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A B S T R A C T   

Purpose: To review eXplainable Artificial Intelligence/(XAI) methods available for medical imaging/(MI). 
Method: A scoping review was conducted following the Joanna Briggs Institute’s methodology. The search was 
performed on Pubmed, Embase, Cinhal, Web of Science, BioRxiv, MedRxiv, and Google Scholar. Studies pub
lished in French and English after 2017 were included. Keyword combinations and descriptors related to 
explainability, and MI modalities were employed. Two independent reviewers screened abstracts, titles and full 
text, resolving differences through discussion. 
Results: 228 studies met the criteria. XAI publications are increasing, targeting MRI (n = 73), radiography (n =
47), CT (n = 46). Lung (n = 82) and brain (n = 74) pathologies, Covid-19 (n = 48), Alzheimer’s disease (n = 25), 
brain tumors (n = 15) are the main pathologies explained. Explanations are presented visually (n = 186), 
numerically (n = 67), rule-based (n = 11), textually (n = 11), and example-based (n = 6). Commonly explained 
tasks include classification (n = 89), prediction (n = 47), diagnosis (n = 39), detection (n = 29), segmentation (n 
= 13), and image quality improvement (n = 6). The most frequently provided explanations were local (78.1 %), 
5.7 % were global, and 16.2 % combined both local and global approaches. Post-hoc approaches were pre
dominantly employed. The used terminology varied, sometimes indistinctively using explainable (n = 207), 
interpretable (n = 187), understandable (n = 112), transparent (n = 61), reliable (n = 31), and intelligible (n =
3). 
Conclusion: The number of XAI publications in medical imaging is increasing, primarily focusing on applying XAI 
techniques to MRI, CT, and radiography for classifying and predicting lung and brain pathologies. Visual and 
numerical output formats are predominantly used. Terminology standardisation remains a challenge, as terms 
like “explainable” and “interpretable” are sometimes being used indistinctively. Future XAI development should 
consider user needs and perspectives.   

1. Introduction 

Artificial Intelligence (AI) is currently mainly deployed using deep 
learning (DL). It plays a crucial role in medical image analysis tasks such 
as detection, classification, diagnosis, segmentation, prediction and 
image quality enhancement [1,2]. Segmentation, classification, detec
tion and diagnosis have distinct objectives in the analysis of medical 
images. Segmentation outlines regions of interest by selecting pixels that 
are part of a specific structure, classification assigns labels to images or 

image regions, detection locates specific objects or abnormalities and 
diagnosis proposes a medical pathology (sometimes differential diag
nosis with probabilities for each) that can be used by a physician as 
something similar to a second opinion of a colleague [3]. Machine 
learning (ML) for these tasks employs trained algorithms or models to 
make decisions based on data. Deep learning is one the many approaches 
to machine learning. A distinction is often made between deep learning 
and classical machine learning, that often relies on handcrafted visual or 
textual features. These features are created based on expert knowledge 
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using statistical models and are often simple to understand, for example 
average gray level. In contrast, DL, a branch of machine learning and 
neural networks, does not require this manual feature definition and 
extraction step by automatically extracting discriminative features from 
the multiple layers of interconnected neurons [4]. Their complexity and 
interpretability remain a challenge, as they are often viewed as a “black 
box”, lacking transparency in the decision-making process [5]. Without 
clear explanations of how and why a particular decision or output was 
reached, medical imaging professionals (such as physicians or radiog
raphers), may hesitate to fully rely on the results generated by these 
algorithms. AI is still struggling to be applied in medical routine because 
its users do not fully trust it [6]. Therefore, enhancing the understand
ability of DL models is essential to facilitate the seamless integration into 
clinical practice [5]. 

Explainable artificial intelligence (XAI) and interpretable artificial 
intelligence aim to address this interpretability challenge. XAI tech
niques provide justifications, explanations and insights into how AI 
models arrive at specific decisions, with the objective to instill trust, 
transparency, and confidence in the system. Interpretable AI focuses on 
designing transparent models that offer human-readable representation 
of their decision-making process [7]. 

In the field of medical imaging, there are variations in the termi
nology used, especially with the terms “explainable” and “interpret
able”. These terms are often used indistinctively; however some authors 
may have varying meanings for them depending on the domain and 
context [8]. Interpretable models are generally understandable by the 
user without additional tools or methods, while explainable models use 
supplementary techniques [8]. 

In addition to terminology, taxonomy also varies slightly from one 
author to another. To comprehensively explore explainable and inter
pretable AI in medical imaging, it is important to consider various di
mensions: stage, scope, input format, output format and the problem type 
that needs to be explained [9–12].  

• Stage: The term stage refers to the specific moment at which a method 
produces explanations. A distinction is made between ante-hoc or 
model-based methods and post-hoc methods. Ante-hoc methods refer 
to techniques that aim at designing naturally interpretable and 
transparent models. These methods are often better suited to simpler 
AI algorithms such as classical machine learning. On the other hand, 
post-hoc methods focus on explaining the decisions made by often 
more complex models such as DL after they were trained. Post-hoc 
models can be either specific or agnostic. Ante-hoc are usually spe
cific by nature.  

- Model specific techniques are tailored to a particular AI model or 
algorithm. These explanations are designed to provide insights into 
the inner workings of a specific model, making use of its internal 
structure, parameters and decision-making process.  

- Model agnostic techniques aim to explain the decisions of any black- 
box model, regardless of its specific architecture. These explanations 
sometimes focus on the inputs and outputs of the model rather than 
its internal workings but can also use the internal functions for the 
explications. The aim is to provide a general understanding of the 
model’s behavior and highlight the factors that contribute to its 
predictions or decisions.  

• Scope: The models can give either a local or a global explanation. 
Local focus on understanding the decision-making process of DL 
models at a case or individual level. While a global explanation aims 
to understand the overall behavior and functioning of DL models 
across a dataset or a population.  

• Input format: The input format for medical imaging is mainly images, 
but these can be accompanied by other data such as text, numerical 
values, and categorical data. The type of format can have an impact 
on the choice of explanatory method, for example if DICOM with a 
full grey-scale resolution can be used or not.  

• Problem type: AI can be used for a variety of medical imaging tasks, 
such as detection, classification, diagnosis, segmentation, prediction, 
and image quality enhancement. Depending on the task, the 
explanatory model may also change to be the most appropriate.  

• Output format: There are many different output formats that fall into 
several categories. These categories vary according to the authors. 
Van der Velden et al. [9] use three output formats: visual, textual and 
example based. Vilone and Longo [10] categorize the explanations 
into visual, textual, numeric, ruled-based and mixes of these 4 pos
sibilities. Adadi and Berrada [12] applied 4 techniques: visual, 
knowledge extraction, influence methods and example based. Borys 
et al. [13] employed a different classification scheme that encom
passes various categories such as visual, textual, case-based, and 
auxiliary formats. The case-based category aligns with the example- 
based approach described by Addi and Berrada, whereas the auxil
iary category predominantly encompasses numerical formats, 
including scores and quantifications of uncertainty. However, there 
are a few methods that are not classified identically by the authors, 
such as Testing with Concept Activation Vectors (TCAV), classified 
into the case-based category by the latter while Bas et al. [9] classify 
it in the text category. Likewise, T-distributed stochastic neighbour 
embedding (t-SNE) map is classified in the visual categories by Vil
lone [10] and the t-SNE plot in the auxiliary categories by Borys [13]. 
These diverse categories represent a comprehensive and evolving 
taxonomy that, may also undergo variations depending on the spe
cific context of application. 

In the literature related to XAI, all articles share a common goal of 
providing comprehensive insights into the field, along with a definition 
of taxonomy. However, the published studies differ significantly in both 
their methodologies and the domains of application they explore. 
Several researchers, such as Vilone and Longo [10], Adadi and Berrada 
[12] and Islam [14], have engaged in systematic reviews encompassing 
a wide range of domains, including healthcare, finance, the military, 
transportation, law, human–machine interaction, genetics, aviation and 
many others. They aim to categorize the output formats, including nu
merical, rule-based, textual, visual, and mixed formats. In contrast, Kök 
[15] focused specifically on the healthcare domain. Nevertheless, these 
studies diverge significantly in terms of data sources. Vilone and Longo 
[10] solely relied on Google Scholar, whereas Adadi and Berrada [12] 
expanded their scope by incorporating data from databases such as 
SCOPUS, IEEExplore, ACM Digital Library and others. Adadi and Ber
rada provided detailed information about their data sources and meth
odologies, whereas others, such as Yang et al. [16], Kök et al. [15], and 
Borys et al. [13,17], did not disclose their methodologies. On the other 
hand, Van der Velden et al. [9] conducted a comprehensive review 
within the SCOPUS database. Furthermore, each analysis had its unique 
scope. Groen et al. [18] exclusively focused on computer-assisted 
diagnosis in radiology, Borys et al. conducted two reviews in XAI 
methods in medical imaging, initially spanning various techniques [13] 
and then specifically focusing on saliency-based (visual) methods [17]. 
Van der Velden concentrated on deep learning-based medical image 
analysis, while Vilone [10] and Adadi and Berrada [12] explored a 
broader range of applications beyond medical imaging. These articles 
contribute valuable insights to the field of XAI, highlighting the diversity 
of approaches and the adaptability of techniques across multifaceted 
domains. 

This study aligns with the same approach and aims to map the 
existing literature on explainable and interpretable AI in medical im
aging, exploring the techniques, methods and approaches used to 
improve interpretability. By synthesizing a wide range of studies, this 
review provides an overview of XAI development, application, and 
interpretable AI methods, highlighting the progress and challenges 
related to the transparency and understanding of AI systems as well as 
the gaps that still need to be further worked on to identify directions for 
future research. 
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2. Methodology 

A scoping review aims at determining the scope comprehensiveness 
of existing literature on a given topic in a structured way to address 
research questions and identify gaps, offering a concise portrayal of the 
quantity of literature, highlighting its central themes [19]. 

This scoping review was conducted according to the Joanna Briggs 
Institute methodology for scoping reviews [20] and the reporting 
guidelines of Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) [21]. 

2.1. Eligibility criteria 

This scoping review was conducted to summarize the state of evi
dence of the methods used to explain artificial intelligence to its users 
(physicians and radiographers considered as end-users). A range of 
studies was included, examining several designs applied to radiology, 
nuclear medicine and radio-oncology. 

The terminology relating to the explanation of artificial intelligence 
is relatively broad, with two terms being often used without distinction: 

“explainable” and “interpretable” [8], as referred before, and therefore 
both terms were included in the search for this review. 

Quantitative, qualitative, and mixed peer-reviewed studies were 
included, while systematic reviews, guidelines, book sections and edi
torials were excluded in the search task. Some reviews and their 
methods are described in the literature review. 

2.2. Search strategy 

The search strategy (Appendix A) includes both published and un
published primary studies in seven databases: Pubmed, Embase, Cinhal, 
Web of Science, BioRxiv, MedRxiv and Google Scholar in October 2022. 
A combination of keywords and Medical Subject Heading (MeSH) terms 
related to the terminology of the concept of explainability and modal
ities or fields from medical imaging were used. 

No keywords or MeSH terms related to users were included in the 
search strategy as they were related to the imaging modalities already 
included, and it would introduce noise into the results as observed 
without distinction after a first attempt. Studies in English or French 
were included. 

Fig. 1. Search results and study selection and inclusion [23].  
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2.3. Study selection 

All identified studies were uploaded to EndNote 20 and duplicates 
were eliminated using Bramer’s method [22]. Subsequently, the refer
ences were imported into Rayyan, a free web-tool, to facilitate study 
selection. In the first round, titles and abstracts were screened by two 
independent reviewers to assess their relevance based on the previously 
described criteria. Full-text articles that met the inclusion criteria were 
retrieved and reviewed by the same two reviewers in a second round. 
Full-text studies that did not meet the inclusion criteria were excluded 
and the reasons for their exclusion were presented (Fig. 1). Any dis
agreements between the reviewers were resolved through discussion. 

2.4. Data extraction and analysis 

Data were extracted using an extraction table created by the authors 
based on the following characteristics: reference/authors, year, country, 
imaging modality, organs, pathology, sample, AI task, stage (specific or 
agnostic/ante- or post hoc), scope (local or global), input format, output 
format, AI terminology used through the article (explainable, inter
pretable, transparent, understandable, reliable and intelligible). 

This scoping review uses the output formats best suited for the 
medical imaging context namely: visual, numeric, textual, ruled-based, 
example-based and a mix of these 5 categories. 

A descriptive analysis with a narrative summary was performed to 
present the results. 

3. Results 

3.1. Search and study selection 

After removing duplicates, 1,258 results were identified by the 
search strategy and 228 studies met all criteria being included for 
further analysis. The two main reasons for exclusion were wrong 
context: a medical imaging context not linked to radiology, nuclear 
medicine or radio-oncology or that no XAI tool was applied (Fig. 1). 

3.2. Years 

An increase in the XAI-related articles between 2018 and 2022 was 
observed (Fig. 2). The number of articles has increased each year over 
the four-year period, with the largest increase (2.3 times more) in 2020 
and 2021. In 2018, there were 4 included articles dedicated to XAI, 
while in 2022, the number of publications reached 94. 

3.3. Countries 

The included studies were produced in 39 countries, with most first 
authors based in the United States of America (USA) (n = 46; 20 %) and 
China (n = 42; 18 %). Other countries that contributed with a noticeable 
number of articles were India (n = 17), Germany (n = 14), the United 
Kingdom (n = 14), Canada (n = 12) and Italy (n = 11). 32 countries, 
classified as others, contributed also to this field at a lower level (Fig. 3). 

3.4. Imaging modalities 

The most frequently (32 %) studied modality with XAI was Magnetic 
Resonance Imaging (MRI) (n = 73), followed by radiography in 20 % (n 
= 47) and Computed Tomography (CT) (n = 46). It should be underlined 
that 12 papers proposed the use of XAI for two imaging modalities 
[24–35], 4 of which were related to CT and radiography [24,25,27,34]. 
The area of radiation oncology remains underexplored with XAI, with 
only one study focusing on radiotherapy cone-beam CT (CBCT) for 
Image-guided radiotherapy (IGRT) [36] (Fig. 4). 

3.5. Anatomical regions/Organs & pathologies 

Lungs (n = 82) and brain (n = 74) are the two most frequently 
studied anatomical regions in the studies included in this scoping review 

Fig. 2. Number of articles published in the last 5 years using an XAI tool for medical imaging (radiology, nuclear medicine or radio-oncology).  

Fig. 3. Countries where studies about XAI were produced (based on first 
author affiliation). 
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(Fig. 5). The heart (n = 17), breasts (n = 16), prostate (n = 6), liver (n =
6), ear, nose and throat (ENT) regions (n = 6), bone (n = 5) or thyroid (n 
= 4) are less frequently studied. 

3.6. Journals of the articles included in the review 

The articles included in this scoping review were classified according 
to whether they were conference papers (n = 44/228; 19.3 %) or journal 
articles (n = 182/228; 79.8 %) in 120 different journals. Only 2 articles 
had not been published at the time of the study but were accepted for 
publication. The journals were grouped according to their scope, 
including Computer Science (71/228; 31.1 %) (e. g., Computers in 
Biology and Medicine or Neural Networks), Medical Imaging (42/228; 
18.4 %) (e. g., European Radiology, Neuroradiology or Journal of 
Magnetic Resonance Imaging), General (39/228; 17.1 %) (e.g. Frontiers 
in Medicine, IEEE Access Journal or mdpi/diagnostics), Medical spe
cialties other than radiology or pathology (28/228; 12.3 %) (e.g. Fron
tiers in Neuroscience, Epilepsia Open or Journal of Orthopaedic 
Research) and 2 in other journals. 

3.7. Datasets 

The datasets used in the different articles varied in number, prove
nance and composition. More than half were publicly accessible datasets 
(58.6 %), 39.7 % were locally acquired and 1.7 % were composed of 

both public and local data. Table 1 lists the public data by pathology. 
Local datasets were mainly monocentric data (n = 82/91), 8 were ac
quired from 2 sites and 1 in 3 sites. Most studies used images only (n =
199), 30 studies included clinical data, laboratory results and text 
reports. 

3.8. AI tasks or problem type 

The tasks performed by the algorithms and explained by XAI are 
illustrated in Fig. 6. The results indicate that classification (n = 89) is the 
most frequent task performed by the algorithms, followed by prediction 
(n = 47), diagnosis (n = 39), detection (n = 29), segmentation (n = 13) 
and image quality improvement (n = 6). 

3.9. XAI output format 

Five output formats and the possibility of combining two or more of 
these formats were selected to explain the decision-making patterns of 
the algorithms (Fig. 7). The visual format was the most frequently 
applied format (n = 186/228), followed by the numerical format (n =
67), the rule-based (n = 11), the textual (n = 11) and the example-based 
(n = 6). In 45 papers, the authors combined 2 formats (n = 38), while 
others combined 3 (n = 6) and 4 (n = 1). When two formats were used, 
in 66 % (n = 25/38) of the cases, the visual and numerical combination 
was used. 5 of the 6 articles mixing 3 output formats used the visual, 

Fig. 4. Number of papers published per imaging modality.  

Fig. 5. Number of published papers about XAI per anatomical regions/organs. Of the pathologies studied, Covid-19 was the most frequently analysed (n = 48), 
followed by Alzheimer’s disease (n = 25) and brain tumors (n = 15). 
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numerical, and textual formats to explain the algorithm decision. Ap
pendix B contains comprehensive references categorized by imaging 
modalities and output format. 

A visual explanation is mainly used to explain classifications (n = 82, 
Fig. 8) presenting saliency maps, attention maps or heat maps. The most 
frequent XAI tool used is class activation mapping (CAM) (n = 96) and 
its different extensions like Grad-CAM, Grad-CAM++, Guided Grad- 
CAM, Score-CAM, FasterScore-CAM, Vanilla CAMHR-CAM, HAM or 
GLAM. A few visual explanation used were Layer-wise Relevance 
Propagation (LRP) (n = 18), attention-based mechanisms (n = 18), Local 
Interpretable Model-Agnostic Explanations (LIME) (n = 15) and other 
perturbation-based or surrogate models (n = 4), Integrated Gradients (e. 
g., Oriented modified integrated gradients: OMIG) (n = 9), saliency 
maps (n = 8), SHapley Additive exPlanations (SHAP) (n = 8), attention 
weights (n = 4), Deep-Taylor Decomposition (n = 4), Randomized Input 
Sampling for Explanation (RISE) (n = 4), guided backpropagation (n =
3), GSInquire (n = 3), Occlusion Sensitivity (n = 3), Concept activation 
vectors (n = 3), multilayer perceptrons (MLP) (n = 2), keras-vis (n = 2), 
t-Distributed Stochastic Neighbor Embedding (t-SNE) (n = 1), Jacobian 
map (n = 1), Explainable Boosting Machine (EBM) (n = 1), Uniform 
Manifold Approximation and Projection (UMAP) (n = 1), depth map- 
based (n = 1), Explainable and Simplified Image Translation (ESIT) 
(n = 1), pulse-coupled neural network (m-PCNN) (n = 1), genetic 

Table 1 
Public datasets used ordered by pathologies.  

Pathologies Public datasets used 

Covid-19 (XRays) [30–49] Kaggle repository (COVIDx, COVID-19 
RADIOGRAPHY, covid-19-X-ray-10000-images, 
covid19-chest-xray-image-dataset, largest-covid19- 
dataset), Github repository (chestxray-dataset), 
COVID19 + from the Medical Imaging Databank in 
Valencia Region Medical Image Bank (BIMCV), 
RSNA International COVID-19 Open Radiology 
Database (RICORD), Chest X-ray Images 
Pneumonia (CXRIP), The MONTGOMERY County 
CXR dataset, The SHENZHEN Hospital X-ray 
dataset, the National Institute of Health (NIH) Chest 
X-ray dataset, 
COVID-19 Image Data Collection (CIDC), COVID- 
19-positive radiographs from the GitHub-COVID 
repository, COVID-19-negative radiographs from 
the ChestX-ray14 repository of the National 
Institutes of Health (NIH), COVID dataset by v7- 
Darwin labs, CheXpert, Italian Radiological Case 
CASE + Radiopaedia.org COVIDx v3.0, Covid-GAN, 
Covid-Net mini Chest X-ray, BIMCV, COVID-19-NY- 
SB, Curated Dataset for COVID-19 Posterior- 
Anterior Chest Radiography Images (X-Rays) from 
Mendeley, COVID-19 image data collection from 
Cohen and COVID-19 dataset originated from the 
QUIBIM imagingcovid19 platform database, IEEE, 
RadioGyan and the British Society of Thorathic 
Imaging 

Covid-19 (CT)  
[17,18,20,27,50–62] 

Kaggle repository (SARS-CoV-2 CT Scan, COVID19- 
CT dataset), Signal Processing Grand Challenge on 
COVID-19 dataset (SPGC-COVID), COVIDx CT, 
COVIDx CT-2A & COVIDx CT-2B, CC-CCII, 
MosMedData, COVID-Ctset, LTRC dataset, CT Chest 
Images Dataset from Mendeley, COVID Ayademic, 
iRoads, Caltech-256, Caltech-101 

Covid-19 (US) [70] POCOVID and POCUS Atla platform 
Pneumonia (XRays) [71–79] RSNA Pneumonia Detection Challenge dataset, 

Chest X-ray Images Pneumonia (CXRIP), MIMIC 
dataset and a subset of NIH dataset 

Lung cancer (CT) [80–83] Lung Image Database Consortium (LIDC), LUNA 16 
Lung abnormalities 

(XRays) [84–88] (CT) [89] 
CheXpert, HUM-CXR, VinDr-CXR, MNIST 
handwritten digit database and COPDGene dataset 

Pneumothorax (XRays) [90] The CANDID-PTX (Chest X-ray Anonymised Dataset 
In Dunedin–Pneumothorax) dataset and SIIM-ACR 
dataset 

Pediatric pulmonary health 
(XRays) [91] 

Dataset from Italy with Covid-19 CXR in github, 
small pediatric dataset with pneumonia, small chest 
X-ray Tuberculosis image dataset from kaggle 

Pulmonary embolism (CT)  
[92] 

Kaggel dataset RSNA STR Pulmonary Embolism 

Cardiac health/conditions 
(MRI) [93,94] 
(SPECT-Mibi) [95,96] 

UK Biobank, REgistry of Fast Myocardial Perfusion 
Imaging with NExt generation SPECT (REFINE 
SPECT) registry, Open-source challenge MICCAI 
2017 Bernard 

Alzheimer’s disease 
(MRI) [97–116] 
(MRI & PET FDG) [30,117] 

Alzheimer’s Disease Neuroimaging Initiative 
dataset (ADNI), Australian dataset (AIBI), Open 
Access Series of Imaging Studies (OASIS), TADPOLE 
Challenge organizers, NACC, NIFD, Parkinson’s 
Progression Markers Initiative (PPMI), FHS dataset, 
T1 weighted MR dataset from Kaggle 

Parkinson’s Disease 
(MRI) [118] 
(SPECT-Datscan)  
[119,120] 

Parkinson’s Progression Markers Initiative (PPMI) 

Autism Spectrum Disorder 
(MRI) [121,122] 

Autism Brain Imaging Data Exchange (ABIDE) 

Cognitive tasks (fMRI) [123] The Adolescent Brain Cognitive Development 
(ABCD) 

Gliomas / Brain tumours 
(MRI) [117–128] 

Brain Tumor Segmentation (BraTS) challenge 2013, 
2018 and 2020 databases, ADNI, Brain Tumor 
Classification (MRI) from Kaggle, TCGA dataset 
from The Cancer Imaging Archive repositories, The 
brain figshare MRI dataset, diffusion datasets 
(Human connectome project dataset, Lifespan  

Table 1 (continued ) 

Pathologies Public datasets used 

dataset, Prisma dataset and Pathology dataset), IXI 
dataset, European CyberKnife Center in Munich 

Brain diseases (CT) [136,137] CQ500 and RSNA data sets 
Brain cognitive state (fMRI)  

[138] 
The S1200 release of the Human Connectome 
Project and BOLD5000 dataset 

Cerebral haemorrhages (CT)  
[139] 

Felipe Kitamura’s CT dataset from the RSNA 2019 
brain CT hemorrhage challenge 

Prostate lesions 
(MRI) [140] 
(MRI & US) [29] 

The PROSTATEx dataset and open-source database 
at the Cancer Imaging Archive 

Breast cancer & calcifications 
(Mammography)  
[141–147] 

CBIS-DDSM dataset, NYU Breast Cancer Screening 
Dataset v1.0, Database for Screening 
Mammography (DDSM), Dataset of breast 
ultrasound image, INbreast dataset, BUSIS and BUSI 

Age prediction 
(XRays-bone) [148] 
(XRays-chest) [149] 
(MRI-brain) [150–152] 

Cambridge Centre for Aging and Neuroscience 
(Cam-CAN), NIH Chest X-ray, Consortium for 
Reliability and Reproducibility (CoRR), 
Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), Brain Genomics Superstruct Project (GSP), 
Functional Connectomes Project (FCP), Autism 
Brain Imaging Data Exchange (ABIDE), Parkinson’s 
Progression Markers Initiative (PPMI), 
International Consortium for Brain Mapping 
(ICBM), Australian Imaging, Biomarkers and 
Lifestyle (AIBL), Southwest University Longitudinal 
Imaging Multimodal (SLIM), Information extraction 
from Images (IXI), Open Access Series of Imaging 
Studies (OASIS), Consortium for Neuropsychiatric 
Phenomics (CNP), Center for Biomedical Research 
Excellence (COBRE), Child and Adolescent 
NeuroDevelopment Initiative (CANDI) and 
Brainomics, new dataset CVM-900, The 2017 
Pediatric Bone Age Challenge dataset from the 
Radiological Society of North America (RSNA) 

Knee injury (MRI) [153] MRNet data set, Chiba and Stanford dataset, 
fastMRI dataset 

Sex classification 
(MRI-brain) [154,155] 

The Human Connectome Project (HCP), The Brain 
Genomics Superstruct Project (GSP), The enhanced 
Nathan Kline Institute-Rockland Sample (NKI-RS), 
The Consortium for Reliability and Reproducibility 
(CoRR) and Southwest University Longitudinal 
Imaging Multimodal dataset, ABIDE, APCI, COBRE- 
MIND, Tulsa 1000 

Blockin for regional 
anesthesia (US) [156] 

Nerve-UTP Nerve segment dataset from the Kaggle 
Competition repository 

Osteoarthritis (MRI & XRays)  
[31] 

MOST study  
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algorithm based brain masking (GABM) (n = 1) or DeepLIFT (n = 1). Ten 
articles did not describe the model or used a home-made model. In some 
articles, the authors combined and compared the different methods of 
visual explanations (n = 31). 

Numerical explanations are used for different tasks and mainly for 

predictions and classifications (Fig. 8). SHAP (n = 31) and, LIME (n =
15) are the two most used frequently techniques to provide numerical 
explanations through plots & violin plots (SHAP) and pareto chart 
(LIME). Testing with Concept Activation Vectors (TCAV) (n = 3), se
mantic interpretability score (SIS) (n = 3), EBM (n = 2), training 

Fig. 6. Number of papers per AI task (total N = 229 papers).  

Fig. 7. Output format examples: a. Visual: Heatmap visualisation for pneumonia with GradCAM [52], b. Numerical: The violin plots show the SHAP value impact on 
the estimation of the probabilities for Alzheimer’s Disease [30], c. Rule-based: An illustration in the context of making the rules used for 2 characteristics in a clinical 
decision-support diagnosis of dementia transparent [157], d. Textual: Gorgias argumentation theory for the assessments of Alzheimer’s disease [97], e. Example- 
based: TraCE generates counterfactual explanations based on diagnoses by incrementally incorporating pertinent patterns into various query images belonging to 
healthy individuals, thereby enhancing the probability of their classification into the abnormal category. [77]. 

Fig. 8. Type of explanations per AI tasks.  
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calibration-based explainers (TraCE) (n = 1), eNetXplorer (n = 1), 
Accumulated Local Effects (ALE) (n = 1), and Friedman’s H-statistic 
(FHs) (n = 1) are other examples less frequently used. Other human- 
interpretable explanations including feature importance, similarity 
score, confidence score or probability score/risk were also employed (n 
= 18). 

Rule-based explanations were employed to explain the diagnosis, the 
predictions and the classifications made by algorithms (Fig. 8). Decision 
trees (n = 3), Bayesian Networks (n = 2), Gorgias argumentation theory 
(n = 1), fuzzy rule-based models (n = 1), Logit Boost Models (LBM) (n =
1), prototypes with logical rules (n = 2) were the rule-based tools used. 
One article used a home-made approach, meaning one without a specific 
name. 

Textual explanations are mainly useful for prediction tasks (Fig. 8). In 
91 % (n = 10/11) of the cases it is used in combination with other types 
of formats. Concept activation vectors (n = 2), semantic features (n = 4) 
and different human-interpretable explanation are used for textual ex
planations (n = 5). 

Example-based explanations are the least used in the articles (n = 6) 
and include prototypes (n = 2), counterfactuals (n = 1), patch similar
ities (n = 1), content-based image retrieval (CBIR) (n = 1), or TraCE (n 
= 1). This output format is always combined with other output formats. 

Mixed explanations were used in four different tasks: classification, 
detection, prediction, diagnosis, but not for segmentation and image 
enhancement (Fig. 8). 

3.10. Scope (global or local) 

The scope of the explanation in the studies was local in 215 cases and 
aimed to explain a given input or sample. The explanation format was 
typically single (n = 178) with the majority being visual (n = 139) and 
numeric (n = 6). When the output format was mixed (n = 30), numeric 

and visual explanations were frequently combined (n = 16) or using 
triple format of explanations namely visual, numerical and textual types 
(n = 4). 

In 50 articles, the explanation focused on a common pattern across 
the population and thus had a more global focus. For the article applying 
a global scope (n = 13), SHAP was the most frequently used (n = 6) with 
numerical explanations (n = 7), followed by visual (n = 3) and rule- 
based (n = 2) and one article with a mixed output format (numerical 
and visual). 

Dual scope was used in 37 articles, also with SHAP as the most 
frequently employed, sometimes (n = 16) alone, other times (n = 7) 
combined with another approach. When the scope was both global and 
local, the output format was mainly numeric (n = 28), followed by visual 
(n = 20), rule-based (n = 3), or textual (n = 3) (Table 2). 

Classification was mostly explained locally (82 %), using both scope 
(12 %) and globally only (6 %). Detection was also mostly explained 
locally (93 %), as well as diagnosis (84 %), Image enhancement (83 %), 
segmentation (62 %) and prediction (58 %) (Table 2). 

3.11. Stage (ante-hoc, post-hoc specific or agnostic) 

The models used in the studies were mostly post-hoc (n = 222), with 

Table 2 
Scope of the explanation according to the output format.   

Classification 
(n ¼ 89) 

Detection 
(n ¼ 29) 

Segmentation 
(n ¼ 13) 

Diagnosis 
(n ¼ 38) 

Prediction 
(n ¼ 48) 

Image Enhancement 
(n ¼ 6) 

Others 
(n ¼ 5) 

Global 
(n ¼ 13) 

Visual = 2; 
Numeric = 2; 
Mix = 1 

Numeric = 1 Visual = 1; 
Numeric = 1 

Rule-based = 1 Numeric = 3; 
Rule-based = 1 

– – 

Local 
(n ¼ 178) 

Visual = 65; 
Numeric = 1; 
Mix = 7 

Visual = 16; 
Numeric = 1; 
Mix = 10 

Visual = 8 Visual = 24; 
Numeric = 2; 
Rule-based = 1; 
Mix = 5 

Visual = 21; 
Numeric = 1; 
Rule-based = 1; 
Textual = 1; 
Mix = 4 

Visual = 2; 
Numeric = 1; 
Mix = 2 

Visual = 3; 
Mix = 2 

Both 
(n ¼ 37) 

Visual = 2; 
Numeric = 4; 
Mix = 5 

Visual = 1 Visual = 3 Numeric = 2; 
Mix = 3 

Visual = 1; 
Numeric = 9; 
Mix = 6 

Visual = 1 –  

Table 3 
Output format and AI task according to Stage Model.  

Stage Model Output # AI Task 

Clas Det Seg Diag Pred ImgE Others 

Specific Ante Visual 5 2 1 – 2 – – – 
Numeric 2 1 1 – – – – – 
Rule-based 1 – – – – 1 – – 
Mix 6 2 – – 1 1 2 – 

Post-hoc Visual 122 59 12 8 19 19 2 3 
Numeric 2 – – – 2 – – – 
Rule-based 2 – – – 1 1 – – 
Textual 1 – – – – 1 – – 
Mix 18 6 5 – 3 2 – 2 

Agnostic Post-hoc Visual 24 9 4 4 3 3 1 – 
Numeric 24 6 1 1 2 13 1 – 
Rule-based 1 – – – 1 – – – 
Mix 28 7 9 – 5 7 – – 

Clas - classification; Det - detection; Seg - Segmentation; Diag - Diagnosis; Pred - prediction; ImgE - Image Enhancement; Others 

Table 4 
Terminology used in the articles.  

terminology Number papers 

Explainable (E) 207 
INTERPRETABLE (IR) 187 
UNDERSTANDABLE (U) 112 
TRANSPARENT (T) 61 
RELIABLE (R) 31 
INTELLIGIBLE (IL) 3  
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77 agnostic, 145 specific and 14 model-based explanations. Eleven pa
pers combined both types of post-hoc models, using several explanatory 
tools, usually one type of the CAM models (post specific) with another 
post-agnostic model (LIME, SHAP, RISE, LRP, Occlusion sensitivity). 
Another paper combined two post-agnostic models (LIME and SAHP) 
with a CAM modified to be ante-specific (Table 3). 

3.12. Terminology 

The terminology used in the articles was diverse and involved terms 
such as explainable (n = 207), interpretable (n = 187), understandable (n 
= 112), transparent (n = 61), reliable (n = 31) and intelligible (n = 3) 
(Table 4). 

Several terms were sometimes combined in the same article. In 34 
articles, only one term was used: Explainable (E) (n = 23), Interpretable 

(IR) (n = 10) and Transparent (T) (n = 1). In 70 occasions, two terms 
were used throughout the article. While 3 terms were mixed in 75 pa
pers, 4 in 39 articles, 5 in 9 others and in one article all 6 terms were 
found (Table 5). 

The two most indistinctly used terms were explainable and inter
pretable, being found together in 169 out of the 228 articles. 

For ante-hoc models (n = 14), the terms “explainable” (n = 13) and 
“interpretable” (n = 12) were used frequently, while “understandable” 
(n = 5) and “transparent” (n = 3) were rarely used. In post hoc models 
(n = 227), “explainable” (n = 190) and “interpretable” (n = 164) were 
also the preferred terms, followed by “understandable” (n = 110) and 
“transparent” (n = 57). Whereas “reliable” (n = 29) and “intelligible” (n 
= 4) were rare (Fig. 9). 

4. Discussion 

The aim of this scoping review was to map the existing literature on 
explainable and interpretable AI in diagnostic/follow up medical im
aging modalities, to explore the various techniques, methods and ap
proaches that are employed to improve AI interpretability. 

The increased number of XAI-related articles identified in this work 
can be attributed to several factors, namely the ethical questions or 
social implications of AI that have gained much attention in recent years 
[14]. Most notably in 2018, The European Union’s General Data Pro
tection Regulation (GDPR) stipulated that consumers affected by an 
automatic decision have the right to obtain “meaningful information 
about the logic involved” - interpreted only as a “right to explanation” 
[158,159]. In addition, the growing popularity of DL approaches 

Table 5 
Combination of terms used in articles.  

Nbr terms 
used 

Nbr papers (combination of terms) 

1 34 (E = 23, IR = 10, T = 1) 
2 70 (E + IR = 50, E + U = 10, IR + U = 4, IR + R = 3, IR + T = 2, E + R 

= 1) 
3 75 (E + IR + U = 49, E + IR + T = 16, E + IR + R = 4, E + T + U = 3, 

E + T + R = 2, IR + T + U = 1) 
4 39 (E + IR + T + U = 26, E + IR + U + R = 10, E + IR + T + R = 2, E 

+ IR + U + IL = 1)) 
5 9 (E + IR + T + U + R = 7, E + IR + U + R + IL = 2) 
6 1  

Fig. 9. Terminology used according to stage of deployment.  
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compared to classical ML, the growth in computing power and pro
cessing speed, digitalisation of healthcare and the availability of datasets 
have also contributed in an important way to the burgeoning field of XAI 
research [3]. 

Cross-sectional imaging, such as MRI and CT, and radiography are 
the main modalities where XAI has been applied. The lungs and the 
brain with pathologies such as Covid-19 and Alzheimer’s disease were 
well represented in the published literature, as was shown in another 
similar study [9]. These trends can be attributed to the widespread 
availability of X-rays and the frequent utilization of cross-sectional im
ages in diagnosis through MRI and CT scans. Furthermore, the world
wide pandemic has accelerated research efforts in understanding the 
Covid-19 pathology. Lastly, the availability of public datasets required 
for AI development has also contributed to the advancement of XAI in 
these areas. 

The tasks explained were mainly designed to help physicians to 
classify (n = 89), predict (n = 47), diagnose (n = 39) and detect (n = 29) 
pathologies. A few of the more technical tasks, such as improving image 
quality (n = 6), were more recently explained. This is consistent with the 
most current use of AI in medical imaging [1,2,160]. 

In the literature [9–12], authors agree on most terms related to XAI 
taxonomy. However, the categories of output formats vary, having vi
sual (n = 186), numeric (n = 67), rule-based (n = 11), textual (n = 11) 
and example-based (n = 6) [9,10,12] as the most frequently applied 
terms. The visual format is the predominant approach used to illustrate 
artificial intelligence decision-making processes, and this trend aligns 
with the dominant model found in existing literature in medical imaging 
[9,14]. However, visual explanations, such as heatmaps, are criticized 
by some authors as not being what users expect or need [161]. The same 
authors draw attention to the importance of distinguishing “user-centric 
explainable AI from developer-centric XAI” [161]. At present, XAI does 
not sufficiently take into account the users, such as physicians or radi
ographers who rely on AI results to take decisions. In addition, the 
development of XAI should take interdisciplinary approaches into ac
count [162–165]. Wang et al. [166] point out the need to integrate 
varied and multiple explanations in order to get closer to the users’ way 
of reasoning. In this review, 45 articles combined multiple explanation 
output formats. Social sciences are a field that can help to develop ex
planations and social sciences can help to optimize how XAI can incor
porate social aspects into explanations to foster interactivity, to priorize 
user-centered design and to introduce dialogues that mimic human 
interaction [161,163,166–168]. None of the documents or the XAI 
frameworks in the field of medical imaging used the oral/dialog/verbal 
output format for explanations in the identified literature. In this 
context, explanations must extend beyond simple cognitive and causal 
aspects, going beyond the probabilities and knowledge possessed by 
algorithm developers. As Pazzani et al. [161] explain, the aim of ex
planations is not simply to pass on information, but to enable profane 
persons to become experts. These explanations should encompass the 
social process of knowledge integration, creating a symbiotic relation
ship between the explainer and the user. In addition, it is essential to 
recognize that users can vary considerably in terms of contexts, back
grounds, levels of knowledge and even modes of reasoning. In partic
ular, users may have distinct mental models and react differently to 
explanations, which underlines the importance of adapting explanations 
to these viewpoints and needs [161,163,166–168]. 

Out of a total of 228 explanations, the majority (n = 178/228, 78.1 
%) were given at a local level. A smaller proportion (n = 13/228, 5.7 %) 
exclusively focused on global explanations, while a subset (n = 37/228, 
16.2 %) covered both local and global aspects. In their study, Liao et al. 
[169] conducted interviews with 20 experience practitioners users and 
designers. The participants acknowledged the importance of offering a 
global explanation to facilitate user comprehension of the system 
functionality and enable the formation of a mental model. Additionally, 
the researchers noted that users with a background in AI-related subjects 
displayed a higher tendency to actively seek global explanations. This 

difference in the explanations’ scope may be linked to the context of 
medical imaging and the need to make a diagnosis for each patient, and 
therefore a trend towards giving local and therefore person-specific 
explanations. This distinction in explanatory approaches may also be 
influenced by the choice of output formats. Notably, in this scoping 
review, the visual format was predominantly used for local explanations 
(89.3 %, n = 159/178), whereas the numerical format was preferred for 
global explanations (61.5 %, n = 8/13). This discrepancy may be 
attributed to the effectiveness of the visual format in aiding decision- 
making for individual patients, particularly in tasks related to classifi
cation and diagnosis. Conversely, the numerical format is preferred for 
global explanations to explain which features have the biggest impact on 
the model in general. 

Among the models analyzed, the majority (n = 222) were post-hoc, 
consisting of 77 agnostic models and 145 specific models. Only a small 
number of articles (14) employed model-based explanations. Further
more, the terminology used was not specific to the different stages of the 
models (Fig. 9). The two most commonly used terms in the field of AI 
model interpretability, “explainable” and “interpretable”, were used 
indistinctly. Whereas, according to their definition, both “interpretable” 
and “transparent” should be more suited to ante-models or model-based 
types, as it seeks to make understandable the model by itself. Likewise, 
“explainable” should be more in line with post-hoc models, since it in
volves an additional tool to understand the prediction made by the AI 
algorithm [8]. Thus, in the literature, these terms are not used strictly 
according to their meaning, but rather to facilitate rhetoric and avoid 
repetition. 

This scoping review has certain limitations. First, the quality 
assessment of the included studies was not carried out following the 
specific methodology of a scoping review. Second, the focus was solely 
on recent XAI developments, leading to the exclusion of studies pub
lished before 2017, which may have resulted in missing out other tools 
that were explored during that period. Finally, efforts have been made to 
achieve exhaustive coverage of the articles published in this review; 
however, due to the absence of descriptors (or Mesh terms) related to 
XAI and their use as keywords in the search equations, it is possible that 
certain articles were not found using our search methodology. Never
theless, the equations and search strategy are available in the supple
mentary material, ensuring transparency and enabling others to 
replicate this research. 

As a scoping review also aims to identify gaps that still require 
further work, additional research on XAI can be identified. XAI tools 
related to other tasks can be developed, such as image enhancement and 
for other imaging modalities, including those specific to the field of 
radiotherapy and nuclear medicine. XAI developments should integrate 
user needs and could be more interactive. For example, qualitative or 
possibly even quantitative studies with physicians and the impact that 
XAI has on the decision making or patients should be considered, to 
avoid being purely developer centric XAI. Furthermore, it is essential to 
analyse the impact that altered decision-making with XAI can have on 
the patients. This analysis needs to analyse how patients are affected by 
the use of explainable XAI in medical practice and considers its potential 
implications for their overall care and well-being, such as improved or 
faster decision making. 

5. Conclusion 

XAI techniques are mainly applied in the context of MRI, CT or 
Radiography for the analysis of lung and brain pathologies, using 
available datasets. The predominant formats for presenting results are 
visual and numerical, with the emphasis on explaining classification and 
prediction tasks. In medical imaging, explanations tend to be more 
specific to individual samples or populations than to a global applica
tion. Meanwhile, there is a lack of attention to other AI tasks, as image 
enhancement, related to imaging itself and modalities such as PET/CT or 
SPECT/CT. Terminology in this area is not yet standardized, and terms 
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such as “explainable” and “interpretable” are often used indistinctly in 
the literature. In the future, XAI developers should take user and patient 
needs and perspectives into account. 
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Appendix A 

PubMed 

10.10.22 
(“explainable deep learning”[tiab] OR “interpretable deep learning”[tiab] OR “XAI”[tiab] OR “explainable machine learning”[tiab] OR “inter

pretable machine learning”[tiab] OR “Transparent deep-learning”[tiab] OR “Transparent machine learning”[tiab] OR “Interpretable AI”[tiab] OR 
“Explainable AI”[tiab] OR “Transparent AI”[tiab] OR ((“explainability”[tiab] OR “Interpretability”[tiab] OR “transparency”[tiab] OR “decom
posability”[tiab]) AND (“deep learning”[tiab] OR “AI”[tiab] OR “machine learning”[tiab]))). 

AND 

(“Radiology”[Mesh] OR “Radiology”[tiab] OR “Diagnostic Imaging”[Mesh] OR “Diagnostic Imaging”[tiab] OR “Magnetic Resonance Imag
ing”[tiab] OR “MRI”[tiab] OR “Computed Tomography”[tiab] OR “CT”[tiab] OR “Mammograph*”[tiab] OR “Ultrasonograph*”[tiab] OR “Radio
graph*”[tiab] OR “Radiotherapy”[Mesh] OR “Radiation Oncology”[Mesh] OR “Radiotherap*”[tiab] OR “radiation therap*”[tiab] OR “Radiation 
Oncology”[tiab] OR “Tomotherapy”[tiab] OR “LINAC”[tiab] OR “linear accelerator”[tiab] OR “nuclear medicine”[tiab] OR “medical imag*”[tiab] OR 
“PET/CT”[tiab] OR “PET”[tiab] OR “SPECT/CT”[tiab] OR “SPECT”[tiab]). 

AND (2017:2022[pdat]). 
Number of references: 537. 

Embase.com 

10.10.22. 
(‘explainable deep learning’:ab,ti,kw OR ‘interpretable deep learning’:ab,ti,kw OR ‘XAI’:ab,ti,kw OR ‘explainable machine learning’:ab,ti,kw OR 

‘interpretable machine learning’:ab,ti,kw OR ‘Transparent deep-learning’:ab,ti,kw OR ‘Transparent machine learning’:ab,ti,kw OR ‘Interpretable AI’: 
ab,ti,kw OR ‘Explainable AI’:ab,ti,kw OR ‘Transparent AI’:ab,ti,kw OR ((‘explainability’:ab,ti,kw OR ‘Interpretability’:ab,ti,kw OR ‘transparency’:ab, 
ti,kw OR ‘decomposability’:ab,ti,kw) AND (‘deep learning’:ab,ti,kw OR ‘AI’:ab,ti,kw OR ‘machine learning’:ab,ti,kw))). 

AND. 
(‘Radiology’/exp OR ‘Radiology’:ab,ti,kw OR ‘Radiodiagnosis‘/exp OR ‘Diagnostic Imaging’:ab,ti,kw OR ‘Magnetic Resonance Imaging’:ab,ti,kw 

OR ‘MRI’:ab,ti,kw OR ‘Computed Tomography’:ab,ti,kw OR ‘CT’:ab,ti,kw OR ‘Mammograph*’:ab,ti,kw OR ‘Ultrasonograph*’:ab,ti,kw OR ‘Radio
graph*’:ab,ti,kw OR ‘radiotherapy’/exp OR ‘Radiotherap*’:ab,ti,kw OR ‘radiation therap*’:ab,ti,kw OR ‘radiation oncology’/exp OR ‘radiation 
oncology’:ab,ti,kw OR ‘Tomotherapy’:ab,ti,kw OR ‘LINAC’:ab,ti,kw OR ‘linear accelerator’:ab,ti,kw OR ‘nuclear medicine’/exp OR ‘nuclear medi
cine’:ab,ti,kw OR ‘medical imag*’:ab,ti,kw OR ‘PET/CT’:ab,ti,kw OR ‘PET’:ab,ti,kw OR ‘SPECT/CT’:ab,ti,kw OR ‘SPECT’:ab,ti,kw). 

AND [2017–2022]/py. 
Number of references: 624. 

CINAHL 

10.10.22. 
(TI “explainable deep learning” OR TI “interpretable deep learning” OR TI “XAI” OR TI “explainable machine learning” OR TI “interpretable 

machine learning” OR TI “Transparent deep-learning” OR TI “Transparent machine learning” OR TI “Interpretable AI” OR TI “Explainable AI” OR TI 
“Transparent AI” OR AB “explainable deep learning” OR AB “interpretable deep learning” OR AB “XAI” OR AB “explainable machine learning” OR AB 
“interpretable machine learning” OR AB “Transparent deep-learning” OR AB “Transparent machine learning” OR AB “Interpretable AI” OR AB 
“Explainable AI” OR AB “Transparent AI” OR ((TI “explainability” OR TI “Interpretability” OR TI “transparency” OR TI “decomposability”) AND (TI 
“deep learning” OR TI“AI” OR TI “machine learning”)) OR ((AB “explainability” OR AB “Interpretability” OR AB “transparency” OR AB “decom
posability”) AND (AB “deep learning” OR AB“AI” OR AB “machine learning”))). 

AND. 
(MH “Diagnostic Imaging+” OR MH “Nuclear Medicine” OR MH “Radiation Oncology” OR “Radiotherapy+” OR TI “Radiology” OR AB “Radi

ology” OR TI “Diagnostic Imaging” OR AB “Diagnostic Imaging” OR TI “Magnetic Resonance Imaging” OR AB “Magnetic Resonance Imaging” OR TI 
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“MRI” OR AB “MRI” OR TI “Computed Tomography” OR AB “Computed Tomography” OR TI “CT” OR AB “CT” OR TI “Mammograph*” OR AB 
“Mammograph*” OR TI “Ultrasonograph*” OR AB “Ultrasonograph*” OR TI “Radiograph*” OR AB “Radiograph*” OR TI “Radiotherap*” OR AB 
“Radiotherap*” OR TI “Radiation therapy” OR AB “Radiation therapy” OR TI “Radiation oncology” OR AB “Radiation oncology” OR TI “Tomo
therapy” OR AB “Tomotherapy” OR TI “LINAC” OR AB “LINAC” OR TI “Linear accelerator” OR AB “Linear accelerator” OR TI “nuclear medicine” OR 
AB “nuclear medicine” OR TI “medical imag*” OR AB “medical imag*” OR TI “PET/CT” OR AB “PET/CT” OR TI “PET” OR AB “PET” OR TI “SPECT/ 
CT” OR AB “SPECT/CT” OR TI “SPECT” OR AB “SPECT”). 

Number of references: 74. 

Web of Science 

Web of Science Core collecABon. 
10.10.22. 
TS=(“explainable deep learning” OR “interpretable deep learning” OR “XAI” OR “explainable machine learning” OR “interpretable machine 

learning” OR “Transparent deep-learning” OR “Transparent machine learning” OR “Interpretable AI” OR “Explainable AI” OR “Transparent AI” OR 
((“explainability” OR “Interpretability” OR “transparency” OR “decomposability”) AND (“deep learning” OR “AI” OR “machine learning”))). 

AND. 
TS=(“Radiology” OR “Diagnostic Imaging” OR “Magnetic Resonance Imaging” OR “MRI” OR “Computed Tomography” OR “CT” OR “Mammo

graph*” OR “Ultrasonograph*” OR “Radiograph*” OR “Radiotherap*” OR “radiation therap*” OR “radiation oncology” OR “Tomotherapy” OR 
“LINAC” OR “linear accelerator” OR “nuclear medicine” OR “medical imag*” OR “PET/CT” OR “PET” OR “SPECT/CT” OR “SPECT”). 

AND PY = 2017–2100. 
Number of references: 686. 

Google scholar 

10.10.22. 
“explainable|interpretable|transparent ”deep learning“|XAI|”machine learning“” Radiology|“Diagnostic Imaging”|“Magnetic Resonance Imag

ing”|MRI|CT|mammography|ultrasonography|radiography|radiotherapy|“nuclear medicine”|“medical imaging”|PET|“radiation oncology”|“linear 
accelerator”|LINAC|Tomotherapy. 

(With year limit 2017–2022). 
Number of references: 3490. 
The first 200. 

medRxiv and BioRxiv 

10.10.2022. 
Advanced Search | medRxiv. 
(Interpretable AI OR Explainable AI OR XAI) AND (medical imaging OR medical image analysis) Or (explainable deep learning OR interpretable 

deep learning OR XAI) AND (medical imaging OR medical image analysis). 
Same results, Number of references: 92. 

Appendix B. Comprehensive references categorized by imaging modalities and output format 

MRI  

Output format References 

Visual [43–93] 
Numerical [94,100,110,152,190–195] 
Textual – 
Ruled-based [157] 
Example-based – 
Mixed Rule-based and Textual: [97] 

Visual & Numerical:[98,120,129,134,151,196,197]  
Visual & Textual:[93]  
Visual, Numerical & Textual:[198]  

Radiography (Xrays)  

Output format References 

Visual [115–145] 
Numerical [40,46,51,76,204] 
Textual – 
Ruled-based [75,205] 
Example-based – 
Mixed Numerical & Rule-based:[206] 

Visual & Numerical:[38] 
Visual & Rule-based:[53] 
Numerical & Example-based:[77,85] 

(continued on next page) 
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(continued ) 

Output format References 

Visual & Example-based:[207] 
Visual, Numerical & Textual:[56]  

CT  

Output format References 

Visual [160–188] 
Numerical [81,223–227] 
Textual [228] 
Ruled-based – 
Example-based – 
Mixed Rule-based & Example-based: [65]  

Visual & Numerical:[60,61,63,137,229–231] 
Numerical & Example-based:[232] 
Visual, Numerical & Textual:[82] 
Visual, Numerical, Rule-based & Textual: [80]  

US  

Output format References 

Visual [207–219] 
Numerical [147,244] 
Textual – 
Ruled-based – 
Example-based – 
Mixed Numerical & Rule-based:[146] 

Visual & Numerical:[245] 
Numerical & Textual:[246]  

Double  

Output format References 

Visual  - Radiography & CT:[27] 
PET/CT & MRI:[28] 
US to MRI:[33] 
CBCT & Panoramic images:[35] 

Numerical PET/CT & MRI:[30]  
US & CT:[32] 
Mammography & US:[26] 

Textual – 
Ruled-based – 
Example-based – 
Mixed Visual & Numerical: 

Radiography & CT:[24,25,34]  
MRI & US:[29] 
Visual, Numerical & Textual: 
MRI & Radiography: [31]  

fMRI  

Output format References 

Visual [122,138,247–249] 
Numerical [250] 
Textual – 
Ruled-based – 
Example-based – 
Mixed Visual & Numerical: [123,154]  

SPECT or SPECT/CT  

Output format References 

Visual [251–255] 
Numerical – 
Textual – 
Ruled-based [95] 
Example-based – 
Mixed Visual & Numerical:[96,101,119]  

Mammography 
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Output format References 

Visual [141–145,256,257] 
Numerical – 
Textual – 
Ruled-based – 
Example-based – 
Mixed Numerical & Rule-based: [258]  

PET/CT  

Output format References 

Visual – 
Numerical – 
Textual – 
Ruled-based – 
Example-based – 
Mixed Visual, Numerical & Textual:[259]  

Different medical imaging  

Output format References 

Visual DXA: [260]  
MRI to PET: [117]  
Radiotherapy: CBCT for IGRT: [261] 

Numerical – 
Textual – 
Ruled-based – 
Example-based – 
Mixed  • Image captioning: 

Visual & Numerical: [262]  
• Breast Tomosynthesis: 
Visual & Numerical:[263]  
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Recognition of Alzheimer’s Disease Using Neuroimaging, Sensors 22 (2022), 
https://doi.org/10.3390/s22030740. 

[117] Kao CH, Chen YS, Chen LF, Chiu WC. Demystifying T1-MRI to FDG 18 -PET Image 
Translation via Representational Similarity. Lect Notes Comput Sci (Including 
Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2021;12903 LNCS: 
402–12. 10.1007/978-3-030-87199-4_38. 

[118] W.S. Monroe, T. Anthony, M.M. Tanik, F.M. Skidmore, Towards a framework for 
validating machine learning results in medical imaging opening the black box, 
ACM Int Conf Proceeding Ser (2019), https://doi.org/10.1145/ 
3332186.3332193. 

[119] P.R. Magesh, R.D. Myloth, R.J. Tom, An explainable machine learning model for 
early detection of parkinson’s disease using LIME on DaTSCAN imagery, 

M. Champendal et al.                                                                                                                                                                                                                          

https://doi.org/10.1109/ACCESS.2021.3090215
https://doi.org/10.1109/ACCESS.2021.3090215
https://doi.org/10.3390/diagnostics12071706
https://doi.org/10.3390/diagnostics12071706
https://doi.org/10.1038/s41598-021-04529-5
https://doi.org/10.1038/s41598-021-04529-5
https://doi.org/10.1016/j.jare.2022.08.021
https://doi.org/10.1109/TCBB.2022.3190265
https://doi.org/10.1109/TCBB.2022.3190265
https://doi.org/10.1007/978-3-030-66645-3_22
https://doi.org/10.1117/1.jmi.8.4.044502
https://doi.org/10.1016/j.artmed.2020.101952
https://doi.org/10.1016/j.artmed.2020.101952
https://doi.org/10.3390/diagnostics12092084
https://doi.org/10.3390/diagnostics12092084
https://doi.org/10.1038/s41467-022-29437-8
https://doi.org/10.1038/s41467-022-29437-8
https://doi.org/10.1016/j.media.2022.102551
https://doi.org/10.1109/TMI.2020.3042773
https://doi.org/10.3934/mbe.2022017
https://doi.org/10.1111/1754-9485.13393
https://doi.org/10.1038/s41598-022-16976-9
https://doi.org/10.1093/ehjci/jez177
https://doi.org/10.1093/ehjci/jez177
https://doi.org/10.1016/j.jcmg.2021.04.030
https://doi.org/10.1002/ima.22762
https://doi.org/10.1016/j.bspc.2022.103828
https://doi.org/10.1016/j.bspc.2022.103828
https://doi.org/10.1038/s41467-022-31037-5
https://doi.org/10.1007/s11682-022-00688-9
https://doi.org/10.1016/j.neunet.2020.03.017
https://doi.org/10.1016/j.neunet.2020.03.017
https://doi.org/10.1038/s41598-022-24541-7
https://doi.org/10.1038/s41598-022-24541-7
https://doi.org/10.1016/j.patcog.2022.108876
https://doi.org/10.1016/j.neuroscience.2022.03.026
https://doi.org/10.1088/1741-2552/ac37cc
https://doi.org/10.3389/fnagi.2019.00194
https://doi.org/10.3389/fnagi.2019.00194
https://doi.org/10.1186/s13195-021-00879-4
https://doi.org/10.1186/s13195-021-00879-4
https://doi.org/10.1002/hbm.25685
https://doi.org/10.1002/hbm.25685
https://doi.org/10.1007/978-3-030-78191-0_6
https://doi.org/10.1109/IJCNN48605.2020.9206837
https://doi.org/10.3390/s22030740
https://doi.org/10.1145/3332186.3332193
https://doi.org/10.1145/3332186.3332193


European Journal of Radiology 169 (2023) 111159

17

Computers in Biology and Medicine 126 (2020), 104041, https://doi.org/ 
10.1016/j.compbiomed.2020.104041. 

[120] Sarica A, Quattrone A, Quattrone A. Explainable Boosting Machine for Predicting 
Alzheimer’s Disease from MRI Hippocampal Subfields. Lect Notes Comput Sci 
(Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2021;12960 
LNAI:341–50. 10.1007/978-3-030-86993-9_31. 

[121] Chen Y, Yan J, Jiang M, Zhao Z, Zhao W. Convolutional Networks for 
Identification of Autism Spectrum Disorder Using Multi-Modal MRI Data n.d.: 
374–85. 

[122] Y. Liang, G. Xu, S. ur Rehman, Multi-scale attention-based deep neural network 
for brain disease diagnosis, Comput Mater Contin. 72 (2022) 4545–4661, https:// 
doi.org/10.32604/cmc.2022.026999. 

[123] N. Pat, Y. Wang, A. Bartonicek, J. Candia, A. Stringaris, Explainable machine 
learning approach to predict and explain the relationship between task-based 
fMRI and individual differences in cognition, Cerebral Cortex 33 (2023) 
2682–2703, https://doi.org/10.1093/cercor/bhac235. 

[124] M. Svm, S. Maqsood, Multi-Modal Brain Tumor Detection Using Deep Neural, 
Mdpi (2022). 

[125] M. Coupet, T. Urruty, T. Leelanupab, M. Naudin, P. Bourdon, C.F. Maloigne, et al., 
A multi-sequences MRI deep framework study applied to glioma classfication, 
Multimedia Tools and Applications 81 (2022) 13563–13591, https://doi.org/ 
10.1007/s11042-022-12316-1. 

[126] P. Windisch, P. Weber, C. Fürweger, F. Ehret, M. Kufeld, D. Zwahlen, et al., 
Implementation of model explainability for a basic brain tumor detection using 
convolutional neural networks on MRI slices, Neuroradiology 62 (2020) 
1515–1518, https://doi.org/10.1007/s00234-020-02465-1. 

[127] R.A. Zeineldin, M.E. Karar, Z. Elshaer, J. Coburger, C.R. Wirtz, O. Burgert, et al., 
Explainability of deep neural networks for MRI analysis of brain tumors, 
International Journal of Computer Assisted Radiology and Surgery 17 (2022) 
1673–1683, https://doi.org/10.1007/s11548-022-02619-x. 

[128] M. Esmaeili, R. Vettukattil, H. Banitalebi, N.R. Krogh, J.T. Geitung, Explainable 
artificial intelligence for human-machine interaction in brain tumor localization, 
J Pers Med 11 (2021), https://doi.org/10.3390/jpm11111213. 

[129] L. Gaur, M. Bhandari, T. Razdan, S. Mallik, Z. Zhao, Explanation-Driven Deep 
Learning Model for Prediction of Brain Tumour Status Using MRI Image Data, 
Frontiers in Genetics 13 (2022) 1–9, https://doi.org/10.3389/ 
fgene.2022.822666. 

[130] P. Natekar, A. Kori, G. Krishnamurthi, Demystifying Brain Tumor Segmentation 
Networks: Interpretability and Uncertainty Analysis, Frontiers in Computational 
Neuroscience 14 (2020) 1–12, https://doi.org/10.3389/fncom.2020.00006. 

[131] Niepceron B, Grassia F, Nait Sidi Moh A. Brain Tumor Detection Using Selective 
Search and Pulse-Coupled Neural Network Feature Extraction. Comput 
Informatics 2022;41:253–70. 10.31577/cai_2022_1_253. 

[132] S. Pereira, R. Meier, R. McKinley, R. Wiest, V. Alves, C.A. Silva, et al., Enhancing 
interpretability of automatically extracted machine learning features: application 
to a RBM-Random Forest system on brain lesion segmentation, Medical Image 
Analysis 44 (2018) 228–244, https://doi.org/10.1016/j.media.2017.12.009. 

[133] H. Saleem, A.R. Shahid, B. Raza, Visual interpretability in 3D brain tumor 
segmentation network, Computers in Biology and Medicine 133 (2021), 104410, 
https://doi.org/10.1016/j.compbiomed.2021.104410. 

[134] C. Severn, K. Suresh, C. Görg, Y.S. Choi, R. Jain, D. Ghosh, A Pipeline for the 
Implementation and Visualization of Explainable Machine Learning for Medical 
Imaging Using Radiomics Features, Sensors 22 (2022), https://doi.org/10.3390/ 
s22145205. 

[135] R. Tanno, D.E. Worrall, E. Kaden, A. Ghosh, F. Grussu, A. Bizzi, et al., Uncertainty 
modelling in deep learning for safer neuroimage enhancement: Demonstration in 
diffusion MRI, NeuroImage 225 (2021), 117366, https://doi.org/10.1016/j. 
neuroimage.2020.117366. 

[136] G. Fu, J. Li, R. Wang, Y. Ma, Y. Chen, Attention-based full slice brain CT image 
diagnosis with explanations, Neurocomputing 452 (2021) 263–274, https://doi. 
org/10.1016/j.neucom.2021.04.044. 

[137] C. Song, G. Fu, J. Li, Y. Pei, An Explainable Multi-Instance Multi-Label 
Classification Model for Full Slice Brain CT Images, IFAC-PapersOnLine 53 (2020) 
780–785, https://doi.org/10.1016/j.ifacol.2021.05.001. 

[138] Z. Jiang, Y. Wang, C.W. Shi, Y. Wu, R. Hu, S. Chen, et al., Attention module 
improves both performance and interpretability of four-dimensional functional 
magnetic resonance imaging decoding neural network, Human Brain Mapping 43 
(2022) 2683–2692, https://doi.org/10.1002/hbm.25813. 

[139] K.H. Kim, H.W. Koo, B.J. Lee, S.W. Yoon, M.J. Sohn, Cerebral hemorrhage 
detection and localization with medical imaging for cerebrovascular disease 
diagnosis and treatment using explainable deep learning, Journal of the Korean 
Physical Society 79 (2021) 321–327, https://doi.org/10.1007/s40042-021- 
00202-2. 

[140] Gulum MA, Trombley CM, Kantardzic M. Improved deep learning explanations 
for prostate lesion classification through grad-CAM and saliency map fusion. Proc 
- IEEE Symp Comput Med Syst 2021;2021-June:498–502. 10.1109/ 
CBMS52027.2021.00099. 

[141] S.T. Kim, J.H. Lee, H. Lee, Y.M. Ro, Visually interpretable deep network for 
diagnosis of breast masses on mammograms, Physics in Medicine and Biology 63 
(2018), https://doi.org/10.1088/1361-6560/aaef0a. 

[142] T. Kobayashi, T. Haraguchi, T. Nagao, Classifying presence or absence of 
calcifications on mammography using generative contribution mapping, 
Radiological Physics and Technology 15 (2022) 340–348, https://doi.org/ 
10.1007/s12194-022-00673-3. 

[143] La Ferla M. An XAI Approach to Deep Learning Models in the Detection of DCIS 
2021:1–9. 10.1007/978-3-031-34171-7_33. 

[144] K. Liu, Y. Shen, N. Wu, J. Chłędowski, C. Fernandez-Granda, K.J. Geras, Weakly- 
supervised high-resolution segmentation of mammography images for breast 
cancer diagnosis, Proc Mach Learn Res 143 (2021) 268–285. 

[145] Major D, Lenis D, Wimmer M, Sluiter G, Berg A, Bühler K. INTERPRETING 
MEDICAL IMAGE CLASSIFIERS BY OPTIMIZATION BASED COUNTERFACTUAL 
IMPACT ANALYSIS 2020:1096–100. 10.48550/arXiv.2004.01610. 

[146] A. Rezazadeh, Y. Jafarian, A. Kord, Explainable ensemble machine learning for 
breast cancer diagnosis based on ultrasound image texture features, Forecasting 4 
(2022) 262–274, https://doi.org/10.3390/forecast4010015. 

[147] Zhang B, Vakanski A, Xian M. Bi-Rads-Net: An Explainable Multitask Learning 
Approach for Cancer Diagnosis in Breast Ultrasound Images. 2021 IEEE 31st Int. 
Work. Mach. Learn. Signal Process., IEEE; 2021, p. 1–6. 10.1109/ 
MLSP52302.2021.9596314. 

[148] C. Wang, Y. Wu, C. Wang, X. Zhou, Y. Niu, Y. Zhu, et al., Attention-based 
multiple-instance learning for Pediatric bone age assessment with efficient and 
interpretable, Biomedical Signal Processing and Control 79 (2022), https://doi. 
org/10.1016/j.bspc.2022.104028. 

[149] Karargyris A, Kashyap S, Wu JT, Sharma A, Moradi M, Syeda-Mahmood T. Age 
prediction using a large chest x-ray dataset. In: Hahn HK, Mori K, editors. Med. 
Imaging 2019 Comput. Diagnosis, SPIE; 2019, p. 66. 10.1117/12.2512922. 

[150] G. Levakov, G. Rosenthal, I. Shelef, T.R. Raviv, G. Avidan, From a deep learning 
model back to the brain—Identifying regional predictors and their relation to 
aging, Human Brain Mapping 41 (2020) 3235–3252, https://doi.org/10.1002/ 
hbm.25011. 

[151] A. Lombardi, D. Diacono, N. Amoroso, A. Monaco, J.M.R.S. Tavares, R. Bellotti, et 
al., Explainable Deep Learning for Personalized Age Prediction With Brain 
Morphology, Frontiers in Neuroscience 15 (2021) 1–17, https://doi.org/10.3389/ 
fnins.2021.674055. 

[152] R. Scheda, S. Diciotti, Explanations of Machine Learning Models in Repeated 
Nested Cross-Validation: An Application in Age Prediction Using Brain 
Complexity Features, Applied Sciences 12 (2022), https://doi.org/10.3390/ 
app12136681. 

[153] Belton N, Welaratne I, Dahlan A, Hearne RT, Hagos MT, Lawlor A, et al. 
Optimising Knee Injury Detection with Spatial Attention and Validating 
Localisation Ability. vol. 12722 LNCS. 2021. 10.1007/978-3-030-80432-9_6. 

[154] O. Al Zoubi, M. Misaki, A. Tsuchiyagaito, V. Zotev, E. White, M. Paulus, et al., 
Machine learning evidence for sex differences consistently influences resting-state 
functional magnetic resonance imaging fluctuations across multiple 
independently acquired data sets, Brain Connectivity 12 (2022) 348–361, https:// 
doi.org/10.1089/brain.2020.0878. 

[155] Gao K, Shen H, Liu Y, Zeng L, Hu D. Dense-CAM: Visualize the Gender of Brains 
with MRI Images. Proc Int Jt Conf Neural Networks 2019;2019-July:1–7. 
10.1109/IJCNN.2019.8852260. 
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