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Abstract
The genetic mapping of drug-response traits is often characterised by a poor signal-to-noise ratio that is placebo related and which dis-

tinguishes pharmacogenetic association studies from classical case-control studies for disease susceptibility. The goal of this study was to

evaluate the statistical power of candidate gene association studies under different pharmacogenetic scenarios, with special emphasis on the

placebo effect. Genotype/phenotype data were simulated, mimicking samples from clinical trials, and response to the drug was modelled as a

binary trait. Association was evaluated by a logistic regression model. Statistical power was estimated as a function of the number of single

nucleotide polymorphisms (SNPs) genotyped, the frequency of the placebo ‘response’, the genotype relative risk (GRR) of the response

polymorphism, the strategy for selecting SNPs for genotyping, the number of individuals in the trial and the ratio of placebo-treated to drug-

treated patients. We show that: (i) the placebo ‘response’ strongly affects the statistical power of association studies — even a highly

penetrant drug-response allele requires at least a 500-patient trial in order to reach 80 per cent power, several-fold more than the value

estimated by standard tools that are not calibrated to pharmacogenetics; (ii) the power of a pharmacogenetic association study depends

primarily on the penetrance of the response genotype and, when this penetrance is fixed, power decreases for larger placebo effects;

(iii) power is dramatically increased when adding markers; (iv) an optimal study design includes a similar number of placebo- and drug-

treated patients; and (v) in this setting, straightforward haplotype analysis does not seem to have an advantage over single marker analysis.
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Introduction

Pharmacogenetics (PGx) — the study of how genetic differ-

ences influence the variability in patients’ response to drugs1—

investigates genes ideally covering all of the drug’s interactions

in the course of its passage through the body.2 The objective of

PGx research is to identify the genetic profile contributing to an

individual’s response pattern to a specific drug. Little is known

about the genetic basis of differential drug response. There are

examples where a single gene may exert a dominant effect on

treatment efficacy, as in the case of cytochrome P4502D6

(CYP2D6), where deficient patients need to be identified

before treatment initiation by codeine and its derivatives due to

efficacy loss.3More commonly, the phenotype of drug response

is classified as multifactorial, as it generally results from the

interaction of a number of different genetic, as well as

environmental, factors. An example of this is the efficacy of

clozapine therapy in the treatment of schizophrenia.4

Traditionally, genetic mapping can be approached either by

linkage (family-based) methods or by association study

(population-based) designs. The latter are particularly likely to

play a prominent role in pharmacogenetics, as it may be dif-

ficult to collect informative families with multiple patients

treated with the same drugs. The simplest and most widely

applied strategy of association studies is the case-control

design; however, several key aspects distinguish PGx associ-

ation studies from standard disease-oriented case-control

studies. First, PGx association studies are usually based on

either prospective or ongoing clinical trials, where, classically,

patients are randomly assigned to one of two groups: a treat-

ment group, receiving the tested drug; and a control group,

receiving placebo (randomised, controlled study). As a result,

the number of responders (‘cases’) can only be determined

once the study has been completed and not a priori, compli-

cating the recruitment of the required cohort. Secondly, PGx

association studies in general, and those of medications for
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psychiatric and immunological diseases in particular, are

characterised by a poor signal-to-noise ratio: approximately

one third of the patients enrolled in efficacy trials may respond

to placebo treatment. The placebo ‘response’ in randomised

clinical trials includes such statistical artefacts as regression to

the mean,5 drift in measurement of the response over time and

bias of expectations by both patients and evaluators, as well as

real effects such as spontaneous recovery, a tendency to seek

treatment outside the study and the response to additional

attention and concern arising from participation in clinical

trials.6 Although a systematic review of placebo versus no

treatment found little evidence for placebo effect,7 one issue

seems unquestionable: the placebo effect is present in clinical

practice and in clinical trials — by whichever name we choose

to call it or the nature of the phenomenon — and its ampli-

tude may vary with drug treatment.6 Therefore, the impact of

placebo effects on statistical power in the context of PGx

association studies needs to be evaluated and quantified.

Several factors have been shown to influence power esti-

mations for association studies, such as: disease penetrance and

prevalence; the net effect of the susceptibility locus; the fre-

quency of the disease allele(s); the frequency of the marker

allele(s); and the extent of linkage disequilibrium (LD) between

disease alleles and marker alleles.8,9 At present, there are no

analytical derivations of power estimation that handle more

realistic situations, such as complex dependencies between

linked markers and the disease-causing allele frequency,

recombination hot spots etc. Therefore, the strategy of choice is

simulations. Long and Langley10 pursued this strategy to

quantify the power of complex trait association studies across a

wide range of settings using a large number of simulations.

They simulated genotypes based on the coalescent model,11

phenotypeswere randomised, with phenotype probability being

conditioned on the causative single nucleotide polymorphism

(SNP) genotypes, and association was evaluated using appro-

priate statistical tools. The study concluded that greater power

was achieved by increasing the sample size than by increasing

the number of polymorphisms, and that marker-based tests

were more powerful than simple haplotype-based analyses.

PGx studies differ considerably from standard case-control

association studies, however, as illustrated above and confirmed

by our results; hence, it is important to quantify the statistical

powerof association studies in the context of PGx and tomap the

parameter spaceof such studies. Powerestimation forPGx studies

has been previously studied by Cardon et al.,12 who used ana-

lytical formulae to study simplistic trial designs. They explored

how different properties of SNPs, for example the frequency

of the disease-causing alleles, might influence the required size

and expected power of the clinical trial. Unfortunately, for PGx

studies — as for complex trait associations — the frequencies

of these phenotype-causing variants are unknown and their

distribution is complex,motivating a simulation-based approach.

The goal of this study was to evaluate the power of PGx

association studies under different scenarios, with special

emphasis on the placebo effect. The setting was a drug clinical

trial consisting of a double-blind, randomised controlled study,

which included a placebo-treated control group and a drug-

treated group. SNPs for a candidate gene region were then

genotyped in these groups and tested for association with the

response phenotype under the assumption of complete LD.

Drug response was simplistically treated as a binary trait, and

marker allele frequencies were then compared between

responders (cases) and non-responders (controls), similar to a

case-control design nested within a cohort.13 Power was esti-

mated by simulation, as in the study by Long and Langley,10

and association was evaluated using a logistic regression

model.14,15 Since a considerable fraction of responders were

expected to respond, due to the placebo phenocopy (an

indistinguishable phenotype unrelated to the tested causative

allele), we focused on the interaction between genotype and

drug/placebo labelling. The model we propose assumes that

specific genotypes have differential effects in the drug-treated

group but not in the placebo-treated group.12 Thus, the

logistic regression term, which is expected to indicate true

association, is the interaction term for genotype by drug.

Various studies (eg Gauderman16) have calculated the required

sample size for studies of gene–environment interactions, but

the methods suggested are usually applicable to very specific

designs and calculations are presented for specific sets of par-

ameters and are therefore not directly applicable to the PGx

context and the particular design of interest (randomised

controlled study).

Power was estimated over a wide range of experimental

design parameters: first and foremost, the number of individ-

uals that participated in the clinical trial, the magnitude of the

placebo effect and the penetrance of the response locus. We

further examined direct (typing the causative allele itself) versus

indirect (typing a tightly correlated SNP) tests and haplotype

versus single marker frequency analyses. We also changed the

ratio between the sizes of placebo- and drug-treated patient

groups, the number of SNPs and the method for choosing

those SNPs (either randomly or categorised in allele frequency

bins).9,17 Combined, our analyses provide a comprehensive

examination of the parameter space for PGx study designs.

Materials and methods

For each setting of parameters, we evaluated power as the

fraction of simulations, out of R ¼ 100 or 1,000 (see below)

repetitions, in which true association was detected, with an

expected type I error of 5 per cent. Each of the R simulations

was performed as outlined below:

. Generate genotype data

. Generate phenotype data

. For indirect tests, select SNPs for study

. Assess association between marker alleles/haplotypes and

phenotype.
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Parameters tested
We evaluated statistical power, as a function of the number (N)

of individuals in the clinical trial (N ¼ 100 to N ¼ 1,500),

under a range of different parameter settings:

. The frequency ( f0 ¼ 15 per cent to f0 ¼ 40 per cent) of

the placebo-response phenocopy. Importantly, this

magnitude of the placebo effect is assumed to equal the

penetrance (frequency of response) among homozygotes

for the non-response allele.

. The size ratio between drug- and placebo-treated patient

groups (either by suggesting a different study design — ie

fixing the total number of patients — or by suggesting

drug-only follow-up studies, fixing the number of

placebo-treated individuals).

. The genotype relative risk (GRR) of the response poly-

morphism (2 to 4). GRR is defined as the ratio between

the penetrance among homozygotes for the response

allele ( f2) and homozygotes for the non-response allele

(or placebo effect, f0).
18

. The number of SNPs examined (M ¼ 3 or M ¼ 5).

. The strategy for SNP selection (randomly or by frequency

categories).

Generation of genotype data
The coalescent approach11 was used to generate samples

consisting of completely linked SNPs. A simple population

genetic model involving only mutation and random genetic

drift was assumed, without recombination within the small

region considered. We simulated a fixed number of sites, using

the ms software (see Hudson19 for further details on haplotype

generation). A single realisation of the coalescent process

resulted in a set of haplotypes for 50 polymorphic sites. Sites

were correlated, as expected by sites in complete LD. One of

the sites was randomly chosen as the response site. The only

requirement was that the frequency of its minor allele was

more than 5 per cent. To further simplify the model, the

ancestral allele was assigned as the aetiological allele. Haplo-

types were then randomly paired to form genotypes.

Generation of phenotypic data
Patients were randomly assigned to the drug- or placebo–

treated group with equal probability, or according to a fixed

drug/placebo group size ratio. Patients assigned to the placebo

group were randomly defined as responders or non-respon-

ders, with the probability of the former equal to the ‘placebo

effect’. Patients assigned to the drug group were randomly

labelled responder/non-responder, with the probability of

response determined by the penetrance of each genotype. For

the non-response homozygotes, this probability was equal to

the placebo effect. The penetrance of the heterozygote was set

to the mean of the two homozygote penetrances, representing

an additive mode of inheritance.

Strategy for SNP selection
M ¼ 3 or M ¼ 5 markers out of the 50 simulated markers in

the candidate region were selected for genotyping. The

number of SNPs per gene was limited to adhere to the budget

constraints of the experimental design and, more importantly,

availability: SNPs must be known (as if mined from public

databases), technically typeable and polymorphic in the study

population(s). The causative SNP was not explicitly excluded

and could appear as one of the markers. Two strategies were

tested for selecting the SNPs for genotyping:

. Category approach. In the presence of LD, adequate

matching of allele frequencies at marker and trait loci

determines if a marker site will be useful for detecting an

association with the trait variant.9,17 Following this prin-

ciple, SNPs were classified into three or five distinct cat-

egories by their minor allele frequencies. One SNP from

each category was then selected at random. If one category

was empty of SNPs, we ‘walked’ along the chromosome

until hitting a SNP with a frequency not already present in

the selected set. The frequency categories were: 0.1–0.2,

0.2–0.35 and 0.35–0.5 for M ¼ 3 markers; and 0.05–0.1,

0.1–0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5 for M ¼ 5 markers.

. Random approach. M different SNPs with minor allele fre-

quencies greater than 10 per cent (for M ¼ 3) or 5 per cent

(for M ¼ 5) were randomly chosen from the entire dataset.

Two SNPs were allowed to have equal minor allele

frequencies.

Detecting association between markers
and drug response
Association was detected by a logistic regression model com-

monly used to analyse categorical data. We used the com-

mercially available SAS statistical software.20 In this analysis,

the log odds of being a responder was regressed on the inde-

pendent variables. The model contained two independent

variables — a ‘drug’ indicator variable D (drug or placebo)

and the genotype variable G (having three possible values: 0, 1

or 2) — and the interaction between them (D*G), namely

Log odds ¼ b0 þ b1Dþ b2G þ b3D*G;

where b0 is the intercept and bi (i ¼ 1 to 3) is the change in log

odds as a result of a unit increase in D, G, or D*G, respectively.

Association was detected by a significant ( p , 0.05) drug by

genotype interaction effect. Intuitively, this is just a more

general version of implementing an association test of respon-

ders versus non-responders in a drug-only experimental

design, while accounting for the level of the placebo

phenocopy, known from a separate, placebo-only design.

Two approaches were considered:

. A ‘direct association’ approach, in which potential drug-

response variants were tested one at a time. The suspected
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causative SNP was therefore the only genotype considered

in the logistic regression model. In this approach,

R ¼ 1,000 iterations were performed.

. An ‘indirect association’ approach, in which several markers

(three or five) were typed, hopefully turning out to be

significantly correlated with the response locus. Genotypes

of all of the SNPs were therefore considered in the logistic

regression model, either marker by marker (testing each of

the three or five SNPs with separate regression models and

recording the highest statistic, as explained below) or as

haplotypes. The individual contribution of each SNP

varied, as expected between different random runs of the

simulation process, and we focused on the overall signifi-

cance of association. The significance of single-marker

association was computed through a Monte Carlo per-

mutation approach21 and compared with haplotype anal-

ysis. For all indirect marker-based tests, which employed a

Monte Carlo procedure22 for power estimation, R ¼ 100

was used, due to the computationally intensive nature of

this analysis.

To assess the significance of single-marker association, we

applied logistic regression analysis to each genotyped marker

and recorded the highest statistic (Wald x2) for the drug by
genotype interaction term. We randomly permuted the

response labels and repeated the same analysis 500 times to

obtain the distribution of the maximum x2 score under the
null hypothesis of no association. The p value for a given

simulation was estimated according to this distribution.

Haplotype analysis was more straightforward, since it did

not require maximisation over many single marker scores. In

this case, the logistic regression model included haplotypes and

drug by haplotype terms, instead of the respective genotype

terms. A haplotype variable assumes a value in {0,1,2},

denoting its copy number in the genotype of an individual.

Haplotypes are assumed to be resolved by pedigrees or

computation (eg Stephens et al.23). Note that the combination

of complete LD and the selection of non-redundant SNPs

implied that there are exactly M þ 1 haplotypes. R ¼ 1,000

simulations were run.

Type I error
Naturally, power should be compared when the false-positive

rates are fixed to be the same across different methods. The

statistical tests performed in these simulations were designed to

hold the type I error at a constant rate of 5 per cent. To

validate the rate of our type I error, simulations were run with

GRR equal to 1 — ie f2 was equal to the placebo effect. The

proportion of false associations was then recorded for the

different tests: direct analysis on the causative effect, the single-

marker Monte Carlo permutation approach and the haplotype

analysis for N ¼ 500 and N ¼ 1,000. The probability of

detecting a false association was estimated when the placebo

effect was 26 per cent (as in GRR ¼ 3). The results of this

validation benchmark are shown in Table 1. Note that the

variance in false-positive rates for random SNPs seemed to be

higher than that for haplotypes.

Comparison with predictions by existing tools
In order to compare the numbers obtained in this study with a

scenario in which there was no placebo effect, power was

calculated with the ‘Genetic Power Calculator’ (GPC) pro-

gram,24 for a ‘classical’ case-control study. The parameters

were set as follows: GRR ¼ 2, f2 ¼ 0.4, f0 ¼ 0.2, frequency of

the response allele and marker allele ¼ 0.7 (which is the mean

frequency resulting from the coalescent simulation), complete

LD, prevalence of response among drug-treated individuals ¼
0:34ð0:7 £ 0:7 £ 0:4þ 2 £ 0:7 £ 0:3 £ 0:3þ 0:3 £ 0:3 £ 0:2Þ;
and a case:control ratio of 1.

Results

We first examined the power under the optimistic assumption

of detecting direct association (ie the tested marker is the

Table 1. Estimated false-positive rates for the different statistical tests.

Number of persons False-positive rates

Direct association Indirect association

Single marker Haplotype

Categories Random

500 0.045 M ¼ 3 0.06 0.06 0.051

M ¼ 5 0.03 0.08 0.039

1,000 0.042 M ¼ 3 0.04 0.05 0.046

M ¼ 5 0.06 0.01 0.04

M is number of markers typed.
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causative SNP). In Figure 1a, power is plotted as a function of

the total number of persons participating in the clinical trial

(half placebo-treated and half drug-treated) for different

penetrance scenarios. Even for the best penetrance-scenario

examined (GRR ¼ 3 and placebo effect f0 ¼ 26.6 per cent),

more than 500 individuals are required to be included in the

clinical trial to reach the standard level of 80 per cent power.

This is in sharp contrast to the predictions of the GPC,24

which are an order of magnitude smaller than the worst

penetrance scenario examined (in Figure 1a, compare GPC

[plotted in dashed curve] and GRR with f2 ¼ 0.4, f0 ¼ 0.2).

Another observation is that the power curves are sorted

according to the penetrance of the response genotype, f2. This

may be expected, given that GRR ¼ f 2=f 0 and that the
prevalence of response is a function of f2, and f0. To better

evaluate the relative impact of the penetrances f2 and f0 on

power, in Figure 1b we plotted the power as a function of these

parameters for a fixed number (N ¼ 1,000) of persons per trial.

Fixing each of these penetrance parameters reveals that the

power, across its dynamic range, is almost a linear function of

the other penetrance. We can observe that for a given value of

f2, power decreases approximately linearly as f0 increases.

Moreover, for a given value of f0, power increases approxi-

mately linearly as function of f2 at most of the power ranges. In

addition, for a given GRR ratio, power is considerably

affected by the value of f2. Thus, considering the parameter

space defined in our simulations, power for f2 ¼ 0.4, 0.6 or

0.8, and GRR ¼ 2, is 0.39, 0.644 and 0.881, respectively.

Figure 2 presents the effect of different drug/placebo group

size ratios on power for the best penetrance scenario in Figure

1a (GRR ¼ 3, f2 ¼ 0.8, f0 ¼ 0.266). Figure 2a refers to the

scenario where a first clinical trial including drug- and pla-

cebo-treated groups has been completed and, in order to

enlarge the sample size, drug-only follow-up studies are

included in subsequent analyses. We therefore used a fixed

number of placebo-treated individuals and increased the size of

Figure 1. (a) The effect of genotype relative risk (GRR) ratio

and placebo effect ( f0) on the power of detecting an association

between the causative single nucleotide polymorphism (SNP)

and the response to the drug. Power estimates are plotted

against the number of persons per trial for different values of f2
(penetrance among homozygotes for the response allele), f0
and GRR values. GPC refers to the Genetic Power Calculator

program, which does not take into account the placebo effect.

The horizontal broken line denotes the 80 per cent power

threshold. (b) The relative effect of f2 and f0 on the power of

detecting an association between the causative SNP and the

response to the drug. The number of persons per trial equals

1,000. Results are based on 1,000 simulations.

Figure 2. The effect of increasing the ratio between the drug

and placebo group sizes on the power of detecting an associ-

ation between the causative single nucleotide polymorphism

and the response to the drug. Estimated power is plotted

against the number of persons who received placebo for the

different drug to placebo group size ratios: 1:1 –V–; 2:1 –B–;

4:1 - -O- -. The results are based on 1,000 simulations. Geno-

type relative risk ¼ 3, f2 ¼ 0.8, f0 ¼ 0.266. The results are pre-

sented as a function of: (a) the number of placebo-treated

individuals (mimicking a drug-only follow-up); (b) the number of

individuals in the entire trial.
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the cohort of drug-treated patients. Plots of power versus

study size for different ratios (1:1, 2:1 or 4:1) between placebo-

and drug-treated group sizes are shown. Worst and inter-

mediate penetrance scenarios in Figure 1a were also analysed

(data not shown). Increasing the number of drug-treated

patients improved power only minimally (usually 10–25 per

cent for the first doubling and an additional ,15 per cent for
the second). Improvement was largest for the less powered

scenario (data not shown). To evaluate the best design for a

PGx association study when the number of patients is limited,

we calculated power for 1:1, 2:1 and 1:2 drug-/placebo-

treated group size ratios for the same GRR/f2/f0 scenarios as

in Figure 2a, but this time fixing the total number of patients

participating in the clinical trial. While the best ratio seems to

be 1:1, and the worst 2:1, differences are small and often

statistically insignificant (Figure 2b).

We next evaluated power for the indirect approach — ie

the tested marker is distinct from the response SNP (Figures

3–5). The power curve for analysis, including the causative

SNP, is also presented for comparison. In Figure 3, we com-

pared power for two different strategies for selecting the

markers to be genotyped, either randomly or by categories

(see Methods section for details), examining three penetrance

scenarios and two options for the number of markers typed

(M ¼ 3 or M ¼ 5). Only for the most empowered setting

(Figure 3f ) did the ‘categories strategy’ show a consistent

advantage over the ‘random strategy’.

Comparing power obtained for the different number M of

markers typed on the same simulated datasets yielded similar

plots, with enhanced power for M ¼ 5 over M ¼ 3 (Figure 4).

This improvement is large for larger study sizes and it is sig-

nificant (see grey-shaded patches in Figure 4), even for the

modest number of performed simulations when the study size

is increased.

We used the same datasets (categories strategy) to compare

the relative power of haplotype versus single marker analysis

(Figure 5). Perhaps surprisingly, straightforward haplotype

analysis does not seem to have an advantage over single marker

analysis (which seems superior in the scenarios examined in

Figures 5b and 5f). Furthermore, neither of the power plots

for graphs 5a–f indicate statistically significant differences

between these analytical approaches.

Discussion

We have shown that the attributes characteristic of a clinical

trial, particularly the magnitude of the placebo effect, have

unexpected implications on the statistical power of PGx

association studies. Our simulation results stand in sharp con-

trast to the over-optimistic predictions of tools designed pri-

marily for case-control disease association studies24 and

highlight the marked impact that a substantial placebo effect

can have on reducing study power. In the absence of analytical

tools specifically tailored to calculate power in the PGx context,

where gene–environment interactions are integrated our

results can only be compared with tools designed for classical

disease association studies. The simulation study presented

here shows that even under the most favourable scenario —

involving high penetrance conditions — reliable association (80

per cent power) between SNPs in a candidate gene or region

and the response to a drug requires the recruitment of an

‘optimal number’ — N < 500 patients — in a clinical trial,

given that the causative SNP is genotyped, and N < 800

patients when five perfectly linked markers are genotyped

(Figure 4). Despite the fact that for some results regarding the

indirect association approach the standard errors are still large

(due to limited number of simulations performed), a general

trend is nevertheless visible. It is hence crucial to take the

marked impact of the placebo effect on power into consider-

ation in PGx studies. Our empirical approach allows explora-

tion of a complex array of practical issues of study design, in

contrast to previous, theoretical, simplistic studies.12 Therefore,

the results presented here are meant to guide the optimal

integration of genotype data into ongoing clinical trials and to

define the size of such a trial required for a PGx study.

In practice, once a beneficial effect of a new treatment is

clearly demonstrated, patients on placebo treatment are shifted

to real therapeutic regimens. Hence, the total size of a given

placebo-treated cohort will often remain limited, while the

number of drug-treated patients will potentially significantly

increase. We report in this study that the optimal study design in

the presence of a placebo effect under the models examined

comprises an equal number of drug- and placebo-treated

patients, as is usually the case in Phase III clinical trials. Adding

more drug-treated patients, even four times as many, increases

power only mildly. This is in sharp contrast to the more classical

case-control studies aimed at the elucidation of the aetiology

of common diseases, where the number of affected cases is the

limiting variable and where significant gains in power could be

obtained by increasing the size of the control group.9We

speculate that the rationale for this differential impact of relative

cohort sizes is that in PGx it is essential to evaluate the pene-

trance for the non-causative genotype ( f0), which is negligible

in disease susceptibility, and therefore the number of placebo-

treated individuals becomes a tighter bottleneck.

A further potential improvement for the study design is an

educated selection of markers. Ideally, markers need to be

chosen in such a manner as to improve the chances of

matching the causative allele frequency.8,9 Yet, the latter is

unknown (ie whether common as proposed under the

‘common-disease, common-variant hypothesis’25) or less fre-

quent, as also advocated.26 Even though detailed haplotype

maps27 are well underway, which may eventually allow SNP

selection based on phylogenetic analysis28 or haplotype

blocks,29 until such data are understood, one is still restricted

to choosing markers from a modest set of validated SNPs,

often with allele frequencies being the only additional data

available. In this study, we spread marker frequencies over the
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possible range of informative alleles (.5 per cent or .10 per
cent). We compared this strategy with that of choosing

markers randomly. Surprisingly, little difference in power is

reported, if at all. One possible explanation might be that

redundant markers are not the major source of power loss

when only a small set of markers is used, as these SNPs are

likely to fall in different allele frequency categories by chance.

Yet our results suggest that power is greatly increased if five

markers (M ¼ 5) are typed instead of three (M ¼ 3) (Figure 4),

as with case-control association studies. This is likely to

stem from the increased chances, as M gets larger, of hitting a

marker allele which is in phase with the response allele. Since

Figure 3. The effect of strategy for selecting markers (M, at random or categorised) on the power of detecting an association between

the markers and the response to the drug. The results are based on 100 simulations. Estimated power is shown for the causative single

nucleotide polymorphism (SNP) (–x–), randomly selected SNPs (–B–) and a categories-based strategy (–O–). (a) M ¼ 3, genotype

relative risk (GRR) ¼ 3, f2 ¼ 0.6, f0 ¼ 0.2; (b) M ¼ 5, GRR ¼ 3, f2 ¼ 0.6, f0 ¼ 0.2; (c) M ¼ 5, GRR ¼ 3, f2 ¼ 0.8, f0 ¼ 0.266; (d) M ¼ 5,

GRR ¼ 4, f2 ¼ 0.8, f0 ¼ 0.2; (e) M ¼ 3, GRR ¼ 4, f2 ¼ 0.8, f0 ¼ 0.2; (f) M ¼ 5, GRR ¼ 4, f2 ¼ 0.8, f0 ¼ 0.2.
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the number of individuals participating in a clinical trial is

limited, increasing the number of genotyped markers may be

the strategy of choice, and the only feature controlled by study

designers, for improving the power of a PGx association study.

In this study, we also considered the option of improving

power by a higher-level analysis of the genotypic data.

Our simulations extend earlier results in a complex-trait

context10,29 to the PGx framework, regarding similarity of

power in analysis based on haplotypes versus single markers.

More sophisticated analysis of haplotypes, exploiting their

cladistic structures, may, however, be more advantageous in

PGx than in other areas,30,31 yet the impacts of a departure

from the infinite site model (an assumption implicit in

our coalescent simulation) and of homoplasy remain to be

Figure 4. The effect of the number (M) of markers typed (three or five) on the power of detecting an association between the

markers and the response to the drug. The results are based on 100 simulations. The estimated power is shown for M ¼ 3 (–V–),

M ¼ 5 (–B–) and the causative single nucleotide polymorphism (–x–). The shaded regions denote designs for which the difference

between M ¼ 3 and M ¼ 5 is significant. (a) Random selection, genotype relative risk (GRR) ¼ 3, f2 ¼ 0.6, f0 ¼ 0.2; (b) Categories

strategy, GRR ¼ 3, f2 ¼ 0.6, f0 ¼ 0.2; (c) Random selection, GRR ¼ 3, f2 ¼ 0.8, f0 ¼ 0.266; (d) Categories strategy, GRR ¼ 3, f2 ¼ 0.8,

f0 ¼ 0.266; (e) Random selection, GRR ¼ 4, f2 ¼ 0.8, f0 ¼ 0.2; (f) Categories strategy, GRR ¼ 4, f2 ¼ 0.8, f0 ¼ 0.2.
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calibrated. These results place another pin on the map of the

literature on haplotype versus single marker analyses, each

method having its own advantages.10,29,32,33

The frequency of the response allele is an important deter-

minant of the power of association studies.8,29 Since this aspect

of association studies has been extensively analysed, however,

we avoid handling this issue, relying instead on existing analysis.

Simulation assumptions in this study consider a very basic

genetic model: an equilibrium population with only mutation

and random genetic drift modifying a non-recombinant

Figure 5. The effect of haplotype analysis versus one single nucleotide polymorphism (SNP) analysis on the power of detecting an

association between the markers and the response to the drug. The results are based on 100 simulations for marker analysis and 1,000

simulations for haplotype analysis. Markers (M) were chosen according to frequency categories. The estimated power is shown for the

causative SNP (–x–), haplotype analysis (–B–) and single marker (–O–) analysis. (a) M ¼ 3, genotype relative risk (GRR) ¼ 3,

f2 ¼ 0.6, f0 ¼ 0.2; (b) M ¼ 5, GRR ¼ 3, f2 ¼ 0.6, f0 ¼ 0.2; (c) M ¼ 5, GRR ¼ 3, f2 ¼ 0.8, f0 ¼ 0.266; (d) M ¼ 5, GRR ¼ 4, f2 ¼ 0.8,

f0 ¼ 0.2; (e) M ¼ 3, GRR ¼ 4, f2 ¼ 0.8, f0 ¼ 0.2; (f) M ¼ 5, GRR ¼ 4, f2 ¼ 0.8, f0 ¼ 0.2.

Singer et al.ReviewPRIMARY RESEARCH

q HENRY STEWART PUBLICATIONS 1479 – 7364. HUMAN GENOMICS . VOL 2. NO 1. 28–38 MARCH 200536



haplotype block containing the candidate gene under study.

Real life is far more complex. Nonetheless, this model is

already sufficient to indicate the general trends of the factors

that may confound PGx studies. While this simple model does

not accurately reflect samples drawn from human populations,

we consider it preferable to more assumptive, but often still

controversial, models. Incorporating other factors, such as

recombination, gene conversion, recurrent mutations or

demographic expansion, into the coalescent model is likely to

deteriorate the power estimated in the present study. It should

be noted that we make implicit assumptions in the manner in

which simulations are laid out. First, the response allele is

assumed to be the ancestral, usually more common, one. This

assumption is rationalised by our focus on drugs that, by

default, do evoke a response, by contrast with long-shot

treatments whose success is the exception and which require

separate analysis. Furthermore, the range of minor allele fre-

quencies that are examined in this work may bias our findings.

The simulation parameters analysed implicitly focus this work

at more common SNPs, more akin to the common-disease,

common-variant scenario. Other excluded factors relevant

specifically to a PGx power study — such as multiple drug

doses, quantitative or categorical outcomes instead of a binary

response, different models for placebo effect, allelic hetero-

geneity, epistatic interactions and genotyping errors — all

motivate further research. Lastly, studies of adverse drug

effects, which are not examined in the current study, may

require further research involving this particular design.

The interest of large pharmaceutical companies in PGx

studies, the strong possibility that new drugs will be required to

be evaluated for PGx by the Food and Drugs Administration

and the public demand for more personalised medicines is likely

to increase the number of PGx studies in the near future. To

increase the likelihood of obtaining significant results, studies

need to be designed to take into consideration the parameters

that affect power estimation. The present study implies that

simple transpositions of conventional case-control models and

power evaluations to PGx are not straightforward and require

separate consideration.While statistical power in PGx is affected

by some parameters, as with disease susceptibility studies, the

particularities of a study design that is based on a clinical trial

change the set of controllable parameters and transform the

landscape of success probabilities. The follow-ups suggested

above are expected to further refine the outline characteristics

of statistical power in PGx studies of drug response.
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