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Automated systems allow forensic practitioners to perform analysis tasks that would otherwise be
infeasible. However, unless the outputs of such systems are critically evaluated using a scientifically-
based framework, there is a risk of undetected errors or bias resulting in wrong decisions. Further-
more, decisions based on automated system outputs that are not well understood or clearly explainable
could violate fundamental human rights. These risks can apply to any automated system that supports
forensic analysis, and are raised when machine learning is involved. This work presents a framework
based on principles of scientific interpretation, and provides an evaluation hierarchy for automated
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systems supporting forensic analysis are proposed, and future work is discussed.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
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1. Introduction

The increasing volume, variety, velocity, distribution and
complexity of information are overwhelming forensic scientists,
crime analysts and security professionals in various contexts,
including criminal investigations, national security, and interna-
tional disputes. As a result of information overload, these practi-
tioners are reaching decisions without sufficient support
mechanisms, increasing the risk of incorrect conclusions. At the
same time, there is a growing demand for forensic analysis of traces
with probative value and scientific validity. The opportunity costs
of not being able to rely on results of automated systems for
forensic purposes are growing as more investigations involve large
quantities of digital evidence from a multitude of sources. Missing
or misinterpreting inculpatory or exculpatory digital evidence can
result in innocent individuals being falsely accused, victims being
denied justice, and criminals remaining at liberty to commit of-
fenses. To deal with these challenges and opportunities, there is a
pressing need for automated systems that integrate scientific
principles and processes to address forensic questions.
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In the context of this work, an automated system is defined as
any system that performs a process instead of a person to address
forensic questions (authentication, classification, identification,
reconstruction, evaluation), as defined in Pollitt et al. (2018). Auto-
mated systems, including but not limited to machine learning ap-
proaches, are being developed to help humans find valuable
insights more effectively and efficiently in massive amounts of in-
formation. The following are just a few examples of automated
systems that support practitioners for forensic and security
purposes:

@ Extraction of information from various data sources on a
computer or mobile device (Metz and White, 2020).

@ Semantic file recovery, reassembly, repair and validation of
carved content to increase the amount of renderable content
and reduce the number of false positives (Casey and Zoun,
2014).

@ Child Sexual Exploitation Material (CSEM) classification on
the basis of age and sexual activity to increase accuracy and
efficiency, while reducing forensic examiner exposure to
stress (Anda et al., 2020; Sanchez et al., 2019)

@ Face recognition to support verification (1-vs-1) and identi-
fication (1-vs-N).

2666-2817/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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® Detect grooming activity in online discussion forums (Meyer,
2015)
@ Detect links between related crimes (Bollé and Casey, 2018)

Automated systems can present the outputs of complex analyses
in ways that appear quite simple. For instance, the open source
forensic framework called Plaso transforms digital evidence into
event-like structures to enable temporal analysis, adding a
description of the associated (probable) activities (Metz and White,
2020). An exemplar web history event-like record produced by
Plaso presents a URL with the description:

Visit https://accounts.google.nl/[edited
for length] (resurrection stone price - Google zoeken)
Type: [GENERATED - User typed in the URL bar and
selected an entry from the 1ist - such as a search bar]

from:

(URL not typed directly - no typed count) .

Such descriptions of activities in Plaso are, in fact, inferred from
the data using encoded expert knowledge, which has some level of
uncertainty. There is a risk that forensic practitioners will not un-
derstand that such output from an automated tool is an inference
that requires evaluation. In this instance, the ability to review
source code provides some transparency and understandability,
provided the forensic practitioner knows Python. However, the
output of an automated system such as Plaso must also be evalu-
ated in light of the forensic question of interest in the investigation,
which typically takes into account circumstances of the case and
may involve experiments to test alternative hypotheses (e.g.,
caused by malicious code, not the user).

Automated file recovery (carving) tools that codify expert
knowledge and employ best-match algorithms can salvage content
that is not attainable using other methods (Durmus et al., 2019).
However, it can be difficult for a forensic practitioner to verify or
explain a specific file recovery output, and there is a risk of
advanced carving and reassembly methods incorrectly combining
two different files. As a result of the difficulty detecting erroneous
output and explaining successful recovery, practitioners are slow to
adopt such powerful capabilities for forensic purposes.

As another example, a system for detecting the age of people in
digital photographs can allow forensic practitioners to look only for
children under ten years old. However, hidden complexity and bias
can cause problems, including incorrect classification (false posi-
tives), missing relevant evidence (false negatives) and mis-
interpretations (Anda et al., 2019). The risk of making mistakes and
missing relevant evidence motivates forensic practitioners to place
more trust in their own observation of photographs and videos
than automated classification methods (Sanchez et al, 2019).
Reviewing source code is typically ineffective for finding more
subtle problems in complex automated systems, making it neces-
sary to perform evaluation of their outputs (Taylor et al., 2017).

Another risk is that forensic practitioners will not formally
evaluate the output of automated systems in light of the specific
question(s) under consideration. For instance, consider an auto-
mated system intended for object/face classification, but that was
not designed to compare similar objects or people. In this situation,
the output of the system would be useful to address the question of
whether a photograph/video contains an object or a person but it
would not be suitable to answer the question of whether it contains
a specific object/person. In other words, a forensic practitioner
could misinterpret the level of similarity in light of the question
"Are these the same object" rather than "Are these the same class of
object”. Many automated tools are not crystal clear about when
they are fit for purpose, and do little to help forensic practitioners
assess outputs critically. As a result, forensic practitioners can
incorrectly assume that the outputs of automated systems are

reliably addressing their needs, unless they are guided through a
structured evaluation process.

This work considers the core challenges of forensic practitioners
understanding and interpreting the output of automated systems,
and more specifically machine learning systems, for forensic pur-
poses. A central premise of this work is that forensically sound
decisions can still be made using outputs from automated systems,
provided proper evaluation is performed.

In order to support decisions in a forensic setting, the design of
software should abide by forensic principles and practices (Rahman
et al, 2016). From both a scientific and legal perspective, any
automated system that helps a forensic practitioner reach conclu-
sions for forensic purposes must be transparent and reproducible
(Margagliotti and Bollé, 2019). Furthermore, forensic practitioners
must be able to understand and explain the results of such auto-
mated systems in a clear, complete, correct and consistent way
(Berger, 2019; Casey, 2020). Many existing machine learning ap-
proaches lack sufficient transparency and reproducibility for
forensic purposes, and are not designed in a way that helps forensic
practitioners evaluate and explain the outputs of automated sys-
tems effectively.

The solution to this problem is not only technical, but involves a
structured process for exploring and evaluating that abides by the
principles of scientific reasoning and interpretation. In addition to
output from automated systems being transparent, reproducible
and understandable, it is necessary to shepherd users through a
structured process of scientific interpretation. This process is
generally referred to as evaluation in forensic science, but the term
forensic evaluation is used throughout this work to differentiate it
from other forms of evaluation applied to automated systems. This
work proposes design requirements for automated systems sup-
porting forensic analysis, which includes supporting consideration
of alternatives and weight of evidence assignment. This work
considers systems applied to any form of evidence, including face
comparison on identity cards/passports, fingerprints and shoe-
marks in criminal investigations, and digital evidence in any type of
investigation. However, the examples discussed will be taken from
the field of expertise of the authors.

This work makes an inventory of existing terms and definitions
surrounding the evaluation of automated systems and the resulting
decision making process. In order to support forensic analysis, we
propose the following general recommendations when designing
an automated system:

- Performance evaluation results should be sufficiently detailed to
determine if it is fit-for-purpose for a given forensic question.

- Understandability and transparency should be a requirement in
the design of automated systems supporting forensic analysis.

- The system should support contextual analysis by keeping the
context of the information at every stage

- The system should guide users through the forensic evaluation

and decision making steps to be sure that they can understand

and explain the result in a clear, complete, correct and consis-

tent manner.

The hypotheses should be explicitly formulated, even if it is

automated and always the same. If some steps are automated,

they still should be explicitly described.

The paper will start with the definition of automated systems
(Section 2) and the different levels of evaluation we consider to be
involved when using automated systems (Section 3). In Section 4,
we present the role of these evaluations in the decision making
process. In Section 5, we will rapidly discuss how it is possible to
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express weight, in regards to multiple hypotheses, during the
forensic evaluation. We will then present some use case examples
to discuss the strengths and weaknesses of the different ap-
proaches, in the light of the proposed model (Section 6). In Section
7, we give some recommendations to design systems that support
evaluation. We conclude with the challenges that future work need
to address (Section 8).

2. Automated systems

The approach presented in this paper can be applied to any
automated system as defined above, including file recovery tools,
expert systems and machine learning systems. File recovery tools
apply codified knowledge of file characteristics to automatically
classify and authenticate files in deleted state. Modern file carving
tools encode expert knowledge about data formats, characteristics,
structures, components and their arrangements in order to find,
reassemble and repair content. Expert systems use a knowledge
base that contains some facts and an inference engine that applies
logical rules to solve problems. Digital forensic tools are increas-
ingly exploiting codified expert knowledge to make automated
inferences from digital evidence to help investigators address
forensic questions (Henseler and Hyde, 2019).

Machine learning systems are becoming more widely used for
forensic purposes to support classification, regression and clus-
tering, but also for data manipulation (preprocessing, dimension-
ality reduction, model selection, etc.). The learning can be
supervised, meaning that the rules are derived from a labeled
dataset considered as ground truth, or unsupervised, meaning that
the rules are learned from unlabeled data.

A generalized depiction of an automated system is presented in
the top-left part of Fig. 1, delimited in the “System development”
square. The system by itself is represented in the “System” box. A
system will usually be composed of an algorithm or a set of algo-
rithm that will handle data, produce a result and output it." In Fig. 1,
we separated the “Selected features” and “output” box from the
“System” to insist on those particular elements in other sections of
the paper. As stated previously, the system can apply codified
knowledge and/or statistically learned knowledge on a particular
case data. Those two approaches are represented in Fig. 1 with the
boxes “Knowledge & Rules” and “Train or Test system”. The sta-
tistically learned knowledge is produced by training the system on
labeled data, for instance with systems based on supervised ma-
chine learning algorithms. In both cases, the system can be tested
on known data in order to measure the performance of the system.
Finally, the system can be used in a particular case on unknown
data. The rest of the diagram will be detailed in the following
sections, concentrating on evaluation.

3. Different levels of evaluation

A core challenge when using automated systems for forensic
purposes is to evaluate the output, particularly when machine
learning is involved. Evaluation is generally defined as a process
producing a value that can be fed into a decision process (Pollitt et al.,
2018). The value produced by an evaluation can be binary (e.g., 0 or
1 relating to a decision of “false” or “true”), continuous (e.g., be-
tween 0 and 1 representing a probability), or a mark of a discrete

» o«

nature (e.g., “low”, “medium”, high” representing strength). The

" It includes all the algorithms needed to transform or cluster data, predict
classes or values, or visualize elements. For instance, a system could be composed
of the algorithm needed to clean the data, extract the features, classify the samples
(using neural networks or linear regression) and finally display the results.

evaluation of automated systems can occur on multiple levels:
performance evaluation, understandability evaluation, and forensic
evaluation.

3.1. Performance evaluation

Before forensic practitioners use a particular automated system
to help them reach forensic conclusions, they need to have a basic
level of trust. It is thus necessary to measure the performance of the
system for a given purpose. For instance, performance measure-
ment is different for automated systems that detect faces in pho-
tographs versus systems that find a specific face of interest.
Different performance measurements are required for traditional
file carving tools versus specially designed methods targeting
fragments of partially overwritten files. Depending on the type of
system, different approaches to measuring performance are
needed.

The aim of the following paragraphs is to present some
commonly used performance metrics for some systems and to
show that the usage and comprehension of these metrics are not
trivial.

3.1.1. Classification

Classification systems, for instance, can be used to determine in
which class a sample belongs. The classes are chosen and the sys-
tem is trained to differentiate samples from each class. The training
is done on samples for which the class is known. When testing the
system, known samples are classified and the predicted class can be
compared with the true class of the samples. A confusion matrix
displays for each class, how many items were correctly classified.
An example of confusion matrix is provided in Table 1.

Common metrics are the accuracy, precision, recall and F1-
score. Accuracy is defined as the percentage of correctly classified
samples (Jeni et al., 2013). Precision is defined as the “ability of the
classifier not to label as positive a sample that is negative” (Scikit-
Learn Developers, 2019). The recall is the “ability of the classifier to
find all positive samples” (Scikit-Learn Developers, 2019). The FN-
score “can be interpreted as a weighted harmonic mean of the
precision and the recall” and when using the F1-score, precision
and recall have the same weight (Scikit-Learn Developers, 2019).
The F1-score is more adapted to measure performance when the
classes are imbalanced. Concretely the F-score combines the pre-
cision and the recall which ease the comparison between systems.
However, systems that have similar precision and recall will have a
better F-score. In some situations, we would prefer to have a system
with a good precision (or recall) score and not focus on the recall (or
precision). The commonly used F1-score will not be adapted to
measure the performance in these situations.

In two-class classification, the definition of these metrics are as
follows:

accuracy = tp + [
&= tp + m + fp + fir
. tp
recision = ———,
P tp + fp’
recall = L,
tp + fn

F o9 precision x recall
1= “ "precision + recall

With tp, tn, fp, fn being the number of true positive, true negative,
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Fig. 1. General workflow of an automated system implementation, its use for forensic purposes, and the different levels of evaluation.

Table 1
Confusion matrix for a two-class classification. “True class” represents reality and “Predicted class” represents the result of the classification (class predicted by the classifier). If
we consider Class A as the positive result, and Class B as the negative, (p, (n, fp, fn are the number of true positive, true negative, false positive and false negative, respectively.

Predicted class

Class A Class B

True class Class A tp fn
Class B Ip tm
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Table 2
Representation of web history as event-like (Metz and White, 2020).

type datetime user url

description extra

Last Visited 11/30/2018 8:42 Default https://www.google.nl/search?q—elder | wand&oq
Time elder+wand&ags=chrome..69i57j013.6043j0j7&client

(elder wand - Google Search) [count: 0] page_transition_type: 5
Type: [GENERATED - User typed in the schema_match: False

ms-android-samsung&sourceid—chrome-mobile&ie—UTF-8 URL bar and selected an entry from the wurl hidden: False

list - such as a search bar] (URL not
typed directly - no typed count)

false positive and false negative, respectively.

Practical example

For example, results of file recovery operations are evalu-
ated using precision, recall and F-score (NIST Software
Quality Group, 2017). A problem with evaluating file carv-
ing tools only using these metrics is that it rewards pro-
duction of junk files, i.e. data that are not renderable in a
useable form for forensic purposes. In this context,
renderable refers to the ability to display recovered content
in a human viewable form. For example, some file carving
tools produce thousands of picture or video fragments that
cannot be viewed, which can create time waste and confu-
sion when each (false positive) result must be reviewed and
explained. File carving tools that eliminate junk files and/or
repair damaged files produce more useful results for
forensic purposes and reduce the amount of time forensic
practitioners spend reviewing junk files. Another problem
when evaluating with these metrics is that they are not well
suited to specialized file carving methods designed to
recover fragments of partially overwritten files (Durmus et
al., 2019).

From these definitions, one can already see that it might be
difficult to understand exactly the meaning of these metrics.

3.1.2. Regression

Regression systems are used to predict a value (continuous data)
instead of a class, leading to an infinity of possible outcomes. Thus,
it is not possible to use a confusion matrix. However, multiple
metrics can be used to measure how close the output of the algo-
rithm is from the ground truth. Common metrics are to measure
the error between the real value and the predicted value. Many
variations exist, such as Max Error, Mean and Median Absolute
Error, Root Mean Square Error (RMSE). The choice of one of the
metrics compared to another will be made based on what type of
errors we want to evaluate. For instance, the Max Error will detect
the worst case error but the Median Absolute Error is not affected
by outliers (Scikit-Learn Developers, 2019). Another common
metric is the R? score that measures the proportion of variance
explained by the regression model. Scikit-Learn Developers (2019)
gave a good overview of the metrics that can be used to evaluate
the different types of models.

2 It can be defined as the relation between the predicted probability of an event
and the real hypothetical occurrence of the event (Ramos and Gonzalez-Rodriguez,
2013; Meuwly et al.,, 2017).

Further considerations

The list of metrics provided here is not exhaustive and the
definitions may change depending on the context. For
instance, when using Likelihood ratios (LR) and bayesian
statistics, performance can be measured with accuracy and
calibration’ among others (Ramos and Gonzalez-
Rodriguez, 2013). Meuwly et al., (2017) give the definition
of the term calibration and accuracy and underline the fact
that the definition in LR-based methods are different from
the one used in metrology for analytical methods. The point
of this quick example is to emphasise that the definitions of
terms can vary depending on the context.

3.1.3. Challenges

The objective of this quick overview of metrics is to show that it
requires a basic knowledge of statistics to understand these perfor-
mance measurements and that it might be difficult for a forensic
practitioner or a judge to assess it. It also shows that the terminology
can change depending on the context. This adds difficulties to rely
only on such metrics to justify the use of a particular system.

Another limit of such methods, which allows to evaluate the
performance of an algorithm, is that they can only be used when
“ground truth” data are available to test the system. Even if such
data are available, they must be representative of the diversity of
the data on which the model will run in real conditions. This con-
dition might be hard to satisfy in a criminal context where events
might be rare and diverse, and when you cannot predict or have an
influence on the data you will have.

For instance, if a face recognition system performance is
measured using good quality images of adult males (i.e identity
documents), but the system is then used on low quality images
such as surveillance footage, or on young girls identity documents,
the performance could be completely different. It would be prob-
lematic to apply the general performance measures in these
particular cases, and it would undermine the robustness of the
system when doing the forensic evaluation.

Another example of the difficulty to assess performance is when
the user of the system needs to make sense of the value of the
performance and make a decision based on it. Imagine testing a
classification tool that classifies images as containing a minor or
not. The testing gives a f1-score of 0.84. Is this score sufficient for
such a tool for the given purpose? Should it be retrained? Will it
meet the operational needs? Answering such questions might be
hard for someone that is not familiar with performance scores.

A performance evaluation will help forensic practitioners decide
whether the system is actually adapted to the forensic question. In
other words, whether or not a system is suitable for a given purpose
and situation. However, when performing forensic analysis, it is
also necessary to evaluate the specific output of the system and to
understand why the system produced the specific result.
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3.2. Understandability evaluation

To evaluate the specific output of an automated system, forensic
practitioners need a mechanism to study features and factors used
to produce this result. Such insights support understandability,
explainability and transparency.

The distinction between those terms is narrow. For further
discussion on the definitions of these terms, the reader can refer to
the text box “Definitions & Discussion”.

In the rest of this paper, we will use the term understandability.

Understandability’: The ability of a human to understand the
functioning of a system, and in particular its purpose, along with
the output results, the features used and the inferences made by
the system.

We chose this term because it is focused on the user of the
system and it is in our opinion the important aspect of automated
systems: they have to be understood by their users.

Definitions & Discussion

The distinction between the different terms is not easy to
understand and even the literature is ambiguous.

Typically, the terms explainability and interpretability are
often used in literature related to explainable artificial in-
telligence. Doshi-Velez and Kim (2017) and Gilpin et al.
(2018) propose a distinction between the two terms. They
define interpretability as the “ability to explain or present in
understandable terms to a human” (Doshi-Velez and Kim,
2017). A system is considered explainable if it is “able to
summarize the reasons for a behavior, gain the trust of
users or produce insight about the causes of their de-
cisions” (Gilpin et al., 2018). They also note that the
explainability is a trade-off between interpretability, which
suppose the understanding by a human, and completeness,
which could be seen as the exact mathematical represen-
tation of the system.

Our understanding of these two aspects are the interpret-
ability being how easily the system can be understood by a
human and the explainability being all the mechanisms that
have been put in place in the system in order to be more
interpretable.

Other research considers the two terms to be synonyms as
in Beaudouin et al. (2020), where both terms are defined as
“the ability, inclination or suitability to make plain or
comprehensible, or explain the meaning of, an algorithm™.
The authors indicate that the term interpretability is
preferred in the data science community and that the term
explainability is preferred in policy documents.

For clarity, we present the following definition of the
different terms:

Understandability: The ability of a human to understand the
functioning of a system, and in particular its purpose, along
with the output results, the features used and the inferences
made by the system.

3 The word understand can be defined as: “to know or realize how or why
something happens, how it works or why it is important” (“Understand” n.d.).

4 The word explain can be defined as: “To tell somebody about something in a
way that makes it easy to understand” (“Explain” n.d.).

> The word interpret can be defined as: “to explain the meaning of something”
(“Interpret” n.d.).

Explainability”: The ability of a system to make its func-
tioning and its purpose clear to a human. This includes the
output results, the features used and the inferences made.
As one can see, the definition is similar as the one of un-
derstandability except that the focus is made on the system.

Concretely, we reach the conclusion that both terms,
explainability and understandability serve the same pur-
pose and that understandability requires explainability. As
explained previously in the paper, we will mainly use the
term understandable in this paper because we want to insist
on the fact that it is important that the user or the decider
understand the system.

Interpretability®: We consider this term as a synonym of
understandability. To avoid any confusion with the forensic
interpretation, we will completely avoid this term.

Completeness: The exact representation of the system. It
can be its exact mathematical or algorithmic definition, or
the exact set of rules used by the system.

Transparency: The ability for the user to have access to the
detail of functioning of system. A fully open-source system
is completely transparent, as opposed to black-box
systems.

The discussion around the definitions of the different terms
is very open and we acknowledge its importance, in order
for the scientific community to speak a common language.
In this paper, our approach was to clearly define the terms
as we intended them and to present some challenges
regarding their use.

The transparency of the system can help improve its under-
standability but does not necessarily imply it. For instance, for
neural networks or very complex algorithms, having access to the
details of the implementation and to the precise algorithm will not
help understanding it. For complex and black box systems, it is
necessary to add some other mechanism to improve the under-
standability of the system.

Many concerns are raised by various institutions about the us-
age of black box systems. For instance, Campolo et al. (2017), stated
in the 2017 annual report of the Al Now Institute that “Core public
agencies, such as those responsible for criminal justice, healthcare,
welfare, and education (e.g “high stakes” domains) should no longer
use black box Al and algorithmic systems”. The DARPA also started a
program that encourages the development of explainable artificial
intelligence - XAI (Gunning, 2017). At the European Union level
also, a COST Action project titled “CA17124 - Digital Evidence: ev-
idence analysis via intelligent systems and practices (DigForAsp)” is
conducting research on the synergies between digital forensics and
automated systems along with the challenges of reliability, verifi-
ability and understandability of the results in a legal context. Fig. 2
presents an example of a system that would add mechanisms
improving the understanding of the user.

Practical example

As an example, a document analysis visualization tool can
be useful for efficiently analyzing large quantities of com-
munications extracted from a smartphone, including SMS,
chat, instant messages, and e-mail messages. Such an
automated system is useful for finding themes, trends, and
relationships in textual data, and performing link analysis
between people or numbers on a single device or across
multiple devices. Although the specific algorithms used
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within the system are not known, the system shows how
much specific terms contributed. For instance, grouped
together within a theme related to purchasing certain items
narrows focus to 166 messages. Checking the terms that
contribute to this buying-selling theme-based cluster re-
veals the primary terms relate to selling a generator, rifle
and bullet proof vest, with some ancillary terms related to
buying and selling drugs as shown in Fig. 3. The system
allows the user to drill down, i.e., select specific terms to see
the surrounding context, and delve deeper into the data
source to examine the complete contents of any message in
order to understand the context and evaluate the digital
evidence directly in order to address specific forensic
questions.

Multiple techniques can be used to improve the explainability of
the models. For instance, LIME® allows understanding how the
features impact the result by running multiple times the system,
each time “hiding” a feature, to understand how it influences the
results (Guestrin et al., 2016). DeeplLift’ is also a method that can be
used to know which are the important features in a deep learning
system (Shrikumar et al., 2019). The difference between those two
approaches is that the first one “changes” the input, by changing
the features, and observe the impact on the output, and the second
one starts from the output and propagates the contribution of each
neuron in the neural network back to the input.

A final example of an approach that helps to understand the
system is the use of Nearest Neighbors (Lau and Biedermann, 2020).
When using a trained system on an unknown sample, the authors
propose to also look at the nearest sample in the training set. It is
then possible to concretely determine if the system has the same
“sense of proximity” that the user of the system. They indicate that
this method is compatible with existing systems and that it is
particularly suitable for judges and lawyers.

Understandability is thus an important element to integrate in
modern automated systems. Understandability evaluation will help
the forensic practitioner to determine if the system is under-
standable enough and if the system works properly.

Understandability evaluation can be done generally and aims at
determining if the system is understandable or if it provides suf-
ficient explanations. In some cases, the forensic practitioner could
decide that the system will not be used because it is a black box and
that there is no explanation at all. In some cases, the system could
be quite simple and perfectly understandable, meaning that the
user will know exactly what the system is doing and why. A last
example of such evaluation is when the system is very complicated
or a black box but sufficient explanations were added to understand
the output.

Understandability evaluation should also be done when using
the system on a specific case. If it has some explainability mecha-
nisms, the user should be able to understand what the system did
and on which feature it based the output. At this stage, the user can
determine (e.g., with some level of confidence) whether the system
is using correct features, independently of the output. For instance,
if we look again at the example in Fig. 2, if the user sees that the
system is using the background of the image to produce the output,
he or she might decide that the system is not doing what it is
supposed to do, and the output is invalid/incorrect. Conversely, if
the user sees that the ears of the animal are used, he or she will

6 Local Interpretable Model-Agnostic Explanations.
7 Deep Learning Important FeaTures.

proceed to the next step of the forensic evaluation of the output in
itself.

3.3. Forensic evaluation

For forensic purposes, practitioners ultimately need to assign a
(relative) likelihood of observed information in light of a working
hypothesis, relative to competing hypotheses. A hypothesis is a
claim that is evaluated against competing claims (Pollitt et al.,
2018). At the court level, the term “proposition” is usually
preferred, whereas “hypothesis” is used during an investigation. In
this context, the evidence is the output of the automated system.

It is important to note that changing the hypotheses can alter
the results of the evaluation, even when considering the same
automated system output (e.g. similarity score). For instance, a
system could find similar malware in multiple intrusion cases. The
result of the forensic evaluation might be different if we are trying
to determine whether the same group of hackers is behind the
attacks or not, or whether all attacks are using the same or different
modus operandi.

It is based on this forensic evaluation that a decision is taken. In
their article, Lau & Biedermann differentiate between evaluation
and decision:

“Evaluation is the assessment of the strength of evidence regarding
competing propositions and their relative plausibility or probabil-
ity. After evaluation comes decision, that is, the acceptance of a
proposition as a conclusion.” (Lau and Biedermann, 2020, p. 7)

Although forensic evaluation is most often discussed in relation
to court testimony, it is applicable at any time during an investi-
gation (Casey, 2020).

As presented in Fig. 1, the performance and the understand-
ability will also be taken into account in the forensic evaluation. The
former conveys the fact that the system can make errors in its
recommendations. The latter mitigates the possibility of errors by
making the output understandable to the user.

The final step, which is to support a decision related to a forensic
question(s)® under consideration, is based on this forensic evalua-
tion as well as on other contextual data, knowledge and experience.
The automated system generally only provides a part of the answer
as it cannot take everything into consideration. This aspect will be
particularly important in an intelligence framework where infor-
mation from multiple sources and knowledge about the general
context are used to make a decision. For instance, a system may
classify a burglary into a specific phenomenon, based on time and
entry point, but the forensic practitioner can also consider other
contextual elements, such as the lighting of the entry point, to
classify the burglary differently. The classification of burglaries is
used for statistics and prevention, but also to detect series of
crimes.

Contextual information and general knowledge could be
included formally in either the automated system or the evaluation
steps, but could also be taken into consideration during the
decision-making process. This ability depends on the possibility to
formalize the knowledge and information and to include it in either
the system or the evaluative process.

4. Role of evaluations in supporting decisions

As we saw, from the output of automated systems to the

8 The propositions/hypothesis will be the possible answers to the forensic
question.
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decision, there are various elements to consider and multiple levels
of evaluation. Some of these factors are taken into account naturally
by forensic practitioners, but automated systems currently used for
forensic analysis provide limited assistance for assessing the un-
certainty underlying a specific output.

We propose guidelines and open the discussion on how auto-
mated systems could help forensic practitioners understand out-
puts from automated systems and assess the underlying
uncertainty in order to reach reliable, explainable decisions.

The output given by an automated system is a recommendation®
in the sense that it will correlate elements to assign it to a class
(classification), extrapolate a value (regression) or create a group of
elements (clustering). Forensic practitioners must interpret the
output, giving it meaning in the context of the forensic observations
and overall investigation.

There are three decisions that can be supported by forensic

9 Or a decision directly but we will discuss this point later.

practitioner's interpretations of outputs from an automated
system:

1) Performance evaluation supports a forensic practitioner's deci-
sion whether or not to use an automated system to perform a
given task.

2) Understandability evaluation supports a forensic practitioner's
decision whether a specific output from an automated system is
incorrect/invalid and should be disregarded, or is suitable for
forensic evaluation.

3) Forensic evaluation supports a forensic practitioner's opinion
regarding the weight of evidence in light of given propositions,
and is conveyed to others involved in a case to enable them to
assign appropriate level of confidence to the evidence when
reaching a decision (e.g., investigator, attorney, judge)

5. Expressing the weight of forensic evaluation

When forensic practitioners communicate their expert opinions
to factfinders, they must do so in a clear, complete, correct and
consistent manner (Berger, 2019). Satisfying all of these re-
quirements while still being understandable to factfinders is an
ongoing challenge in forensic science, and there is no ideal or
preferred approach (Thompson, 2017). Thompson notes that “the
reporting formats that are easiest for lay people to understand are
difficult to justify logically and empirically, while reporting formats
that are easier to justify logically and empirically are more difficult for
lay people to understand.” Although simply stating the opinion that
a proposition is true (or false) might seem clear and understand-
able, it does not provide the required transparency and is logically
incorrect because, potentially transposing the conditional aspect of
the proposition and failing to consider opposing hypotheses. In
addition, stating an opinion about a proposition does not deal
directly with forensic observations and typically requires additional
information outside of the expertise of the forensic practitioner,
which is ultimately the responsibility of the factfinder. Further-
more, stating opinions about a proposition raises the risks of
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confirmation bias.

There is widespread consensus that the weight of evidence
approach is most suitable for forensic evaluation (Aitken and Taroni
2004; Marquis et al., 2016). However, weight of evidence can be
expressed in different ways. First, as a likelihood ratio (LR), i.e., the
ratio of numerical likelihoods assigned to the evidence by forensic
practitioners in light of each proposition on the basis of their per-
sonal experience, knowledge from published studies, surveys, ex-
periments and peer review. Alternatively, a verbal scale'” can be
used to express the weight of evidence, which can be aligned with
ranges of likelihood ratios (Champod et al, 2016). Another
approach is to use a strength of evidence scale to assign a value to
forensic observations in light of each proposition, thus conveying
their relative strengths (Casey, 2020).

6. Strengths and weaknesses of approaches

This section presents case examples demonstrating the useful-
ness and the limitations of existing methods for evaluating the
results of automated systems supporting forensic analysis. These
examples illustrate how the three levels of evaluation can be
applied to automated systems, and demonstrate the need for
forensic evaluation.

6.1. Automatic extraction and labeling of digital traces

Web history can be represented as event-like, as shown in Table
2 using Plaso, with the addition of labeling such as “User clicked a
link” and “User reloaded the page” and “User typed in the URL bar
and selected an entry from the list - such as a search bar”.

Treating such digital evidence as an event blurs the distinction
between a trace and an associated (probable) action. Most traces
with a timestamp can be transformed into event-like entries for
analysis purposes, but it is important to differentiate between the
digital evidence and the associated (probable) action. Because of
their vivid and immediacy, these types of digital evidence can easily
be conflated with the associated actions. Jumping to the conclusion
that web history is an indication of a particular user action can lead
to problems as demonstrated in the case of Connecticut v Julie
Amero (Pollitt, 2008). To reduce the risk of misinterpretation, it is
crucial to clearly differentiate between a trace and an associated
(probable) action.

Performance of Plaso varies depending on the data source and
what information is being sought. The developers of Plaso
concentrate on security incidents on networked computers, which
leads to the best performance in this type of investigation. Some
support exists for mobile devices, but support for 3rd party
communication applications is limited. In addition, the perfor-
mance of Plaso could be measured based on the completeness and
correctness of its description of inferred (probable) actions (Metz
and White, 2020).

Plaso generally has better performance parsing Windows sys-
tems than Linux/Mac. However, even on a Windows system, it is
not safe to assume that all Web history is parsed. Some browsers
are not supported in Plaso. Regarding understandability, some tools
report unparsed (new) applications and present the unknown data
for the user to decide.

As noted earlier in the paper, a forensic practitioner with
knowledge of Python programming can look at the source code to
understand the logic of a given result. However, some additional
research might be required to determine whether the

10 For instance: the evidence provide [weak/strong/extremely strong] support to
the first proposition rather than the alternative (Willis et al., 2015).

interpretation is correct, or there could be other explanations for a
given digital trace.

From a forensic evaluation perspective, the output of an auto-
mated system such as Plaso must also be evaluated in light of the
question of interest in the investigation, which typically takes into
account circumstances of the case and may involve experiments to
test alternative hypotheses.

6.2. Salvaging renderable content from data sources

The second example deals with automated systems for
salvaging renderable content such as DC3 Advanced Carver (www.
dc3.mil/tools), which provides for recovery, repair, and rendering of
content fragments that are not obtainable using traditional file
carving methods. In addition to producing more renderable con-
tent, salvaging renderable content produces fewer false positives
that traditional file carving. Fewer false positives saves forensic
practitioners time reviewing junk files, which is an important
performance consideration.

Performance evaluations of systems for automatically recovered
content often use measures of accuracy, precision and recall as
discussed earlier. However, in practice, the performance of a carv-
ing tool can vary significantly depending on the data being analysed
(Casey and Zoun, 2014). Determining whether a specific automated
system is well-suitable to a given dataset is not a simple matter of
looking up published performance measures. Although the NIST
Computer Forensic Tool Testing (CFTT) program provides results of
performance evaluations of various automated systems for
different types of content (NIST Software Quality Group, 2017),
these controlled tests might not be applicable for the actual data
being analysed. For instance, when forensic practitioners are
interested in obtaining deleted photographs (e.g., JPEG) they can
review the NIST CFTT reports to determine which automated sys-
tem(s) had the best performance for that type of file. However,
when the actual data being analysed contains partially overwritten
photographs, many of the available systems will not salvage the
remaining content fragments. In such cases, a decision must be
made whether using a more advanced carving tool to obtain the
fragments of partially overwritten files would be beneficial, or
whether forensic questions can only be addressed using fully
recovered files.

Understanding why certain content is not salvaged by a given
automated system can be challenging, and there is a need for
research and development to support this type of evaluation. It is
generally easier to understand why incorrect outputs are produced
by these automated systems, because forensic practitioners can
clearly see when content is partially overwritten or unrelated
fragments have been incorrectly combined (e.g., one person's head
on another person's body). However, automated systems for
salvaging renderable content do not necessarily explain the deci-
sion of classifying a group of bytes as related content. Even if the
forensic practitioner understands the data structures being
salvaged, the mechanisms to reassemble specific fragments may
not be clear or reproducible. Detailed audit logs can provide some
insights, but there is a need for more advanced approaches that
help practitioners understand specific outputs. In particular, a
practitioner may be interested in knowing the cases where a po-
tential candidate was classified as not being associated with similar
fragments, and therefore excluded from the results. Understanding
the automated exclusion of such a fragment can help practitioners
verify the correctness of the process and explain the output. In
addition, such insights provide additional information to support
forensic evaluation, in particular authentication. Other elements in
the case could reveal false negatives in the automated system,
raising the need for further development to enhance performance.
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Forensic evaluation of outputs from automated systems for
salvaging renderable content is usually limited to evaluating the
hypotheses “The original contents of a file are (or are not) actually
recovered, fully or partially.” (Casey et al., 2019). However, there are
circumstances in which forensic evaluation of the outputs can
include associated filenames and metadata found relating to the
content.

6.3. Face recognition

The field of face recognition currently lacks a standardized and
validated model for evaluating the outputs of automatic systems. In
Jacquet and Champod (2019), the authors propose a general
workflow for the implementation of a probabilistic model to eval-
uate scores generated by automatic systems. In that purpose, the
assignation of a likelihood ratio is a recommended and used
approach for forensic applications using automatic systems, such as
fingerprints and speaker recognition (see Meuwly, 2000 and Egli,
2009 for examples), and has been more recently introduced for
face recognition (Ali, 2014; Jacquet and Champod, 2020).

To use automated face recognition systems, the overall quality of
trace and reference images must correspond to feasibility criteria of
the system (most algorithms cannot operate properly in cases of
very low resolution, high shooting angle, ageing, etc.). The operator
then determines the hypotheses to be answered, taking into ac-
count case information along with the needs of the investigation.
The calculus of the ‘trace-vs-reference’ score as well as its form
(similarity score or distance score, range of values, etc.) vary from
one system to another. For example, the open-source OpenFace
toolkit (based on Google FaceNet algorithm) generate distance
scores specific to each comparison with a value between 0 and 1,
whereas the Idemia MorphoFace Investigate system gives similarity
scores with values from 0 to 50’000, that vary if images are deleted
from or added to the searched dataset.

Assigning a score-based likelihood ratio (SLR) allows the oper-
ator to gather an analysis output and uncertainties into a single,
specific, and standardized piece of information. As mentioned
previously, the SLR may vary if case information (hence associated
hypotheses), are modified, as it should. However, the model must
provide a SLR that does not depend on the system used nor on the
operator. This is an essential problematic that currently needs to be
thoroughly addressed to provide a method robust enough to be
used for court purposes.

One of the main obstacles to using automated systems in
forensic face recognition is that most algorithms are operated as
black boxes, which means that both training sets and extracted
features templates remain undisclosed by developers. Studies
enlightened the importance of training sets on systems perfor-
mances and thus recommend to use training sets that best fit
operational case data - in terms of pose, luminosity, resolution and
quality (Ali, 2014; Peng, 2019). However, most systems currently do
not allow operators to have control over the algorithm training,
which means overall performance and understandability are fixed
once a system is released.

In the latest NIST tests (Grother et al., 2019), the authors eval-
uate the performance of 203 automatic face recognition algorithms
through 1-vs-N identification tasks and report their accuracy
through false acceptance and false rejection rates. The authors also
reported that features templates, although unavailable to the
operator, showed a large size range, from 100 bytes to more than 4
kilobytes. This suggests substantial variations in features extraction
and template building processes among current systems.

In identity verification tasks (1-vs-1, e.g. to unlock electronic
devices or pass customs control at the airport), the automatic face
recognition system compares two images and calculates a score

that translates the similarity between the features templates
extracted from both faces. Depending on the value of the score in
relation to the value of the threshold set for this task, the system
concludes that the same person is visible in the two images
compared or, conversely, that they show too many discrepancies to
belong to the same person. Within this specific framework,
thresholds are set to have false positive rates as close as possible to
zero, while limiting false negative rates in order to guarantee a
rapid and optimised use of the device. Such a process is entirely
automated and requires no human participation. On the other
hand, in forensic face recognition tasks (1-vs-N), the output is a list
of scores associated with potential candidates, i.e. individuals from
the dataset which faces were the closest to the query face, ac-
cording to the system. The operator then reviews the score list and
sorts possible hits, effectively reaching a decision based on under-
standability, in order to use this information to infer on the ongoing
investigation. Using an evaluative model like the one described by
Jacquet and Champod (2020) will extend the automatisation of the
process to forensic evaluation, but it still needs human-based su-
pervision and guidance.

In forensic science, it is essential to understand and control the
intrinsic functioning and performances of the systems. Human-
based analysis and comparison may lack objectivity and trans-
parency as the observations and results of expertise as well as their
reporting vary from one expert to another, depending on their own
experience and training. In cases where the operator chooses to
compare faces automatically, the lack of transparency is also caused
by the lack of control over the training and outputs of the algorithm.

6.4. Detecting non-obvious link between cybercrimes

Bollé and Casey (2018) presented the performance evaluation of
an automated system for detecting links between online frauds by
computing near similarity of email addresses. The outputs of the
system include a link between two email addresses and the asso-
ciated similarity score between 0 and 1, which is an important
aspect of this approach. This study found the best performance
evaluation with Levenshtein distance. They adopt an approach
where, in a crime analysis context, it is best to risk increasing false
positive rates to reduce the risk of missing relevant links.

Although this automated system does not have an explicit
explainability mechanism, it remains completely transparent'’. The
use of Levenshtein distance to compute near similarity of user-
names within email addresses is understandable to a technical
analyst, but might not be clear to a non-technical user of system. A
user would at least know that the link had been established spe-
cifically on basis of email addresses, instead of any other types of
traces, and would understand the approximate level of similarity
between them. If the score is too low for the user's purpose in a
given situation, the outputs are not used.

What is not immediately evident from the outputs of this
automated system is the meaning of links with strong similarity
scores. Such interpretation of the outputs requires forensic evalu-
ation, as demonstrated in Fig. 4, which shows links between pairs of
addresses, both with approximately the same similarity score. The
absolute value of the score is not particularly important in this
example. One can only note that, if not familiar with such systems,
it may be hard to make sense of this particular value. The important
aspect in this example is the fact that both scores are close to each
other. In the first situation, the email addresses p.novo@ and

" The system by itself does present in full detail what is happening when
computing the similarity, as it only displays the similarity score, but the details are
available in the associated paper (Bollé and Casey, 2018).
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Fig. 4. Example of two links output by the system. The number between the email
addresses is their similarity score.

novopia@ are quite specific, so the hypotheses could be “The same
person made both email addresses” versus “Different persons made
both email addresses”. The forensic evaluation strongly supports
the conclusion that it is the same person who made the addresses
and that the two cases are a crime series.

In the second situation, the email addresses rent4bnb@ and
airbnb@ are very common. Keeping the same hypotheses as before,
forensic evaluation leans more towards the conclusion that
different people made these addresses. However, changing the
hypotheses to “Both cases use the same modus operandi” versus
“The cases use different modus operandi”, and factoring past
experience with online frauds, forensic evaluation leans more to-
wards it being the same modus operandi. In this example, we could
detect frauds that send email in the name of AirBnB to scam people
looking to rent apartments. This decision would increase under-
standing about this phenomenon. This clearly shows that based on
the same outputs from an automated system, forensic evaluation
and formulation of the hypotheses is an important step that can
completely change the type decision.

The forensic evaluation made in this example was made in
Switzerland. The context here is important as the name “Novo Pia”
is not a common name in Switzerland, and that is why it would be
more probable to observe such email addresses if the same person
created both addresses. However, this name is common in Portugal
and in such context, the conclusion would have been different. This
illustrates how, given the same automated system output, different
conclusions and decisions can be reached by taking into account
knowledge and context.

7. Designing automated systems to support evaluations

This section proposes requirements for the design of automated
systems supporting forensic analysis to help users perform the
three levels of evaluation.

In particular, the principles of accountability, reliability, trans-
parency and scientific reasoning should be at the heart of such
automated systems.

7.1. Fit-for-purpose performance evaluation

Automated systems supporting forensic analysis should provide
sufficient details about performance metrics for forensic practitioners

to determine if the system is fit-for-purpose.

To evaluate the performance of the system, it is necessary to
consider a performance metric that was computed in the same sit-
uation as the system will be used for forensic purposes. The per-
formance computed has a meaning only for the data on which the
system was trained and/or tested. If the system is used on dissimilar
data or to address different forensic questions, it is impossible to
evaluate how the system will perform. The evaluation of the per-
formance requires at least a description of the data used for training
and/or testing. Such transparency could raise ethical problems
because it could violate data protection policies. An example could
be a system trained on child pornography, which has stirct access
restrictions. Models that refer to the training set, such as the Nearest
Neighbour, may be not useable in such situations.

7.2. Understandability evaluations

Automated systems supporting forensic analysis should provide
forensic practitioners with a way to understand how a given output
was produced.

An important point to note is that understandability is subjec-
tive. A forensic practitioner conversant with programming lan-
guages will have a better understanding of an open source
automation framework than a non-programmer. An expert in ma-
chine learning will have a better understanding of a system than a
forensic practitioner, who will have a better understanding than a
judge. It is thus important that a strong communication exists be-
tween the developer of the system and the users who will need to
understand and use the results.

To improve the communication, it would be beneficial to have
feedback loops during the development process that enable users
to express their needs and that allow the developer to express the
feasibility of the expectations. Then a discussion between them can
start where the user can express how confident he or she is in
understanding the results of the system and the developer can
work on enhancing the understandability of the system.

In general, the trade-off between understandability and
completeness in understandability we discussed previously, raises
ethical challenges. Indeed, for a non-technical person to under-
stand how the system works, one might be tempted to oversimplify
the explanations or to select the aspects that will only give more
confidence and trust in the system, and to omit the limitations or
risks of the system. This may be particularly true in the justice
system where people prefer unfailing systems and definitive an-
swers. This same challenge applies to expressing the weight of
forensic evaluation as discussed earlier.

7.3. Forensic evaluation

Automated systems supporting forensic analysis should guide
forensic practitioners through the process of setting alternative hy-
potheses and assessing the strength of observed output in light of each
hypothesis to produce a relative strength of evidence.

As stated previously, the forensic evaluation requires a set of
competing hypotheses. Concretely, these hypotheses will be related
to the forensic question that is being addressed with the assistance
of the automated system. The output may be combined with gen-
eral knowledge, taken from academic research and past experience,
and with the specific context of the case. An open question here is
how much a system supporting forensic analysis can automate the
whole process of selecting hypotheses, taking into account
knowledge and context, and making the evaluation.

There is no categorical response to this question. Given the role
of expert knowledge in forensic evaluation, it might only be
possible to automate certain aspects of the process under certain
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circumstances. With this in mind, some thought should be accor-
ded to the possibility of combining an expert system with the
machine learning system to take into account rules derived from
domain specific knowledge. The information must also be struc-
tured in a way that can support contextual analysis. This means that
forensic practitioners should be able to observe the context of each
piece of information within the automated system.

It may be hard to predict the set of all the reasoning that will be
performed by a forensic practitioner in this entire process but the
ones that can be identified should be included in the system and
should be fully or partially automated. At the same time, we
recommend leaving some space for forensic practitioners to
customise the different processes to their needs in a specific case.
First of all, it will give more transparency to the whole process and
if errors occur, it will be possible to identify exactly which step was
erroneous (machine learning part, evaluation or decision). Sec-
ondly, it leaves room for future improvement, without having to
redesign the whole system. Finally, it helps the forensic practitioner
to formalize his/her thinking and to learn.

Earlier, we discussed the possibility of a system that will not
produce a recommendation but that will instead make a decision.
In the end, it is a case where the whole process has been automated.
The hypotheses are the different possible outputs but often, such
systems do not make a formal evaluation. We still recommend that
such systems formalize the different steps in order for a human to
later understand how the decision was made.

In summary, when designing an automated system to support
forensic analysis, performance evaluation results should be suffi-
ciently detailed to determine whether or not it is fit-for-purpose in
a specific case. In addition, transparency and understandability
should be a requirement during the design of automated systems
supporting forensic analysis. The system should also support
contextual analysis by keeping the context of the information at
every stage. It may also be useful to keep the possibility of inte-
grating an expert system to reinforce forensic evaluation. The sys-
tem should guide users through the forensic evaluation steps to be
sure that they understand what was done and to stay transparent.
We recommend that the hypotheses are explicitly formulated, even
ifit is automated and always the same. If some steps are automated,
we recommend they still should be explicitly described.

8. Conclusions & future work

This section provides a synthesis of the results and considers
their significance, potential challenges and future work.

As we saw, automatic system usage supporting forensic analysis
can raise many questions in terms of reliability and decision mak-
ing. We proposed a formalization of three levels of evaluation when
using such systems.

Firstly, performance evaluation should be conducted to deter-
mine if the system is suitable for a specific purpose. Secondly, un-
derstandability evaluation should be conducted to verify that the
forensic practitioner can understand the system and that the sys-
tem is working as expected. Thirdly, it is necessary to evaluate the
output of the system in light of multiple hypotheses in order to
reach a decision. The possibility of errors and the meaning of the
output will also be taken into account at this stage, as well as
knowledge and context.

In some situations, this entire evaluation process can be per-
formed completely by the system, or partially assisted by the user. In
any case, itisimportant that the system clearly formalizes each step in
order to be transparent and reliable when the final forensic conclu-
sion is being discussed. The system should be designed to support all
levels of evaluations. Some recommendations on how to design such
systems are provided in this work, but many challenges remain.

The primary challenge is the variety of systems. It would not be
possible to have an exhaustive list of possible systems and rec-
ommendations for each. The approach presented in this paper
defines a more general and conceptual evaluation framework
evaluation that could fit any system. The general framework and
recommendations in this work can be effective when designing a
particular automated system supporting forensic analysis.

Another challenge that will require future research is how to
express the results of an understandability evaluation. As stated
earlier, understandability evaluation supports a forensic practi-
tioner's decision whether a specific output from an automated
system is incorrect/invalid and should be disregarded, or is suitable
for forensic evaluation. The challenge partially resides in the fact
that understandability is subjective. Two different users may take
completely different decisions when determining if the output is
suitable for forensic evaluation.

This subjectivity aspect raises a potential ethical challenge
concerning understandability. Is it ethical to over simplify the
mechanisms behind a system, so that anyone can understand, but
with the risk of missing an important aspect? Such over-
simplification might also lead the user to have a blind trust in the
system and the consequences could be the same as using a black-
box. The transparency of the data used to train and test the sys-
tem might also not be compatible with laws on data protection.

The complexity of evaluating automated systems supporting
forensic analysis, and the number of elements to take into account
makes this a ripe area for research and development on how to
represent and structure information, knowledge and context in
such systems.
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