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Abstract 

 Pancreatic β-cells play a central role in glucose homeostasis by tightly regulating 

insulin release according to the organism demand. Impairment of β-cell function due to 

hostile environment, such as hyperglycaemia and hyperlipidaemia, or due to autoimmune 

destruction of β-cells results in diabetes onset. Both environmental factors and genetic 

predisposition are known to be involved the development of the disease, but the exact 

mechanisms leading to β-cell dysfunction and death remains to be characterized. Non-

coding RNA molecules, such as microRNAs, have been suggested to be necessary for 

proper β-cell development and function. The present review aims at summarizing the 

most recent findings about the role of non-coding RNAs in the control of β-cell functions 

and their involvement in diabetes. We will also provide a perspective view of the future 

research directions in the field of non-coding RNAs. In particular, we will discuss the 

implications for diabetes research of the discovery of a new communication mechanism 

based on cell-to-cell microRNA transfer. Moreover, we will highlight the emerging 

interconnections between microRNAs and epigenetics and the possible role of long non-

coding RNAs in the control of β-cell activities.   
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Introduction 

Pancreatic β-cells are highly specialized endocrine cells located within the islets of 

Langerhans. Insulin, the hormone released by these cells, plays a central role in the 

control of carbohydrate and lipid metabolism in the human body. Secretion of 

inappropriate amounts of insulin, due to β-cell dysfunction and/or loss, leads to different 

forms of diabetes mellitus. Type 1 diabetes (T1D), representing about 5-10% of the cases, 

results from the autoimmune destruction of β-cells [1]. Type 2 diabetes (T2D), the most 

common form of the disease (about 90% of the cases), is initiated by a diminished 

sensitivity of insulin target tissues often linked to obesity [2]. This insulin resistance state 

is normally compensated by an increased secretory activity of β-cells and by expansion 

of the functional β-cell mass. However, in genetically predisposed individuals this 

adaptive mechanism fails to compensate the increased insulin needs leading to 

insufficient hormone supply and post-prandial hyperglycemia. The resulting exposure of 

β-cells to chronically elevated concentrations of glucose, free fatty acids and cytokines 

has a deleterious impact on their functions, leading to defective insulin secretion and, 

eventually, partial loss of the cells by apoptosis. This combination of events culminates in 

the manifestation of T2D. 

In the last two decades, a large number of studies attempted to determine the 

causes of β-cell dysfunction in the initial phases of T1D and T2D focusing mainly on the 

role of transcription factors. Although activation of specific transcription factors is 

certainly contributing to gene expression changes associated with β-cell failure, recent 

studies reported the existence in mammalian cells of an entirely new class of gene 

regulatory molecules. Indeed, high-sequencing throughput techniques unveiled the 
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existence of thousands of non-coding RNA molecules generated from independent 

transcription units located outside of protein-coding genes or produced from intronic 

regions [3,4]. These non-coding RNAs fall into two major categories: small non-coding 

RNAs, of which microRNAs (miRNAs) represent the best characterized class, and long 

non-coding RNAs (LncRNAs). The function of small and long non-coding RNAs is only 

beginning to emerge but there is already strong evidence of their involvement in the 

development of several diseases, including diabetes. This review aims to summarize the 

most recent findings about the role of non-coding RNAs in the control of β-cell functions 

and their involvement in diabetes, and to present a perspective view of the future research 

directions.  

 

MicroRNAs 

 

Biogenesis and mode of action 

MiRNAs are small non-coding RNA molecules which function as specific regulators of 

gene expression [3]. So far, more than 1500 predicted miRNA precursors, leading to up 

to 2154 mature miRNAs, have been identified in the human genome 

(www.miRbase.org). Most mammalian miRNAs are transcribed by RNA polymerase II 

as primary molecules (pri-miRNAs) containing characteristic stem-loop structures [5]. 

Primary transcripts are thereafter cleaved by the RNase III-type enzyme Drosha 

associated with DGCR8/Pasha proteins to produce hairpin-structured precursors of 

around 70 nucleotides, called pre-miRNAs. Then, pre-miRNAs are transported by the 

export receptor exportin-5 to the cytoplasm, where they are cleaved by the 
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endoribonuclease Dicer to generate an imperfect miRNA/miRNA* duplex of 

approximately 22 nucleotides. Subsequent to Dicer cleavage, the guide miRNA strand of 

the duplex is loaded on an Argonaute protein (mainly Ago1 or Ago2) and incorporated 

into the RNA-induced silencing complex (RISC). The passenger miRNA* strand (also 

called, miRNA-3p) can be degraded or also loaded on Ago2 to act as a functional 

miRNA. Finally, the RISC complex guided by the mature miRNA binds to 

complementary sites within the 3’untranslated region (3’UTR) of the target messenger 

RNA (mRNA), leading to translational inhibition and/or transcript degradation [3]. This 

canonical miRNA biogenesis pathway generates most of the miRNAs expressed in 

mammals. However, other atypical pathways have been described recently [6,7].  

Computational algorithms predict that most of the human protein-coding genes 

contain miRNA-binding sites within their 3’UTR [8]. A single miRNA has the potential 

to bind hundreds of mRNA targets while, conversely, a single 3’UTR region can be 

regulated by several different miRNAs [9]. The ability of miRNAs to associate with the 

3’UTR region of target mRNAs and to repress their translation is mainly determined by 

the so-called seed sequence, which is complementary to residues 2-8 in the 5’ region of 

the miRNA [3,9]. The most popular computational algorithms, predict potential miRNA 

target genes, based on the complementarities between the sequences of the target and the 

miRNA with emphasis on perfect base-pairing of the seed region and on sequence 

conservation between different animal species. Recently, however, alternative target 

recognition mechanisms involving G-bulge sites at positions 5-6 have been shown to 

comprise about 15% of the miRNA/mRNA interactions [10].  
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Subcellular localization 

During their biogenesis, pre-miRNAs are exported into the cytoplasm where they are 

processed into mature and active single-stranded miRNAs. Therefore, mature miRNAs 

are generally considered to be cytosolic molecules. Nonetheless, growing evidence 

suggests that some of the mature miRNAs as well as components of the machinery 

mediating miRNA function are localized into other cellular compartments such as the 

nucleus or the mitochondria (Fig.1). The presence of mature miRNAs in isolated nuclei 

has been confirmed in different cell types using fractionation protocols followed by 

microarray analysis [11]. Detailed investigations revealed differential expression of 

miRNAs within the nucleolus, the nucleoplasm or the cytoplasm of rat myoblasts [12]. 

The homology of some nucleolar miRNAs with small nucleolar-specific RNAs suggests 

a common biosynthetic route, whereas other nucleolar miRNAs are probably transported 

there in order to be modified or to play specific roles. Recent studies identified the 

mitochondria as a new localization site for miRNAs. Both precursor and mature forms of 

miRNAs were detected in mitochondria isolated from human skeletal muscle cells or 

HeLa cells [13,14]. However, the origin of these miRNAs, i.e. whether they are produced 

in the nucleus or directly inside the mitochondria, and if they accomplish specific 

functions justifying their localization in this organelle remain to be determined. The 

cellular compartment in which miRNAs are preferentially located may reflect their 

functions and/or fates. These data suggest the involvement of miRNAs in new regulatory 

processes, possibly going beyond their known activities as translational inhibitors.  

Dynamic structures such as stress granules (SG) or processing bodies (PB) are 

other compartments in which miRNAs can accumulate (Fig.1). Ago2, which is part of the 
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RISC machinery, has been shown to translocate to both SG and PB in case of cellular 

stress. Leung et al., demonstrated that in HeLa cells stress induction by incubation with a 

translation initiation inhibitor leads to accumulation of miRNAs and Ago2 in SG [15]. 

Detzer et al. confirmed the translocation of Ago2 to SG in response to stress and the 

decrease in miRNA activity, but did not observe relocalization of miRNAs [16]. These 

reports support the hypothesis that miRNA distribution in specific cellular compartments 

such as cytosol, nucleus and mitochondria might be influenced by environmental cues. 

During the initial stages of T1D and T2D, β-cells are submitted to diverse types of stress 

stimuli causing dysfunction and death. It is tempting to hypothesize that these stressful 

conditions may be associated with modifications in miRNA localization potentially 

resulting in alterations in β-cell function. However, this appealing scenario remains to be 

proven because no information is yet available about redistribution of miRNAs in β-cells 

or in insulin target tissues under physiological or diabetic conditions.  

 

Circulating miRNAs as diabetes biomarkers 

The role of miRNAs may go beyond their function inside the cells, since these non-

coding RNAs are present in stable and active forms also in extracellular fluids, such as 

blood [17]. The analysis of circulating miRNAs revealed that they predominantly 

originate from neighbouring tissues and from cells lining the vessel walls rather than 

from blood cells themselves [18]. This discovery boosted the interest in circulating 

miRNAs as potential disease biomarkers and clinical indicators. In line with this idea, 

Zampetaki and colleagues performed miRNA profiling in blood samples from a 

prospective study including 800 individuals and identified a characteristic plasma 
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signature involving changes in five miRNAs in the samples of T2D subjects [19]. 

Interestingly, the level of these miRNAs was already modified years before the 

development of the disease. If confirmed, this miRNA signature might represent a good 

predictor enabling the identification of individuals at risk of developing T2D [20]. 

Nonetheless, the use of plasma miRNAs as biomarkers for diabetes risk needs to be 

evaluated with caution. Indeed, a recent study reported up-regulation of seven diabetes-

related miRNAs in blood samples of newly diagnosed T2D patients compared to T2D-

susceptible subjects with normal glucose tolerance [21]. However, miRNA profiles of 

normal glucose tolerant patients were similar to those of pre-diabetic individuals, 

suggesting that alone this group of miRNAs is not sufficient for the prognosis of diabetes 

onset. This result is probably due to the fact that the authors tested only miRNAs known 

to be involved in β-cell dysfunction and in the pathogenesis of T2D. MiRNA changes 

taking place in dysfunctional β-cells or insulin target tissues may not necessarily be 

reflected in modifications in the blood miRNA profile and vice-versa. Thus, blood 

miRNA data can yield different and maybe complementary information to measurements 

at the cellular/tissue level.  

 

Role of miRNAs in the regulation of pancreatic β-cell functions 

Evidence for the role of miRNAs in pancreatic islet development has been provided by 

the generation of pancreas–specific Dicer1 knockout mice. These mice display impaired 

formation of the endocrine pancreas, with severe reduction in the amount of β-cells, 

suggesting that miRNA expression is essential for proper pancreatic development [22]. 

Similarly, Kalis et al. found that β-cell specific deletion of Dicer1 did not affect fetal or 
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neonatal development of insulin-secreting cells, but resulted in progressive 

hyperglycemia leading to adulthood-onset diabetes mellitus [23]. Moreover, in vitro 

analysis of pancreatic islets from Dicer1 β-cell specific null mice revealed impaired 

insulin gene expression, with concomitant decrease in insulin secretion, altered islet 

morphology, and reduced β-cell mass, preceding the hyperglycemic state. Similar results 

were confirmed in an independent study where Dicer1 expression was diminished in 

adult β-cells, resulting in a drastic reduction in insulin content and diabetes development 

but without changes in β-cell architecture [24]. Taken together, these findings point to a 

central role of the miRNA network in pancreatic development and in the achievement of 

specialized β-cell functions.  

A series of studies provided further clarifications about the role of specific 

miRNAs in β-cell development (Table 1). A group of four different miRNAs (miR-7, 

miR-9, miR-375 and miR-376) were reported to be highly expressed during human 

pancreatic islet development [25]. In addition, miR-375 was shown to be involved in the 

development of endocrine pancreas and proper islet formation in two different animal 

models [26,27]. Interestingly, miR-375 is among a subset of miRNAs particularly 

enriched in pancreatic islet cells [28] and its expression is under the control of Pdx1 and 

NeuroD1, two critical transcription factors for the development of the endocrine pancreas 

[29]. Mice lacking miR-375 are hyperglycemic and have elevated plasma glucagon levels 

in both fed and fasting states. This phenotype correlates with an increase in α-cell 

number and a decrease in β-cell mass leading to a profound imbalance in the cellular 

composition of the endocrine pancreas. In addition, genetic deletion of miR-375 in ob/ob 

mice, an insulin resistance model characterized by β-cell mass expansion, led to 
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impairment in β-cell proliferation capacity resulting in a severe diabetic state [27]. 

Finally, Zhao et al. observed a positive correlation between miR-375 expression in T2D 

patients with extended amyloid formation and reduced β-cell mass [30]. Other groups 

investigated the role of miR-375 expression in mature β-cells. In addition to its positive 

effect on the β-cell mass, miR-375 has a negative impact glucose-induced insulin 

secretion by reducing the level of myotrophin, a protein thought to be involved in insulin-

granule fusion, and to regulate insulin gene expression by targeting PDK1 and the 

phosphoinositol-3-kinase pathway [28,31]. Therefore, miR-375 is a key regulator of 

several β-cell features, such as insulin expression and secretion, proliferation and 

adaptation to insulin resistance.   

Other miRNAs have also been investigated for their implication in pancreas 

development (Table 1). Baroukh et al. observed an up-regulation of miR-124a during 

pancreatic developmental stages where it modulates diverse intracellular pathways via the 

regulation, both directly and indirectly, of Foxa2, a transcription factor driving the 

expression of Pdx-1, which is essential for β-cell differentiation [32]. MiR-7, another 

miRNA highly expressed in human pancreatic fetal and adult endocrine cells [25] 

displayed changes in expression during mice pancreatic development. Inhibition of miR-

7 at early developmental stages affected the number of β–cells, impaired insulin 

production and resulted in glucose intolerance in the post-natal period [33].  

Taken together, these results indicate that a fine-tuning of the expression of 

miRNAs takes place already at the early stages of pancreas development and that these 

variations of expression drive major changes in the level of key genes regulating β-cell 

generation and differentiation.  
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Beside their role in endocrine pancreas development, miRNAs have been shown 

to be involved in the control of adult β-cell mass and function (Table 1).  Upon 

overexpression in the insulin-secreting β-cell line INS-1E, miR-9 reduced insulin 

secretion triggered by glucose or potassium by targeting Onecut-2. This transcription 

factor negatively regulates the level of granuphilin, a synaptotagmin-like protein that 

functions as a brake for insulin-secreting granules [34]. Interestingly, miR-9 expression is 

increased soon after glucose-induced insulin secretion, leading to direct targeting and 

inhibition of Sirt1, known to play a role during insulin release [35]. MiR-124a, has been 

reported to negatively impact on glucose-induced insulin secretion by inducing the 

expression of SNAP25, Rab3A and synapsin-1A, and by decreasing those of Rab27A and 

Noc2 [36]. Overexpression of this miRNA enhanced exocytosis under basal conditions 

while it inhibited glucose-induced hormone release [36]. Two other miRNAs, miR-29a 

and b, are of particular interest for proper β-cell function because they are involved in the 

silencing of monocarboxylate transporter Mct1, which is necessary for proper coupling of 

glucose metabolism with insulin secretion [37]. Glucose-stimulated hormone release is 

also reduced in human and mouse islets where miR-33a is overexpressed leading to a 

decrease in the cholesterol transporter ABCA1 expression and a consequent accumulation 

of cholesterol [38]. Whether miR-33a regulates insulin release via modulation of 

cholesterol levels and/or by targeting key enzymes implicated in fatty acid metabolism, 

such as CPT-1, AMPKα and Sirt6 [39] remains to be investigated. Finally, mice 

specifically lacking let-7 in the pancreas display an impairment in glucose-induced 

insulin secretion [40]. 
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So far most of the papers reporting changes in insulin release elicited by miRNAs 

were carried out in vitro. Moreover, they often relied on miRNA overexpression and, 

although in some cases the level of the non-coding RNAs was calibrated to that observed 

in other cell types, non-specific off-target effects cannot be excluded. Thus, 

complementary studies, in particular using in vivo animal models, will be necessary to 

confirm the regulation of insulin secretion in response to glucose and other secretagogues 

and precisely define their mode of action.  

Variations in miRNA expression have been observed upon prolonged exposure of 

pancreatic β-cells to pathophysiological conditions such as hyperglycemia and/or 

elevated free fatty acids which lead to β-cell dysfunction and death [2]. Glucose drives 

important changes in miRNA expression, as observed in Goto-Kakizaki (GK) rats, a 

model of glucose-impaired insulin secretion characteristic of T2D. A group of miRNAs is 

indeed differentially expressed upon exposure of GK pancreatic islets to a hyperglycemic 

environment. Among these, miR-335 has been demonstrated to target the mRNA 

encoding a member of the SNARE complex implicated in insulin secretion [41]. In 

another study performed in the β-cell line MIN6B1 high glucose exposure led to changes 

in the expression of several miRNAs and one of them, miR-30d, was found to modulate 

insulin gene transcription [42]. Similarly, variation in miR-15a expression in mouse islets 

in response to acute or long-term incubation at high glucose correlated with insulin 

mRNA levels. The regulation of insulin biosynthesis by miR-15a was confirmed in MIN6 

cells using miR-15a mimics and a miR-15a inhibitor. The exact mechanism remains to be 

demonstrated but the authors suggested that UCP2, directly targeted by miR-15a, could 

be involved [43]. In another study performed in human islets, miR-146 was found to be 
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reduced upon prolonged exposure to elevated glucose, while the expression of miR-133a 

was enhanced by hyperglycemia, resulting in a decrease in insulin biosynthesis via the 

targeting of PTB, a protein required for insulin mRNA stability [44]. Also miR-375 was 

reported to be negatively regulated by high levels of glucose, probably via a feedback 

loop, since elevated levels of this miRNA attenuate insulin gene transcription by 

targeting PDK1 [31]. Yet not influenced by glucose, another group of miRNAs including 

miR-24, miR-26, miR-148 and miR-182 have been recently identified as positive 

regulators of insulin production through the inhibition of transcriptional repressors [24].  

Several miRNAs have also been reported to display expression changes under 

lipotoxic conditions. The levels of miR-34a and miR-146 increase in presence of 

palmitate and their overexpression is associated with β-cell apoptosis and, in case of 

miR-34a, to impaired insulin secretion. Silencing of these two miRNAs was sufficient to 

attenuate apoptosis induced by palmitate exposure but could not restore normal insulin 

release [45]. MiR-34a along with miR-146a/b and miR-21 are also up-regulated in β-cells 

exposed to cytokines [46]. VAMP2 and Rab3a, whose levels are decreased upon IL-1β 

exposure, are targeted by miR-34a and miR-21, correlating with impaired glucose-

induced insulin secretion. MiR-146a overexpression did not affect hormone release but 

increased β-cell apoptosis as was the case for miR-34a. Down-regulation of miR-21, 

miR-34a and miR-146a in MIN6 cells using antagomirs was able to restore insulin 

release in the presence of IL-1β and, in the case of miR-34a and miR-146, to protect the 

cells from cytokine-induced apoptosis [46]. Concerning miR-21, activation of a NF-

κB/miR-21/PDCD4 signaling cascade in NOD mice was proposed to counteract β-cell 

death observed at early stages of T1D diabetes. Indeed, miR-21 induction is able to 
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directly target and reduce the level of PDCD4, which is known to sensitize β-cells to 

cytokine-induced apoptosis [47]. Recently, microarray profiling revealed that the 

establishment of prediabetic insulitis in NOD mice is associated with an increase in the 

expression of miR-29 family members. Overexpression of these miRNAs in primary β-

cells led to changes in the expression of key genes involved in exocytosis and cell 

survival with consequent defects in glucose-induced in insulin secretion and sensitization 

toward apoptosis [48]. 

The studies described above clearly demonstrate that proper miRNA expression is 

crucial for β-cell development, survival and function. The miRNA field is still at its 

infancy and future investigations will probably permit to precisely appreciate the 

relevance of miRNAs in β-cell biology and in the development of both T1D and T2D. 

 

Future research directions in the non-coding RNA field 

 

Horizontal miRNA transfer as a novel cell-to-cell communication mechanism 

Beside their potential value as disease biomarkers, plasmatic miRNAs may represent a 

new class of cell-to-cell communication molecules. Indeed, circulating miRNAs can be 

taken up by recipient cells where they have the potential to influence gene expression 

[49]. The precise source of circulating miRNAs is not known yet, but they have been 

proposed to originate from: passive leakage from broken cells, active secretion via 

microvesicles or active secretion through an RNA-binding protein-dependant pathway 

(Fig.2). Moreover, a recent study presented evidence that miRNAs can also associate 

with high-density lipoproteins (HDL) and to be delivered to recipient cells with 
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functional targeting capabilities [50]. Interestingly, an important fraction of circulating 

miRNAs is associated with Ago2 [51,52]. Upon in depth analysis of the miRNAs 

transported in the human plasma, the majority of the miRNAs was found to co-purify 

with Ago2 ribonucleoprotein complexes, although some of them, such as for instance 

miR-142-3p, were predominantly associated with microvesicles. There is strong evidence 

that miRNAs enclosed in microvesicles, such as exosomes, can be efficiently taken up in 

active form by recipient cells [53], but the capacity of circulating Ago2/miRNA 

complexes to enter the cells remains to be demonstrated. More studies will be necessary 

to elucidate the physiological meaning and the functional differences between circulating 

miRNAs associated with proteins and those transported in microvesicles. So far, no data 

are available regarding the physiological impact of circulating miRNAs on the regulation 

of β-cell functions. 

As many other cell types, there is evidence indicating that β-cells are able to 

release microvesicles with a potential effect on neighbouring cells. The release of 

miRNA-containing vesicles is a process that can be regulated by different factors 

including a rise in cytosolic free calcium, sphingomyelinase 2, a protein involved in 

ceramide biosynthesis and Rab27A, a GTPase belonging to the insulin secretory 

machinery [53-55]. Therefore, it is tempting to speculate that the release of miRNA-

containing vesicles from β-cells may be affected by hormones, nutrients, stress factors or 

inflammation. In a recent study, Sheng and collaborators investigated the capability of 

exosomes isolated from MIN6 cells to stimulate an autoimmune response in NOD mice. 

They found that MIN6-derived exosomes contain diabetes-associated islet autoantigens 

and stimulate pro-inflammatory cytokine secretion from T cells, leading to islet 
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inflammation. Furthermore, injection of MIN6-derived exosomes in the diabetes-resistant 

mouse strain NOR accelerated insulitis development. This study demonstrates that β-cell 

exosomes can trigger an auto-immune reaction and favour the attack of pancreatic islets 

by T cells, resulting in increased diabetes susceptibility [56]. Since exosomes released by 

cancer cell lines can be different from those secreted by non-transformed cells [55], these 

findings remain to be confirmed using exosomes derived from primary pancreatic islets. 

According to this novel cell-to-cell communication mode, we can assume that 

exosomes released by β-cells contain miRNAs potentially acting on neighbouring 

immune cells or endocrine cells to either stimulate adaptation processes or regulate the β-

cell fate. Transfer of miRNAs in the opposite direction, i.e. via exosomes secreted by 

immune cells and taken up by β-cells, may also have relevant physiopathological 

implications. Future studies should investigate the influence of horizontal miRNA 

transfer on 1) the interaction between pancreatic islet endocrine cells, including α-, β-, δ-, 

PP- and ε-cells, 2) the cross-talk between β-cells, 3) the autoimmune attack of pancreatic 

β-cells in case of T1D and 4) β-cell failure in case of T2D.  

Another potential mechanism of cell-to-cell miRNA transfer so far poorly 

investigated occurs through gap junctions (Fig.2). This process has been reported to occur 

between bone marrow cells and breast cancer cells, resulting in cell cycle quiescence of 

the recipient cells [57]. The potential role of miRNA exchange through gap junctions 

deserves to be studied also in insulin-secreting cells since gap junction communication is 

known to be essential for β-cell functionality. Indeed, inhibition of Connexin 36, a major 

gap junction component in β-cells, induces β-cell death in genetically modified mice, 

while its overexpression protects them against apoptosis [58]. Hence, the investigation of 
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gap-junction mediated miRNA transfer could lead to the identification of novel 

regulatory mechanisms influencing islet cell functions.  

 

Epigenetic regulation of miRNA expression 

It is now well accepted that miRNAs are necessary for proper β-cell development 

and function. Less understood are the mechanisms regulating miRNA expression under 

normal and pathophysiological conditions. MiRNAs can be spatially and temporally 

regulated since they are generally transcribed by Polymerase II [5]. An emerging concept 

suggests that miRNA expression could be regulated by epigenetic modifications [59]. 

Epigenetics is defined as heritable changes in gene expression caused by mechanisms that 

do not affect the DNA sequence itself and is seen as the interface between genetic and 

environmental factors. The two most widely studied epigenetic mechanisms are DNA 

methylation and histone modifications which are known to be crucial for proper control 

of gene expression [59].  

 DNA methylation occurs mainly in sequences enriched in CpG dinucleotides, so 

called CpG islands, and is achieved by the addition of a methyl group to the 5 position of 

a cytosine ring. CpG islands are mainly located in the proximal region of promoters and 

are underrepresented in the rest of the genome. Methylation of CpG islands is generally 

associated with gene silencing whereas hypomethylation is linked to hyperactivation of 

gene expression. Histone modifications refer to post-transcriptional changes of the 

amino-terminal tails of histone subunits. Some histone modifications, such as acetylation, 

are labile and associated with gene activation, and others, such as methylation, are stable 

and lead to gene inactivation [59].   
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Epigenetics, in the context of diabetes, provides an attractive explanation to 

reconcile the discordance of monozygotic twins and the interindividual variations in 

disease severity, and also, to highlight the impact of environmental factors on gene 

expression. Inappropriate DNA methylation is starting to be investigated in the 

pathophysiology of diabetes in human. The promoter of PPARGC1A, a master regulator 

of mitochondrial genes, was found to be hypermethylated in islets of T2D donors [60]. 

Moreover, two recent large-scale studies suggested a link between aberrant DNA 

methylation and pathological diabetic conditions [61,62]. Zhao et al. [62] observed a 

positive correlation between insulin resistance and global DNA methylation of leukocytes 

in blood samples from 84 monozygotic twin donors, and Volkmar et al. [61] profiled 

several DNA methylation changes in promoter region of different genes in pancreatic 

islets of T2D patients compared to healthy donors. Further studies are needed to elucidate 

the role of global and islet-specific DNA methylation in the development of T2D 

pathogenesis. A genome wide-map of four histone modifications associated with gene 

activation (H3K4me1, H3K4me2 and H3K4me3) or repression (H3K27me3) in human 

pancreatic islets was created by Bhandare and colleagues [63]. The pattern of histone 

modifications observed in human islets is complex and difficult to interpret. The 

promoter sequence of Pdx1 and MafA, two major transcription factors in β-cells, are 

highly occupied by modified histone, whereas low levels of histone modifications were 

present at the insulin and glucagon promoter. Furthermore, developmental genes, like 

HOX genes and neuronal transcription factors, showed bivalent histone marks in 

concordance with their close regulation during pancreas development and their silencing 

in adulthood. Further studies are needed to fully understand the purpose of these marks. 
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However, the work of Bandhare and colleagues provide a starting point to study the 

impact of environmental factors on histone modifications and gene expression. Finally, 

another important aspect of epigenetic modifications is that epigenetic marks can occur 

during embryogenesis or early in life. The intrauterine environment and the maternal 

nutrition are known to play an important role in the susceptibility of individuals to 

metabolic disease and diabetes in later life [64,65].  

The regulation of miRNA expression by epigenetic mechanisms has been first 

studied in cancer cells. Several miRNAs have been identified to be epigenetically 

modified [66]. For instance, the expression levels of miR-9 family, miR-34b/c, miR-

124a, miR-127 and miR-148a, have been shown to be deregulated in cancer cells by 

hypo- or hypermethylation of CpG islands located upstream of the mature microRNA 

[59,67-69]. Weber et al. estimated that more than 50% of human miRNA genes represent 

candidate targets to DNA methylation, which is at least one order of magnitude higher 

than protein-coding genes [70]. Epigenetic regulation of miRNAs had also been studied 

in human embryonic stem cells (hESC). Using undifferentiated hESC line HS181 and 

cancer cell lines SIHN-011B and IGR37, Iliou et al. showed that tumor suppressor 

miRNA genes that undergo de novo hypermethylation in cancer cells are enriched in 

bivalent histone marks in embryonic stem cells [67]. These results emphasize the close 

relationship between DNA methylation and histone modifications in the regulation of 

gene expression. They also provide evidences supporting the idea that abnormal 

regulation of specific genes that are pre-marked during embryonic development, can lead 

to pathogenesis during adulthood. 
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To our knowledge, the epigenetic regulation of miRNA genes in β-cells has not been 

investigated so far, but represents a promising field to uncover new mechanisms leading 

to β-cell dysfunction in diabetic conditions. 

 

Role of long non-coding RNAs in β-cells 

LncRNAs are a new class of transcripts which are commonly grouped based on the fact 

that their sequence is equal or longer than 200 nucleotides and contrary to protein coding 

genes, they have poor or no protein-coding potential [71]. LncRNAs are often spliced, 

may be polyadenylated and can be subdivided into large intergenic non-coding RNAs 

(lincRNAs) and those that are sense, antisense, intronic or overlapping with protein 

coding genes [72]. Unlike miRNAs, which act through specific base pair recognition 

mechanisms to modulate the expression of their target genes [3,9], LncRNAs have been 

involved in diverse gene-regulatory mechanisms such as transcription, translation, 

imprinting, genome rearrangement, chromatin modification and other important functions 

such as nuclear factor trafficking and protein degradation [4,73]. Their molecular 

mechanisms can be grouped into four major classes: signals, decoys, guides and scaffolds 

[4]. These groups are not mutually exclusive and most LncRNAs can exert more than one 

function. As LncRNA expression is under tight transcriptional control, most of them can 

be used as molecular signatures for specific processes and are therefore classified as 

signals. LncRNAs acting as decoys directly bind and sequester proteins and presumably 

act by inhibiting their action. LncRNAs act as guides when they direct the localization of 

protein complexes to specific targets and finally, LncRNAs can act as scaffolds by 

serving as platforms upon which multiple molecular components can be assembled. 
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Another interesting function of LncRNA is the capacity of binding to miRNA and 

function as competing endogenous RNAs (ceRNA) [74]. ceRNAs compete for miRNAs 

and regulate their distribution on their target genes. Cesana et al. [75] identified a new 

LncRNA, linc-MD1, which has the ability of regulating muscle differentiation by 

targeting miR-133 and miR-135 via a ceRNA mechanism.  

Despite their mode of action, which remains partly unknown, LncRNAs have 

been involved in many different processes such as stem cell differentiation, modulation 

of apoptosis and invasion and marker of cell fate [76]. Cabili et al.[77] recently showed 

that LncRNAs exhibit greater tissue specificity than protein coding genes. This group 

analyzed approximately 8000 lincRNAs in 24 different tissues and cell types and 

demonstrated that 78% of them were tissue specific, in comparison with only 19% of 

protein coding genes. This tissue specificity is an integral index/component of their 

critical regulatory functionality.  

LncRNAs are not only tissue specific but they can also localize in different subcellular 

compartments, including the nucleus, cell body and in specific foci of adult cerebellar 

purkinje cells [78]. Moreover, their expression can be so specific that the lncRNA 

Gomafu has been found to localize in regions of the nucleus that are different from any 

other nuclear compartment identified by known markers [79].  

Given their wide variety of functions, LncRNAs and their specific patterns of expression 

it is not surprising that their dysregulation has been implicated in many human diseases 

including different forms of cancers and neurodegenerative diseases [73]. In some cases, 

the mechanism giving rise to the disease has been identified. For example, five different 

LncRNAs were found to bind and inhibit the action of PSF, a protein involved in the 
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silencing of the proto-oncogene GAGE6 [27]. For other lncRNAs, specific targets have 

yet to be identified. This is the case of MALAT1, a lncRNA which expression is three 

times higher in metastasizing early-stage non-small cell lung cancer versus non-

metastasizing tumors [80].  

Other lncRNAs involved in diseases are BACE1-AS and ANRIL. BACE1-AS is an 

antisense lncRNA capable of regulating the expression of BACE1, a gene coding for an 

enzyme involved in the production of amyloid β-peptide. The accumulation of this 

protein has been implicated in many neurological disorders and elevated levels of both 

BACE1 and BACE1-AS have been detected in subjects with Alzheimer’s disease [81]. 

ANRIL was firstly identified by a group studying germ line deletions in melanoma-neural 

system tumor family [82]. Interestingly, genome wide association studies (GWAS) 

identified several variants in the intergenic region encompassing ANRIL to be associated 

with several diseases such as coronary heart disease, intracranial aneurysm, many type of 

cancers and type 2 diabetes [83]. ANRIL contribution these pathologies has not yet been 

defined but its action may be mediated through modulation of the expression of the tumor 

suppressor genes at the INK locus (p14, p15, p16). Indeed, ANRIL has been shown to 

interact with both components of the polycomb repressive complexes PCR1 and PCR2 

[84-85].  Interestingly, we have evidence suggesting that ANRIL may be differentially 

expressed in in vitro models of β-cell dysfunction (our unpublished data). 

In recent years, GWAS have identified many other common genetic variants 

associated with complex diseases such as coronary artery disease, hypertension, T2D and 

others [86]. Interestingly, the majority of these variations occurs in non-coding and 

intergenic regions [87] including those associated with T2D. Amongst the 40 variants 
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associated with the disease, 19 of them map to intergenic regions that lie at great genomic 

distances from their closest protein coding gene (up to 500kb) [88]. It is becoming clear 

that the majority of these variants could lie into or in the vicinity of LncRNAs and 

therefore affect their proper function or expression. A study by Cabili at al. [77], 

confirmed that a great number of these variants are indeed contained within lincRNAs 

sequences and that the expression of these lincRNAs is specific to the tissues relevant to 

the associated disease.  

Screenings of LncRNAs in β-cells have yet to be performed but it is likely that 

many of them will exhibit β-cell specific expression. Given the tissue specificity of 

LncRNAs and their involvement in multiple cell functions, LncRNAs may be anticipated 

to play a major effect on the maintenance of β-cell functions and could therefore be 

implicated in diabetes pathogenesis.  

 

Conclusion 

The unexpected discovery of the existence of a multitude of non-coding RNA molecules 

populating many of the cellular organelles has added a new layer of complexity to the 

mechanisms governing the biological processes in mammalian cells. We are only 

beginning to decipher the properties of these newly discovered RNAs but we have 

already strong indications that they play major regulatory roles in different cellular 

activities. A better understanding of the mode of action of these fascinating molecules 

promises to shed new light on the causes of many human diseases, including diabetes.  

 

Acknowledgements 

 23 



The authors are supported by Grants from the Swiss National Science Foundation (no. 

31003A-127254), from the European Foundation for the Study of Diabetes and from 

SFD-Servier (Société Francophone du Diabète). CG is supported by a fellowship from 

the FRSQ (Fonds de la Recherche en Santé du Québec), the SFD and the Canadian 

Diabetes Association. Illustrations have been realized using Servier Medical Art®. We 

declare no conflicts of interest. 

 

References 
[1] Pirot P, Cardozo AK, Eizirik DL. Mediators and mechanisms of pancreatic beta-
cell death in type 1 diabetes. Arq Bras Endocrinol Metabol 2008; 52: 156-165 
[2] Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest 2006; 
116: 1802-1812 
[3] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 
2004; 116: 281-297 
[4] Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol 
Cell 2011; 43: 904-914 
[5] Lee Y, Kim M, Han J et al. MicroRNA genes are transcribed by RNA polymerase 
II. EMBO J 2004; 23: 4051-4060 
[6] Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha 
processing. Nature 2007; 448: 83-86 
[7] Cifuentes D, Xue H, Taylor DW et al. A novel miRNA processing pathway 
independent of Dicer requires Argonaute2 catalytic activity. Science 2010; 328: 1694-
1698 
[8] Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are 
conserved targets of microRNAs. Genome Res 2009; 19: 92-105 
[9] Doench JG, Sharp PA. Specificity of microRNA target selection in translational 
repression. Genes Dev 2004; 18: 504-511 
[10] Chi SW, Hannon GJ, Darnell RB. An alternative mode of microRNA target 
recognition. Nat Struct Mol Biol 2012; 19: 321-327 
[11] Park CW, Zeng Y, Zhang X, Subramanian S, Steer CJ. Mature microRNAs 
identified in highly purified nuclei from HCT116 colon cancer cells. RNA Biol 2010; 7: 
606-614 
[12] Politz JC, Hogan EM, Pederson T. MicroRNAs with a nucleolar location. RNA 
(New York, NY 2009; 15: 1705-1715 
[13] Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X. Pre-
microRNA and mature microRNA in human mitochondria. PLoS One 2011; 6: e20220 
[14] Bandiera S, Ruberg S, Girard M et al. Nuclear outsourcing of RNA interference 
components to human mitochondria. PLoS One 2011; 6: e20746 

 24 



[15] Leung AK, Calabrese JM, Sharp PA. Quantitative analysis of Argonaute protein 
reveals microRNA-dependent localization to stress granules. Proceedings of the National 
Academy of Sciences of the United States of America 2006; 103: 18125-18130 
[16] Detzer A, Engel C, Wunsche W, Sczakiel G. Cell stress is related to re-
localization of Argonaute 2 and to decreased RNA interference in human cells. Nucleic 
Acids Res 2011; 39: 2727-2741 
[17] Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-
based markers for cancer detection. Proc Natl Acad Sci U S A 2008; 105: 10513-10518 
[18] Duttagupta R, Jiang R, Gollub J, Getts RC, Jones KW. Impact of cellular 
miRNAs on circulating miRNA biomarker signatures. PLoS One 2011; 6: e20769 
[19] Zampetaki A, Kiechl S, Drozdov I et al. Plasma microRNA profiling reveals loss 
of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107: 
810-817 
[20] Regazzi R. Diabetes mellitus reveals its micro-signature. Circ Res 2010; 107: 
686-688 
[21] Kong L, Zhu J, Han W et al. Significance of serum microRNAs in pre-diabetes 
and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48: 61-69 
[22] Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. 
MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 
2007; 56: 2938-2945 
[23] Kalis M, Bolmeson C, Esguerra JL et al. Beta-cell specific deletion of dicer1 
leads to defective insulin secretion and diabetes mellitus. PLoS One 2011; 6: e29166 
[24] Melkman-Zehavi T, Oren R, Kredo-Russo S et al. miRNAs control insulin 
content in pancreatic beta-cells via downregulation of transcriptional repressors. Embo J 
2011; 30: 835-845 
[25] Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA. MicroRNA 
profiling of developing and regenerating pancreas reveal post-transcriptional regulation 
of neurogenin3. Developmental biology 2007; 311: 603-612 
[26] Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted 
inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in 
pancreatic islet development. PLoS Biol 2007; 5: e203 
[27] Poy MN, Hausser J, Trajkovski M et al. miR-375 maintains normal pancreatic 
alpha- and beta-cell mass. Proc Natl Acad Sci U S A 2009; 106: 5813-5818 
[28] Poy MN, Eliasson L, Krutzfeldt J et al. A pancreatic islet-specific microRNA 
regulates insulin secretion. Nature 2004; 432: 226-230 
[29] Keller DM, McWeeney S, Arsenlis A et al. Characterization of pancreatic 
transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of 
chromatin occupancy. J Biol Chem 2007; 282: 32084-32092 
[30] Zhao H, Guan J, Lee HM et al. Up-regulated pancreatic tissue microRNA-375 
associates with human type 2 diabetes through beta-cell deficit and islet amyloid 
deposition. Pancreas 2010; 39: 843-846 
[31] El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen 
E. miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates 
glucose-induced biological responses in pancreatic beta-cells. Diabetes 2008; 57: 2708-
2717 

 25 



[32] Baroukh N, Ravier MA, Loder MK et al. MicroRNA-124a regulates Foxa2 
expression and intracellular signaling in pancreatic beta-cell lines. The Journal of 
biological chemistry 2007; 282: 19575-19588 
[33] Nieto M, Hevia P, Garcia E et al. Anti sense miR-7 impairs insulin expression in 
developing pancreas and in cultured pancreatic buds. Cell Transplant 2011:  
[34] Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, 
Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory 
response of insulin-producing cells. The Journal of biological chemistry 2006; 281: 
26932-26942 
[35] Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 
and mir-9 expression is regulated during glucose-stimulated insulin secretion in 
pancreatic beta-islets. Febs J 2011; 278: 1167-1174 
[36] Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of 
the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 2008; 
389(3): 305-312 
[37] Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b 
contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 
(Mct1). Mol Cell Biol 2011; 31: 3182-3194 
[38] Wijesekara N, Zhang LH, Kang MH et al. miR-33a modulates ABCA1 
expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 
2012; 61: 653-658 
[39] Davalos A, Goedeke L, Smibert P et al. miR-33a/b contribute to the regulation of 
fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 2011; 108: 9232-
9237 
[40] Frost RJ, Olson EN. Control of glucose homeostasis and insulin sensitivity by the 
Let-7 family of microRNAs. Proc Natl Acad Sci U S A 2011; 108: 21075-21080 
[41] Esguerra JL, Bolmeson C, Cilio CM, Eliasson L. Differential Glucose-Regulation 
of MicroRNAs in Pancreatic Islets of Non-Obese Type 2 Diabetes Model Goto-Kakizaki 
Rat. PLoS One 2011; 6: e18613 
[42] Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated 
miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. 
Rna 2009; 15: 287-293 
[43] Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, Liu ZM. MicroRNA-15a positively 
regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res 
Clin Pract 2011; 91: 94-100 
[44] Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, Welsh N. High 
glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to 
decreased polypyrimidine tract binding protein-expression. PLoS One 2010; 5: e10843 
[45] Lovis P, Roggli E, Laybutt DR et al. Alterations in microRNA expression 
contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 2008; 57: 
2728-2736 
[46] Roggli E, Britan A, Gattesco S et al. Involvement of microRNAs in the cytotoxic 
effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010; 59: 
978-986 

 26 



[47] Ruan Q, Wang T, Kameswaran V et al. The microRNA-21-PDCD4 axis prevents 
type 1 diabetes by blocking pancreatic beta cell death. Proc Natl Acad Sci U S A 2011; 
108: 12030-12035 
[48] Roggli E, Gattesco S, Caille D et al. Changes in microRNA expression contribute 
to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 2012:  
[49] Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: a new form 
of intercellular communication. Trends Cell Biol 2012:  
[50] Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. 
MicroRNAs are transported in plasma and delivered to recipient cells by high-density 
lipoproteins. Nat Cell Biol 2011; 13: 423-433 
[51] Arroyo JD, Chevillet JR, Kroh EM et al. Argonaute2 complexes carry a 
population of circulating microRNAs independent of vesicles in human plasma. Proc Natl 
Acad Sci U S A 2011; 108: 5003-5008 
[52] Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of 
extracellular circulating microRNA. Nucleic Acids Res 2011; 39: 7223-7233 
[53] Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory 
mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010; 
285: 17442-17452 
[54] Pfeffer SR. Two Rabs for exosome release. Nat Cell Biol 2010; 12: 3-4 
[55] Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune 
responses. Nat Rev Immunol 2009; 9: 581-593 
[56] Sheng H, Hassanali S, Nugent C et al. Insulinoma-released exosomes or 
microparticles are immunostimulatory and can activate autoreactive T cells 
spontaneously developed in nonobese diabetic mice. J Immunol 2011; 187: 1591-1600 
[57] Lim PK, Bliss SA, Patel SA et al. Gap junction-mediated import of microRNA 
from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. 
Cancer Res 2011; 71: 1550-1560 
[58] Klee P, Allagnat F, Pontes H et al. Connexins protect mouse pancreatic beta cells 
against apoptosis. J Clin Invest 2011; 121: 4870-4879 
[59] Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res 2007; 61: 24R-
29R 
[60] Ling C, Del Guerra S, Lupi R et al. Epigenetic regulation of PPARGC1A in 
human type 2 diabetic islets and effect on insulin secretion. Diabetologia 2008; 51: 615-
622 
[61] Volkmar M, Dedeurwaerder S, Cunha DA et al. DNA methylation profiling 
identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. 
EMBO J 2012:  
[62] Zhao J, Goldberg J, Bremner JD, Vaccarino V. Global DNA methylation is 
associated with insulin resistance: a monozygotic twin study. Diabetes 2012; 61: 542-546 
[63] Bhandare R, Schug J, Le Lay J et al. Genome-wide analysis of histone 
modifications in human pancreatic islets. Genome Res 2010; 20: 428-433 
[64] Seki Y, Williams L, Vuguin PM, Charron MJ. Minireview: Epigenetic 
Programming of Diabetes and Obesity: Animal Models. Endocrinology 2012:  
[65] Slomko H, Heo HJ, Einstein FH. Minireview: Epigenetics of Obesity and 
Diabetes in Humans. Endocrinology 2012:  

 27 



[66] Agirre X, Martinez-Climent JA, Odero MD, Prosper F. Epigenetic regulation of 
miRNA genes in acute leukemia. Leukemia 2011:  
[67] Iliou MS, Lujambio A, Portela A et al. Bivalent histone modifications in stem 
cells poise miRNA loci for CpG island hypermethylation in human cancer. Epigenetics 
2011; 6: 1344-1353 
[68] Lujambio A, Esteller M. CpG island hypermethylation of tumor suppressor 
microRNAs in human cancer. Cell Cycle 2007; 6: 1455-1459 
[69] Saito Y, Liang G, Egger G et al. Specific activation of microRNA-127 with 
downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human 
cancer cells. Cancer Cell 2006; 9: 435-443 
[70] Weber B, Stresemann C, Brueckner B, Lyko F. Methylation of human microRNA 
genes in normal and neoplastic cells. Cell Cycle 2007; 6: 1001-1005 
[71] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding 
RNAs. Cell 2009; 136: 629-641 
[72] Carninci P, Kasukawa T, Katayama S et al. The transcriptional landscape of the 
mammalian genome. Science 2005; 309: 1559-1563 
[73] Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell 
Biol 2011; 21: 354-361 
[74] Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the 
Rosetta Stone of a hidden RNA language? Cell 2011; 146: 353-358 
[75] Cesana M, Cacchiarelli D, Legnini I et al. A long noncoding RNA controls 
muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147: 
358-369 
[76] Mattick JS. The genetic signatures of noncoding RNAs. PLoS Genet 2009; 5: 
e1000459 
[77] Cabili MN, Trapnell C, Goff L et al. Integrative annotation of human large 
intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 
2011; 25: 1915-1927 
[78] Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression 
of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2008; 105: 716-
721 
[79] Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S. The mRNA-like 
noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J 
Cell Sci 2007; 120: 2498-2506 
[80] Ji P, Diederichs S, Wang W et al. MALAT-1, a novel noncoding RNA, and 
thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. 
Oncogene 2003; 22: 8031-8041 
[81] Faghihi MA, Modarresi F, Khalil AM et al. Expression of a noncoding RNA is 
elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-
secretase. Nat Med 2008; 14: 723-730 
[82] Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I. 
Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a 
melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding 
RNA whose expression coclusters with ARF. Cancer Res 2007; 67: 3963-3969 
[83] Pasmant E, Sabbagh A, Vidaud M, Bieche I. ANRIL, a long, noncoding RNA, is 
an unexpected major hotspot in GWAS. FASEB J 2011; 25: 444-448 

 28 



[84] Yap KL, Li S, Munoz-Cabello AM et al. Molecular interplay of the noncoding 
RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional 
silencing of INK4a. Mol Cell 2010; 38: 662-674 
[85] Kotake Y, Nakagawa T, Kitagawa K et al. Long non-coding RNA ANRIL is 
required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor 
gene. Oncogene 2011; 30: 1956-1962 
[86] Hindorff LA, Sethupathy P, Junkins HA et al. Potential etiologic and functional 
implications of genome-wide association loci for human diseases and traits. Proc Natl 
Acad Sci U S A 2009; 106: 9362-9367 
[87] Halvorsen M, Martin JS, Broadaway S, Laederach A. Disease-associated 
mutations that alter the RNA structural ensemble. PLoS Genet 2010; 6: e1001074 
[88] Imamura M, Maeda S. Genetics of type 2 diabetes: the GWAS era and future 
perspectives [Review]. Endocr J 2011; 58: 723-739 
 
 
 
 
 
 

 29 



 
Figure legends 
 
Figure 1. Proposed model of cellular localization of microRNAs 
Usually, miRNA biogenesis occurs in the nucleus and is followed by export to the 
cytoplasm (a) and processing to the mature form acting as translational repressor of target 
mRNAs. However, mature miRNAs can also localize to other cellular compartments such 
as nucleus (b), nucleolus (c), p-bodies (d), stress granules (e) and mitochondria (f). In 
addition, some miRNAs have been suggested to be generated inside the mitochondria. 
 
 
Figure 2. Horizontal transfer of microRNAs as an emerging new form of cell-to-cell 
communication. 
After being transcribed in the nucleus and exported in the cytoplasm, miRNAs are 
processed to a mature form. The mature miRNAs can bind to complementary 3’UTR of 
target mRNAs to inhibit translation (a) or can be packaged and released and transferred to 
donor cells by several pathways. Secreted miRNAs can be released in the circulation and 
reach distant cells in a vesicle-associated form or bound to proteins (endocrine transfer) 
(b), can be transferred to adjacent cells (paracrine transfer) (c), or can enter neighbouring 
cells through gap junctions (cell junction transfer) (d). 
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Table 1: Overview of all the microRNAs known to have a functional role in pancreatic 
β-cell development and function. When available, identified and confirmed targets 
are listed for each miRNA.  

 
MicroRNA Known functional effect Targets References 

let-7 insulin secretion  [40] 

miR-7 pancreas development & insulin production   [33] 

miR-9 insulin secretion Onecut-2 

Sirt1 

[34] 

[35] 

miR-15a regulation of insulin synthesis  [43] 

miR-21 insulin secretion 

protection against cytokines-induced apoptosis 

VAMP2, Rab3a 

PDCD4 

[46] 

[47] 

miR-24 insulin-gene transcription Sox6 [24] 

miR-26 insulin-gene transcription Sox6, Bhlhe22 [24] 

miR-29a,b insulin secretion Mctl1 [37] 

miR-30d insulin-gene transcription  [42] 

miR-33a insulin secretion ABCA1 [38] 

miR-34a insulin secretion 

cytokines-induced apoptosis 

VAMP2, Rab3a [45-46] 

[46] 

miR-96 insulin secretion  Noc2 [36] 

miR-124a pancreas development 

insulin secretion 

Foxa2 

Rab27a, Noc2 

[32] 

[36] 

miR-133 insulin biosynthesis PTB [44] 

miR-146a,b cytokines-induced apoptosis  [46] 

miR-148a insulin-gene transcription Sox6 [24] 

miR-182 insulin-gene transcription Bhlhe22 [24] 

miR-200 insulin-gene transcription Sox6, Bhlhe22 [24] 

miR-335 insulin secretion Stxbp1 [41] 

miR-375 insulin-gene transcription 

insulin secretion  

pancreatic islets development & morphology 

PDK1 

Myotrophin 

 

[31] 

[28] 

[26-27,30] 
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