.	Next,	we	generated	nB-

Y-HDAC3	cells	and	compared	GFP	intensities	with	and	without	ABA.	Contrary	to	our	

initial	 hypothesis,	 we	 found	 that	 targeting	 PYL-HDAC3	 in	 both	 16B-Y-HDAC3	 and	

89B-Y-HDAC3	 increased	 GFP	 expression	 by	 1.5	 fold	 (Fig.	 S5AB,	 P=0.0004	 and	

P=0.001	using	paired	Student’s	t-tests	comparing	ABA	and	DMSO	treatments	in	16B-

Y-HDAC3	and	89B-Y-HDAC3,	respectively).	The	effect	appeared	direct	since	adding	

ABA	 to	 GFP(CAG)0B	 cells	 transiently	 expressing	 PYL-HDAC3	 did	 not	 affect	 GFP	

expression	 (Fig.	 S4E).	 The	 increase	 in	 GFP	 expression	 in	 nB-Y-HDAC3	 cells	 was	

accompanied	 by	 an	 efficient	 targeting	 of	 the	 PYL-HDAC3	 fusion	 (Fig.	 S5C)	 and	 an	

increase	 in	 acH3	 levels	 (Fig.	 S5D).	 However,	 treatment	 with	 the	 HDAC3-specific	

small	molecule	inhibitor	RGFP966	(40)	did	not	affect	the	increase	in	GFP	expression	

in	 neither	 16B-Y-HDAC3	 nor	 89B-Y-HDAC3	 cells	 (Fig.	 S5E).	 We	 conclude	 that	

targeting	PYL-HDAC3	increases	GFP	expression	 independently	of	 its	HDAC	activity,	

consistent	 with	 the	 observation	 that	 HDAC3	 has	 an	 essential	 role	 during	

development	that	does	not	involve	its	HDAC	activity	(41).		

HDAC3	 activity	 is	 required	 for	 the	 repeat	 size-specificity	 upon	 HDAC5-mediated	

silencing	
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Although	 HDAC3	 targeting	 did	 not	 have	 the	 expected	 effect	 on	 GFP	 expression,	

evidence	shows	that	its	catalytic	activity	is	implicated	in	HDAC5-mediated	silencing	

(39).	To	determine	the	potential	catalytic	role	of	HDAC3	in	this	context,	we	targeted	

PYL	(Fig.	5A)	or	PYL-HDAC5	(Fig.	5B)	to	our	GFP	reporter	in	nB-Y	and	nB-Y-HDAC5	

cells	while	 cultivating	 the	 cells	 in	 the	presence	of	RGFP966.	We	 find	 that	although	

this	treatment	had	no	effect	on	PYL	targeting	(Fig.	5A),	it	abolished	the	allele-length	

specificity	 of	 PYL-HDAC5	 targeting,	 leading	 to	 a	 silencing	 efficiency	 of	 2.4	 and	 2.5	

folds	 for	 16B-Y-HDAC5	 and	 59B-Y-HDAC5,	 respectively	 (Fig.	 5B,	 P=	 0.77	 using	 a	

Student’s	t-test).	This	is	in	contrast	to	the	RGFP966-free	conditions	where	targeting	

PYL-HDAC5	 silenced	 better	 the	 normal-sized	 allele	 (Fig.	 3).	 These	 results	 suggest	

that	HDAC3	mediates	the	CAG	repeat	size-dependency	upon	PYL-HDAC5	targeting.		

Fig.	5:	HDAC3	activity	is	required	
for	 the	 allele-specificity	 upon	
HDAC5-mediated	 silencing.	 A)	
Quantification	of	GFP	intensity	upon	
targeting	 in	 the	 presence	 of	
RGFP966	 or	 the	 vehicle,	 DMSO,	 in	
16B-Y	(N=6)	and	91B-Y	cells	(N=6).	
Note	 that	 the	 data	 for	 the	 DMSO-
treated	cells	is	the	same	as	in	Fig.	2C.	

The	addition	of	DMSO	did	not	affect	GFP	expression,	and	we	therefore	pooled	the	data.	
B)	Quantification	of	GFP	 intensity	upon	 targeting	 in	 the	presence	of	RGFP966	or	 the	
vehicle,	 DMSO,	 in	 16B-Y-HDAC5	 (N=6)	 and	 59B-Y-HDAC5	 cells	 (N=6).	 Note	 that	 the	
data	for	the	DMSO-treated	cells	is	the	same	as	in	Fig.	3C.	The	addition	of	DMSO	did	not	
affect	 GFP	 expression,	 and	 we	 therefore	 pooled	 the	 data.	 The	 error	 bars	 show	 the	
standard	deviation	around	the	mean.	

	 	



	 154	

Discussion:	

We	 presented	 here	 a	 novel	 assay	 to	 investigate	 the	 effect	 of	 a	 DNA	 sequence	 of	

interest	on	the	efficiency	of	a	chosen	EpiEffector	 in	altering	gene	expression.	As	an	

example	of	how	the	DNA	context	may	affect	the	activity	of	an	EpiEffector,	we	showed	

that	 expanded	 CAG/CTG	 repeats	 decrease	 the	 silencing	 efficiency	 of	 HDAC5.	

Moreover,	 we	 determined	 that	 this	 allele-length	 specificity	 depends	 on	 HDAC3	

activity,	highlighting	the	potential	of	PInT	in	uncovering	unique	mechanistic	insights.	

These	 data	 provide	 evidence	 that	 local	 DNA	 sequence	 context	 is	 an	 important	

determinant	 of	 epigenome	 editing,	 independently	 of	 the	 efficiency	 or	 mode	 of	

targeting.		

PInT	 could	 be	 used	 for	 many	 different	 applications.	 First,	 the	 intron	 can	 host	

sequences	 beyond	 CAG/CTG	 repeats.	 Indeed,	 the	 GFP	 mini	 gene	 we	 used	 here,	

without	the	targeting	components,	was	recently	used	to	monitor	the	effect	of	a	RNA	

polymerase	III	gene	on		RNA	polymerase	II-mediated	transcription	(42).	Second,	it	is	

often	 difficult	 to	 differentiate	 between	 a	 chromatin	 modifier	 changing	 gene	

expression	 because	 of	 a	 local	 effect	 on	 chromatin	 structure	 or	 indirectly	 through	

changes	 in	 the	 transcriptome.	 PInT	 allows	 making	 that	 distinction	 thanks	 to	 its	

inducible	 nature.	 Indeed,	 we	 found	 that	 overexpressing	 PYL-HDAC5	 had	 a	 small	

effect	on	gene	expression	at	the	GFP	reporter	and	that	targeting	it	further	decreased	

expression.	 We	 could	 conclude	 that	 PYL-HDAC5	 can	 act	 locally	 to	 silence	 the	

transgene.	 This	 is	 useful	 in	 dissecting	 the	 mechanisms	 of	 action	 of	 EpiEffectors.	

Third,	 we	 demonstrated,	 using	 mutants	 and	 truncations	 of	 HDAC5,	 that	 we	 can	

quickly	 screen	 for	 protein	 domains	 and	 mutants	 that	 are	 most	 effective	 in	

modulating	 gene	 expression.	 Thus,	 PInT	 could	 be	 used	 to	 design	 peptides	 with	

sufficient	 activity	 to	 be	 useful	 in	 downstream	 epigenomic	 editing	 applications,	 for	

example	when	 using	 dCas9	 fusions	 in	 vivo.	 A	 current	 limitation	 of	 the	 S.	pyogenes	

Cas9	 for	 in	 vivo	 applications	 is	 its	 large	 size,	 which	 is	 at	 the	 limit	 of	what	 adeno-

associated	viral	vectors	can	accommodate	(43).	Even	with	the	smaller	orthologues,	

fitting	a	dCas9	 fusion	 inside	a	gene	delivery	vector	 is	a	challenge.	Therefore,	being	

able	 to	 trim	 an	 EpiEffector	 down	 to	 a	 small	 domain	 may	 help	 optimizing	

downstream	applications	and	translation.		
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The	 observation	 that	HDAC5	 targeting	 has	 a	 differential	 effect	 on	 gene	 expression	

depending	 on	 the	 size	 of	 the	 repeat	 tract	 is	 surprising.	 Our	 data	 suggest	 that	 the	

deacetylase	 activity	 of	 HDAC3	 is	 required	 for	 this	 effect.	 Importantly,	 we	 cannot	

currently	rule	out	that	RGFP966	may	inhibit	other	HDACs	that	would	be	responsible	

for	this	effect.	Nevertheless,	 this	small	molecule	 is	highly	selective	for	HDAC3	(40),	

making	 this	 HDAC	 the	 most	 likely	 candidate	 for	 driving	 allele-specific	 silencing.	

HDAC3	 could	 be	 setting	 up	 an	 asymmetry	 between	 the	 two	 size	 alleles	 in	 several	

ways.	For	 instance,	 it	could	deacetylate	histones	(those	residues	not	recognized	by	

the	pan-acetylated	histone	H3	antibody	that	we	used)	or	non-histone	proteins	in	the	

vicinity	 of	 the	 expanded	 CAG/CTG	 repeat	 prior	 to	HDAC5	 targeting.	More	work	 is	

required	to	understand	further	the	mechanism	of	the	repeat	length-specific	silencing.	

Several	studies	have	suggested	that	 the	ectopic	 insertion	of	an	expanded	CAG/CTG	

repeat	 in	 mice	 could	 induce	 changes	 in	 chromatin	 structure	 in	 the	 abutting	

sequences.	An	early	example	was	the	random	insertion	of	arrays	of	transgenes,	each	

carrying	192	CAGs	(44),	which	led	to	the	silencing	of	the	transgenes	independently	

of	 the	 site	 of	 genomic	 integration.	 In	 addition,	 inserting	 a	 40	 kb	 human	 genomic	

region	 containing	 the	DMPK	 gene	 along	with	 an	 expansion	 of	 600	 CTGs	 (45),	 or	 a	

13.5Kb	region	containing	the	human	SCA7	gene	with	92	CAGS	(46)	all	led	to	changes	

in	chromatin	marks	near	the	expansion.	 It	has	been	unclear,	however,	whether	the	

presence	of	endogenous	sequence	elements,	like	CpG	islands	(47)	and	CTCF	binding	

sites	 (25,48),	 is	necessary	 for	 this	effect.	Our	data	 show	 that	91	CAGs,	without	 the	

flanking	sequences	normally	present	at	the	DMPK	gene	from	whence	this	repeat	was	

cloned	(49),	does	not	 lead	to	significant	changes	 in	 the	 levels	of	acetylated	histone	

H3	 in	 its	 vicinity.	 These	 data	 suggest	 that	 the	 flanking	 sequence	 elements	 play	

important	 roles	 in	 the	 induction	 and/or	 maintenance	 of	 heterochromatic	 marks	

surrounding	expanded	CAG/CTG	repeats.	

Recently,	 a	 number	 of	 studies	 have	 proposed	 that	 silencing	 the	 expanded	 repeat	

allele	 without	 affecting	 the	 expression	 of	 the	 normally	 sized	 allele	 may	 lead	 to	 a	

novel	therapeutic	approach	for	expanded	CAG/CTG	repeats	(50-52).	However,	only	

one	factor,	which	is	essential	for	mouse	development	(52),	has	been	identified	so	far.	

We	speculate	that	PInT	may	be	adapted	to	screen	for	allele	length-specific	silencers,	
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which	could	help	uncover	novel	therapeutic	options	for	expanded	CAG/CTG	repeat	

disorders.	
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Appendix	B:	R	script	
	
Install	the	necessary	R	package		
install.packages("ggplot2")	
install.packages("limma")	
install.packages("tidyr")	
install.packages("dplyr")	
install.packages("Hmisc")	
require(ggplot2)	
require(tidyr)	
require(dplyr)	
require(limma)	
require(Hmisc)	
	
Flow	cytometry	histogram	
#	load	data	
library(readxl)	
HEKBYH516	<-	read_excel("~/Desktop/Capri/FC/FC	example/HEKBYH516.xlsx")	
View(HEKBYH516)	
	
#	reorganize	dataset		
b	<-	gather(HEKBYH516,	
												"Sample",	
												"Value",	
												control,	sample)	
print(b)	
	
#try	to	plot	with	default	setting	
c	<-	ggplot(data=b,	
												aes(x=log10(Value),	
																	
																colour=Sample	
												))	+	
		geom_density()	
	
#	plot	the	graph	with	desired	parameters	
d	<-	c	+	
		scale_color_manual(values=c("control"="black",	"sample"="darkorchid3"),	
																					labels=c("DMSO",	"ABA"))+	
		##remove	margin	between	0	and	data	
		scale_y_continuous(expand	=	c(0,0),	
																					breaks	=	seq(0,	2.5,	0.5),	
																					limits=c(0,	2.5))+	
		scale_x_continuous(expand	=	c(0,0),	
																					breaks	=	seq(0,	10,	2),	
																					limits=c(0,	10))+	
		xlab("GFP	intensity")+	
		ylab("Density")+	
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		theme(panel.grid.major	=	element_blank(),	
								panel.background	=	element_blank(),	
								axis.line.y		=	element_line(colour	=	"black"),	
								axis.line.x		=	element_line(colour	=	"black")	
									
		)	
print(d)	
	
Flow	cytometry	data	analysis	in	same	cell	line	
#	Load	data	
HEBYH5161	<-	read_excel("~/Desktop/Capri/HDAC5	
FC/H516/HEKBYH5161.xlsx")	
	
#	h516	Sample	vs	control	#	
h516	<-	gather(HEBYH5161,	
														"Sample",	
														"Value",	
														control1,control2,control3,control4,sample1,sample2,sample3,sample4)	
#	Raw	data	calculation	
sampleh516m<-c(mean(h516$Value[h516$Sample=="sample1"],na.rm	=	T),	
mean(h516$Value[h516$Sample=="sample2"],na.rm	=	T),	
														mean(h516$Value[h516$Sample=="sample3"],na.rm	=	
T),mean(h516$Value[h516$Sample=="sample4"],na.rm	=	T))	
	
controlh516m<-c(mean(h516$Value[h516$Sample=="control1"],na.rm	=	T),	
mean(h516$Value[h516$Sample=="control2"],na.rm	=	T),	
															mean(h516$Value[h516$Sample=="control3"],na.rm	=	T),	
mean(h516$Value[h516$Sample=="control4"],na.rm	=	T))	
	
#calculate	p	value	
h516ttest	<-	t.test(sampleh516m,controlh516m,	paired=	TRUE)	
h516pval	<-	formatC(h516ttest$p.value,	format	=	"e",	digits	=	1)	
	
#	ggPlot	
#	prepare	dataframe	
h516data	<-	data.frame(mfi=c(sampleh516m/1e6,	controlh516m/1e6),	
																						sampleid=rep(c("ABA",	"DMSO"),	c(length(sampleh516m),	
length(controlh516logm))))	
print(h516data)	
	
#reorder	the	group	order	on	the	boxplot	
h516data$sampleid	<-	factor(h516data$sampleid,		
																												levels	=	c("DMSO","ABA"),	ordered	=	TRUE)	
	
#	Plot	
ggplot(data=h516data,	aes(x=sampleid,	y=mfi)	
)	+	
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#	add	points	
		geom_jitter(data=h516data,	size=1,	color="black",width	=	0.1	
		)	+		
			
#	Changing	axis	ticks,	y	axis	name	with	numbers	on	y	axis	
		scale_y_continuous(name	=	"	",	
																					breaks	=	seq(0,	4,	1),	
																					limits=c(0,	4))+	
			
#	add	mean	(if	you	like	it	dashed,	add	'linetype	=	"dashed"'	within	brackets)	
		stat_summary(fun.y	=	mean,	geom	=	"errorbar",	aes(ymax	=	..y..,	ymin	=	..y..),	width	
=	0.2,	color="black")	+	
		
	#	add	error	bars	corresponding	to	mean+/-sd	
		stat_summary(fun.data=mean_sdl,	fun.args	=	list(mult=1),	geom="errorbar",	
width=0.1,	color="black")	+	
			
#	Add	x	axis	label	
		xlab("")	+	
			
		#	Add	title	
		ggtitle("	")	+	
		
	#	Choose	font	size	
		theme(axis.title.y	=	element_text(size=20),	
								plot.title	=	element_text(size=20,	hjust	=	0.5),	
								text	=	element_text(size=20))	+	
			
#	Diplay	only	x	and	y	axes	without	any	backgroud	
		theme(axis.line	=	element_line(colour	=	"black"),	
								panel.grid.major	=	element_blank(),	
								panel.grid.minor	=	element_blank(),	
								panel.border	=	element_blank(),	
								panel.background	=	element_blank())		
	
Flow	cytometry	data	analysis	between	different	repeat	length	lines	
library(readxl)	
	
#	Load	data	
HEBYH5161	<-	read_excel("~/Desktop/Capri/HDAC5	
FC/H516/HEKBYH5161.xlsx")	
HEKBYH559	<-	read_excel("~/Desktop/Capri/HDAC5	FC/H559/HEKBYH559.xlsx")	
	
#	h516	Sample	vs	control	#	
h516	<-	gather(HEBYH5161,	
															"Sample",	
															"Value",	
															control1,control2,control3,control4,sample1,sample2,sample3,sample4)	
#	Raw	data	calculation	#	
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sampleh516m<-c(mean(h516$Value[h516$Sample=="sample1"],na.rm	=	T),	
mean(h516$Value[h516$Sample=="sample2"],na.rm	=	T),	
															mean(h516$Value[h516$Sample=="sample3"],na.rm	=	
T),mean(h516$Value[h516$Sample=="sample4"],na.rm	=	T))	
controlh516m<-c(mean(h516$Value[h516$Sample=="control1"],na.rm	=	T),	
mean(h516$Value[h516$Sample=="control2"],na.rm	=	T),	
																mean(h516$Value[h516$Sample=="control3"],na.rm	=	T),	
mean(h516$Value[h516$Sample=="control4"],na.rm	=	T))	
	
#calculate	ratio	between	aba/dmso	#	
h516ratio<-	data.frame(sampleh516m/controlh516m,fix.empty.names	=	FALSE)	
	
#	h559	Sample	vs	control	#	
h559	<-	gather(HEKBYH559,	
															"Sample",	
															"Value",	
															control1,control2,control3,control4,sample1,sample2,sample3,sample4)	
#	Raw	data	calculation	#	
sampleh559m<-c(mean(h559$Value[h559$Sample=="sample1"],na.rm	=	T),	
mean(h559$Value[h559$Sample=="sample2"],na.rm	=	T),	
															mean(h559$Value[h559$Sample=="sample3"],na.rm	=	
T),mean(h559$Value[h559$Sample=="sample4"],na.rm	=	T))	
	
controlh559m<-c(mean(h559$Value[h559$Sample=="control1"],na.rm	=	T),	
mean(h559$Value[h559$Sample=="control2"],na.rm	=	T),	
																mean(h559$Value[h559$Sample=="control3"],na.rm	=	T),	
mean(h559$Value[h559$Sample=="control4"],na.rm	=	T))	
	
#calculate	ratio	between	aba/dmso	#	
h559ratio<-	data.frame(sampleh559m/controlh559m,	fix.empty.names	=	FALSE)	
	
#	ggPlot	#	
#	prepare	dataframe	#	
h516ratio$cells	<-	rep("H5CAG16",	4)	
h559ratio$cells	<-	rep("H5CAG59",	4)	
colnames(h516ratio)	<-	c("ratio",	"cells")	
colnames(h559ratio)	<-	c("ratio",	"cells")	
ratios	<-	rbind(h516ratio,	h559ratio)	
#calculate	p	value	#	
h5ttest	<-	t.test(h516ratio$ratio,h559ratio$ratio,	paired=	TRUE)	
h5pval	<-	formatC(h5ttest$p.value,	format	=	"e",	digits	=	1)	
	
#draw	plot#	
ggplot(data=ratios,	aes(x=cells,	y=ratio)	
)	+	
		#	add	points	#	
		geom_jitter(data=ratios,	size=1,	color="black",	width	=	0.1	
		)	+		
		#	Changing	axis	ticks,	y	axis	name	with	numbers	on	y	axis	#	
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		scale_y_continuous(name	=	“	“,	
																					breaks	=	seq(0,	0.6,	0.2),	
																					limits=c(0,	0.6))+	
	
		#	add	mean	(if	you	like	it	dashed,	add	‘linetype	=	“dashed”’	within	brackets)	#	
		stat_summary(fun.y	=	mean,	geom	=	"errorbar",	aes(ymax	=	..y..,	ymin	=	..y..),	width	
=	0.2,	color="black")	+	
	
		#	add	error	bars	corresponding	to	mean+/-sd	#	
		stat_summary(fun.data=mean_sdl,	fun.args	=	list(mult=1),	geom="errorbar",	
width=0.1,	color="black")	+	
	
		#	Add	x	axis	label	#	
		xlab("")	+	
			
		#	Add	title	
		ggtitle("	")	+	
	
		#	Choose	font	size	
		theme(axis.title.y	=	element_text(size=20),	
								plot.title	=	element_text(size=20,	hjust	=	0.5),	
								text	=	element_text(size=20))	+	
	
		#	Diplay	only	x	and	y	axes	without	any	backgroud	
		theme(axis.line	=	element_line(colour	=	"black"),	
								panel.grid.major	=	element_blank(),	
								panel.grid.minor	=	element_blank(),	
								panel.border	=	element_blank(),	
								panel.background	=	element_blank())	
	
Flow	cytometry	data	analysis	for	HDAC5	truncations	
	
#	Load	data	
aliciapyl	<-	read_excel("~/Desktop/PhDthesis/Figure	III./Alicia	
truncation/FC/aliciapyl.xlsx")	
aliciahdac5	<-	read_excel("~/Desktop/PhDthesis/Figure	III./Alicia	
truncation/FC/aliciahdac5.xlsx")	
aliciaNT	<-	read_excel("~/Desktop/PhDthesis/Figure	III./Alicia	
truncation/FC/aliciaNT.xlsx")	
aliciaCC	<-	read_excel("~/Desktop/PhDthesis/Figure	III./Alicia	
truncation/FC/aliciaCC.xlsx")	
aliciaCD	<-	read_excel("~/Desktop/PhDthesis/Figure	III./Alicia	
truncation/FC/aliciaCD.xlsx")	
	
#	PYL	Sample	vs	control	#	
citb40pyl	<-	gather(aliciapyl,	
																				"Sample",	
																				"Value",	
							control1,control2,control3,control4,sample1,sample2,sample3,sample4)	
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#	Raw	data	calculation	
samplecitb40pylm<-c(mean(citb40pyl$Value[citb40pyl$Sample=="sample1"],na.rm	
=	T),	mean(citb40pyl$Value[citb40pyl$Sample=="sample2"],na.rm	=	T),	
																				mean(citb40pyl$Value[citb40pyl$Sample=="sample3"],na.rm	=	
T),mean(citb40pyl$Value[citb40pyl$Sample=="sample4"],na.rm	=	T))	
	
controlcitb40pylm<-c(mean(citb40pyl$Value[citb40pyl$Sample=="control1"],na.rm	
=	T),	mean(citb40pyl$Value[citb40pyl$Sample=="control2"],na.rm	=	T),	
																					mean(citb40pyl$Value[citb40pyl$Sample=="control3"],na.rm	=	T),	
mean(citb40pyl$Value[citb40pyl$Sample=="control4"],na.rm	=	T))	
	
#calculate	p	value	
citb40pylttest	<-	t.test(samplecitb40pylm,controlcitb40pylm,	paired=	TRUE)	
citb40pylpval	<-	formatC(citb40pylttest$p.value,	format	=	"e",	digits	=	1)	
	
#calculate	ratio	between	aba/dmso	
citb40pylratio<-	data.frame(samplecitb40pylm/controlcitb40pylm,fix.empty.names	
=	FALSE)	
	
#	wildtype	HDAC5	Sample	vs	control	#	
citb40hdac5	<-	gather(aliciahdac5,	
																						"Sample",	
																						"Value",	
control1,control2,control3,control4,sample1,sample2,sample3,sample4)	
#	Raw	data	calculation	
samplecitb40hdac5m<-
c(mean(citb40hdac5$Value[citb40hdac5$Sample=="sample1"],na.rm	=	T),	
mean(citb40hdac5$Value[citb40hdac5$Sample=="sample2"],na.rm	=	T),	
																						mean(citb40hdac5$Value[citb40hdac5$Sample=="sample3"],na.rm	=	
T),mean(citb40hdac5$Value[citb40hdac5$Sample=="sample4"],na.rm	=	T))	
	
controlcitb40hdac5m<-
c(mean(citb40hdac5$Value[citb40hdac5$Sample=="control1"],na.rm	=	T),	
mean(citb40hdac5$Value[citb40hdac5$Sample=="control2"],na.rm	=	T),	
																							mean(citb40hdac5$Value[citb40hdac5$Sample=="control3"],na.rm	=	T),	
mean(citb40hdac5$Value[citb40hdac5$Sample=="control4"],na.rm	=	T))	
#calculate	p	value	
citb40hdac5ttest	<-	t.test(samplecitb40hdac5m,controlcitb40hdac5m,	paired=	
TRUE)	
citb40hdac5pval	<-	formatC(citb40hdac5ttest$p.value,	format	=	"e",	digits	=	1)	
	
#calculate	ratio	between	aba/dmso	
citb40hdac5ratio<-	
data.frame(samplecitb40hdac5m/controlcitb40hdac5m,fix.empty.names	=	FALSE)	
	
#	N	terminal	Sample	vs	control	#	
citb40nt	<-	gather(aliciaNT,	
																			"Sample",	
																			"Value",	
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control1,control2,control3,control4,sample1,sample2,sample3,sample4)	
	
#	Raw	data	calculation	
samplecitb40ntm<-c(mean(citb40nt$Value[citb40nt$Sample=="sample1"],na.rm	=	
T),	mean(citb40nt$Value[citb40nt$Sample=="sample2"],na.rm	=	T),	
																			mean(citb40nt$Value[citb40nt$Sample=="sample3"],na.rm	=	
T),mean(citb40nt$Value[citb40nt$Sample=="sample4"],na.rm	=	T))	
	
controlcitb40ntm<-c(mean(citb40nt$Value[citb40nt$Sample=="control1"],na.rm	=	
T),	mean(citb40nt$Value[citb40nt$Sample=="control2"],na.rm	=	T),	
																				mean(citb40nt$Value[citb40nt$Sample=="control3"],na.rm	=	T),	
mean(citb40nt$Value[citb40nt$Sample=="control4"],na.rm	=	T))	
	
#calculate	p	value	
citb40ntttest	<-	t.test(samplecitb40ntm,controlcitb40ntm,	paired=	TRUE)	
citb40ntpval	<-	formatC(citb40ntttest$p.value,	format	=	"e",	digits	=	1)	
	
#calculate	ratio	between	aba/dmso	
citb40ntratio<-	data.frame(samplecitb40ntm/controlcitb40ntm,fix.empty.names	=	
FALSE)	
	
#	Coiled-coil	HDAC5	Sample	vs	control	#	
citb40cc	<-	gather(aliciaCC,	
																			"Sample",	
																			"Value",	
																			control1,control2,control3,sample1,sample2,sample3)	
	
#	Raw	data	calculation	
samplecitb40ccm<-c(mean(citb40cc$Value[citb40cc$Sample=="sample1"],na.rm	=	
T),	mean(citb40cc$Value[citb40cc$Sample=="sample2"],na.rm	=	T),	
																			mean(citb40cc$Value[citb40cc$Sample=="sample3"],na.rm	=	T))	
	
controlcitb40ccm<-c(mean(citb40cc$Value[citb40cc$Sample=="control1"],na.rm	=	
T),	mean(citb40cc$Value[citb40cc$Sample=="control2"],na.rm	=	T),	
																				mean(citb40cc$Value[citb40cc$Sample=="control3"],na.rm	=	T))	
	
#calculate	p	value	
citb40ccttest	<-	t.test(samplecitb40ccm,controlcitb40ccm,	paired=	TRUE)	
citb40ccpval	<-	formatC(citb40ccttest$p.value,	format	=	"e",	digits	=	1)	
	
#calculate	ratio	between	aba/dmso	
citb40ccratio<-	data.frame(samplecitb40ccm/controlcitb40ccm,fix.empty.names	=	
FALSE)	
	
#	catalytic	domain	Sample	vs	control	#	
citb40cd	<-	gather(aliciaCD,	
																			"Sample",	
																			"Value",	
				control1,control2,control3,control4,sample1,sample2,sample3,sample4)	
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#	Raw	data	calculation	
samplecitb40cdm<-c(mean(citb40cd$Value[citb40cd$Sample=="sample1"],na.rm	=	
T),	mean(citb40cd$Value[citb40cd$Sample=="sample2"],na.rm	=	T),	
																			mean(citb40cd$Value[citb40cd$Sample=="sample3"],na.rm	=	
T),mean(citb40cd$Value[citb40cd$Sample=="sample4"],na.rm	=	T))	
	
controlcitb40cdm<-c(mean(citb40cd$Value[citb40cd$Sample=="control1"],na.rm	=	
T),	mean(citb40cd$Value[citb40cd$Sample=="control2"],na.rm	=	T),	
																				mean(citb40cd$Value[citb40cd$Sample=="control3"],na.rm	=	T),	
mean(citb40cd$Value[citb40cd$Sample=="control4"],na.rm	=	T))	
	
#calculate	p	value	
citb40cdttest	<-	t.test(samplecitb40cdm,controlcitb40cdm,	paired=	TRUE)	
citb40cdpval	<-	formatC(citb40cdttest$p.value,	format	=	"e",	digits	=	1)	
	
#calculate	ratio	between	aba/dmso	
citb40cdratio<-	data.frame(samplecitb40cdm/controlcitb40cdm,fix.empty.names	=	
FALSE)	
	
#	prepare	dataframe	
citb40pylratio$cells	<-	rep("PYL",	4)	
colnames(citb40pylratio)	<-	c("ratio",	"cells")	
	
citb40hdac5ratio$cells	<-	rep("HDAC5",	4)	
colnames(citb40hdac5ratio)	<-	c("ratio",	"cells")	
	
citb40ntratio$cells	<-	rep("N	terminal",	4)	
colnames(citb40ntratio)	<-	c("ratio",	"cells")	
	
citb40ccratio$cells	<-	rep("Coiled-Coil",	3)	
colnames(citb40ccratio)	<-	c("ratio",	"cells")	
	
citb40cdratio$cells	<-	rep("catalytic	domain",	4)	
colnames(citb40cdratio)	<-	c("ratio",	"cells")	
	
ratioABall	<-	rbind(citb40pylratio,citb40hdac5ratio,		
																		citb40ntratio,citb40ccratio,	citb40cdratio)	
	
#	P	value	calculation	between	POI	verses	PYL	
HDAC5ttest	<-	t.test(citb40pylratio$ratio,citb40hdac5ratio$ratio,	paired=	TRUE)	
HDAC5pval	<-	formatC(HDAC5ttest$p.value,	format	=	"e",	digits	=	1)	
	
NTttest	<-	t.test(citb40pylratio$ratio,citb40ntratio$ratio,	paired=	TRUE)	
NTpval	<-	formatC(NTttest$p.value,	format	=	"e",	digits	=	1)	
	
CCttest	<-	t.test(citb40pylratio$ratio,citb40ccratio$ratio,	paired=	F)	
CCpval	<-	formatC(CCttest$p.value,	format	=	"e",	digits	=	1)	
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CDttest	<-	t.test(citb40pylratio$ratio,citb40cdratio$ratio,	paired=	TRUE)	
CDpval	<-	formatC(CDttest$p.value,	format	=	"e",	digits	=	1)	
	
#try	to	order	data	manually	
ratioABall_table	<-	table(ratioABall$cells)	
ratioABall_levels	<-	names(ratioABall_table)[order(ratioABall_table)]	
	
#set	the	presentation	order	
ratioABall$cell2	<-	factor(ratioABall$cells,	levels	=	c("PYL","HDAC5","N	
terminal","Coiled-Coil",	
																																																				"catalytic	domain"))	
	
#prepare	to	set	color	for	each	sample	
ratioABall$cell2	<-	as.factor(ratioABall$cell2)	
colorprotein	=	
c("dodgerblue2","darkorchid3","darkorchid3","darkorchid3","darkorchid3")	
	
#draw	an	overall	ggplot	
ggplot(data=ratioABall,	aes(x=cell2,	y=ratio)	
)	+	
		
	#	add	points	
		geom_jitter(data=ratioABall,	size=1,	aes(color=	cell2),	
														width	=	0.1	
		)	+		
			
#set	different	color	for	different	POI	
		scale_color_manual(values	=	colorprotein)+	
		
	#	Changing	axis	ticks,	y	axis	name	with	numbers	on	y	axis	
		scale_y_continuous(name	=	"	",	
																					breaks	=	seq(0,	1.6,	0.5),	
																					limits=c(0,	1.6))+	
			
#	add	mean	(if	you	like	it	dashed,	add	'linetype	=	"dashed"'	within	brackets)	
		stat_summary(fun.y	=	mean,	geom	=	"errorbar",	aes(ymax	=	..y..,	ymin	=	..y..),	width	
=	0.4,	color="black")	+	
		
	#	add	error	bars	corresponding	to	mean+/-sd	
		stat_summary(fun.data=mean_sdl,	fun.args	=	list(mult=1),	geom="errorbar",	
width=0.2,	color="black")	+	
			
#	Add	x	axis	label	
		xlab("")	+	
			
		#	Add	title	
		ggtitle("	")	+	
		
	#	Choose	font	size	
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		theme(axis.title.y	=	element_text(size=12),	
								plot.title	=	element_text(size=20,	hjust	=	0.5),	
								text	=	element_text(size=12))	+	
		
	#	Diplay	only	x	and	y	axes	without	any	backgroud	
		theme(axis.line	=	element_line(colour	=	"black"),	
								panel.grid.major	=	element_blank(),	
								panel.grid.minor	=	element_blank(),	
								panel.border	=	element_blank(),	
								panel.background	=	element_blank(),	
								axis.text.x	=	element_text(angle	=	90),	
								legend.position='none')	
	
ChIP	barplot	
#	load	data	
library(readxl)	
chiph516	<-	read_excel("~/Desktop/Capri/H516	
ChIP/HEKBYH5CAG161CHIP.xlsx")	
View(chiph516)	
	
#start	plot	the	data	
par(mar	=	c(5,	6,	4,	5)	+	0.1)	
chiph516mean<-	barplot(chiph516$mean,		
																		space	=c(0,0,0.2,0,1,0,0.2,0),	
																		col=c("black",	"grey"),		
																		ylim=c(0,3),		
																		border	=	"black",	
																		ylab="%	of	input",	
																		legend.text	=	TRUE,	
																		yaxt="n",	ann=FALSE	
)	
segments(chiph516mean,	chiph516$mean-chiph516$sderror,		
									chiph516mean,	chiph516$mean+chiph516$sderror)	
arrows(chiph516mean,	chiph516$mean-chiph516$sderror,		
							chiph516mean,	chiph516$mean+chiph516$sderror,	lwd	=	0.5,	angle	=	90,	
							code	=	3,	length	=	0.05)	
axis(2,	at=0:3,	labels=c(0:3))	
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Appendix	C:	ChIP	Protocal	

	
ChIP	INT:		
	
ChIP	material:	Trypsin	cells	and	resuspend	cells	in	10ml	DMEM	media	in	15ml	
tubes.		
Take	20µl	cells	in	the	mean	time	for	cell	counting.	
	
Fix	
Add	formaldehyde	(find	in	common	chemical	room,	drawer	under	the	hood)	to	a	
final	concentration	of	1%	(for	37%	stock,	add	270µl	per	10ml	media),	RT	10min	on	
shaker	or	wheel.	Time	here	is	essential	for	achieving	a	perfect	sonication	pattern.	
Add	Glycine	to	a	final	concentration	of	0.125M	(for	2M	stock,	add	757µl	per	10ml)	to	
stop	the	crosslink,	RT	5min	on	wheel.		
1000rpm	5min,	discard	supernatant	to	special	liquid	trash	under	the	hood.	
Add	ice	cold	PBS	to	achieve	10	million	cells	per	ml,	then	separate	cells	to	1.5ml	
Eppendorf	tubes.	
Wash	with	ice	cold	PBS	twice,	3min	1000rpm	at	4	degree.	
Freeze	the	pellet.	
		
Lysis	(NO	Chromatin	extraction”)	
• Resuspend	cell	pellet	in	LB3	buffer	(Complete	EDTA-free):	1	ml/10	million	cells	in	
the	red	cap	15ml	TPX	tubes	(normal	15ml	TPP	tube	need	much	longer	time	to	
sonicate)	

• Keep	on	ice	
	

Sonication	
	
Change	the	ddH2O	water	in	Biorupter	everytime	before	using	it	
• Biorupter	sonication		
• Sonication	conditions:	normally	15min	High	(CITB	cells),	25min	High	(CITBY40	
and	CITBY40H5	cells)		

• Spin	15	min.	@	full	speed	4°C	
• Collect	each	SN	and	(Keep	20	µl	to	check	sonication	pattern,	keep	20	µl	as	qPCR	
input,	keep	15	µl	for	protein	analysis)	

• store	all	the	samples	except	sonication	tubes	@	-80°C	
	
Check	sonication	
Add	80	µl	of	crosslink	reverse	buffer	to	20	µl	samples.	
	
Put	all	the	sample	tubes	in	the	grey	metal	container	next	to	the	water	bath.	
	
Incubate	at	least	6H	@	65°C	
	
Purify	the	samples	with	Qiagen	QIAquick	PCR	Purification	Kit,	elute	into	20	µl	and	
load	on	a	1%	gel	and	run	for	1h	in	80V.	
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Optimal	sonication	pattern	will	be	a	fat	DNA	band	around	300	bp	to	500	bp.	
	
Extract	Dilution	+	Pre-clearing		
	
Dilute	cell	extracts	1:5	with	IP	dilution	buffer	per	sample		
																							
																										200	µl	extract	(2	million	cells)	+	800	µl	IP	dilution	buffer		
	

	
Block	beads	
Well	resuspend	beads	and	take	the	needed	amount	out	into	1.5ml	Eppendorf.	
Centrifuge	800	rpm	2min	4	°C	to	remove	the	storage	liquid	(20%	ethanol)	and	wash	
2	times	with	PBS	and	once	with	IP	dilution	buffer	
After	final	wash,	add	final	concentration	of	1mg/ml	BSA	and	0.3mg/ml	salmon	
sperm	DNA	(pre-denatured	95°C	5min	and	put	on	ice	immediately)	in	IP	dilution	
buffer,	4	degree	on	wheel	for	1h	
	
Preclearing	+	IP	
• Preclear	each	extract	for	30	min	to	1	h	@	4°C	on	wheel	(20	µl	protein	G	beads	
(blocked,	50%	slurry	in	IP	dilution	buffer)	for	1ml	diluted	sample	

• Spin	2	min	@	800	rpm,	collect	SN	(1ml)	
• For	each	IP:		

o 1ml	for	each	(2	million	cells)	for	IP		
	
	

• Add	following	beads	and	antibodies:	
	 HA-	IP	

Ab9110	αbody	
Abcam	1μg/μl	

3	µl		
	

G	beads	Sepharose	
4	Fast	Flow	

50	µl	

	 FLAG-	IP	

Flag	M2	1μg/μl	 3	µl		
	

G	beads	Sepharose	
4	Fast	Flow	

50	µl	

	

G	Beads	volumes:	slurry	50	%	in	IP	buffer,	(blocked:	BSA	1	mg/ml,	0.3mg/ml	salmon	
sperm	DNA)	
• Incubate	overnight	on	wheel	@	4°C	
	
Washes	
• Spin	IPs	for	2	min.	@	800	rpm	@	4°C	
• Remove	SN	(keep	if	needed	in	WB)	and	wash	as	following	(every	wash	for	5	min.	
on	the	wheel,	4°C)	

• Wash	with	following	buffers	once:	wash	buffer	1,	wash	buffer	2	and	wash	buffer	3	
• Finally	wash	all	samples	twice	in	wash	buffer	4	
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• At	the	end	of	the	last	wash,	keep	¼	of	sample	(250	µl)	for	protein	analysis,	spin	as	
above	and	resuspend	into	2×	SDS	sample	buffer	(20	µl),	use	¾	of	sample	(750	µl)	
for	DNA	analysis	as	usual.		
Crosslink	reversal	

• (Thaw	input	DNA	and	sonication	check	samples)	
• Treat	with	Crosslink	reversal	buffer	(final	volume:	100	µl,	beads	do	not	count	as	

volume:	
o Beads	(IPs):	100	µl	
o Input:	80	µl	
o Sonication:	80	µl	

• Incubate	overnight	(or	at	least	6	h)	@	65°C	
	
DNA	extraction	
• Take	samples	from	65°C	and	put	them	on	ice,	proceed	with	DNA	extraction	
• Qiagen	purification	kit:	

o Add	5	×	volume	(500	µl)	binding	buffer	PB	
o Mix	and	transfer	in	a	Qiagen	column	and	onto	a	vacuum	manifold	(or	

spin,	30-60	sec,	≥10’000	g)	
o Wash	with	750	µl	wash	buffer	PE	(spin,	30-60	sec,	≥10’000	g)	
o Spin	1	min	full	speed	to	remove	EtOH	
o In	clean	Eppendorf	tubes	elute	DNA	with	20	µl	dH2O	for	sonication	

pattern	check	and	50	µl	dH2O	for	qPCR	
o Spin	1	min	full	speed	
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Buffer	
	
LB3	(Julien	Marquis,	NIHS)	

- 10	mM	Tris-HCl	pH	8.0	
- 200	mM	NaCl	
- 1	mM	EDTA	
- 0.5	mM	EGTA	
- 0.1%	Na-Deoxycholate	(NaDOC)	
- 0.25%	Sodium	lauroyl	sarcosinate	(NLS)-Sigma	61743-25G	
- Protease	Inhibitor	

	
For	50	ml:	

- 0.5	ml																1	M	Tris-HCl	(pH	8.0)	
- 2	ml																			5	M	NaCl	
- 0.1	ml																0.5	M	EDTA	(pH	8.0)	
- 50	µl																		0.5	M	EGTA	(pH	8.0)	
- 0.5	ml																10%	Na-Deoxycholate	
- 2.5	ml																5%	NLS	
- 1	x	Complete	protease	inhibitor						Add	fresh	
- dH2O	add	to	50	ml	(44.4	ml)	

	
IP	dilution	buffer	
For	40	ml:	
-	1.25%	Triton-X	 5	ml	(10%)	
-	1	mM	EDTA	pH	8.0	 80	µl	(0.5M	stock)	
-	0.5	mM	EGTA	pH	8.0	 40	µl	(0.5M	stock)	
-	16.25	mM	Tris-HCl	pH	8.0	 650	µl	(1M	stock)	
-	137.5	mM	NaCl	 1.1	ml	(5M	stock)	
-	dH2O	 32.73	ml	
1	x	Complete	protease	inhibitor	Add	fresh	 	
	
Wash	1	
For	100	ml:	
-0.1%	SDS																																																																																													1ml	(10%	stock)	
-1%	Trition																																																																																										1ml		
-20mM	Tris-HCl	pH	8.0																																																																				2ml	(1M	stock)	
-2mM	EDTA	pH	8.0																																																																												400µl	(0.5M	stock)	
-300	mM	NaCl																																																																																						6ml	(5M	stock)	
Filter	
	
Wash	2	
For	100	ml:	
-0.1%	SDS																																																																																													1ml	(10%	stock)	
-1%	Trition																																																																																										1ml	
-20mM	Tris-HCl	pH	8.0																																																																				2ml	(1M	stock)	
-2mM	EDTA	pH	8.0																																																																												400µl	(0.5M	stock)	
-500	mM	NaCl																																																																																						10ml	(5M	stock)	
Filter	
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Wash	3	
For	100	ml:	
-1%	NP-40																																																																																													1ml	
-1%	Na-deoxycholate																																																																									10ml	(10%	stock)	
-10mM	Tris-HCl	pH	8.0																																																																					1ml	(1M	stock)	
-1mM	EDTA	pH	8.0																																																																													200µl	(0.5M	stock)	
-250mM	LiCl																																																																																									26ml	(4.8M	stock)	
Filter	
	
Wash	4	
For	100	ml:	
-10mM	Tris-HCl	pH	8.0																																																																					1ml	(1M	stock)	
-1mM	EDTA	pH	8.0																																																																													200µl	(0.5M	stock)	
Filter	
	
Crosslink	Reversal	Buffer	
For	500ml:	
-1%	SDS																																																																																																	50ml	(10%	stock)	
-0.1M	NaHCO3																																																																																					50ml	(1M	stock)	
-0.5mM	EDTA	pH	8.0																																																																									0.5ml	(0.5M	stock)	
-20mM	Tris-HCl	pH	8.0																																																																					10ml	(1M	stock)	
-RNase:	final	concentration	100μg/ml																																									Add	fresh	
	

	
	


