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Abstract  14 

Widespread preservation of fossilized biomolecules in many fossil animals has recently 15 

been reported in six studies, based on Raman microspectroscopy. Here, we show that 16 

the putative Raman signatures of organic compounds in these fossils are actually 17 

instrumental artefacts resulting from intense background luminescence. Raman 18 

spectroscopy is based on the detection of photons scattered inelastically by matter 19 

upon its interaction with a laser beam. For many natural materials, this interaction also 20 

generates a luminescence signal that is often orders of magnitude more intense than 21 

the light produced by Raman scattering. Such luminescence, coupled with the 22 

transmission properties of the spectrometer, induced quasi-periodic ripples in the 23 

measured spectra that have been incorrectly interpreted as Raman signatures of 24 

organic molecules. Although several analytical strategies have been developed to 25 

overcome this common issue, Raman microspectroscopy as used in the studies 26 

questioned here cannot be used to identify fossil biomolecules. 27 
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Introduction  31 

Remnants or derivatives of ancient biomolecules are preserved in exceptional cases 32 

in fossils, providing unique information to document the evolutionary history of life 33 

during geological time. They can be used, for example, to clarify the phylogenetic 34 

affinities of enigmatic fossils[1,2], or to reconstruct the coloration of extinct organisms 35 

such as invertebrates, feathered dinosaurs, and mammals[3]. 36 

The search for such fossil biomolecules often requires combining as many 37 

techniques as available[2]. Fossilized organic pigments were identified using a suite of 38 

mass spectroscopy techniques such as gas chromatography-mass spectrometry (GC-39 

MS) and time of flight secondary ion mass spectroscopy (ToF SIMS)[3]. Fourier-40 

transform infrared (FTIR) spectroscopy of 1-billion-year-old microfossils was combined 41 

with morphological and ultrastructural observations by transmission electron 42 

microscopy (TEM) to interpret them as the earliest fungi[4]. Advanced synchrotron 43 

spectroscopic techniques made it possible to highlight that a range of organic 44 

(bio)molecules can sometimes experience only partial degradation during diagenesis 45 

and even metamorphism, and be identified in various taxa including bacteria, plants 46 

and animals[5-14]. Recently, it was suggested that conventional Raman spectroscopy 47 

(i.e. equipped with a 532 nm laser as the excitation source under continuous 48 

illumination) can be added to the list of techniques previously mentioned, and be used 49 

alone to identify organic compounds in fossils[15-20]. 50 

In the latter studies, spectroscopic data were interpreted as evidence for the 51 

preservation of diverse organic degradation products of biomolecules in more than a 52 

hundred different metazoan fossils, such as organic pigments in eumaniraptoran 53 

dinosaur eggshells[15] and in a non-avian dinosaur skin[18], as well as of protein, lipid 54 

and/or sugar fossilization products in fossil bones[16], dinosaur eggshells[20], and 55 

vertebrate and invertebrate soft-tissues[17,19]. Unfortunately, the purported claims of 56 

biomolecules in these fossils are not well supported by the data provided, which 57 

actually result from instrumental artefacts and data processing. In this paper, we 58 

outline the limitations of Raman spectroscopy with respect to the identification of 59 

biomolecules in fossil materials, and then describe in detail the origin of the 60 

misinterpreted signal.  61 



Raman spectroscopy has important limitations in the study of organic fossils 62 

Raman spectroscopy is widely used in geosciences because it probes the vibration 63 

modes of chemical bonds in both solids, liquids, and gases, with minimal sample 64 

preparation[21]. Yet, there are several limitations in terms of the sensitivity and 65 

accessibility of chemical fingerprints with the technique as used in the studies 66 

questioned here. First, excitation with green 514- or 532-nm lasers mostly provides 67 

specific information on C-C bonds -- and not about other covalent linkages -- in 68 

diagenetically altered organic materials such as fossils[22]. As a result, Raman spectra 69 

of organic materials preserved in (meta)sedimentary rocks are dominated by the so-70 

called graphite (G) and defect (D1-D4) bands, which provide information about the 71 

structural organization of the aromatic skeleton[23]. Consistently, Raman spectra of 72 

geologically altered organic materials can be similar even when they have significantly 73 

different elemental and molecular compositions[13,14,24-26]. Second, under continuous 74 

illumination, luminescence occurs concurrently with Stokes Raman scattering and 75 

generates a signal that overlaps with the Raman spectral window[21,27,28]. Cross 76 

sections of Raman (the probability that Raman scattering takes place) are typically 8 77 

to 10 orders of magnitude smaller than that of luminescence. As a result, a number of 78 

precautions are often necessary to be able to detect and interpret Raman spectral 79 

features among a number of other spectral variations. 80 

The reported periodic broad bands are not Raman signals 81 

In all the studies questioned here[15-20], the spectral bands assigned to organic 82 

molecules are broader than the bands usually associated with Raman scattering, and 83 

appear quasi-periodic, in contrast to the non-periodic spectral features typically 84 

attributed to Raman scattering.  85 

We investigated the periodicity of these bands using wavelet transform (Fig. 1), 86 

an effective signal processing technique that is used to decompose a distorted signal 87 

into different frequency scales at various resolution levels. Unlike classical Fourier 88 

spectral analyses, wavelet transform analyses are advantageous in describing non-89 

stationarities, i.e. localized variations in frequency or magnitude, and providing a direct 90 

visualization of the changing statistical properties. It has become a common tool for 91 

analysing localized variations within a time series[29,30], but also for spike removal, 92 

denoising and background elimination of Raman spectra[31,32]. We selected one 93 

spectrum from each of the two studies for which data were made available[15,19]. For 94 



the wavelet analysis displayed in Fig. 1a,b, we selected the spectrum corresponding 95 

to the eggshell of the extant flightless bird Rhea americana[15], because it is more likely 96 

that a pigment is preserved in a modern sample rather than in a fossil. For the wavelet 97 

analysis displayed in Fig. 1c,d, we selected the spectrum collected from the crustacean 98 

Acanthotelson stimpsoni specimen YPM52348[19], because the chitin–protein complex 99 

of crustacean cuticles has a high preservation potential[8,33], and this specimen appears 100 

to be one of the best preserved (see fig. 1f in [19]) -- the spectrum clearly having been 101 

measured from the specimen (unlike for the specimen shown in fig. 1d of [19]). Note 102 

that these two spectra, as well as all other reported ones, were provided by the original 103 

authors as baseline-subtracted spectra, not as raw data. 104 

Both spectra display numerous broad bands for which our wavelet transform 105 

analysis reveals clear high-frequency periodicities of ~64-96 cm-1 for wavenumber 106 

shifts <1000–1200 cm-1, and of ~128 cm-1 for higher wavenumber shifts (Fig. 1a,c). 107 

Similar high-frequencies of 130.9 cm-1 are obtained by Fast Fourier Transform. Note 108 

that the same frequencies are found for all spectra provided by the authors. The 1086 109 

cm-1 carbonate Raman peak present in the R. americana spectrum reflects the 110 

calcified composition of the eggshell, in contrast to all the other (broader) bands, which 111 

are best described as a superposition of quasi-periodic wavelets (Fig. 1b,d). These 112 

broad, quasi-periodic bands are not the consequence of any Raman effect, but rather 113 

result from physical and instrumental artefacts. Indeed, when a sample is illuminated 114 

by the laser, the presence of structural defects and inorganic/organic components can 115 

generate significant luminescence, often overwhelming the weak Raman signal[21,27]. 116 

When this background luminescence is intense, the transmission properties of the 117 

interferometric edge filter used to reject the Rayleigh line induce quasi-periodic 118 

“ripples” in the measured spectrum[34].  119 

To further illustrate this point, we performed a wavelet analysis on a 120 

transmission spectrum of a 532 nm RazorEdge® ultrasteep long-pass edge filter, 121 

provided by the manufacturer (Semrock), that is designed to be used as an ultrawide 122 

and low-ripple passband edge filter for Raman spectroscopy (Fig. 2). The transmission 123 

spectrum of the filter exhibits the aforementioned ripples (Fig. 2a,b). Our wavelet 124 

analysis highlights high-frequency periodicities of 64-96 cm-1 for low wavenumbers, 125 

and of 128 cm-1 for higher wavenumbers (Fig. 2b, c), similar to the results reported in 126 

the studies questioned herein[15-20]. Such edge filter-related instrumental artefacts 127 



actually explain the presence of most, if not all, of the broad bands that were attributed 128 

to organic molecules.  129 

Sample composition does not affect the position of ripples but impacts the 130 

shape of the background 131 

The transmission properties of the edge filter induce ripples on the measured spectra 132 

when luminescence is intense, making it challenging to identify Raman features 133 

without appropriate data processing for background subtraction[34]. The data provided 134 

in the publications questioned here[15-20] are only the baseline-subtracted spectra, not 135 

the raw data, which makes it impossible to precisely assess the impact of non-Raman 136 

processes and sample composition on the corrected spectra from which the presence 137 

of organic molecules was inferred. To address these issues, we collected Raman 138 

microspectroscopy data on modern and fossil crustaceans in analytical conditions 139 

similar to those of the aforementioned studies (for details, see Material and Methods 140 

in SI). 141 

We reproduced the experiment performed by McCoy et al.[19] using a specimen 142 

of the crustacean Peachocaris strongi (Fig. 3a) from the same fossil locality (Mazon 143 

Creek, Carboniferous, USA). As with other fossils from Mazon Creek, this specimen is 144 

preserved as aluminosilicates and calcite in a sideritic concretion (Fig. S1). In order to 145 

further assess the impact of the sample’s chemical composition on the measured 146 

spectra, we also performed Raman spectroscopy on (i) a specimen of the penaeid 147 

shrimp Cretapenaeus berberus from the Cretaceous of Morocco (Fig. 3b) preserved 148 

as a mixture of calcium phosphates and iron oxides in an illite mudstone (Fig. S1; see 149 

also Gueriau et al.[35] and references therein), and (ii) a specimen of the modern shrimp 150 

Neocaridina davidii (Fig. 3c) dried after death and still rich in organic carbon, likely in 151 

the form of chitin (Fig. S1). Whether or not organic carbon is present, and whatever 152 

the mineralogical composition of the specimen or its mineral matrix, all the measured 153 

spectra (Fig. 3d, solid lines) display broad bands, which all occur at the same 154 

wavenumber shifts and add up to a significant background (Fig. 3d, dotted lines). Yet, 155 

the shape of the background differs significantly from one measurement to another, 156 

and the more intense it is, the more the ripples are expressed. In the baseline-157 

subtracted spectra, the differences in the relative intensity between bands from one 158 

measurement to another (Fig. 3e) only result from distinct background profiles of the 159 

measurements. A wavelet transform analysis reveals high-frequency periodicities of 160 



64–128 cm-1 (Fig. 3f), as was the case for the spectra questioned in the previous 161 

section[15-20]. Finally, other than the presence of sharp peaks around 964 and 1086 cm-162 
1 (Raman peaks of fluorapatite and calcite, respectively), as well as one unidentified 163 

peak at 1156 cm-1 in the modern shrimp (possibly carotenoids), which are all three still 164 

expressed after subtraction of the frequency components (Fig. 4), spectral differences 165 

are limited to relative variations in the ripple band intensity that result from the shape 166 

and quality of the baseline fit. 167 

In short, the ripples observed in the Raman microspectroscopy data questioned 168 

here represent remnant instrumental signals that result from confounding broad 169 

luminescence and inappropriate data processing. The broad luminescence transmitted 170 

by the edge filter induced the ripple-shape features above the cut-off wavelength on 171 

the raw spectrum. Background correction did not eliminate the ripple-shape distortions 172 

induced, and instead accentuated them to give the appearance of putative signatures 173 

of organic molecules.  174 

Conclusion and Outlook 175 

Broad bands interpreted to be Raman signatures of diverse organic molecule 176 

degradation products in various metazoan fossils[15-20] are artefactual quasi-periodic 177 

ripples induced by the edge filter due to intense luminescence, and there is no 178 

evidence for Raman signal of organic molecules. Unfortunately, conventional Raman 179 

microspectroscopy does not provide direct information on fossil biomolecules[22].  180 

Conventional Raman spectroscopy remains an important paleontological tool 181 

providing crucial information on the mineralogical composition of fossils and the degree 182 

of crystallization of the carbonaceous remains they preserve, which is often used to 183 

quantify the peak temperature organics reached during geological burial[23]. Extracting 184 

and interpreting the data, however, requires robust and optimized analytical strategies 185 

and/or data processing. Several methods have been developed to remove, a 186 

posteriori, the undesired contribution of luminescence and ripples in Raman 187 

spectra[34,36]. Note that in the papers discussed here[15-20], such processing would leave 188 

no signal other than the mineral peaks. Distinct excitation wavelengths, such as near-189 

infrared and ultraviolet, can also be used to significantly limit luminescence[37,38]. 190 

Alternatively, non-conventional time-resolved Raman spectroscopy offers new ways to 191 

limit or exploit luminescence signals, while techniques based on coherent anti-Stokes 192 

Raman scattering (CARS), surface-enhanced Raman spectroscopy (SERS), and 193 



ultraviolet resonance Raman spectroscopy, allow the Raman signal to be considerably 194 

enhanced (see Beyssac[27] for review). Furthermore, synchrotron-based X-ray Raman 195 

scattering can probe the chemical speciation of light elements such as carbon, in 196 

heterogeneous materials usually encountered in life, earth, environmental and 197 

materials sciences[39,40]. 198 

The search for biomolecules in fossils is a very exciting field of research, offering 199 

critical knowledge on both evolutionary events and fossilization processes, yet 200 

conventional Raman spectroscopy alone cannot be used to identify fossil 201 

biomolecules. Instead, non-conventional Raman spectroscopy, mass spectrometry 202 

and infrared and X-ray absorption spectroscopy techniques, are successfully used by 203 

paleontologists to identify fossil biomolecules in the geological record[2,41]. 204 
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Figure captions 359 

 360 
Figure 1. Periodic wavelet analysis of Raman spectra from the eggshell of the extant 361 

flightless bird Rhea americana (a,b; data from [15]), and from the Carboniferous 362 

crustacean Acanthotelson stimpsoni specimen YPM52348 (c,d; data from [19]). The 363 

hatched area marks parts of the spectrum where energy bands are likely to appear 364 

less powerful than they actually are. a,c) Baseline-subtracted spectra and their wavelet 365 

transform analysis show a clear high-frequency periodicity of 64–128 cm-1. b,d) 64 and 366 

128 cm-1 frequency components extracted from a wavelet multiresolution analysis (top, 367 

in red and blue, respectively) and superimposed, together with the sum of all frequency 368 

components, on the spectra. For clarity, the residuals after frequency subtraction are 369 

shifted down along the vertical axis. 370 

 371 

 372 



 373 
Figure 2. Wavelet transform analysis of the transmission spectrum of a 532 nm 374 

RazorEdge® ultrasteep long-pass edge filter (Semrock). a) Transmission spectrum of 375 

the edge filter between -200 and 7000 cm-1. b) Wavelet transform analysis of the 376 

spectrum between 600 and 6000 cm-1 (rectangle in a) showing a clear high-frequency 377 

periodicity of 64–128 cm-1. c) 64 and 128 cm-1 frequency components extracted from 378 

a wavelet multiresolution analysis (top, in red and blue, respectively) and 379 

superimposed, together with the sum of all frequency components, on the spectrum. 380 
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 382 
Figure 3. Raman spectroscopic data of fossil and modern shrimps of different 383 

chemistry. a–c) Photographs of the Carboniferous shrimp Peachocaris strongi from 384 

Mazon Creek, USA [specimen MGL.107330] (a), the Cretaceous penaeid shrimp 385 

Cretapenaeus berberus from OT1, Morocco [specimen MHNM-KK-OT 52a] (b), and 386 

the extant shrimp Neocaridina davidii dried (c). d) Raw spectra collected from the areas 387 

identified by circles in a–c (solid line), and their baseline (dotted line) as modeled in 388 

Spectragryph 1.2 using a 15% adaptive baseline; e) corresponding baseline-389 

subtracted spectra. Nearly all bands account for instrumental artefact due to non-linear 390 

transmission of the edge filter. Only the sharp peaks highlighted by × and + around 391 

964 and 1086 cm-1 (fluorapatite and calcite peaks, respectively) in d and e represent 392 

Raman signal. f) Wavelet transform analysis of the spectrum collected from P. strongi 393 

(red in e) showing a high-frequency periodicity between 64 and 128 cm-1. Scale bars 394 

represent 5 mm. 395 
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 397 
Figure 4. Raman peaks still expressed after subtraction of the frequency components. 398 

a–c) Baseline-subtracted spectra (color), sum of all frequency components (gray) and 399 

residuals after frequency subtraction (light brown) for the Carboniferous shrimp 400 

Peachocaris strongi from Mazon Creek, USA [specimen MGL.107330] (a), the 401 

Cretaceous penaeid shrimp Cretapenaeus berberus from OT1, Morocco [specimen 402 

MHNM-KK-OT 52a] (b), and the extant shrimp Neocaridina davidii dried (c). For clarity, 403 

the residuals are shifted down along the vertical axis. 404 


