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Abstract 

This article reviews the recent molecular and clinical studies that characterize the role of p53 in 
pathologies of the central nervous system, p53 has many important biological functions, notably, 
maintenance of DNA stability and regulation of apoptosis. These features are essential to avoid 
cellular transformation and ensure normal brain development. Lack of p53 function in the brain 
results in tumor formation in the astrocytic and lymphoid lineages and in severe neurodevelop- 
mental diseases, such as exencephaly. 

Index Entries: Brain development; central nervous system; tumor suppressor gene; glioma; 
anencephaly. 

Introduction 

p53 is a protein with a very large spectrum 
of biological and physiological functions 
including safeguard of genomic stability, cell 
cycle regulation, cell differentiation, apoptosis, 
and angiogenesis (1,2). 

p53 primarily acts as a transcription factor, 
but can also interact with other proteins mak- 
ing it an important player in different cellular 
pathways, p53 is involved in regulating the 
cell cycle and maintaining the genome's  
integrity. Consequently, p53 malfunction has 

been related to tumor formation, p53 is a 
tumor suppressor, as its loss of activity is asso- 
ciated with more than 50% of human  tumors, 
including primary brain tumors of astrocytic 
and lymphoid origin. Nevertheless, tumors 
are not the only type of brain pathologies in 
which p53 is involved. Recent data have 
shown neuronal developmental  defects in p53 
null mice, such as exencephaly. 

In this article we present the structure of the 
TP53 gene and describe in detail the biochemi- 
cal aspects and biological functions of its gene 
product. Maintenance of genomic stability, cell 
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cycle regulation, control over differentiation, 
and apoptosis of central nervous system (CNS) 
cells are all determinant in avoiding glioma 
formation and CNS malformations. 

p53 Gene and Protein 

TP53 Gene Structure 
The TP53 gene consists of 11 exons and 10 

introns (Fig. 1A) spanning 20 kb of genomic 
DNA on the short arm of chromosome 17, at 
17p13.1 (3). TP53 encodes a 2.8 kb mRNA, 
which is translated into a 53-kDa nuclear 
phosphoprotein that acts as a transcription 
factor (4,5) and functions as a tumor suppres- 
sor (6). 

Regulation ofTP53 Gene Expression 
Different regulatory sites have been mapped 

in the 5' upstream region of the TP53 gene, in 
exon 1 and in intron I (7). Analysis of the TP53 
promoter region evidenced the lack of TATA 
and CAAT sequences and the presence of differ- 
ent recognition sites for oncogenic transcription 
factors such as NF1, jun (8), and Myc/Max (9). 

p53 may have autoregulatory functions: 
responsive elements are present on the TP53 
promoter and reporter constructs under the 
control of these elements are downregulated 
by p53 (10). Nevertheless, there is still no evi- 
dence for p53 binding to its own promoter. 

Recently, a PAX-5 binding site was identified 
within the untranslated first exon of TP53 (11). 
PAX genes encode nuclear transcription factors 
implicated in the control of mammalian 
embryogenesis. In particular, PAX-2, 5, and -8 
are highly expressed during the development 
of the CNS. It has been hypothesized that PAX- 
5 may have a physiological downregulatory 
function on TP53 expression in order to allow 
proliferation of stem cells that migrate from 
the ventricular zone to the intermediate zone 
of the neural tube. Stuart et al. (11) reported 
that PAX-5 is often overexpressed in high- 
grade gliomas, suggesting that constitutive 

expression of PAX-5 may allow tumors to 
bypass the need for p53 mutation to abrogate 
p53-mediated processes. However, subsequent 
work failed to show a correlation between 
PAX5 expression and p53 status in a series of 
patients showing recurrence from low-grade 
astrocytoma to glioblastoma (E.T. Stuart and E. 
G. Van Meir, unpublished data). In addition, 
whereas PAX5 overexpression was confined to 
late stage glioblastoma, p53 mutations are 
known to occur early in the progression of 
astrocytoma. 

Other proteins identified as potential induc- 
ers of TP53 transcription are ETS1 and ETS2 
factors (12) and the C7 poxviral transcription 
factor (13). 

p53 Protein 
Functional p53 is a nonglobular tetramer of a 

single peptidic chain that comprises three 
functionally characterized segments (Fig. 1C): 
the N-terminal transcription activation region, 
a central core responsible for specific DNA 
binding and a C-terminal oligomerization 
sequence. 

Exon 11 of p53 mRNA codes for the very C- 
terminal region of the protein that is a negative 
regulator of the protein's activity (14). This ter- 
minal segment of p53 seems to interact some- 
how with the core of the protein and prevents 
p53-DNA binding. This allosteric model for 
negative regulation of p53 activity by the C- 
terminus is confirmed by different experimen- 
tal data showing that disruption of this 
interaction, by both physiological and artificial 
events, induces a conformational change that 
results in p53 activation (14,15). 

Moreover, five highly conserved and inde- 
pendently folding domains (I-IV) can be dis- 
tinguished in the p53 protein (Fig. 1C). 

Crystallography shows that the central core 
of p53 is a sandwich of two antiparallel 
sheets formed of four and five ~ strands and a 
loop sheet helix motif packed against the 
sandwich (16). The overall structure of the 
sandwich is stabilized by two large loops held 
together by a Zn atom. 
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Fig. 1. Schematic representation of the p53 gene, mRNA and protein structures. (A) TP53 gene structure: 
boxes stand for exons (white parts are translated, black ones are not) and segments for introns. Numbers of 
exons and introns are indicated. (B) mRNA structure: nucleotide positions at splicing junctions of exons 1-11 
are indicated. Start (ATG) and stop codons are also shown. The predicted protein size from mRNA is 43.5 kDa. 
(C) Protein structure: amino acid localization of the five evolutionarily conserved domains (I-V) are shown. 
Enlargements of the N- and C-termini show the phosphorylation sites in the mouse (human phosphorylation 
sites are similar) and the distinct functional domains. 

Although the 13 sandwich is an uncommon 
structure for transcription factors, the loop 
sheet helix and the two large loops are typical 
motifs of proteins capable of complexing with 
DNA. In fact, crystallographic studies of the 

p53/DNA complex demonstrated that the loop 
sheet helix motif binds to the DNA's major 
groove. One of the loops binds to the minor 
groove, and the other has an important role in 
stabilizing the overall structure of the complex. 
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Fig. 2. Frequencies of p53 exon mutations found in brain tumors reported by the IARC database: 
http://www.iarc.fr. Regions implicated in DNA interaction and protein stability as well as the conserved 
domains of the protein are indicated. 

Moreover, it has been demonstrated that these 
motifs are the sites of the most frequently 
mutated p53 codons found in tumors and cor- 
respond to the highly conserved domains of 
the protein, suggesting that these regions have 
a biological importance (Fig. 2). 

p53 accomplishes its biological roles either by 
interaction with other proteins or acting as a 
transcription factor. It enhances transcription of 
specific genes by binding to promoters contain- 
ing four copies of the p53 pentameric consensus 
sequence PuPuPuC(A/T)-(T/A)GPyPyPy with 
a stoichiometry of one core domain for one pen- 
tamer (17). 

Three factors have been shown to act as p53 
coactivators and potentiate its transcriptional 
activity: the nuclear tyrosine kinase c-abl (18) 
and the two homologous transcription factors 
p300 and CBP, all of which are implicated in 
cell proliferation and differentiation. The syn- 
ergistic transcription activity of p300/CBP and 
p53 is permitted by physical interaction 
between the proteins (19-21). More recent data 
indicate that acetylation of the p53 C-terminal 
domain by its coactivator p300 dramatically 

increases sequence-specific DNA binding of 
p53 (22) (Fig. 3). 

p53 is also able to repress transcription of 
genes containing TATA boxes by binding, 
through its oligomerization domain, to the 
TATA binding protein (TBP) and preventing its 
interaction with DNA (23). Although it has 
been shown that genes that have neither TATA 
boxes nor p53 consensus sequences are not 
submitted to direct p53 regulation (24), more 
recent data indicate that p53 inhibits the tran- 
scription of genes containing an AP1 site by 
sequestering the transcription factor p300 (19). 

Regulation of p53 Activity 

Responses to Physiological Stress 
p53 is a sensor of a variety of physiological 

stress conditions to the cell such as hypoxia, 
heat and starvation (25,26). The response to 
such insults is either growth arrest or apopto- 
sis (Fig. 3). Graeber et al. (25) compared the 
mechanisms and the effects of p53 induction 
by different types of stress. Their experiments 
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Fig. 3. Schematic representation of factors regulating p53 activity. Arrows, induction; T-bars indicate repression. 

showed that heat induces a mutant conforma- 
tion on p53 allowing it to complex with heat 
shock protein hsc70 and to increase its half-life. 
This is accompanied by cytoplasmic instead of 
nuclear p53 accumulation during high temper- 
ature shifts. On the other hand, p53 accumu- 
lates in the nucleus during hypoxia, and an 
increased p53 transactivational activity can be 
observed. Recent data also suggest that p53 
might be stabilized by an interaction with 
hypoxia inducible factor (HIF-1) (27). 

Sensing of DNA Damage 
DNA damaging agents such as ionizing 

radiation (28) and genotoxic and antimicro- 
tubule agents (29,30) induce p53 expression 
(Fig. 3). The precise sequence of events that link 
DNA damage to p53 induction is unknown, 
but involves the ATM gene product (31) and 
the DNA repair machinery. Within this context, 
it is interesting to mention the capacity of p53 
to bind repair proteins XPD and XPB (32). 
Moreover, in vitro experiments have shown 
that single stranded DNA, within the size 
range generated during excision repair, stimu- 
lates p53-DNA binding (33-35). 

When increased, p53 may function as a 
tumor suppressor by inducing tumor cell 
apoptosis. This in turn may lead to clonal 
selection in vivo of cells lacking wild-type (wt) 
p53 (36). As a consequence, anticancer treat- 
ments inducing necrosis and DNA damage, 
such as radio- and chemotherapy, could also 
favor the expansion of p53 mutated cells and 
induce malignant progression (37). 

Phosphorylation 
p53 has multiple phosphorylation sites both 

in its N- and C-termini (Fig. 1C). The N-ter- 
minal phosphorylation seems to be preferen- 
tially accomplished by cyclin-dependent 
kinases, double-stranded DNA activated pro- 
tein kinase, mitogen-activated protein kinase, 
Jun N-terminal kinase and Raf kinase; whereas 
the C-terminal domain is phosphorylated by 
cyclin-dependent kinases, casein kinase II, pro- 
tein kinase C (PKC), and the CDK7-cyclinH- 
p36 complex of TFIIH (38-40). 

Even though there is considerable evidence 
that phosphorylation regulates p53 activity in 
vivo (41), it is unclear how the cited kinases 
affect p53. Different single p53 phosphoryla- 
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tion mutants were tested for their transcription 
activity and for their capacity to suppress cell 
proliferation, but no difference was found in 
comparison with wt p53 (42). By contrast, in 
some cases, altering two or more phosphoryla- 
tion sites at once could significantly lessen p53 
transactivation potential or DNA binding, or 
both (40). 

Furthermore, the conformation of p53 is 
determinant for its availability as a substrate 
for different kinases and for the phosphoryla- 
tion pattern generated by the same kinase (43). 
This information is coherent with the observa- 
tion that the phosphorylation status of human 
p53 at serines 15 and 392 was found to be dif- 
ferent between the wt and a conformational 
mutant p53 in glioblastoma cells. In particular, 
phosphorylation of serine 15 was reduced in 
the mutant p53 compared with wt, while 
phosphorylation of ser 392 was increased (44). 

Taken together, these data indicate that it is 
not possible to consider phosphorylation as a 
simple on/off  switch for p53 functions, but it is 
rather a complex regulatory system that could 
also be cell type dependent. Recent data indi- 
cate that phosphorylation of N-terminal ser- 
ines 15 and 37 by DNA-PK is induced after 
DNA damage and inhibits p53 interaction with 
MDM2, resulting in p53 activation (45). Phos- 
phorylation of the C-terminus of p53 by casein 
kinase II was also shown to activate p53-DNA 
binding in vitro (14). Moreover, p53 hyper- 
phosphorylation by oncogene activation of the 
MAPK pathway may be the molecular basis 
for the ability of p53 to sense oncogene trans- 
formation in the cell and exert its antionco- 
genic effect (46). 

Redox State of the Protein 
Another effector of p53 activity is the redox 

state of the protein (Fig. 3). It is now appreciated 
that oxydization renders p53 unable to bind 
DNA, whereas reduction enhances this capac- 
ity. According to this idea, the redox repair pro- 
tein Ref 1, which was shown to activate AP-1 by 
reducing a conserved cystein in its DNA bind- 
ing domain, has been recently identified as a 
potent activator of p53 both in a redox-depen- 
dent and an -independent manner (47,48). 

MDM2 Binding 
The activity of p53 is downregulated in an 

autoregulatory feedback loop: p53 induces 
the transcription of the MDM2 gene and the 
accumulation of the oncoprotein mdm2 
represses p53 (Fig. 3). The delay between p53 
induction and MDM2 activation defines the 
time during which p53 can exert its activity 
(49,50). This mechanism is used by certain 
tumors, including osteosarcomas (51) and 
about 10% of astrocytomas (52) to inactivate 
p53 by MDM2 gene amplification. A novel 
player in p53 regulation was identified 
recently: p14 ARF, the product of a gene com- 
monly deleted in human cancer, was found to 
inhibit mdm2 function. The absence of p14 ARF 
increases the availability of mdm2 for p53 
downregulation, which should favor cellular 
transformation (53). 

p53 Turnover 
The most apparent and important regulatory 

mechanism of the activity displayed by p53 is 
its rapid turnover (half-life of about 20-30 
min), which limits the quantity of wt p53 in the 
nucleus (Fig. 3). 

One of the mechanisms that regulate p53 
turnover is the ubiquitin-dependent pathway 
(Fig. 3). In human papillomavirus-infected 
cells a tripartite complex forms between the 
viral protein E6, p53, and the cellular protein 
E6-AP and targets p53 for ubiquitin-dependent 
proteolysis (54). Accordingly, p53 was shown 
to accumulate in cell lines lacking ubiquitin- 
dependent mechanisms (55). Nevertheless, the 
precise molecular mechanisms of this pathway 
and its general applicability are unclear. 

Recent experiments suggest that p53 turnover 
may also be accomplished by an ubiquitin 
degradation pathway independent of E6-AP. It 
was shown that E6-AP has no effect on p53 lev- 
els in nonvirus-infected cells (56) and that 
mdm2 is able to induce p53 degradation by a 
proteasome complex (57,58). These data are 
confirmed by recent results showing that p53 
mutants that are unable to bind mdm2 are more 
stable than other p53 mutants or the wt protein. 
Moreover, treatment of tumor cells containing 
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Fig. 4. Schematic representation of p53 functions. Arrows, induction; %bars indicate inhibition. 

wt p53 with agents that disrupt the p53-mdm2 
interaction induces p53 accumulation (59). 

Finally, a completely different mechanism 
for p53 degradation has been recently observed. 
In this case, p53 turnover is regulated by a cal- 
pain-like protease (60) (Fig. 3). 

p53: "Guardian" of the Genome 

One of the most important functions of p53 in 
cells is maintenance of genomic stability. This 
term encompasses all the mechanisms that 
ensure transmission of an intact genome from 
parental to descendent cells during mitosis. 
DNA replication, repair, and chromosome seg- 
regation should occur in an orderly fashion, and 
biochemical signal transduction pathways must 
ensure completion of each step before entering 
subsequent phases. Some of these pathways, 
known as cell cycle checkpoints, involve p53, 
either acting as a transcription factor or by its 
interaction with other proteins, p53 can thus be 
a direct participant in maintaining DNA 
integrity by acting in the mechanisms of homol- 

ogous and illegitimate recombination (61-63), 
DNA repair (32), DNA replication (64-66), gene 
amplification (67), and chromosome segrega- 
tion (68-70). p53 can also indirectly maintain 
DNA integrity by sensing abnormal cell cycle 
progression and maintaining cell populations 
with intact genomes through cell cycle arrest 
(allowing for DNA repair) or by eliminating 
damaged cells (inducing senescence or by stim- 
ulating apoptosis) (Fig. 4). 

Loss of p53 Function in Cell Growth 
Arrest, Differentiation, 
or Apoptosis: Abnormal CNS 
Development and Neoplastic 
Transformation 

p53 plays a central role in determining 
whether a cell must undergo differentiation, 
senescence, or apoptosis. 

p53-dependent cell cycle arrest and apopto- 
sis can be seen as indirect mechanisms by 
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which p53 accomplishes maintenance of 
genomic stability. Both pathways are induced 
by DNA damage, the ultimate result of which 
is the repair or elimination of DNA damaged 
cells. Therefore, they are two important mecha- 
nisms avoiding tumor initiation or progres- 
sion, or both. p53-dependent apoptosis and 
cell differentiation are two crucial pathways of 
CNS development. Lack of p53 can sometimes 
result in severe developmental abnormalities 
leading to exencephaly. 

p53 and Cell Cycle Arrest 
p53 is able to block the cell cycle both at the 

G1 checkpoint and at the G2/M transition 
(71-73). The loss of cell cycle control functions 
normally assumed by p53 is believed to con- 
tribute to tumor development in the CNS. Upon 
p53 restoration in glioma cells cell cycle arrest is 
observed, which can be either a reversible arrest 
or an irreversible senescent-like event (74,75). At 
the molecular level, p53-dependent growth 
arrest is induced by p53 transactivating differ- 
ent cell cycle regulators, such as p21 and TGF-~ 
(76-79). p21 arrests the cell cycle by inhibiting 
the activity of cyclin-dependent kinase com- 
plexes (78) and is the most important p53- 
induced cell cycle regulator. Indeed, human 
glioblastoma cells lacking p53 genes (LN-Z308) 
have low levels of p21, and transfection of wt 
p53 in such cells activates p21 expression and 
inhibits cell growth (80,81). Direct transfer of 
CDKN1, the gene encoding p21 in different 
glioma cell lines (U373MG, U87MG, GB-1), also 
induces growth arrest (82). Moreover, p21 over- 
expression is accompanied by a diminished 
malignant phenotype, as demonstrated in vivo 
using peripheral and intracerebral xenograft 
models (82). Accordingly, the introduction of 
the CDKN1 gene in a rat glioma cell line was 
shown to induce growth arrest, cell susceptibil- 
ity to radiation, and tumor necrosis (83). Never- 
theless, the absence of CDKN1 gene mutations 
in human gliomas suggests that it cannot be 
considered a tumor suppressor gene (84). 

In other tumor models, it was shown that 
overexpression of one of the growth arrest spe- 

cific genes (gas1) blocks cell proliferation in a 
p53-dependent manner, although p53 transac- 
tivating function was dispensable in this case 
(85). This may be related to the fact that p53 is 
also responsible for the transcriptional repres- 
sion of different cell cycle inducer genes 
through its interaction with the TATA box 
binding protein (23), but these factors have not 
yet been studied in brain tumors. 

p53 and Apoptosis 
It is now common knowledge that p53 is 

able to trigger apoptosis in different human 
cells including undifferentiated neurons, oligo- 
dendrocytes and glioma cell lines (86-89). This 
mechanism is essential for the development of 
the central nervous system as well as in tumor 
prevention and treatment. Different stimuli 
like DNA damage, myc and adenovirus EIA 
expression and withdrawal of growth factors 
can trigger p53-dependent apoptosis (1). 

Studies made on the molecular mechanisms 
of p53-dependent apoptosis result in unclear 
and contradictory data. Both the transactivating 
function of p53 and its capacity to repress gene 
transcription seem to be important to accom- 
plish apoptosis (90,91). Indeed, p53 induces the 
expression of Bax and represses Bcl-2 (92,93) 
and, in a human glioblastoma, it was shown 
that p21 is a downstream mediator in p53- 
dependent apoptosis (94). Recentl~ it was pro- 
posed that p53 transactivating function can 
trigger apoptosis through induction of redox- 
controlling genes, which in turn increases reac- 
tive oxygen species (ROS), causing oxidative 
damage, which produces apoptosis (95). 

Other data indicate that p53 transactivation 
function is dispensable for induction of apop- 
tosis (96). Deletion of the N-terminal proline- 
rich domain of p53 abolishes p53-induced 
apoptosis, although the protein retains its 
transactivation capacity. This p53 domain 
could probably be determinant in inducing 
apoptosis by interacting with other proteins 
through its Pro-X-X-Pro motifs (97,98). 

p53-dependent apoptosis plays an important 
role in the development of the CNS, when mat- 
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uration of the CNS involves massive scale death 
of neurons. 

In vitro experiments show that apoptotic 
death of undifferentiated neurons and of oligo- 
dendrocytes is p53-dependent (86-88,99,100). 
High levels of Bax and reduced levels of Bcl-2 
are found in some neurons before ischemic 
death; therefore, it is likely that a change in bal- 
ance between these two molecules is a key 
event in p53-mediated neuronal death (87). 

In vivo, a significant fraction of p53 knock- 
out mice were found to die before birth. Analy- 
sis of these embryos showed that about 20% 
present a failure in closure of the neuronal 
tube, which results in exencephaly followed by 
anencephaly (101,102). The normal develop- 
ment of surviving p53 knockout mice shows 
that, in brain development, the missing p53 
function is probably substituted by other pro- 
teins, perhaps one of the recently cloned p53 
family members (103,104). 

Because p53 is associated with neuronal 
damage and is involved in apoptotic death of 
oligodendrocytes (86), clarifying the role of p53 
in the processes underlying neuronal and 
oligodendrocytic death should provide novel 
information in the understanding of CNS 
development, but also of certain CNS patholo- 
gies/injuries. Degenerative disorders, includ- 
ing Alzheimer's disease and brain trauma, 
involve neuronal cell death (87, and references 
therein), and multiple sclerosis is characterized 
by oligodendrocytic death (105). Accordingly, 
p53-dependent apoptosis seems to be the 
major cause of adrenalectomy-induced degen- 
eration of hippocampal granule cells (106). 

p53 in Differentiation 

Clues as to the involvement of p53 in the dif- 
ferentiation processes are given by the obser- 
vation of induction of several differentiation 
markers after p53 overexpression. For exam- 
ple, immunoglobulin chains ~t and K are 
induced in pre-B cells after p53 induction (107). 

Within the context of the CNS p53 acts as a 
regulatory protein for the differentiation of 

neurons and oligodendrocytes in vitro. Subcel- 
lular localization of p53 from cytoplasm to 
nucleus occurs in oligodendrocyte progenitors 
at 24 h after the addition of differentiating 
medium. Subsequently, p53 nuclear staining 
decreases to basal levels in fully differentiated 
cells (87). These results were confirmed by 
observation of a block in neurite extension 
(marker of oligodendrocyte differentiation) 
after adding a dominant negative p53 protein 
to the cells (87). The physiological mechanism(s) 
by which differentiation signals may mediate 
nuclear translocation are unknown. Once in 
the nucleus, p53 may control differentiation by 
transcriptionally activating a specific subset of 
differentiation-related genes. 

To examine when and where p53 might be 
important in development, p53 expression and 
transcriptional activity was followed during 
mice embryonic development using transgenic 
mice harboring a lacZ gene under the control of 
a p53-regulated promoter. The resulting data 
indicate that p53 is highly expressed in the early 
developing CNS, in undifferentiated cells, in 
neuroblasts, and in neurons (99,100,108). These 
results support a role for p53 in certain stages of 
CNS development, although the precise topog- 
raphy and dynamics of p53 expression in differ- 
ent brain areas have not yet been defined. 

p53 Mutations in Tumors of the CNS 

Analysis of TP53 gene status and overexpres- 
sion of its protein product have been well docu- 
mented in primary CNS tumors (Fig. 2). 
Although the entire TP53 gene is a good target 
for all different types of mutations, such as dele- 
tions, insertions, transitions, and transversions, 
a differential distribution of these classes of 
mutations can be observed along the gene. 
Although alterations truncating the protein, 
such as insertions and deletions, were found 
along the whole gene, point mutations that alter 
p53 function seem to be situated only in the 
hydrophobic core of the protein (87% in exons 
5-8), where single base substitutions can com- 
promise the protein conformation or function, 
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or both. The lack of point mutations outside the 
core of the protein is probably also the result of 
the fact that most investigators have focused 
their analyses on exons 5-8 (109). Additionally, 
of 250 potential sites for mutations present in 
the TP53 gene, 25% of all mutations found in 
human tumors cluster at codons 175, 245, 248, 
249, and 273. The preferential alteration of par- 
ticular sites of a gene can have different reasons: 
(1) they may occur for structural and chemical 
reasons (repetitive sequences or CpG dinu- 
cleotides and susceptibility to carcinogenic 
agents); (2) they may be due to biochemical 
problems related to the transcription and repair 
machinery; (3) they may be biologically moti- 
vated; for example, some mutants may give a 
growth advantage to the cells. 

Crystallographic studies distinguished two 
types of mutation sites. Some are directly 
involved in DNA binding and include the hot 
spot codons 248 and 273, whereas others are 
required for the stable folding of the protein 
such as codon 175. Moreover, this analysis 
evidenced that the frequency of TP53 point 
mutations decreases at increased distances 
from the biologically important structures of 
the gene product (16). 

Statistical analysis of TP53 gene mutations 
found in tumors of the CNS has shown that 
TP53 mutations are mostly restricted to tumors 
of astrocytic origin (33%) (110). Recent data 
obtained with a more sensitive protocol to 
detect p53 mutations show even higher fre- 
quencies: 67% in anaplastic astrocytoma and 
41% in glioblastoma multiforme (111). Lower 
mutation frequencies are found in glioblas- 
toma, because p53 mutation appears to occur 
preferentially only in some subtypes (112,113). 
TP53 gene mutations also occur frequently in 
primary CNS lymphomas (30%) (114) but are 
quite rare in oligodendroglioma (13%) and in 
medulloblastoma (11%) and are apparently 
absent in other tumors of the CNS. 

Most TP53 gene alterations are spontaneous 
GC-AT transversions arising by deamination 
of 5' methylcytosine at CpG sites. There are no 
brain tumor-specific mutations; the three most 
frequent alterations are at codons 175, 248, and 

273. The frequency of mutations differs some- 
what since mutation at codon 273 is predomi- 
nant, whereas in other human tumors the most 
frequently mutated codons are 248, 249, and 
175 (115). Nevertheless, there are still no data 
indicating a specific role of these mutants in 
the genesis of astrocytic tumors. 

More contradictory data were obtained in an 
effort to understand whether p53 mutation is 
an initial, early or late event in glioma tumori- 
genesis. Evidence for p53 mutation as an initia- 
tion event in glioblastoma derives from the 
finding of brain tumors in patients with 
germline p53 mutations, such as occurs in 
patients with multifocal glioma (116) and in 
families with Li-Fraumeni syndrome. These 
groups present a high incidence of tumors of 
the CNS (13%), most of which are astrocy- 
tomas (73%) (117). Additionally, the pattern of 
mutations in sporadic and inherited brain 
tumors is similar. The in vitro transformation 
of spontaneously immortalized cortical astro- 
cytes of p53 knockout mice (118,119) gives 
additional strength to the theory that p53 
mutation is an early initiation event in the for- 
mation and progression of astrocytomas. As a 
result of the early death of p53 knockout mice 
attributable to lymphomas and sarcomas, the 
causality of loss of p53 wt function in CNS 
tumors could not be demonstrated. 

Genetic analysis of cell lines derived from 
gliomas induced in rats by N-ethyl-N-nitro- 
sureas (ENU) showed high frequency of p53 
mutations (120,121) in domains II-V (120,121). 
Immortalization and transformation of astroglial 
cells can also occur independent of p53 muta- 
tion (120,121). Either cell immortalization is 
induced by genes other than TP53, or p53 
mutation is associated with later stages of 
tumorigenesis, or both. 

Conclusions 

During the past 10 years, the importance of 
p53 in tumor research has increased dramati- 
cally and p53 has become involved in a wide 
range of functions: safeguard of genome stabil- 
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ity, cell cycle arrest, differentiation, apoptosis, 
angiogenesis, and tumor cell invasion. Addi- 
tionally, both biological and clinical analysis of 
p53 in tumors has demonstrated its particular 
importance in the most malignant type of pri- 
mary brain tumor: astrocytoma. By contrast, 
for example, to carcinomas in which p53 muta- 
tion is a late event in the formation of the 
tumor, in astrocytoma there is considerable 
evidence that p53 alteration occurs early in the 
progression of the disease. Moreover, although 
the primary characterized function of p53 is as 
an oncosuppressor, in the brain p53 may also 
function as a regulator of CNS development.  
Lack of p53 may cause exencephaly, although 
in this disease, p53 absence can, in some cases, 
be compensated by other proteins. In both 
brain tumors and exencephaly, the capacity of 
p53 to induce apoptosis may be determinant in 
causing the disease. In the first case, as a way 
to eliminate genetically damaged cells; while 
in the second case, as a normal physiological 
process essential to the orderly development  of 
the CNS. Therefore, the comprehension of p53 
structure and regulation, as well as the molec- 
ular pathways of p53-dependent apoptosis, 
cell cycle arrest, and differentiation should 
bring us closer to gaining molecular insights 
into these severe diseases of the CNS. 
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