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A B S T R A C T   

The identification of T-cell epitopes is key for a complete molecular understanding of immune recognition 
mechanisms in infectious diseases, autoimmunity and cancer. T-cell epitopes further provide targets for 
personalized vaccines and T-cell therapy, with several therapeutic applications in cancer immunotherapy and 
elsewhere. T-cell epitopes consist of short peptides displayed on Major Histocompatibility Complex (MHC) 
molecules. The recent advances in mass spectrometry (MS) based technologies to profile the ensemble of peptides 
displayed on MHC molecules – the so-called immunopeptidome – had a major impact on our understanding of 
antigen presentation and MHC ligands. On the one hand, these techniques enabled researchers to directly 
identify hundreds of thousands of peptides presented on MHC molecules, including some that elicited T-cell 
recognition. On the other hand, the data collected in these experiments revealed fundamental properties of 
antigen presentation pathways and significantly improved our ability to predict naturally presented MHC ligands 
and T-cell epitopes across the wide spectrum of MHC alleles found in human and other organisms. Here we 
review recent computational developments to analyze experimentally determined immunopeptidomes and 
harness these data to improve our understanding of antigen presentation and MHC binding specificities, as well 
as our ability to predict MHC ligands. We further discuss the strengths and limitations of the latest approaches to 
move beyond predictions of antigen presentation and tackle the challenges of predicting TCR recognition and 
immunogenicity.   

1. Introduction 

The immunopeptidome is defined as the ensemble of peptides dis
played on Major Histocompatibility Complex (MHC) molecules [1]. It is 
also referred to as the ligandome, the MHC peptidome, or the human 
leukocyte antigen (HLA) peptidome when considering only peptides 
displayed on human MHC molecules. Peptides found in the immuno
peptidome play a central role in thymic selection of T cells as well as 
T-cell recognition of infected and malignant cells. In particular, non-self 
peptides originating from pathogens or cancer specific alterations and 
displayed on MHC molecules can in theory be recognized by T cells. This 
recognition is triggered by the binding of the T-Cell Receptor (TCR) to 
peptide-MHC complexes, which initiates formation of the immunolog
ical synapse and T-cell activation. For this reason, a detailed under
standing of the immunopeptidome is powerful to understand T-cell 
recognition processes and guide the design of T-cell based therapies, like 
personalized vaccines in cancer immunotherapy. 

The antigen processing and presentation pathways, and especially 
the MHC molecules, play a central role in determining the immuno
peptidome found in different individuals or species [2,3]. Two classes of 
MHC molecules have been identified: MHC-I molecules, which are tar
geted by CD8+ T cells, and MHC-II molecules, which are targeted by 
CD4+ T cells. MHC-I molecules are expressed in most nucleated cells. 
They bind peptides originating mainly from intracellular proteins that 
have undergone degradation in the proteasome (Fig. 1A). Some of the 
peptides leaving the proteasome are then transported to the endo
plasmic reticulum (ER). This transport takes place via the transporter 
associated with antigen processing (TAP) complex, which consists of the 
TAP-1 and TAP-2 proteins, and is further regulated by different chap
erones [3]. Multiple evidences have shown that antigen transport is 
especially efficient for peptides of 8–14 residues [4]. Once in the ER, 
peptides can be loaded on MHC-I molecules. These molecules form 
heterodimers with the β2m and the complex folds stably only upon 
binding to a peptide. Stable peptide–MHC-I complexes are then 
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translocated to the cellular membrane, with the MHC-I peptide binding 
site in the extracellular milieu (Fig. 1A). The binding site of MHC-I 
molecules displays several pockets (Fig. 1B) and is highly specific both 
in terms of the amino acid sequence and the length of the peptides. This 
specificity can be described and visualized with sequence motifs and 
peptide length distributions (Fig. 1C, see also resources like the MHC 
Motif Atlas [5] or the Motif Viewer of NetMHCpan [6]). As a conse
quence, only a small fraction of peptides available for loading in the ER 
can bind to a given MHC-I molecule. 

Unlike MHC-I, MHC-II molecules are primarily expressed in antigen 
presenting cells, such as B cells, macrophages or dendritic cells. Peptides 
displayed on MHC-II molecules can come from both exogenous and 
endogenous proteins (Fig. 1D). These peptides are processed through the 
endocytosis or phagocytosis pathways [7]. MHC-II molecules form di
mers, with an alpha and a beta chain. The MHC-II dimers usually bind 
first the invariant chain, which is further cleaved into the CLIP peptide 
[8]. Upon encounter with other peptides in the late endosome, the CLIP 

peptide is replaced by some of these peptides and the peptide-MHC-II 
complexes are translocated to the cell surface (Fig. 1D). This process is 
controlled by several chaperones, including HLA-DM and HLA-DO in 
human [2,9]. The binding site of MHC-II molecules shows similarity 
with the one of MHC-I molecules, but is more open at both ends. As a 
result, MHC-II ligands are characterized by a binding core with flanking 
residues extending on both sides of the binding core (Fig. 1E). Akin to 
MHC-I, the binding between MHC-II and their ligands shows specificity 
both in terms of the amino acid sequence and the length of the peptides 
(see later for a few additional features in MHC-II specificity). This 
specificity can be described and visualized with sequence motifs and 
peptide length distributions (Fig. 1F) [5]. 

MHC molecules are encoded by different genes, which are among the 
most polymorphic ones. In human, MHC-I molecules are encoded by 
three widely expressed genes (HLA-A, HLA-B and HLA-C) as well as 
three other genes mainly expressed in specialized cell types (HLA-E, 
HLA-F and HLA-G). Tens of thousands of MHC-I alleles have been 

Fig. 1. Antigen presentation pathways and peptide-MHC interactions. (A) Schematic view of the main steps of the class I antigen presentation pathway. (B) 
Schematic and structural view of the binding of a 9-mer peptide to MHC-I. The structure represents the binding of a peptide to HLA-A*01:01 (PDB:5BS0) [144]. 
Typical anchor residues at P2 and P9 are indicated by their position, though additional residues can also determine the specificity in some alleles. (C) Binding motif 
and peptide length distribution for HLA-A*01:01. (D) Schematic view of the main steps of the class II antigen presentation pathway. (E) Schematic and structural 
view of the binding of peptides to MHC-II. The numbering P1 to P9 indicates anchor positions in the binding core, from N- to C-terminus. Binding core flanking 
residues extend on both sides of the binding core. The structure represents the binding of a peptide to HLA-DRB1*01:01 (PDB:3S5L) [145]. (F) Binding motif and 
peptide length distribution for HLA-DRB1*01:01. 
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identified in human [10]. MHC-II molecules are encoded by nine genes 
(HLA-DRA1, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, 
HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1), with extensive genetic 
linkage between several of these genes. Except for HLA-DRA1, genes 
encoding MHC-II molecules also display a very high polymorphism. 
Within each type of genes (HLA-DR, -DP and -DQ), MHC-II molecules 
form dimers (e.g., HLA-DRA1 – HLA-DRB3). At the protein level, MHC 
molecules are named with two sets of digits (e.g., HLA-A*01:01 or 
HLA-DRB1*01:01) that unambiguously distinguish each protein 
sequence. 

The high polymorphism of MHC molecules has a profound impact on 
the immunopeptidome found in different individuals. Most polymorphic 
residues are directly located in the ligand binding site. As a result, MHC 
molecules encoded by different alleles can have very different binding 
specificities and bind to different repertoires of peptides. For MHC-I 
molecules, the specificity dictates both the amino acid sequences and 
the lengths of their ligands (Fig. 1C). Amino acids most important for the 
binding (referred to as anchor residues) are typically located at the 
second and last positions of the ligands (see Fig. 1B), although some 
alleles can display strong specificity at other positions. For instance, the 
ligands of HLA-A*02:01 are highly enriched in hydrophobic residues at 
the second and last position, while ligands of HLA-A*01:01 prefer small 
polar residues at the second position, tyrosine at the last position, and 
have further preference for negatively charged residues at the third 
position (Fig. 1C). Most MHC-I molecules have preference for 9-mers, 
but some molecules bind almost exclusively 9-mers while others 
accommodate a substantial fraction of longer (e.g., 10- to 14-mers) or 
shorter (e.g., 8-mers) peptides (Fig. 1C) [11,12]. MHC-II molecules bind 
longer peptides (roughly 12–25 residues), with a 9-mer binding core 
located preferentially close to the middle of the ligands and flanking 
residues extending on both sides of the binding core [13] (Fig. 1E). 
Within the binding core, anchor residues are often observed at positions 
P1, P4, P6 and P9, although variability is observed across different genes 
and different alleles. As for MHC-I, different MHC-II encoded by 
different alleles have different binding motifs, giving rise to different 
peptides present in the class II immunopeptidome of different 
individuals. 

A complete view of the immunopeptidome, and especially of non-self 
peptides originating from pathogens or cancer specific alterations, could 
be very powerful to map the potential targets of T cells in infectious 
diseases [14] and cancer [15]. For this reason, large efforts have been 
devoted to either experimentally determine the immunopeptidome of 
different individuals and different tissues, or computationally predict 
MHC ligands, with a focus on non-self peptides. In the next chapters, we 
discuss the evolution of immunopeptidomics data as well as the impact 
of these data on our ability to understand antigen presentation and 
predict MHC ligands and T-cell epitopes. 

2. Immunopeptidomes – from a few hundreds to more than a 
million naturally presented MHC ligands 

Soon after the discovery of the role of MHC molecules in antigen 
presentation, scientists became interested in characterizing the diversity 
of peptides displayed on MHC molecules and potentially recognized by T 
cells. Early on, pool peptide sequencing or mass spectrometry (MS) were 
used to identify MHC ligands and these approaches enabled researchers 
to find some of the first ligands and derive rough binding motifs for the 
most common MHC alleles in human and mouse [16–18]. Briefly, 
MS-based identification of MHC ligands consists of pulling down 
peptide-MHC complexes with antibodies recognizing MHC-I or MHC-II 
molecules, followed by the elution of the peptides from the MHC and 
MS analysis of the isolated peptides. Most of the antibodies used in such 
experiments are cross-reactive among either MHC-I or MHC-II mole
cules, although allele-specific or gene-specific antibodies have also been 
developed to profile the ligands of specific MHC alleles (e.g., 
HLA-A*02:01) or MHC genes (e.g., HLA-DR). 

2.1. Evolution of immunopeptidomics data 

Over the years, the throughput and sensitivity of MS have dramati
cally improved, making it today’s most powerful technology to unravel 
immunopeptidomes [19–21]. This had a profound impact on our ability 
to profile immunopeptidomes in different tissues, different contexts (e. 
g., treatment versus control) or different species [22–25]. As of 2022, 
more than a million naturally presented MHC ligands have been iden
tified and this number is increasing every year (see Fig. 2A). This is the 
result of both the large number of peptides that can be detected in in
dividual samples (Fig. 2B), and the increasing number of large immu
nopeptidomics studies, often profiling dozens of samples and identifying 
tens of thousands of peptides across these samples (Fig. 2C). 

2.2. Going beyond standard peptides 

Most immunopeptidomics workflows rely on databases of peptides to 
annotate the spectra obtained by MS. Typically, databases consisting of 
all possible peptides from the proteome of the organism which the 
samples came from have been used. This explains why the majority of 
known naturally presented MHC ligands consist of self peptides coming 
from human proteins. For epitope discovery in infectious diseases, these 
databases can be augmented with the sequences of the peptides from the 
pathogens under investigation [26–28]. Similarly, for cancer 
neo-antigen discovery, these databases are augmented with peptides 
encompassing non-synonymous somatic alterations [29–31]. 

Several studies have also explored the presence of post-translational 
modification (PTMs) in MHC ligands, by allowing such modifications 
during the annotation of spectra [30,32–38]. Another type of 
post-translational modifications comes from proteasomal splicing [39]. 
The extent of proteasomal splicing in immunopeptidomes has been 
subject to intense controversy and we refer the readers to existing 
literature where this topic has been argued extensively [40–44]. 

Multiple studies have demonstrated that peptides originating from 
different non-canonical sources, including aberrant transcription and 
translation of genomic regions that were assumed to be non-coding, 
untranslated regions or altered frames, can be found in immunopepti
domes [45–50]. Although the fraction of non-self peptides among such 
non-canonical MHC ligands remains unknown, one cannot exclude that 
a large number of potential epitopes lie in the non-canonical immuno
peptidome. Identification of such non-canonical MHC ligands is best 
accomplished by expanding the canonical proteome used to search MS 
raw data based on predictions from RNA-Seq and Ribo-Seq experiments 
[45,48,49]. 

Overall, these different examples illustrate how MS enabled us not 
only to identify many MHC ligands from human proteins, but also to 
expand the immunopeptidomes beyond standard unmodified peptides, 
including peptides from pathogens or specific to cancer cells, post- 
translationally modified peptides as well as non-canonical peptides. 
Provided false-discovery rates are carefully adapted to the size of the 
reference databases used to annotate the spectra, these different ap
proaches are powerful to capture the diversity of peptides naturally 
displayed on MHC molecules. 

Unfortunately, even with today’s best MS instruments and analysis 
pipelines, it is widely recognized that only a fraction of the naturally 
presented peptides can be detected. For this reason, alternative ap
proaches based on predictions of epitopes are likely to remain important 
in antigen discovery. In the next two sections, we discuss how our ability 
to identify large datasets of naturally presented MHC ligands by MS had 
a major impact on (i) our understanding of the specificity of antigen 
presentation and especially the binding specificity of MHC molecules 
(Section 3), and (ii) our ability to predict naturally presented MHC li
gands (Section 4). 
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3. The specificity of antigen presentation revealed by analyzes 
of immunopeptidomes 

3.1. MHC binding motifs inferred from immunopeptidomes 

Of the different steps that shape the immunopeptidome, from protein 
cleavage to display on cell surface by MHC molecules (Fig. 1A and D), 
the binding of peptides to MHC is the most selective. For this reason, 
MHC molecules have a major influence on which peptides can be dis
played on the cell surface in a specific individual, and footprints of MHC 
binding motifs are expected to be visible in immunopeptidomes. This 
observation has been exploited to infer MHC binding motifs and train 
predictors of naturally presented MHC ligands based on immunopepti
domics data. Provided that MS based immunopeptidomics data have not 
been filtered by MHC ligand prediction tools, MHC binding motifs 
inferred from such data currently provide the most unbiased view of the 
specificity of MHC molecules [5]. 

Approaches to learn MHC binding motifs from immunopeptidomes 
can be broadly classified in two categories. The first category uses 
samples in which the isolated peptides come from a single allele (i.e., 
mono-allelic data). This can be achieved by using allele specific anti
bodies in immunopeptidomics experiments, or cell lines naturally 
expressing a single allele. Alternatively, cell lines have been transfected 
or genetically modified to express only one MHC molecule. The immu
nopeptidome of such samples is therefore directly reflecting the speci
ficity of a single MHC allele. The second category starts with 
immunopeptidomes obtained from any kind of samples (multi-allelic 
cell lines, tissues, etc.) with antibodies cross-reactive within MHC-I or 
MHC-II alleles, and uses machine learning tools to infer models of MHC 
binding specificity for the different MHC alleles present in the sample. 
This approach is sometimes referred to as ‘motif deconvolution’, since it 
has to deal with the fact that multiple MHCs are expressed in most 
samples [51–54]. 

In the two sub-sections below, we review applications of these 
different approaches to infer MHC-I and MHC-II binding motifs. 

3.2. MHC-I binding motifs 

Immunopeptidomics profiling of mono-allelic samples has been used 
for several years to study the properties of naturally presented MHC-I 
ligands [55,56]. Different strategies have been developed. For 
instance, several studies used cell lines transfected with soluble MHC 
molecules of one allele (e.g., HLA-A*02:01, HLA-B*07:02) [12,57,58]. 
As an alternative to soluble MHCs, single MHC molecules were either 
expressed in cell lines genetically engineered to express only this MHC-I 
molecule [59,60] or transfected into cell lines with very low expression 
of the endogenous MHC-I molecules [61]. These two last approaches are 
more scalable to profiling a large number of alleles. Mono-allelic 
immunopeptidomics data are currently available for more than one 
hundred MHC-I molecules in human [41,59–62]. In parallel, different 
motif deconvolution approaches have been developed to infer MHC-I 
binding motifs from multi-allelic class I immunopeptidomics data. For 
instance, tools like MixMHCp [52] or GibbsCluster [63] allow users to 
directly identify multiple motifs and annotate peptides to their respec
tive motifs in class I immunopeptidomics data from multi-allelic samples 
without any prior information about the binding specificity of MHC 
molecules. Other approaches based on machine learning have been 
proposed to train models on multi-allelic samples [54,62,64,65]. 
Although there is no guarantee that correct models can be built with 
these methods for every allele in a multi-allelic sample, this limitation 
can often be mitigated by considering multiple samples and capitalizing 
on the fact that many alleles appear in more than one sample [53]. Of 
particular interest is the NNalign-MA model, which combines an initial 
phase of learning a model on mono-allelic samples, and then uses 
multi-allelic samples to refine the model [54] (see also Pyke et al. [62] 
for a related framework). This semi-supervised approach has been used 

Fig. 2. Evolution of the size of immuno
peptidomes. (A) Number of newly identified 
peptides by MS-based immunopeptidomics per 
year. The red curve shows the cumulative 
number of unique peptides. (B) Number of 
unique peptides reported in class I and class II 
immunopeptidomics samples with at least 500 
peptides. (C) Number of unique peptides re
ported in immunopeptidomics studies for each 
year (of note, many studies include multiple 
samples). The red box shows the studies of 
origin for the samples considered in panel B. 
Data in panels A and C were retrieved from the 
IEDB database [146]. Data in panel B were 
retrieved from individual immunopeptidomics 
studies to get information about the samples of 
origin of each peptide.   
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to establish the training data of the widely popular NetMHCpan tool [6] 
(see Section 4). We also note that fully supervised motif deconvolution 
approaches have been developed to assign allelic restriction to peptides 
identified in immunopeptidome based on existing predictors of MHC-I 
ligands [66]. 

Overall, MHC-I binding motifs obtained from mono-allelic samples 
or from deconvolution of multi-allelic samples show very high similarity 
[53,54,66,67]. This indicates that both approaches can be used to derive 
MHC-I binding motifs, especially when integrating multiple samples. 
Moreover, motif deconvolution is a very useful quality control step for 
both mono- and multi-allelic immunopeptidomics data, by allowing 
users to verify that the predicted motif(s) correspond to those expected 
from HLA-I typing, and by filtering out peptides that cannot be assigned 
to any motif (i.e., trash cluster in GibbCluster or flat motif in MixMHCp) 
[11,66,68]. Given the different sources of noise or contaminants both in 
mono-allelic and multi-allelic immunopeptidomics data, we recommend 
to always apply motif deconvolution, together with other 
quality-control approaches [69,70], when analyzing immunopeptido
mics samples. 

3.3. MHC-II binding motifs 

As for MHC-I molecules, the identification of MHC-II motifs in class II 
immunopeptidomes was performed using either mono-allelic samples or 
motif deconvolution. Historically, several studies used cell lines 
expressing only one MHC-II allele [18], or purified separately peptides 
displayed on different alleles [71]. Recently, large libraries of MHC-II 
mono-allelic cell lines were built to profile MHC-II binding motifs of 
multiple alleles [72,73]. In parallel, evidences that MHC-II motifs could 
be retrieved from the class II immunopeptidomes of unmodified 
multi-allelic samples were provided in several studies [17,74–77] using 
MoDec [51], GibbsCluster [63] or other tools [78]. As of today, several 
methods combine mono- and multi-allelic samples to reach the highest 
allelic coverage and reliable binding motifs are available for more than 
80 MHC-II alleles [6,54,66,79]. Irrespective of the use of mono- or 
multi-allelic samples, an important challenge when learning MHC-II 
binding specificity models from class II immunopeptidomics data 

comes from the fact that the binding cores of MHC-II ligands are not 
naturally aligned, unlike for most MHC-I ligands. Moreover, signals 
related to antigen processing (see below) can complicate the alignment 
of MHC-II ligands. Failures to correctly align the peptides or learn the 
actual binding cores can be an important source of inaccuracies when 
training MHC-II ligand predictors. This alignment/binding core identi
fication step is included in motif deconvolution tools like MoDec [51] or 
GibbsCluster [63]. In addition, class II immunopeptidomics samples can 
contain a substantial fraction of contaminants or wrongly identified 
peptides [51,66,69]. As for class I immunopeptidomics data, we advise 
to run unsupervised or supervised motif deconvolution [51,66] as a 
quality control for class II immunopeptidomics data, since a lack of 
motifs corresponding to those expected based on the HLA-II typing, or 
the presence of unexpected motifs, can be an indication of noise in the 
data (e.g., contaminants, wrongly identified peptides, issues with HLA 
typing, etc.). 

3.4. Structural insights into MHC ligand binding modes 

Unsupervised analysis of MHC binding motifs inferred from immu
nopeptidomes was also useful to gain structural insights into different 
binding modes of MHC ligands. For instance, the observation that the 
majority of MHC-I ligands with more than 9 residues have conserved 
anchors at the second and last positions is a strong indication that these 
MHC-I ligands bulge out in the middle of the MHC-I binding site, in 
agreement with most crystal structures [80]. Over the years, multiple 
studies have observed that MHC-I ligands can also extend at the N- and 
C-terminus (Fig. 3A). C-terminal extensions were first observed in 1994 
[81] and were confirmed in several subsequent studies [82–88]. Anal
ysis of class I immunopeptidomes covering more than fifty HLA-I alleles 
demonstrated that C-terminal extensions preferentially occur in specific 
alleles, which are often characterized by higher flexibility in the α1 helix 
as a result of a glycine at position 79, larger distance between the α1 and 
α2 helices around the F pocket, and preference for positively charged 
residues filling the F pocket [82]. N-terminal extensions were identified 
in several studies [89–93]. Analysis of class I immunopeptidomes indi
cated that they occur less frequently than C-terminal extensions in 

Fig. 3. Binding modes and peptide length 
distributions inferred from immunopepti
domes. (A) Representation of different binding 
modes for MHC-I ligands of more than 9 resi
dues (10-mer in this example), including bulge, 
C-terminal extensions and N-terminal exten
sions. (B) Representation of different binding 
modes for MHC-II ligands, including canonical 
and reverse binders. The numbering P1 to P9 
indicates the anchor positions in the binding 
core, from N- to C-terminus. (C) Variability in 
peptide length distributions across class I 
immunopeptidomics samples. (D) Variability in 
peptide length distributions across human class 
II immunopeptidomics samples. Data in panel C 
come from the collection class I immunopepti
domics studies considered in Gfeller et al. [67]. 
Data in panel D come from the collection class II 
immunopeptidomics studies considered in 
Racle et al. [79] (see also red box in Fig. 2C).   
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human [82]. 
For MHC-II ligands, analyzes of class II immunopeptidomes have 

confirmed the fact that the vast majority of MHC-II ligands have a 
binding core of 9 residues (see one exception in chicken [94]). It appears 
therefore that the bulging mechanism frequently observed in MHC-I is 
quite rare in MHC-II alleles, possibly reflecting the higher number and 
middle position of anchor residues of MHC-II ligands (e.g., P1, P4, P6 
and P9 for many HLA-DR and HLA-DP alleles). The vast majority of 
studies reported a conserved orientation of the MHC-II ligands in the 
binding site, with the only exceptions of the CLIP peptide [95] and two 
other peptides covalently linked to MHC-II [96], which were shown to 
bind in the reverse orientation (Fig. 3B). However, this assumption of 
conserved orientation has been recently challenged, based on the anal
ysis of class II immunopeptidomics data. Reverse binders were first 
predicted in van Balen et al. [73] for HLA-DPA1*02:02 – 
HLA-DPB1*05:01. In a recent preprint from June 2022, we have 
observed that roughly half of the HLA-DP alleles accommodate ligands 
binding in the reverse orientation and that these peptides represent from 
5 % to 60 % of the immunopeptidome for these alleles [79]. These ob
servations were independently confirmed in [97]. Predictions of ligands 
following the newly characterized binding mode are now included in the 
latest version of MixMHC2pred (v2.0) [79]. We anticipate that the 
ability to predict this new type of HLA-DP ligands will expand the 
repertoire of class II epitopes in infectious diseases and cancer. 

These examples demonstrate how unsupervised profiling of MHC 
ligands helps generate new hypotheses about MHC ligand binding 
modes, which can then be experimentally validated. 

3.5. Peptide length distribution in immunopeptidomes 

Beyond binding motifs, another important determinant of the 
immunopeptidome comes from the length specificity of naturally pre
sented MHC ligands. For class I immunopeptidomes in human, the 
typical length of peptides ranges from 8 to 14 residues, with a peak at 9- 
mers. However, the fraction of peptides of different lengths changes 
considerably depending on which alleles are present in a sample 
(Fig. 3C). In a remarkable study, a comparison was performed between 
the length preference observed in class I immunopeptidomes and the 
one predicted from binding affinity measurements for four different 
alleles [12]. The results revealed a clear discrepancy between the two 
observations, demonstrating that the peptide length distributions 
observed in class I immunopeptidomes are not only explained by the 
binding preferences of MHC-I molecules but represent a convolution 
between binding to MHC-I and skewed distribution of peptide lengths in 
the pool of peptides available for loading on MHC-I molecules in the ER. 
Clustering of MHC-I alleles based on their length distribution further 
provided evidences of groups of MHC-I molecules that share similarity in 
their peptide length distributions and possible structural mechanisms to 
explain some of the peptide length preferences [11]. Most peptides in 
class I immunopeptidomes have length between 8 and 14, but shorter or 
(much) longer peptides are also observed. A large fraction of contami
nants is expected among these peptides [11,67], but it is likely that 
several real naturally presented MHC-I ligands can have such lengths 
and may even be immunologically relevant [98]. For instance, a 20-mer 
peptide recently observed by MS was shown to bind HLA-A*02:01 and 
elicit CD8+ T-cell recognition [99]. 

For class II immunopeptidomes in human, the most frequent peptide 
length is 15, and the majority of peptides have length 12–25. Compared 
to MHC-I, less variability in peptide length distributions is observed 
across different samples (Fig. 3D) and different alleles [51,66,72]. This 
is consistent with the fact that MHC-II ligands have a binding core of 
conserved length (i.e., 9 residues), with binding core flanking residues 
extending on both sides and making less interactions with the MHC-II 
molecules. Differences between MHC-II alleles have therefore less 
impact on the peptide length distributions, which are presumably more 
influenced by the class II antigen processing pathways. 

It is also important to note that some differences in length distribu
tion have been reported between mono-allelic and multi-allelic samples, 
possibly reflecting technical biases in protocols used for some mono- 
allelic samples [67,79]. 

3.6. Footprints of proteasomal cleavage and transport of antigen 

Peptides found in immunopeptidomes have been processed by the 
class I or class II antigen processing machinery, which includes cleavage, 
antigen transport and loading on MHC, and is regulated by several 
chaperones. This suggests that footprints of antigen processing could be 
found in the sequence of these peptides. For naturally presented MHC-I 
ligands, this was confirmed in multiple studies and signals related to 
antigen processing have been found both within the peptide and in the 
peptide flanking regions [86,100–102]. Within the peptides, the stron
gest influence of the class I antigen presentation pathway can be seen in 
the peptide length distribution, as previously discussed. In addition, an 
over-representation of proline (i.e., a residue that tends to decrease 
cleavage propensity) was observed in the middle of MHC-I ligands, and a 
depletion of proline after the C-terminus [59]. Over-representation of 
arginine/lysine (i.e., residues that enhance cleavage propensity) up
stream and downstream of MHC-I ligands was also reported [59,100]. 
These observations are consistent with the fact that MHC-I ligands need 
to be cleaved at both their N- and C-termini, but not in their middle. 

For MHC-II ligands, signals of antigen processing have also been 
observed both within MHC-II ligands and in peptide flanking regions. 
For instance, a clear enrichment of proline at the second position of 
MHC-II ligands was observed in multiple studies [17,74,103]. Mutation 
of this proline had no influence on the in vitro binding of MHC-II ligands, 
demonstrating that this preference for proline comes from antigen 
processing and not binding to MHC-II [51]. 

3.7. Impact of source protein expression and localization 

Another important determinant of the peptides found in the immu
nopeptidome comes from the expression of the source proteins of these 
peptides. For instance, it is expected that peptides encoded by genes that 
are not expressed in a given tissue will not be found in the immuno
peptidome of this tissue [23]. The correlation of source transcript and/or 
source protein expression with MHC presentation was observed in 
multiple studies of both class I and class II immunopeptidomes [59,72, 
75,78,104]. Preferences for specific sub-cellular localization were also 
observed [25,105–107]. For instance, MHC-II ligands were shown to 
preferentially originate from secreted proteins, which is consistent with 
what is known about the class II antigen presentation pathway [72]. 

4. Predicting immunopeptidomes 

As mentioned earlier, an important limitation of direct identification 
of naturally presented MHC ligands by MS comes from the limited 
sensitivity of MS-based immunopeptidomics. In addition, immuno
peptidomics experiments are not trivial to conduct properly, rely on 
expensive and dedicated MS equipment and require a minimal amount 
of cells (~ 107) [19,75]. For these reasons this approach is not always 
applicable to any kind of patients’ samples anywhere in the world. 

To compensate for this limitation, a widely used alternative consists 
of predicting putative MHC ligands and T-cell epitopes based on their 
sequence. The most powerful techniques for predicting naturally pre
sented MHC ligands are based on machine learning algorithms trained 
on large datasets of naturally presented MHC ligands. In such a frame
work, the key to reliable predictions is both the algorithm itself and the 
depth and quality of the training data. Owing to their size, their allelic 
coverage and their biological relevance, data from immunopeptidomes 
determined by MS play a central role in the latest versions of predictors 
of naturally presented MHC ligands. 

D. Gfeller et al.                                                                                                                                                                                                                                  



Seminars in Immunology 66 (2023) 101708

7

4.1. Predictions of naturally presented MHC-I ligands 

Predictions of MHC-I ligands have been carried out for more than 
thirty years. These predictions are based on the idea of identifying 
patterns in MHC-I ligands that distinguish them from ‘random’ peptides. 
Historically, the first attempts used simple sequence patterns that can be 
represented as regular expression, like x[L/M/V]xxxxxx[L/V] for 9-mers 
HLA-A*02:01 ligands [16]. These regular expressions already capture 
some of the binding specificity and are reasonable when only a handful 
of ligands are known. However, they fail to capture specificity at posi
tions designed with x, and fail to capture differences in the relative 
importance of each amino acid at each positions. These limitations can 
be addressed by the use of position weight matrices (also referred to as 
position specific scoring matrices), where the frequency of each amino 
acid at each position is learned from the ligands of one specific MHC-I 
molecule. These matrices include renormalization by background 
amino acid frequency (typically taken from the human proteome) and 
can be used as a predictor, with the additional advantage that they can 
be easily visualized as sequence logos [108,109]. Over the years other 
machine learning tools have been used to predict MHC-I ligands [6,60, 
62,65,110–115]. These include mixture models, hidden Markov models, 
artificial neural networks, deep neural networks, etc. Previous bench
marks have not shown superiority of one of these algorithms versus 
others, indicating that the information present in MHC-I ligands can be 
accurately captured by different tools. Some of these predictors can only 
make predictions for alleles for which ligands are available (i.e., 
allele-specific predictors), while others can be applied to any MHC-I 
molecule (i.e., pan-allele predictors, see discussion below). In many 
cases, the peptides in the training set need to be encoded as numerical 
values, which can be done by one-hot encoding (i.e., treating each amino 
acid at each position as an independent variable) or BLOSUM based 
encoding (i.e., including information about biophysical similarity be
tween amino acids). For training or renormalization, many of these 
approaches need negative data. The standard approach is to use random 
peptides from the human proteome. 

A specific challenge for MHC-I molecules comes from the different 
lengths of their ligands. This has been addressed in different ways. Some 
methods, like MixMHCpred [67], train distinct predictors for each 
peptide length and then renormalize the scores of each predictor to fit 
peptide length distributions observed experimentally in immunopepti
domes. Methods like NetMHC [116] or NetMHCpan [6] first align the 
peptides (allowing for gaps or insertions) and then use the aligned 
peptides as input to a neural network, together with additional input 
nodes encoding for the length of the peptides. Other approaches like 
MHCflurry [112] capitalize on methods like convolutional neural net
works, and include padding in the encoding of the peptides. When using 
methods that require negative data for training (e.g., neural networks), 
it is important to use data with a uniform peptide length distribution (e. 
g., random peptides from the human proteome), so that the model can 
learn the length distribution of the actual MHC-I ligands. 

Although nearly 150 MHC-I molecules have reliable experimental 
ligands, this falls short of the tens of thousands of alleles observed in 
human, not to mention the broadly unknown allelic diversity in other 
species. To expand predictions beyond alleles with available ligands, 
several machine learning tools have been developed. The underlying 
idea is to capture correlations between the amino acid sequences of the 
MHC-I (and especially the binding site) and the amino acid preferences 
in their ligands. Such correlations can reflect direct contacts between 
pairs of residues in the MHC-I binding site and the ligand, or indirect 
correlations arising from the presence of phylogenetically related groups 
of MHC-I alleles (sometimes referred to HLA supertypes). These corre
lations can be efficiently captured by neural networks. The first pan- 
allele predictor, called NetMHCpan, was developed in 2009 and it re
mains today’s most widely used MHC-I ligand predictor [6,117]. In 
general, these pan-allele tools are very powerful to extrapolate pre
dictions to alleles relatively similar to those in their training set (e.g., 

other human HLA-I alleles). The accuracy tends to decrease when 
considering MHC-I molecules with lower sequence similarity to those 
with known ligands, such as alleles in evolutionary more distant species. 

Different approaches have been developed to incorporate additional 
features in predictions of naturally presented MHC-I ligands, including 
specificity from proteasomal cleavage, antigen transport or source pro
tein expression. The first two aspects have been shown to improve 
predictions of naturally presented MHC-I ligands in several studies [100, 
101,112,118]. However, the selectivity of cleavage and antigen trans
port is much lower than the one of MHC-I molecules, and may depend on 
the biological context (e.g., expression of the immunoproteasome). 
Regarding source protein expression, different tools allow to input such 
data in MHC-I ligand predictors [60,119]. There is no doubt that 
expression (either at the RNA or even better at the protein level) can 
significantly improve predictions [59,120], for instance by excluding 
peptides coming from source proteins which are not expressed in a given 
sample. The main challenge when integrating source protein expression 
or abundance comes from the ability to accurately measure these values 
in different contexts (e.g., viral infections, cancer). In the case of 
neo-antigens, another important point to consider is whether the 
expression of the source protein corresponds to the mutated allele or to 
other sources (e.g., non-mutated allele, cancer cells from a clone without 
the mutation, non-cancer cells). 

The natural output of machine learning predictors of MHC ligands 
trained on immunopeptidomics data consists of a numerical score. To 
improve interpretability and selection of potential thresholds, a useful 
approach, first introduced in the NetMHC/NetMHCpan tools is to use % 
ranks. %ranks are computed by comparing the score of a peptide with 
the scores obtained on hundreds of thousands of random peptides 
typically taken from the human proteome. A %rank of 1 % means that 
99 % of the random peptides had a score worse than the peptide for 
which predictions are made. %rank values tend to be more stable than 
predicted affinity (i.e., IC50 [nM]) or raw scores from machine learning 
algorithms, and more comparable across tools. They are therefore rec
ommended for practical applications. 

4.2. Predictions of naturally presented MHC-II ligands 

Over the last few years, predictions of naturally presented MHC-II 
ligands have also witnessed major improvements by incorporating 
class II immunopeptidomics data in the training of the predictors [6,51, 
72,74,78,79]. In terms of computational framework, predictions of 
MHC-II ligands share many features with predictions of MHC-I ligands 
(motifs, length preferences). Predictors of MHC-II ligands can also be 
classified into allele-specific predictors, where a model is trained for 
each allele individually and predictions can only be done for the alleles 
in the training set, and pan-allele models where predictions can be done 
for any allele. Still, a few notable differences need to be highlighted. The 
main one is that MHC-II ligands have a 9-mer binding core with flanking 
residues extending on both sides (Fig. 1F). As such multiple overlapping 
peptides with the same binding core can bind to a given allele. For 
practical applications, people often focus on 15-mers, assuming that the 
binding core flanking residues may not impact too much binding to 
MHC-II and CD4+ T-cell recognition. Another difference is that the po
sition of the binding core shows positional specificity, with a binding 
core offset close to the middle but slightly shifted towards the C-termi
nus of the peptide [51]. 

Given the higher impact of cleavage and antigen processing in 
shaping class II immunopeptidomes compared to class I immunopepti
domes, many prediction tools are not restricted to MHC-II binding mo
tifs, but also consider peptide residues flanking the binding core, as well 
as peptide flanking regions. Source transcript and/or protein expression 
and sub-cellular localization were also shown to influence presentation 
of peptides on MHC-II molecules, and this aspect has been considered in 
some tools [72,78]. Some of the challenges when using gene/protein 
expression in MHC-II ligand predictions come from the fact that MHC-II 
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molecules are expressed mainly in specialized cell types and bind pep
tides resulting from endocytosis or phagocytosis of extracellular pro
teins. As such, one cannot exclude important differences between the 
source gene/protein expression measurements done on bulk samples 
and the abundance of peptides available for loading on MHC-II, espe
cially in the case of pathogen or cancer specific peptides. Despite these 
limitations, it is expected that accurate information about source gen
e/protein expression and subcellular localization can help narrow down 
the list of peptides most likely to be displayed on MHC-II molecules. 

4.3. Predictions of post-translationally modified MHC ligands 

Most predictions of MHC ligands are performed on peptides con
sisting of the standard twenty amino acids. As mentioned previously, 
several studies have demonstrated that immunopeptidomes also contain 
ligands bearing PTMs, such as phosphorylation, cysteinylation, di- 
methylation or deamination [30,32–38]. The presence of such modifi
cations could significantly alter the binding of a peptide to MHC mole
cules. Currently, tools incorporating PTMs only exist for the prediction 
of phosphorylated MHC-I and MHC-II ligands [36,121,122]. We antici
pate the (re-)analysis of MS-based immunopeptidomics data will help fill 
this gap and that MHC ligand predictions tools will be expanded to 
consider additional PTMs in the future. 

4.4. Potential limitations of immunopeptidomics data to train predictors 
of MHC ligands 

The immunopeptidomes identified by MS in multiple samples have 
dramatically increased the number of known MHC-I and MHC-II ligands. 
This has led to much more accurate definitions of MHC binding motifs, 
as well as understanding of properties related to antigen processing (e. 
g., cleavage motifs, peptide length distributions,…) that could not be 
derived from the results of binding assays. For this reason, almost all 
recent machine learning tools to predict MHC ligands rely heavily on 
MS-based immunopeptidomics data for their training. As with all data 
used to train machine learning models, an important question to ask is to 
what extent immunopeptidomes identified by MS may have biases or 
limitations. The main bias in immunopeptidomes, which has been 
known since several years, is the under-representation of cysteine- 
containing peptides [53,59,72,123]. This is likely because chemical 
modifications of cysteines that can occur during the immunopeptido
mics experimental workflow (e.g., dimerization of cysteine-containing 
peptides) are typically not included in the annotation of MS spectra. It 
was also observed that methionine and tryptophan tend to be depleted in 
MHC ligands, possibly reflecting modifications that can occur on these 
residues in immunopeptidomics experiments [53,72]. 

Precise identification of amino acid biases arising from MS-based 
immunopeptidomics experimental pipeline is complicated by the fact 

that naturally presented MHC ligands display footprints of antigen 
processing pathways and MHC binding motifs, which impact amino acid 
frequencies in these peptides. To shed additional light on these issues, 
we used our collection of MHC-II ligands [79] and computed the amino 
acid frequency at positions outside of the binding core and outside of the 
first and last three residues of the peptides. The underlying idea is to use 
positions that are least influenced by MHC binding motifs or antigen 
processing, although we cannot totally exclude any impact of these 
factors. The amino acid frequencies were compared to those in the 
human proteome (excluding the first and last three residues on each 
protein since these cannot occur in the positions considered in our 
MHC-II ligands). The results confirmed the observations of previous 
studies, with an under-representation of cysteine, methionine and 
tryptophan. We further identified under-representation of some hydro
phobic amino acids (i.e., L, F, I), and an over-representation of polar or 
charged sidechains (i.e., Q, E, D, K) (Fig. 4). 

The impact of any technical bias in MS-based immunopeptidomics 
data has important consequences on MHC ligand predictors trained on 
such data. For instance, machine learning predictors trained without 
correcting for the cysteine bias will invariably give much lower scores to 
cysteine-containing peptides, since the latter will be under-represented 
in the positives compared to the negatives (typically peptides 
randomly selected in the human proteome) used for training [53,123]. 
Several approaches have been proposed to correct for such biases, either 
by expanding the search of MS spectra to include more chemical mod
ifications [59], or by fine tuning amino acid background frequencies 
[53]. Despite these attempts, one cannot exclude that MHC ligand pre
diction tools are still influenced by (possibly uncharacterized) biases in 
immunopeptidomics data. Although they do not capture the role of 
antigen processing, display technologies (e.g., phage or yeast display) to 
screen MHC ligands may also help revealing MS-related biases in large 
datasets of MHC ligands [124,125]. 

5. Future challenges in epitope predictions 

5.1. Predictions of TCR recognition 

Most epitope prediction tools are trained on naturally presented 
MHC ligands. As discussed earlier, this includes modeling MHC binding 
motifs and peptides length distributions, signal of proteasomal cleavage 
and antigen processing, and source gene/protein expression (Fig. 5A). 
As such, these approaches do not consider TCR recognition [126], even 
if multiple evidences exist that TCR recognition propensity is not 
perfectly correlated with MHC binding. For example, T-cell epitopes 
displaying very weak experimental binding to MHC molecules have 
been identified [127]. The focus on antigen presentation in epitope 
prediction tools comes from the fact that (i) we know orders of magni
tudes more MHC ligands than T-cell epitopes, and (ii) TCR recognition 

Fig. 4. Potential amino acid biases in MS- 
based immunopeptidomics data. (A) Com
parison between amino acid frequencies in the 
human proteome (excluding the first and last 
three residues of each protein) and amino acid 
frequencies in MHC-II ligands collected in Racle 
et al. [79] at positions outside of the binding 
core and outside of the three N- and C-terminal 
residues (i.e. positions that are expected to 
show the lowest influence of the binding to 
MHC-II and class II antigen processing path
ways). (B) Ordering of amino acids based on the 
ratio between the two frequencies computed in 
panel A. Positively charged residues are shown 
in blue, negatively charged residues are shown 
in red, polar residues are shown in green, hy
drophobic residues are show in black and 
cysteine is shown in orange.   
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has proved much more challenging to model as a consequence of the 
huge diversity of TCRs that can potentially recognize any epitope. Still, 
several attempts to go beyond antigen presentation have been proposed, 
partly driven by the interest in cancer neo-antigen discovery in recent 
years and mainly focusing on CD8+ T-cell epitopes. These approaches 
can be categorized into two different classes:  

1) Attempts to capture biochemical properties of MHC-I ligands that 
enhance TCR recognition (Fig. 5B).  

2) Attempts to capture negative selection of CD8+ T cells in the thymus 
by considering dissimilarity to self peptides (Fig. 5C) or foreignness 
of potential epitopes (Fig. 5D). 

Approaches falling in the first category have investigated differences 
in amino acid frequencies between immunogenic and non-immunogenic 
MHC-I ligands. The first evidence that some amino acids (mainly W, F 
and I) may help for TCR recognition was provided by Calis and co- 
workers [128]. Later on, a study by Chowell indicated that hydropho
bic residues are enriched in immunogenic versus non-immunogenic 
MHC-I ligands [129]. In our own work, we proposed an algorithmic 
framework (PRIME) to combine affinity to MHC with propensity for TCR 
recognition [67,130]. This tool revealed enrichment of aromatic and 
hydrophobic residues, and depletion of charged residues, in immuno
genic MHC-I ligands, and more precisely in the region that is recognized 
by the TCRs (Fig. 5B). These results are consistent with the fact that 
hydrophobic and aromatic residues tend to be enriched in protein 
structural cores and protein-protein interfaces. However, many known 
immunodominant epitopes do not have hydrophobic or aromatic resi
dues in positions interacting with the TCRs. This indicates that the 
pattern observed in the aforementioned studies is at best a propensity, 
and not a strict rule. 

In the second category, different approaches have been proposed to 
capture dissimilarity-to-self or foreignness properties of epitopes. Some 
approaches attempted to quantify dissimilarity-to-self by computing the 
sequence similarity between the peptides for which predictions are 
made and all possible peptides in the human proteome (Fig. 5C) [131, 
132]. In case of neo-antigens, it is expected that T cells recognizing 
peptides highly similar to self peptides (e.g., peptides with a mutation 

that preserves the biochemical properties of the original amino acid, or 
at a position with minimal contact with the TCR) could have been 
eliminated in the thymus. However, it is also important to realize that 
most neo-antigens fall into a similar range of dissimilarity-to-self values, 
since many of them are just one amino acid away from their wild-type 
counterpart. Moreover, even subtle changes at the sequence level can 
have important impact on TCR recognition [133]. Other approaches in 
the field of neo-antigen discovery have proposed to compute the ratio 
between the predicted binding affinity of the wild-type and the mutant 
peptides, a measure sometimes referred to as agretopicity [134,135]. 
These approaches are based on the hypothesis that if a wild-type peptide 
has much lower binding affinity than the mutant (and possibly does not 
even bind to the MHC), T cells recognizing the mutated peptide will be 
more likely to survive thymic negative selection. Similarity to known 
epitopes has also been proposed as a way to prioritize potential epitopes 
and was included in a model of antigen fitness that correlated with 
survival in cancer patients (Fig. 5D) [136–138]. Although high homol
ogy to a known epitope could be a strong indication that individuals can 
mount a response against a given peptide, few mutated peptides in 
cancer show such a high similarity to known epitopes. Moreover, the 
space of actual epitopes is likely very sparsely understood, and T cells 
have evolved a remarkable ability to recognize a large diversity of 
antigens. 

Altogether, the approaches described in this section are in general 
based on reasonable assumptions or models. Many of them have been 
shown to increase predictions of TCR recognition in several studies 
[130,132,134,139]. However these studies are often based on a rela
tively limited number of epitopes (from a few tens to a few hundreds). 
Others have used indirect evidences, such as correlation with survival or 
response to therapy, with the caveat that the conclusions may be 
influenced by confounding factors not directly linked to improvement in 
epitope predictions. For these reasons, there is still no global consensus 
on how big the improvement in epitope predictions is compared to ap
proaches based only on antigen presentation predictions [140]. It is also 
important to realize that T cells have evolved to maximize their ability to 
recognize a large spectrum of antigens, which makes it challenging to 
accurately model TCR recognition processes. 

Fig. 5. Summary of different approaches to 
predict T-cell epitopes. (A) Predictions of pre
sentation on MHC: this approach relies on MHC 
binding motifs (primarily but not exclusively 
determined by the residues at the beginning and 
the end of the peptides for MHC-I – shown in blue 
in the Figure), peptide length distributions, 
cleavage and antigen processing signals, and 
source gene/protein expression. (B) TCR recog
nition predictions: this approach aims at 
capturing properties of epitopes that enhance the 
propensity for TCRs to bind to them. Different 
studies converged to the observation that aro
matic and hydrophobic residues in the middle of 
the peptide (yellow residues in the Figure) tend to 
increase TCR recognition [67,128–130]. (C) 
Dissimilarity-to-self: this approach aims at 
capturing the impact of negative selection by 
excluding putative epitopes that show high simi
larity to some self-peptide. In general peptides 
arising from single nucleotide variants in cancer 
show low dissimilarity-to-self, while most path
ogen peptides show high dissimilarity-to-self. In 
the case of cancer mutations, one related 

approach aims at prioritizing cases where the mutant peptide has a much higher predicted binding to MHC compared to the wild-type peptide. This is typically the case if a 
mutation modifies an unfavorable anchor residue (e.g., at P2) into a favorable one. (D) Similarity to known epitopes: this approach is based on the hypothesis that peptides 
showing high similarity to a known epitope are more likely to be immunogenic. In cancer, most putative neo-antigens are quite distinct from any known epitope. Out of 
these different approaches, only the prediction of presentation on MHC has truly passed the test of time for epitope predictions.   
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5.2. Predictions of immunogenicity 

Many of the aforementioned predictors that attempted to capture 
TCR recognition use results of T-cell assays in their training set. T-cell 
assays can be quite diverse and include IFNγ ELISpot, multimer staining, 
killing assays, immunization, vaccination, etc. They are also performed 
on different cells, which comprise bulk T cells, naive T cells, memory T 
cells or effector T cells, and different individuals (e.g., patients or 
healthy donors). In addition, multiple rounds of stimulation with the 
peptides are often performed to enhance a weak initial recognition that 
could be difficult to distinguish from noise in some assays. These 
different approaches have an impact on the interpretation of the results 
of these assays. For instance, stimulation of naive T cells from healthy 
donors reflects the existence of some TCRs that can recognize a specific 
epitope, but not necessarily an ongoing or past immune response. Un
fortunately, experimental data capturing physiologically relevant nat
ural or vaccine-induced immune responses are much less frequent than 
those capturing merely TCR recognition. Recent technologies to analyze 
TCR repertoires and identify clusters of TCRs enriched across patients 
can reveal TCRs which are more likely to recognize immunodominant 
epitopes. This information is powerful to guide immunodominant 
epitope discovery by using these TCRs in epitope screening pipelines 
[141,142]. However, despite these promising approaches, the set of 
known immunodominant epitopes is still limited, and prediction of 
immunogenicity or immunodominance remains an unsolved problem as 
of today. 

6. Conclusion 

TCR recognition of peptides displayed on MHC molecules is neces
sary to initiate the formation of the immunological synapse and elicit 
cellular immune responses. The ability to determine and predict the 
specificity of the class I and class II antigen presentation pathways from 
antigen processing to display on MHCs is therefore a cornerstone to
wards molecular understanding of T-cell recognition of infected or 
malignant cells. As of today, the richest source of information about the 
specificity of antigen presentation has come from MS-based immuno
peptidome profiling. In particular, analysis of immunopeptidomes has 
enabled researchers to (i) define robust MHC binding motifs and peptide 
length distributions for hundreds of MHC-I and MHC-II molecules [5], 
(ii) identify signals related to cleavage and antigen processing both 
within MHC ligands and in peptide flanking regions, (iii) explore the role 
of source transcript/protein expression and (iv) expand the universe of 
MHC ligands to pathogen or cancer specific peptides, 
post-translationally modified peptides and non-canonical peptides. 
Several of these features have been included in powerful predictors of 
naturally presented MHC ligands. Owing to the large number (more than 
a million) of MHC ligands used to train these predictors, a high level of 
accuracy has been reached for many MHC molecules, including the most 
common HLA-I or HLA-DR alleles in human. Further improvements are 
likely possible for less common MHC-I alleles, as well as HLA-DP and 
HLA-DQ alleles whose motifs have been less studied, although the sit
uation is rapidly changing [79,143]. In addition, a better understanding 
of the universe of peptides available for loading on MHC molecules, 
including post-translationally modified or non-canonical ligands, will 
further expand our ability to predict such MHC ligands. 

A much more challenging task is to incorporate TCR recognition and 
immunogenicity in T-cell epitope prediction tools. The difficulty comes 
from both the limited number of known T-cell epitopes (especially 
immunodominant epitopes) and the challenges related to the enormous 
diversity of TCR sequences. As such, it will be interesting to see whether 
similar improvements as those observed in predictions of naturally 
presented MHC ligands can be reached for modeling TCR recognition 
simply by expanding the number of known epitopes (i.e., the size of the 
training data), or whether new frameworks and other types of biological 
information will be needed to overcome the current limitations in 

immunogenicity predictions. 
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