RADIOCARBON DATING OF MODERN GROUNDWATER: THE ROLE OF THE UNSATURATED ZONE

GILLON M.⁽¹⁾⁽²⁾, BARBECOT F.⁽²⁾, GIBERT E.⁽²⁾, PLAIN C.⁽³⁾, CORCHO ALVARADO J.A.⁽⁴⁾, MASSAULT M.⁽²⁾

⁽¹⁾ UMR UAPV-INRA 1114 EMMAH, Université d'Avignon et des pays de Vaucluse, AVIGNON, FRANCE;

⁽²⁾ UMR CNRS-UPS 8148 IDES, Université Paris Sud XI, ORSAY, FRANCE;

⁽³⁾ UMR UL-INRA 1137 EEF, Université de Lorraine, NANCY, FRANCE;

⁽⁴⁾ Institute of Radiation Physics, University Hospital and University of Lausanne, LAUSANNE, SWITZERLAND

Abstract

Biological and physical processes occurring in soils may lead to significant isotopic changes between the isotopic compositions of atmospheric CO_2 and of soil CO_2 . Also, during water and gas transport from the soil surface to the water table, isotopic changes likely occur due to numerous physical processes such as gas production and diffusion, water advection, and gas-water-rock interactions. In most cases, these changes are not included in the correction models developed for groundwater dating, whereas they can significantly impact the calculation of the ¹⁴C age (Fontes, 1992; Gillon *et al.*, 2009). We explore the role of these processes using:

i) experimental data from two aquifer sites (Fontainebleau sands and Astian sands, France),

ii) a distributed model to simulate the ¹⁴C activities of soil CO₂,

and iii) numerical simulations in order to highlight the role of the physical processes.

The ¹³C content in soil CO₂ showed seasonal variations and highlighted the competition between CO₂ production and CO₂ diffusion. Their respective contributions played a significant role in defining the isotopic composition of CO₂ at the water table. On both study sites, variations of the ¹⁴C activity in soil CO₂ reflect the competition between the fluxes of root derived-CO₂ and of organic matter derived-CO₂. Since the nuclear weapon tests in the fifties and sixties, soil CO₂ became significantly depleted in ¹⁴C compared to atmospheric CO₂. Models that take into account this ¹⁴C depletion in soil CO₂ for dating modern groundwater would lead to apparent younger ¹⁴C ages than models that only consider the ¹⁴C activity in atmospheric CO₂. Moreover, since 2000-2005, the inverse effect is observed as soil CO₂ is enriched in ¹⁴C compared to atmospheric CO₂ (Gillon *et al.*, in revision).

Therefore, we conclude that the isotopic composition of CO_2 at the water table have to be taken into account for the dating of modern groundwater. This requires a systematic sampling of soil CO_2 and the measurement of its ¹³C and ¹⁴C contents. We used this information in a numerical simulation to calculate the evolution of isotopic composition of CO_2 from the soil surface to the water table. This simulation integrated physical processes in the unsaturated zone (e.g. CO_2 production and diffusion, water advection, etc.) and gaswater-rock interactions.

References

- 1. Fontes (1992) Radiocarbon After Four Decades, 242-261
- 2. Gillon et al. (2009), Geochim. Cosmochim. Acta 73, 6488-6501
- 3. Gillon et al., geoderma, in revision