
Barcoding Human Physical Activity to Assess Chronic
Pain Conditions
Anisoara Paraschiv-Ionescu1*, Christophe Perruchoud2,3, Eric Buchser2,3, Kamiar Aminian1

1 Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland, 2 Anesthesia and Pain Management

Department, EHC, Hospital of Morges, Morges, Switzerland, 3 Department of Anesthesiology, University Hospital Center and University of Lausanne, Lausanne,

Switzerland

Abstract

Background: Modern theories define chronic pain as a multidimensional experience – the result of complex interplay
between physiological and psychological factors with significant impact on patients’ physical, emotional and social
functioning. The development of reliable assessment tools capable of capturing the multidimensional impact of chronic
pain has challenged the medical community for decades. A number of validated tools are currently used in clinical practice
however they all rely on self-reporting and are therefore inherently subjective. In this study we show that a comprehensive
analysis of physical activity (PA) under real life conditions may capture behavioral aspects that may reflect physical and
emotional functioning.

Methodology: PA was monitored during five consecutive days in 60 chronic pain patients and 15 pain-free healthy subjects.
To analyze the various aspects of pain-related activity behaviors we defined the concept of PA ‘barcoding’. The main idea
was to combine different features of PA (type, intensity, duration) to define various PA states. The temporal sequence of
different states was visualized as a ‘barcode’ which indicated that significant information about daily activity can be
contained in the amount and variety of PA states, and in the temporal structure of sequence. This information was
quantified using complementary measures such as structural complexity metrics (information and sample entropy, Lempel-
Ziv complexity), time spent in PA states, and two composite scores, which integrate all measures. The reliability of these
measures to characterize chronic pain conditions was assessed by comparing groups of subjects with clinically different
pain intensity.

Conclusion: The defined measures of PA showed good discriminative features. The results suggest that significant
information about pain-related functional limitations is captured by the structural complexity of PA barcodes, which
decreases when the intensity of pain increases. We conclude that a comprehensive analysis of daily-life PA can provide an
objective appraisal of the intensity of pain.
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Introduction

Pain is one of the major universal experiences of human

beings defined by the International Association for the Study of

Pain (IASP) as ‘an unpleasant sensory and emotional experience associated

with actual or potential tissue damage, or described in terms of such damage’

[1]. The modern theories that led to the IASP definition of

chronic pain are rooted in many centuries of human philosoph-

ical and scientific thinking. One of the most influential

developments was the gate control theory developed in 1960s by

Wall & Melzack [2]. This theory proposes the existence of a

neurophysiologic gating mechanism in the brain and spinal cord

that can be excited or inhibited by a variety of influences

including sensory-discriminative, affective-emotional and cogni-

tive-evaluative components. The key point emerging from this

theory is that pain is not only a sensation but a multi-

dimensional personal experience [3].

Despite significant progress to understand pain mechanisms, the

assessment of chronic pain in clinical practice remains a major

challenge that involves multidimensional outcome domains such

as pain intensity, emotional functioning and physical functioning [4]. A

number of validated tools such as the visual analog scale and

quality of life questionnaires have been developed to assess pain

but they have several limitations [5]: (i) they relay on self-reporting

and recall and are therefore subjective and prone to biases [6]; (ii)

they cannot be used in subjects with cognitive impairment as well

as in some of the elderly and/or very young patients [7] ; (iii) they

fail to capture the dynamic nature of pain and its impact on the

aspects of daily-life functioning since the assessment/quantification

of pain status is based on a static index at one point in time.

Individuals who suffer from chronic pain may differ from healthy

pain-free subjects not only in how they feel but also in how they

behave. An important aspect of pain behavior is reflected in the

physical functioning/activity since pain sufferers may have an
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altered gait pattern, move slower and be more likely to interrupt or

avoid painful activities [8,9]. Unlike most of the self-reporting,

inherently subjective pain outcomes, the monitoring of behavioral

patterns of daily physical activity may provide an objective and

dynamic integrated appraisal of the impact of pain on the physical,

social and emotional functioning of chronic pain patients.

Physical activity (PA) has many dimensions that can be

characterized and quantified, such as the type of activity (e.g. sitting,

standing, walking, lying), its duration, its intensity (e.g. gait speed,

motility), its frequency (e.g. number of postural changes, number of

walking episodes) and its patterns i.e. the temporal sequence/organization

of various activities. Under real-life conditions these parameters

can be influenced by a disease but also by non-pathological factors

such as age, working status, and response to unexpected events

[10,11,12]. Basic quantitative PA metrics such as the daily walking

distance, the speed, and the percent of time spent lying may be

useful to assess the efficacy of a treatment when patients serve as

their own control [9]. However, studies that used global

quantitative PA metrics to assess differences between chronic pain

patients and healthy subjects have been essentially negative. In

other words averaged/global parameters such as the total daily

walking distance or the number of steps may be similar or even

equal in patients and healthy controls, as is, incidentally, the

average metabolic expenditure measured by double labeled water

[13,14,15]. Yet, significant differences have been found when the

temporal organization of PA patterns was investigated in trials

comparing healthy subjects to patients with various conditions

such as pain syndromes, chronic fatigue, degenerative neurological

diseases and advanced aging [16,17,18,19].

When PA is monitored over long periods of time, parameters

related to the different dimensions can be used to define time-series

or patterns which may contain significant information hidden in

their temporal structure [16]. Looking at a measure of PA in the

context of time (temporal/dynamical structure) enables a better

understanding of behavioral features related to the ability of the

subject to adapt to internal states (pain, fatigue, mood, etc) and to

respond to external/environmental demands. In chronic disease

conditions it is postulated that various factors including neurolog-

ical dysfunctions, pain, fear of movement, mood, and coping

strategies reduce the variety and intensity of body movements and

activities resulting in a decrease in the complexity of PA patterns.

This is supported by previous studies that investigated complexity

in terms of long-term power-law (fractal) correlations embedded in time

series generated from one specific PA parameter such as forearm or

ankle motion [17,18,19], posture allocation [16], walking activity

[20] or gait [21,22]. The results of these studies showed that power

law, time-invariant dynamic patterns of fluctuations characterize

PA in healthy conditions but this feature tends to fade away with

aging [18] or disorders such as Alzheimer’s disease [18], chronic

pain syndrome [16], and chronic fatigue syndrome [19].

Based on the above hypothesis and background, the present

study is a further step in the investigation of the dynamics of

patterns (sequences) generated from a succession of various PA

states. Each state represents a combination of many dimensions of

PA/body movement abilities (e.g. type, duration and intensity) that

occur in a defined time-window. The significant information

embedded in these patterns - metaphorically named ‘barcodes’ -

was found to be related to the structural complexity, which captured

the variety of PA states as well as their occurrence in time. The

methodological objective was to describe the practical issues related

to the definition and the analysis of PA barcodes using

complementary metrics, which capture most of the clinically

meaningful information. The clinical objective was to evaluate the

reliability of the defined metrics to discriminate between matched

groups (age, employment status) of subjects with different pain

intensities.

Materials and Methods

Subjects and study design
We performed a retrospective analysis on data that were

collected prospectively in an observational longitudinal study

designed to assess the PA in chronic pain patients treated with

spinal cord stimulation (SCS). After approval of the ethical

committee of the University of Lausanne, Switzerland, and written

informed consent was obtained, 60 patients suffering from chronic

pain caused by failed back surgery syndrome (n = 21), spinal

stenosis (n = 19), peripheral vascular disease (n = 8), and combined

pathologies (n = 12) were enrolled. All patients reported pain-

related limitations of their walking perimeter and were candidates

for SCS therapy. All patients were referred to the Pain

Management Centre of the Hospital of Morges, Switzerland

because of persistent pain despite optimal medical management.

As the main inclusion criterion was the eligibility for SCS

treatment, the group was not homogeneous in terms of pathologies

and demographic characteristics. A group of 15 pain free healthy

volunteers were enrolled in the protocol. These subjects were

recruited from the patient’s relatives or the medical staff of the

clinic.

Pain was measured using a visual analogue scale (VAS) from 0

to 10. All subjects were asked to rate the usual pain intensity

experienced during each day of PA measurement. VAS score

modifications in excess of 30% are considered to reflect clinically

significant difference in pain intensity [23]. Post-hoc subjects

groups were defined according to the intensity of pain and

matched for demographic characteristics.

The pain intensity was categorized as ‘no pain’, ‘mild’, ‘moderate’

and ‘severe’ based on the VAS as follows: ‘no pain’: VAS = 0, ‘mild’:

VAS = 1 to 3, ‘moderate’: VAS = 4 to 6, ‘severe’: VAS = 7 to 10

[5]. Table 1 shows the clinical and demographic data according to

the partition of the subjects in four subgroups. To quantify the

impact of clinically different pain levels on PA independently of

demographic covariates such as age and employment status the

subgroups were matched in two pairs and the comparison was

performed as follows: No Pain vs. Severe Pain in the Middle Age groups

and Moderate Pain vs. Severe Pain in the Old Age groups.

Instrumentation and measurement protocol
The monitoring of PA was performed under free living conditions

using three miniaturized data-loggers (55640618 mm, 50 g) stuck

to the skin with medical adhesive patches (Coloplast Systems,

Denmark) and Velcro (VelcroH,USA). The data-loggers are custom

designed from commercial inertial sensors (bi-axial accelerometers,

ADXL202, 62 g and uni-axial gyroscope, ADXRS300, 300u/sec),

memory, electronics for data acquisition and rechargeable batteries.

One device was fixed on the sternum to measure the trunk vertical

and frontal accelerations, and the angular velocity in the sagittal

plane. Two devices were fixed on one leg aligned with the medio-

lateral axis of the thigh and shank, to measure vertical and frontal

accelerations and the angular velocity of thigh and shank in the

sagittal plane [24]. Body accelerations and angular velocities were

synchronously recorded at a sampling rate of 40 Hz during five

consecutive weekdays, continuously eight hours per day. The

chronic pain patients were monitored before SCS treatment. All

subjects were instructed to install the monitoring devices and start

the recording in the morning before engaging in daily activities. In

order to avoid skin sensitivities due to adhesives patches, it was

allowed when started each monitoring day to slightly change the
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location of the device on the sternum and along the medio-lateral

axis of thigh and shank. Since the biomechanical signals were

recorded on rigid body segments the raw data and the performances

of PA analysis algorithms were not affected.

Defining the PA barcode
The basic idea of PA barcoding was to combine different PA

dimensions in order to define PA states. A numerical symbol was

assigned to each PA states so that the motor activity behavior

during the observation period appeared encoded in a sequence of

symbols. The sequence was then analyzed to provide PA metrics

and was represented as a color barcode to provide global

illustrative visual information.

Quantifying PA dimensions. We estimated the type of activity

and its duration in terms of posture allocation periods, i.e. sitting (Si),

lying (Ly), standing (St), and walking (Wk) using the inertial data

recorded on the trunk, the thigh and the shank [24]. The intensity

of each activity was estimated from: (1) the mean walking cadence

(cad) during each detected walking period, and (2) the mean value

of the trunk acceleration norm ( aj j) estimated on successive time-

windows during periods of Si/Ly and St.

According to the algorithms developed previously [24] the

parameters related to the different PA dimensions were estimated

using five kinematics signals from the total of nine that were

recorded by the three data-loggers. Similar parameters can be

estimated using an even more reduced set of signals (trunk vertical

and frontal accelerations and thigh frontal acceleration) but with

decreased accuracy for walking detection especially in patholog-

ical/elderly conditions [24].

Encoding PA dimensions into PA states. The parameters

related to the type, the intensity, and the duration were combined

within successive time-windows of one-second duration to define

the various PA states. A numerical symbol was assigned to each PA

states using the encoding procedure illustrated in Table 2:

(1) if the type of PA was identified as Ly/Si and the intensity of

trunk acceleration was below or above a specific threshold

then two PA states were defined and encoded with ‘1’ and ‘2’,

respectively;

(2) if the type of PA was identified as St and the intensity of trunk

acceleration was within four specific ranges then four PA

states were defined and encoded with ‘3’, ‘4’, ‘5’, ‘6’;

(2) The choice of thresholds used for trunk acceleration norm i.e.

tha1 = 0.2, tha2 = 0.4, tha3 = 0.6 (g) was based on typical values

of trunk acceleration during postural transitions (Si-St/St-Si)

and usual homework activities (mild, moderate and intense,

respectively) [25,26,27].

(3) if the type of PA was identified as Wk and the mean walking

cadence was within four specific ranges and the duration of the

walking episode was within three specific ranges then twelve

possible PA states were defined and encoded with numbers

from ‘7’ to ‘18’.

(3) The thresholds used for walking cadence i.e. thc1 = 50,

thc2 = 80, thc3 = 140 (steps/min) and duration of continuous

walking episodes, d, i.e. thd1 = 30, thd2 = 120 (s) were chosen

based on typical values of cadence during slow, medium and

fast walking and the distribution of the duration of the walking

episodes that are characteristic for indoor and outdoor

activity.

This encoding procedure provided the representation of the

patterns of PA as successions of 18 possible states. Mathematically,

such representation corresponds to symbolic sequences over the

alphabet V18 = [1,2,3,….,18] of length a = 18 that can be

visualized as color barcodes. Figure 1 emphasizes that PA patterns

covering similar time spans may appear different in many aspects

such as the number, the variety and the succession of states. Each of

these aspects contributes to an aggregate property of such patterns

that is called ‘complexity’.

Analyzing the PA barcode
The PA symbolic sequences/barcodes to be analyzed were

obtained by concatenation of data from the five recording days.

Each data point/sample of the PA barcode represents a PA state

calculated for time-windows of one second, so that the length of

the analyzed barcodes (N = 5 days68 hours63600 s = 144.000)

was sufficiently long to have a robust estimation of complexity

metrics [28].

Complexity metrics. The choice of a measure of complexity

must be based on its ability to reveal clinically relevant features of

movement behavior and to discriminate between experimental

groups. The illustrative examples in Fig. 1 suggest that meaningful

information resides in the variety, the temporal dynamics, and the

Table 1. Characteristics of each group (mean6SD) and statistical differences between groups.

No Pain,
Middle
Age (n = 15)

Severe Pain,
Middle
Age (n = 25)

Differences
between
groups

Moderate Pain,
Old Age
(n = 16)

Severe Pain,
Old Age
(n = 19)

Differences
between
groups

Pain intensity (0 to 10) 0 761.3 p = 10221 3.661.4 7.761.3 p = 3*1029

Age (yr) 57614 5469 p = 0.63 71614 7468 p = 0.19

Gender, n males (%) 8(53%) 15(60%) p = 0.32 9(56%) 10(52%) p = 0.61

Height (m) 16863 16767 p = 0.62 16865 16868 p = 0.97

Weight (kg) 71610 76624 p = 0.47 72613 76612 p = 0.35

BMI (kg/m2) 24.662.5 26.767.2 p = 0.29 25.163.3 26.563.7 p = 0.25

Employed, n (%) 13(86%) 25(100%) p = 0.06 2(0.13%) 0(0%) p = 0.1

Diagnosis, n (type) - 4(SS) 13(FBSS) 2(CRPS)
3(PVD) 1(LB) 1(PN) 1(HD)

- 6(SS) 4(FBSS) 3(PVD)
1(LB) 1(Meralgya) 1(DA)

9(SS) 4(FBSS) 2(PVD)
1(PN) 1(DA) 2(HD)

-

The effect of pain intensity on PA was compared on age-matched groups, i.e. No Pain vs. Severe Pain in the Middle Age groups and Moderate Pain vs. Severe Pain in the
Old Age groups. It can be observed that in the Middle Age groups the mean difference in pain intensity is about 70% while it is only about 35% in the Old Age groups.
Diagnosis: SS = spinal stenosis; FBSS = failed back surgery syndrome; CRPS = Complex regional pain syndrome; PVD = peripheral vascular disease; LB = low back and leg pain;
PN = polyneuropathy; DA = deafferentation; HD = Herniated disc.
doi:10.1371/journal.pone.0032239.t001
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duration of PA states. These differences can be quantified using

structural complexity measures defined as structural-static and structural-

dynamic [28,29]. Together, these features may quantitatively

characterize the complexity of PA symbolic sequences/barcodes

which can be observed both, in the structure (variety/amount of

different states) and the temporal behavior (ordering of different

states).

Structural-static measures allow the quantification of the

amount of different PA states while structural-dynamic measures

permit the quantification of the amount of different states in the

sequence and a description of transitions/succession between

states. Structural-dynamic measures are said to be ‘sequence-

sensitive’ because their values depend on the order of PA states in

the sequence [29].

We used three complementary complexity measures to quantify

the information embedded in the PA barcodes, and to investigate

the effectiveness of the proposed methodology to differentiate

between chronic pain conditions (intensities): the information entropy,

the Lempel-Ziv complexity, and the sample entropy.

Information Entropy (H) is defined as structural-static complexity metric

i.e. a measure of variety of PA states in the barcode, that takes a

large (small) value if there are many (few) kind of PA states in

the barcode. The information entropy is calculated as H~

{
Xa

i~1

p(i) log2(p(i)) where a is maximal number of defined states

in the alphabet (a = 18) and p(i) denotes the probability of i-th

symbol. The normalized information entropy is defined as

Hn~H=log2(a) and varies between 0 and 1 inclusive [30].

Information entropy is sensitive to the diversity of PA states in the

sequence/barcode but is insensitive to the dynamical structure of

the sequence/barcode, i.e. the temporal ordering of PA states.

This can be illustrated by considering the two sequences:

S1~11111111112222222222 and S2~12211212212211211221;

both have the same number of symbols/states (a = 2) therefore the

same entropy, however their temporal structure is different. The

difference in the dynamic structure can be quantified using

sequence-sensitive complexity measures, i.e. complexity measures

which change when the order of the symbols is changed.

Lempel-Ziv complexity (LZC) is a structural-dynamic, non-parametric

measure that captures the number of ‘new’ sub-patterns

discovered as the sequence evolves from left to right. The LZC is

closely related to Kolmogorov complexity which is the central concept

of complexity analysis of symbolic sequences [31]. According to

this concept, the complexity/information content carried in a

symbolic sequence is given by the length of the shortest algorithm

(computer program) that can reproduce the sequence. Since the

shortness of such algorithm cannot be computable, several

alternative calculations of complexity have been proposed in

literature. Lempel and Ziv explored a different approach to the

problem of complexity of a specific symbolic sequence [32]. They

linked the notion of complexity to the generation rate of new sub-

patterns along a sequence S(N, a), of length N with symbols from

an alphabet of size a and proposed a useful measure defined as

LZC~
ca(S(N,a))

N=logaN
, where ca(S(N,a)) is the number of sub-

patterns in the decomposition of S(N,a). This measure can be

efficiently calculated with the algorithm provided by Kaspar and

Schuster [33,34]. This algorithm is based on an iterative

procedure of identification of sub-patterns in a symbolic sequence,

S~s1s2:::sN , as follows. Suppose that S has been reconstructed by

the program up to the symbol si and that the sequence S up to si

contains two sub-patterns i.e. SLZ~s1.s2:::si. where the dot (.)

indicates a new detected sub-pattern (the first symbol in the

sequence being always the first ‘sub-pattern’), and SLZ denotes the

Lempel-Ziv processed sequence S. Let us check whether the rest of

the sequence S, i.e. siz1siz2:::sN contains new sub-patterns. First,

it is tested if Q~siz1 is contained in the vocabulary of s1s2:::si; if

siz1 is a symbol in s1s2:::si it is checked if Q~siz1siz2 is

contained in the vocabulary of s1s2:::sisiz1 and so until the new

combination Q is not found in the vocabulary of the sequence

already processed (vocabulary being defined as symbols or

succession of symbols in the sequence S). In this case the

combination Q is inserted as a new sub-pattern and the number

ca(S(N,a)) is incremented.

As a simple illustrative example, when applying the algorithm

described in [34] to the two sequences:

S1(20,2)~11111111112222222222 and S2(20,2)~12211212
212211211221 we obtain after computation:

SLZ
1 ~1.1111111112.222222222 and SLZ

2 ~1.2.21.121.22
12.211211.221, equivalently with the complexity LZC~

3

20=log220
~0:64 for S1 and LZC~

7

20=log220
~1:51 for S2. A

larger LZC implies a greater chance of the occurrence of new sub-

patterns in the sequence and, thus, a more complex temporal/

dynamical behavior.

The examples above illustrate that the entropy H (Hn) is

concerned only with the expected occurrence of each symbol in

the sequence and not with the temporal structure (ordering) of the

sequence (since it is defined per symbol and not as a block

entropy). The LZC relies on the concept of (block) entropy to

Table 2. Mapping physical activity dimensions into physical
activity states (PAS): the various physical activity (PA)
dimensions i.e. the type (Sitting/LyingRLy/Si, StandingRSt,
WalkingRWk), intensity (trunk acceleration normRIaI,
walking cadenceRcad) and duration (d) are combined to
generate PA states (PAS) that are encoded into numerical
symbols using the alphabet V18 = [1,2,3,…,18] of length
a= 18.

PA type PA intensity PA duration
PAS encoded in
numerical symbols

Ly/Si |a|#tha1 ‘1’

Ly/Si |a|.tha1 ‘2’

St |a|#tha1 ‘3’

St tha1,|a|#tha2 ‘4’

St tha2,|a|#tha3 ‘5’

St |a|.tha3 ‘6’

Wk cad#thc1 d#thd1 ‘7’

Wk thc1,cad#thc2 d#thd1 ‘8’

Wk thc2,cad#thc3 d#thd1 ‘9’

Wk cad.thc3 d#thd1 ‘10’

Wk cad#thc1 thd1,d#thd2 ‘11’

Wk thc1,cad#thc2 thd1,d#thd2 ‘12’

Wk thc2,cad#thc3 thd1,d#thd2 ‘13’

Wk cad.thc3 thd1,d#thd2 ‘14’

Wk cad#thc1 d.thd2 ‘15’

Wk thc1,cad#thc2 d.thd2 ‘16’

Wk thc2,cad#thc3 d.thd2 ‘17’

Wk cad.thc3 d.thd2 ‘18’

doi:10.1371/journal.pone.0032239.t002

Barcoding Human Physical Activity in Chronic Pain

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e32239



quantify the information in the sequence, but only after analyzing

the temporal structure of the sequence [35]. In this way, the LZC

quantifies the notion of complexity in the Kolmogorov sense as

well as in the statistical (entropic) sense.

Sample entropy (SampEn) is a structural-dynamic, parametric measure

that quantifies the regularity of a symbolic sequence (time series)

by analyzing the presence of similar sub-patterns in the data

sequence. It is defined as the negative natural logarithm of the

conditional probability that two sub-patterns similar for m points

remains similar at the next point (m+1). In order to compute the

SampEn, the symbolic sequence s(n), 1#n #N is divided into

overlapping subsequences of size m, defined as y(i) = [s(i),

s(i+1),…,s(i+m-1)], 1#i#N-m+1. The probability that two sub-

patterns match for m points, pm(r), is computed by counting the

average number of sub-pattern pairs for which the Euclidian

distance is lower than a tolerance r. Similarly, pmz1(r) is defined

for (m+1) points and SampEn is then calculated as:

SampEn(m,r)~{ln
pmz1(r)

pm(r)

� �
ð1Þ

It provides a non-negative finite index, where high values suggest

high complexity, irregularity and unpredictability in the symbolic

sequence. The tolerance r has typical values between 10 and 25%

of the standard deviation of the symbolic sequence [36].

Although both, LZC and SampE estimate the regularity in PA

sequences their computational approach is totally different, thus

providing two distinct aspects of the dynamic complexity

embedded in the sequences. The SampEn provides a measure of

how regular (similar) consecutive PA states are generated one after

the other in time, according to a type of analysis that takes place

step-by-step. The LZC method uses sub-patterns of increasing

length of consecutive states and can identify different sub-patterns

of successive states, providing a statistical evaluation of occurrence

and recurrence of these sub-patterns along the entire PA sequence.

Because of their ability to detect and quantitatively characterize

structures that are invisible to distribution-based measures like

information entropy, dynamic complexity measures such as

Lempel-Ziv complexity and Sample entropy are becoming

important complementary metrics in studies of behavior [37],

[29].
Quantitative/global metrics. The ‘traditional’ assessment

of PA and functional capacity of subjects is expressed in terms of

the time spent walking and/or standing (e.g. estimated globally as

% over the monitoring time) [9], [38,39]. In order to investigate

the effectiveness of the new complexity metrics, comparison with

the traditional assessment was investigated. We defined a

quantitative metric as the % of time spent in ‘active’ PA states,

i.e. PAS = 3 to 18 (denoted %activity).
Composite scores. When several metrics quantifying various

specific aspects of PA are available, it is possible to combine them

into a single parameter that may increase the ability of PA barcode

to discriminate patients with high versus low chronic pain

intensity. We studied and compared two approaches: (1) a

deterministic score based on an ad-hoc combination of the different

metrics and (2) a statistical score based on a statistical dimensionality

reduction method.

The composite deterministic score (CDS) was defined as:

CDS~CC � activity~(HnzSampEnzLZC) � activity ð2Þ

where CC was defined as the composite complexity:

CC~HnzSampEnzLZC ð3Þ

It is noted from eq. (2) that the CDS was defined as the product

between the composite complexity, CC, and the % activity. This

definition could be justified as follows: (1) the complexity measures

Figure 1. Examples of PA patterns represented as symbolic/numerical sequences (left panel) or color barcodes (right panel): (A) and
(B) have a similar distribution of states but differ in their sequential structure. The pattern shown in (C) differs from (A) and (B) by both, the
distribution/variety of states and their sequential structure.
doi:10.1371/journal.pone.0032239.g001
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are all normalized (range 0 to approx. 1) therefore the appropriate

mathematical operator to integrate their values into the composite

complexity index, CC, was the addition; (2) the %activity

theoretically ranges from 0 to 100, therefore the most appropriate

operator to combine it with CC was the multiplication.

The composite statistical score (CSS) was defined using the linear

discrimination analysis (LDA) method. LDA is a classical statistical

approach for supervised dimensionality reduction and classifica-

tion [40]. It focuses on the association between multiple (normally

distributed) independent variables and a categorical dependent

variable by forming a composite of weighted independent

variables. One possible advantage of this methods compared to

CDS is to determine the extent of any of the composite variables to

discriminate between two (or more) pre-existing groups. Specifi-

cally, in our application the independent variables are the subjects’

PA metrics (verified for positive Normality test) arranged in a set

X = [x(1), x(2),…,x(N)]T, with x = [Hn, SampEn, LZC, activity], N1

of which belong to a pain intensity class v1 and N2 to a pain

intensity class v2 (i.e. v1 = ‘no pain’ and v2 = ‘severe’ or v1 = ‘moderate

and v2 = ‘severe’; N = N1+N2 subjects, n = 2 classes). The composite

statistical (discriminative) scores corresponding to each subject and

each class are calculated with the [Nxn] matrix CSS, defined as:

CSS~XwT ð4Þ

where wT is a [mxn] weight matrix (m = 4 independent variables/

PA metrics) with the weights wij obtained to maximize the

separability between the two classes (v1,v2) through the four

metrics. Weights with large absolute values reflect greater

discriminating ability to their corresponding variables.

Statistical analysis
The impact of clinically different pain intensities on PA was

compared between age-matched groups, i.e. No Pain vs. Severe Pain

in the Middle Age groups and Moderate vs. Severe Pain in the Old Age

groups, as reported in Table 1. The parameters characterizing the

PA sequences/barcodes were estimated for each subject then the

mean and standard deviation values were calculated for each

group of subjects. The distribution of parameters in each group

was tested for Normality using Shapiro-Wilk test. Based on the

Normality test the differences between groups were assessed using

two-sided Student’s t-test or the nonparametric Mann-Whitney

test. For all parameters, we calculated Cohen’s d to determine

effect size and percentage of non-overlap between groups [41].

Correlations between parameters were quantified using Spearman

rank-correlation test.

The ability of the composite PA scores (CDS and CSS) to

differentiate between the groups of subjects was quantified and

compared using the receiver operator characteristic (ROC) curve

and the area under the curve (AUC). The AUC is a summary

measure of differentiation accuracy, lying in the range (0.5, 1),

with 1 indicating perfect discrimination and 0.5 indicating no

discrimination capacity [42]. The significance level was set at

p,0.05 for all comparisons.

Results

PA barcode representation
Figure 2 illustrates an example of PA barcodes recorded from a

chronic pain patient (Fig. 2A) and a healthy subject (Fig. 2B). It

can be observed that compared to the healthy subject, the barcode

of the chronic pain patient appears poor in high/intense activity

states (high numbers/warm colors) suggesting an inability to

perform intense movements such as long continuous walking, and

to dynamically alternate various body movements.

Discriminative features of PA metrics
Individual metrics. The analysis showed that all defined PA

metrics decreased when pain intensity increased as illustrated in

Fig. 3 (mean6SD). The information entropy Hn (Fig. 3A) showed

very significant differences between the Middle Age groups with

about 74% non-overlap. The same trend was observed between

the Old Age groups, but the differences were not statistically

significant (28% non-overlap).

The sample entropy SampEn (calculated with m = 3, r = 1) and

LZC (Figs. 3B, C) discriminated significantly between all groups.

Effect size calculations for SampEn indicated non-overlap percent-

ages of 56% in the Middle Age groups, and 49% in the Old Age

groups. Similar results were obtained for LZC, with 63% non-

overlap in the Middle Age groups, and 48% in the Old Age groups.

The %activity (Fig. 3D) decreased also with the intensity of pain

but compared to the complexity metrics, the discrimination

between groups was diminished. Effect size calculations indicated

50% and 43% non-overlap in the Middle Age groups and the Old

Age groups, respectively.

Composite scores. The correlations illustrated in Fig. 4A–F

indicate a degree of complementarities between the different

metrics and justified our attempt to combine them into one score.

Figure 3E shows the values of the composite deterministic score,

CDS, which better captured the differences between groups. Effect

size calculations indicated 67% non-overlap in the Middle Age

groups, and 52% in the Old Age groups.

Figure 5 shows the comparative discrimination performances of

the composite scores, CDS and CSS using the ROC curves and

AUC. As illustrated in Fig. 5A, both scores separate well in the

Middle Age groups with CSS indicating a relatively better

performance (AUC = 0.9) than CDS (AUC = 0.8). As expected

from the performances of individual metrics, the discrimination

features of CDS (AUC = 0.75) and CSS (AUC = 0.7) were fair and

quite similar in the Old Age groups.

Discussion

This study suggests that specific patterns of PA (‘barcodes’) can be

defined to provide information on pain-intensity related changes of

the daily PA of a patient. It also confirms the hypothesis that

chronic pain results in reduced complexity of PA patterns. The

results are promising since they may provide the only objective

assessment of the impact of chronic pain conditions, a topic of

great importance in both clinical research and clinical practice.

Methodological considerations
The essential feature of the barcode concept is to ‘carry’

information that can be used for ‘identification’. In this context, the

aim of the presented methodological approach was to define PA

barcodes that carry information integrated at two levels: at a 1st

level by combining the different PA dimensions (type, intensity,

duration) into PA states and at a 2nd level by combining the

metrics that characterize the succession of PA states (barcode) into

a composite score. The ability of defined metrics to identify groups

of patients with different pain intensities depends on the

effectiveness to capture most of the clinically relevant information.

The information entropy, Hn, as a measure of structural-static

complexity of PA barcode increased with the variety and statistical

distribution of PA states. The results indicate that Hn discrimi-

nated significantly better than the other metrics (% activity, SampEn,

LZC) in the Middle Age groups but not in the Old Age groups. This

Barcoding Human Physical Activity in Chronic Pain

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e32239



can be explained by the fact that in older subjects, the variety of

PA states and in particular the capacity to perform high intensity

activities is limited, primarily by age. This observation is supported

by other studies that have reported a decrease in the duration and

intensity of PA with age, especially in older women [11], [43]. The

suggestion is that in older subjects, the assessment of physical

functioning in terms of movement intensity does not carry

additional information about the disease status, presumably

because elderly patients are unable to perform very intense

activities, regardless of whether they have pain or not as indicated

by the percent of various PA states in Fig. 6A, B. This observation

was supported also by the analysis of the cardinality of barcodes

(i.e number of different types of PA states) which decreased when

pain increased but not significantly.

The sample entropy, SampEn, and Lempel-Ziv complexity, LZC,

as measures of structural-dynamical complexity of PA barcodes

increased with the amount of different PA states and their

temporal variability. These measures were more effective than the

% activity and Hn to significantly discriminate low and high pain

intensity in the Middle Age groups as well as in the Old Age groups.

This suggests that the intensity of pain (and presumably pain

conditions in general) may affect primarily the time-dependent

dynamical behavior of body movements/activities rather than the

cumulated time in active PA states (% activity) or the distribution/

variety of PA states (Hn).

The composite scores CDS and CSS that integrate both global

and temporal aspects of movement/activity behavior encoded in

PA barcode appear to be the most effective discriminative

measures. The statistical definition of CSS, based on weighted

summation of PA metrics outperformed the ad-hoc deterministic

definition of CDS based on mathematical considerations about the

maximal range of PA metrics. This is explained by the fact that in

the statistical model the weights are estimated to maximize the

separation between groups. The deterministic definition might

however be an alternative solution for studies with critical sample

size for which a robust statistical model cannot be defined.

An important observation from the results presented in Fig. 3 is

the influence of age (and implicitly employment status) on daily

PA; similar pain levels seem to have different impact on patients

with different ages (e.g. Severe Pain, Middle Age vs. Severe Pain, Old

Age). This observation supports previous studies that showed a

decrease in the amount [10] and the complexity of PA patterns

with aging [18], [20] and highlights the importance to control for

confounding factors by appropriate matching in studies looking at

the impact of a disease on the daily PA.

Clinical significance
There is growing evidence that chronic pain is associated with

physical and psychological impairments that results in muscular

disuse, anxiety and decreased quality of life [9], [14,15], [38,39],

[44,45]. The overall information contained in the PA barcode may

be an expression of the freedom of movement and action and an

indirect measure of health-related quality of life. The decrease in

the complexity of PA barcodes with high levels of pain can be

attributed to a loss of behavioral adaptability in daily living

situations – a consequence of activity avoidance, fear of movement

and possibly pain-related emotional factors (e.g. depression,

anxiety). Complexity is a topic of increasing interest in modern

physiology and it has been suggested that in biological systems, a

decreased complexity is associated with reduced information

content and decreased adaptability to an ever-changing environ-

ment [46,47,48,49,50]. A decreased complexity of the motor

system, exemplified by the reduced range of movements or altered

gait dynamics has been reported in several studies looking at age-

Figure 2. Examples of PA barcodes recorded in two aged-matched subjects: a chronic pain patient (A) and a healthy pain free
subject (B): the two barcodes differ in both, the variety of PA states and their temporal distribution. The suggestion is that the chronic pain patient
was not able to dynamically alternate between various body movements/activities, probably because of pain intensity and/or other factors such as
fear of movement and activity avoidance.
doi:10.1371/journal.pone.0032239.g002
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related diseases, such as arthritis, stroke, Parkinson’s disease

[51,52,53], and other degenerative neurological diseases [21,22].

In Parkinson’s disease for example, the range of motor responses

upon encountering a sudden obstacle is reduced, making it difficult

for the patient to initiate and maintain useful movements [52].

Recent results in experimental pain research show that psycho-

logical factors such as pain-related fear and anxiety are associated

with avoidance of physical activities resulting in poor PA

performances and abnormal behavior. Significant correlations

were found between pain and movement features such as

amplitude/range of motion, acceleration/velocity and movement

variability, defined as movement-to-movement change in motion

pattern [44,45]. A decrease in the overall movement amplitude

was thought to reflect protective strategies that presumably

minimize the impact of strain on painful muscles and joints. The

reduced variability of movement is highlighted by behaviors that

are characterized by movement that are much more stereotypical.

This less complex pattern is thought to result from the deliberate

or unconscious selection of movement patterns that produce the

less pain [8,9], [54,55,56].

Figure 3. Metrics characterizing PA barcode (mean±SD): structural-static complexity quantified by normalized information entropy (Hn), (A);
structural-dynamic complexity quantified by Sample entropy (SampEn) and Lempel-Ziv complexity (LZC), (B), (C); classical PA metric quantifying the
percent of time spent in activity (walking and standing, i.e. PAS = 3 to 18) (D); composite deterministic score (CDS) which integrates all defined metrics
(E).
doi:10.1371/journal.pone.0032239.g003
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A key issue in pain behavioral research is whether (and how)

pain and pain-related fear affect the activities of daily life. Several

studies investigated the relationship between pain-related escape/

avoidance and disability levels in daily using self-reported

assessments [56]. Although these studies indicated that pain-

related fears affect the functioning in the daily life (including

activities at workplace), the results were inherently subjective and

more qualitative than quantitative. The results of the present study

suggest that the analysis of PA barcode may have practical

applications as a tool for the objective assessment of daily-life pain-

related PA and behavior. This is important since the protective

behavior associated with chronic pain (i.e. decreased movement

duration, speed/intensity, and variability/complexity), can cause a

number of other complications if it persists. The reliable

assessment of daily functioning may help to understand the

patient’s pain condition and initiate a personalized pain

management.

Clinical limitations
There are several potential limitations regarding the interpre-

tation of the present findings. A first limitation is that the relatively

small sample size in each group may have led to under-powered

statistical comparisons. A second limitation is that the retrospective

cross-sectional nature of the study precluded a perfect matching

between groups. While the groups were matched by age and

occupational status (working or retired), they were inhomogeneous

Figure 4. Correlations between metrics characterizing PA barcode.
doi:10.1371/journal.pone.0032239.g004
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Figure 5. Receiver operator characteristics (ROC) curves and area under the curve (AUC) for the composite deterministic score (CDS)
and the composite statistical score (CSS): No Pain, vs. Severe Pain in the Middle Age groups (A) and Moderate Pain vs. Severe Pain in the Old Age
groups (B).
doi:10.1371/journal.pone.0032239.g005

Figure 6. Quantitative assessment of intense physical activity states, PAS (mean±SD): No Pain vs. Severe Pain in the Middle Age groups (A)
and Moderate Pain vs. Severe Pain in the Old Age groups (B). These results indicated that elderly with either low pain or high pain levels are not able to
perform very intense activities.
doi:10.1371/journal.pone.0032239.g006
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in terms of individuals’ occupation type (profession) and pain

mechanism or diagnosis. However as all patients had a pain-

related limitation in their walking perimeter, the significance of the

results is not expected to be affected. Finally, a more generic

limitation is that for neither the ‘‘traditional’’ nor for the newly

developed metrics there is (yet) an agreed definition of normal

values and normal range. Similarly the clinical significance of the

modifications that are observed remains to be established. Larger

prospective and controlled studies are therefore needed to define

normal PA, using sophisticated complexity metrics, which are

needed to properly characterize chronic pain conditions whether

in terms of the intensity of pain or possibly in terms of features that

are disease-specific.

Clinical perspectives
Pain has long been regarded as a diagnostic feature. The

classical semiology of urethral colitis due to renal stone teaches

that patients suffering from renal colic are ‘‘frantically’’ restless

which is very different from patients with peritonitis who remain as

immobile as possible to avoid pain. Similarly, patients with painful

lower extremity neuropathy tend to move around as much as they

can, while patients with hip arthritis tend to remain in the same

position and avoid walking, which would increase pain. Hence

pain does affect behavior (and PA) in a predictive way, irrespective

of the intensity of the symptom.

Yet the clinical appraisal of behavioral patterns is crude and the

traditional metrics are not contributive. The use of PA metrics that

precisely and completely characterize the features of various

chronic pain disorders may substantially improve our current

assessment in a number of ways. Since it appears that the mechanism

of pain is related to pain behavior, the reliable ‘‘barcoding’’ of PA

may significantly improve the assessment of intricate pain

conditions where the pain has more than one etiology.

Another potential useful application of PA barcoding is the

assessment of patients who have communication difficulties such as

the elderly or the cognitively impaired [57,58]. Furthermore, the

methodology could also be used in the follow-up of the functional

status of various conditions such as age-related frailty, depression,

post-stroke rehabilitation, neuromuscular diseases or heart failure.

The ‘barcoding’ concept offers a flexible approach since it allows

the definition of a large variety of PA states tailored to the clinical

aspect of interest (movement behavioral features, sensor configu-

ration for monitoring).
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