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b Radon Institute for Computational and Applied Mathematis, Austrian Aademy of Sienes, Altenbergerstrasse 69,A-4040 Linz, AustriaAbstratFor the lassial risk model, in order to allow for a positive probability of survival,a threshold dividend strategy has reently been introdued in the literature to im-prove upon the horizontal barrier strategy at the expense of some pro�t in terms ofdividend payments. In this paper we both extend several of these results to a SparreAndersen model with generalized Erlang(n)-distributed interlaim times and om-pare the performane of the threshold strategy to a linear dividend barrier model. Inpartiular, (partial) integro-di�erential equations for the orresponding ruin prob-abilities and expeted disounted dividend payments are provided for both modelsand expliitly solved for n = 2 and exponentially distributed laim amounts. Fi-nally, the expliit solutions are used to identify parameter sets for whih one strategyoutperforms the other and vie versa.Keywords: Sparre Andersen model; dividend payments, piee-wise deterministiMarkov proesses, ruin probability1 IntrodutionIn olletive risk theory, the Sparre Andersen model to desribe the surplus proess ofan insurane portfolio has a long history, starting with the original paper [26℄. In thatmodel, the laim ounting proess (Nt)t≥0 for time t is assumed to be an ordinary renewalproess, whih an be written as

Nt = min{k : T1 + . . .+ Tk+1 > t}, t ≥ 0,where (Ti)i∈N is the sequene of independent interarrival times.This renewal assumption allows for more �exibility than the lassial risk proess (where
Nt onstitutes a homogeneous Poisson proess) and enables to some extent ontagionbetween laim ourrenes. As usual, the premium in�ow is assumed to be ontinuousover time with onstant intensity c, and the laim amounts (Yi)i∈N are independent and
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identially distributed positive random variables with distribution funtion FY and mean
µ < ∞. Then, for initial apital u, the risk reserve proess (Rt)t≥0 of the insuraneportfolio at time t is given by

Rt = u+ c t− St.where St =
∑Nt

i=1 Yi denotes the aggregate laim amount at time t. The net pro�t onditionin this model is given by c > µ/E(Ti). Typial quantities studied in this ontext are thetime of ruin
τ(u) = inf{t > 0 | Rt < 0 , R0 = u},and the probability of ruin
ψ(u) = P{τ(u) <∞ | R0 = u}.In this paper we will assume that the interarrival times (Ti) follow a generalized Erlang(n)distribution, in whih ase eah Ti is a onvolution of n independent exponentially dis-tributed random variables with parameters λ1, . . . , λn. This spei� property allows toextend the Markovian harater of the laim number proess in the lassial model to-gether with the analytially strong tools to study properties of the risk proess to thisrenewal setting. This approah was reently exploited by Gerber & Shiu [16℄ where thedisounted penalty funtion for suh an Erlang(n) risk model is studied. Working in asimilar model Li & Garrido [20℄ derive a defetive renewal equation for the expeted dis-ounted penalty at ruin. Expressions for the probability of ultimate ruin and the Laplaetransform of the time to ruin for an Erlang(2) risk proess are obtained by Dikson [9℄and Dikson & Hipp [10, 11℄. For the same model Cheng & Tang [6℄ use the disountedpenalty funtion to get integro-di�erential equations for the moments of the surplus beforeruin and the de�it at ruin.The analytial tratability of this renewal setup has also been used to inlude a so-alledhorizontal dividend barrier strategy in the model, i.e. whenever the surplus reahes aertain level, all inoming premiums are immediately paid out as dividends (see Li &Garrido [21℄ for properties of the resulting risk proess generalizing results of Lin et al.[23℄ for n = 1 and on the other hand, Albreher et al. [1℄ for the alulation of momentsof dividend payments resulting from this strategy). However, one onsiderable disadvan-tage of the horizontal barrier strategy is that the orresponding risk proess will lead toruin with probability 1, whih typially makes this strategy inappropriate in pratie.More than that, even if one is just interested in maximizing expeted disounted dividendpayouts, while for the ompound Poisson model there are some optimality properties forhorizontal barriers (see e.g. [12℄), it an be shown that horizontal barrier strategies arenot optimal in the Sparre Andersen model (partly beause then Rt is not a Lévy proess,see [2℄). These two issues motivate to look at alternative dividend payment strategies thatallow for a positive probability of survival, still have a satisfying level of dividend payoutsand allow for analytial expressions so that the parameters of the strategy an be tunedtowards a given target.Among these, there is the so-alled threshold dividend strategy (whih for the lassialompound Poisson model was disussed in Asmussen [5℄ and reently studied in detail byLin & Pavlova [22℄ and Gerber & Shiu [18℄; for a di�usion setup, see also [17℄). Followingthis strategy, one �xes a level b > 0 and no dividends are paid out if the surplus level is2



below b. Whenever the surplus is above b, dividends are paid with intensity a, 0 < a < c(and the surplus inreases with intensity c − a) until the surplus falls again below b dueto the ourrene of a laim. Finally, the dividend payments are stopped at the time ofruin. So the dynamis of the modi�ed risk proess Rthr are given by
dRthr

t = c dt− dSt, 0 ≤ Rthr
t < b,

dRthr
t = (c− a) dt− dSt, Rthr

t ≥ b,

dDthr
t = a dt, Rthr

t ≥ b,where (Dthr
t )t≥0 denotes the aumulated dividend payments at time t . The expeteddisounted dividends of suh a strategy are given by

W (u, b) = E

(

∫ τ(u)

0

a I{Rthr
t ≥b} e

−δt dt
∣

∣

∣
Rthr

0 = u

)

,where δ ≥ 0 is the disounting fator. Observe that ψ(u) = 1 if the proess above b doesnot ful�ll the net pro�t ondition (c− a)E(Ti) > µ, see [5℄.The seond strategy we will fous on is the so-alled linear barrier dividend strategy,where the barrier bt = b+ (c− a)t (b > 0, 0 < a < c) grows linearly in time and dividendsare paid out with intensity a whenever the surplus reahes bt, while the reserve inreaseswith intensity c − a. On the other hand, nothing is paid out when the surplus is belowthe barrier. Dividend payments again stop at the event of ruin. The dynamis of themodi�ed risk proess Rlin are thus given by
dRlin

t = c dt− dSt, 0 ≤ Rlin
t < bt,

dRlin
t = (c− a) dt− dSt, Rlin

t = bt,

dDlin
t = a dt, Rlin

t = bt.The expeted disounted dividend payments are in this ase
W (u, b) = E

(

∫ τ(u)

0

a I(Rlin
t =bt)e

−δt dt
∣

∣

∣
Rlin

0 = u, b0 = b

)

.The linearity of the barrier enables several lassial tehniques for the omputation ofquantities of interest in this more general model (suh as martingale tehniques (see e.g.Gerber [13℄)). Historially, together with the positivity of the orresponding survivalprobability, this was one of the reasons to onsider linear barriers. Expliit formulae for
W (u, b) and ψ(u, b) for light-tailed laim sizes were derived in [14, 25℄. Reently, thedisounted penalty funtion and higher moments of disounted dividend payments for thelinear barrier strategy were investigated in [3℄.Figure 1 depits the two strategies for a sample path that leads to ruin in both ases.An objetion sometimes raised against the linear barrier model is the fat that the strategydepends on the point in time, i.e. the payment strategy is di�erent for eah t for anotherwise idential situation. However, if one is fored to �x a dividend strategy at time 0and is interested in both maximizingW (u, b) and keeping ψ(u, b) below a spei�ed level, itis intuitively lear that for small t one will try to dedut a high dividend amount possibly3
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Figure 1: The linear barrier- and the threshold strategy for a sample path of Rtinvolving some higher risk, whereas for larger t the main fous will be on seuring thesurvival, sine, due to the disount fator δ, the dividend ontributions at this later stagewill only be marginal. Indeed, as will be illustrated in Setion 4, for higher values of
δ the linear barrier model often outperforms the threshold model in terms of �nding aompromise between the values of W (u, b) and ψ(u, b).In this paper, we will derive (partial) integro-di�erential equations ((P)IDE's) for the ruinprobability and moments of dividend payments for both the threshold and the linear bar-rier strategy in the Sparre Andersen model with generalized Erlang(n) interlaim times.These equations an in priniple be solved expliitly whenever the laim size distributionis itself of generalized Erlangian type. We will demonstrate this solution proedure forthe ase of Erlang(2) interlaim times and exponential laim amounts. The expliit for-mulae pave the way for a fast numerial assessment of the performane of these dividendstrategies for a given set of parameters.In Setion 2, we use the di�erential approah to establish a PIDE for the moment-generating funtion of disounted dividend payments for the threshold strategy in theSparre Andersen model with Erlang(n) interlaim times. Subsequently, the orrespond-ing IDE's for arbitrary moments of the disounted dividend payments and for the ruinprobability are derived. These equations are expliitly solved for n = 2 and exponentiallaim amounts in Setion 2.4. Setion 3 provides PIDE's for the survival probability as wellas the expeted disounted dividend payments in the linear barrier model with Erlang(n)interlaim times. As an alternative to the di�erential approah, these are derived usingthe framework of piee-wise deterministi Markov proesses. Again, an expliit solutionis provided for n = 2 and exponential laim amounts and the exat results are omparedwith simulation in Setion 3.2.4. Finally, in Setion 4 the analytial results of the previoussetions are used to ompare the performane of the threshold and linear barrier modelfor various sets of parameters.
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2 The Threshold Dividend Strategy2.1 A system of PIDEs for the moment-generating funtionLet us deompose every inter-ourrene time with generalized Erlang(n)-distribution intothe independent sum of n exponential random variables with possibly di�erent parameters
λ1, . . . , λn, eah ausing a �sub-laim� of size 0 and at the time of the n-th sub-laim anatual laim with distribution funtion FY ours. This is done by de�ning n states forthe risk proess (see e.g. [1℄). Starting at time 0 in state 1, every sub-laim auses atransition to the next state and at the time of ourrene of the n-th sub-laim, an atuallaim with distribution funtion FY ours and the risk proess jumps into state 1 again.Let

M (j)(u, y, b) = E

(

exp

(

y

∫ τ(u)

0

e−δtaI{Rthr
t >b} dt

)∣

∣

∣

∣

∣

Rthr
0 = u, state = j

)denote the moment-generating funtion of the disounted dividend payments, given thatthe risk proess starts in state j (j = 1, . . . , n).Furthermore we split up the moment-generating funtions in two regions below and abovethe barrier,
M (j)(u, y, b) = M

(j)
1 (u, y, b)I{u<b} +M

(j)
2 (u, y, b)I{u≥b}.For j = 1, . . . , n − 1, we ondition on the ourrene of a laim within an in�nitesimaltime interval, whih gives

M
(j)
1 (u, y, b) = (1 − λjdt)M

(j)
1 (u+ cdt, ye−δdt, b) + λjdt M

(j+1)
1 (u+ cdt, ye−δdt, b) + o(dt),and

M
(j)
2 (u, y, b) = (1 − λjdt)e

yadtM
(j)
2 (u+ (c− a)dt, ye−δdt, b)

+λjdt e
yadt M

(j+1)
2 (u+ (c− a)dt, ye−δdt, b) + o(dt).The analogous equations for j = n are

M
(n)
1 (u, y, b) = (1 − λndt)M

(n)
1 (u+ cdt, ye−δdt, b)

+λndt

∫ u+cdt

0

M
(1)
1 (u+ cdt− z, ye−δdt, b) dFY (z)

+λndt

∫ ∞

u+cdt

dFY (z) + o(dt),

M
(n)
2 (u, y, b) = (1 − λndt)e

yadtM
(n)
2 (u+ (c− a)dt, ye−δdt, b)

+λndte
yadt

∫ u+cdt

0

M (1)(u+ (c− a)dt− z, ye−δdt, b) dFY (z)

+λndte
yadt

∫ ∞

u+cdt

dFY (z) + o(dt).Taylor expansion and olletion of suitable terms leads to the following partial (integro-)di�erential equations (j = 1, . . . , n− 1): 5



M
(j+1)
1 (u, y, b) =

(

−c ∂·
∂u

+ λj + δy ∂·
∂y

λj

)

M
(j)
1 (u, y, b),

M
(j+1)
2 (u, y, b) =

(

−(c− a) ∂·
∂u

+ (λj − ya) + δy ∂·
∂y

λj

)

M
(j)
2 (u, y, b),and

(

−c ∂·
∂u

+ λn + δy ∂·
∂y

λn

)

M
(n)
1 (u, y, b)− (1− FY (u))−

∫ u

0

M
(1)
1 (u− z, y, b) dFY (z) = 0,

(

−(c− a) ∂·
∂u

+ (λn − ya) + δy ∂·
∂y

λn

)

M
(n)
2 (u, y, b)

− (1 − FY (u)) −

∫ u

0

M (1)(u− z, y, b) dFY (z) = 0.The quantity of eventual interest is M (1)(u, y, b) := M(u, y, b), whih from the aboveequations is seen to be the solution of the following system of partial integro-di�erentialequations:
0 =

(

n
∏

j=1

−c ∂·
∂u

+ λj + δy ∂·
∂y

λj

)

M1(u, y, b) − (1 − FY (u))

−

∫ u

0

M1(u− z, y, b) dFY (z), (1)
0 =

(

n
∏

j=1

−(c− a) ∂·
∂u

+ (λj − ya) + δy ∂·
∂y

λj

)

M2(u, y, b) − (1 − FY (u))

−

∫ u

0

M(u− z, y, b) dFY (z) (2)(note that the produt y ∂·
∂y

in the above operator is not ommutative). Boundary ondi-tions are given by
lim
b→∞

M1(u, y, b) = 1,

lim
u→∞

M2(u, y, b) = eya/δ.Moreover, at u = b, by ontinuity we have to have
lim

u→b+
M

(j)
2 (u, y, b) = lim

u→b−
M

(j)
1 (u, y, b)for all states j = 1, . . . , n, whih translates into

(

(c− a)
∂+·

∂u
− δy

∂+·

∂y
+ ya

)j−1

M2

∣

∣

∣

∣

∣

u=b

=

(

c
∂−·

∂u
− δy

∂−·

∂y

)j−1

M1

∣

∣

∣

∣

∣

u=b

, (3)where the derivatives are assumed to be one-sided.6



2.2 The moments of the disounted dividendsThe results of the previous subsetion an be used to derive an integro-di�erential equationfor the mth moment Wm(u, b) of the disounted sum of dividend payments (m ∈ N).Again, we write
Wm(u, b) = Wm,1(u, b) I{u<b} +Wm,2(u, b) I{u≥b}.With the representation

M(u, y, b) = 1 +
∞
∑

m=1

ym

m!
Wm(u, b),and the equations (1)-(3), a omparison of oe�ients of ym gives

(

n
∏

j=1

−c ∂·
∂u

+ λj + δ∆̄

λj

)

Wm,1(u, y, b)−

∫ u

0

Wm,1(u− z, y, b) dFY (z) = 0,

(

n
∏

j=1

−(c− a) ∂·
∂u

+ (λj − a∆) + δ∆̄

λj

)

Wm,2(u, y, b) −

∫ u

0

Wm(u− z, y, b) dFY (z) = 0,with the operators ∆Wm := mWm−1, ∆̄Wm := mWm. Moreover, W0 = 1,W−i = 0 (i ∈
N). Here, the produt ∆∆̄ of operators is not ommutative and is given by (∆∆̄)Wm =
∆̄(∆Wm) = m(m− 1)Wm−1 and (∆̄∆)Wm = ∆(∆̄Wm) = m2Wm−1.We have the boundary onditions:

lim
b→∞

Wm,1(u, y, b) = 0, (4)
lim

u→∞
Wm,2(u, y, b) =

(a

δ

)m

. (5)Moreover, by assuming that all moments are ontinuous we have
(

c
∂−·

∂u

)j−1

Wm,1

∣

∣

∣

∣

∣

u=b

=

(

(c− a)
∂+·

∂u
+ a∆

)j−1

Wm,2

∣

∣

∣

∣

∣

u=b

, (j = 1, . . . , n).Remark 2.1. Note that the above formulas extend equations (5.1)-(5.3) of Gerber &Shiu [18℄, who studied the ase m = 1, n = 1.2.3 Probability of ruinThe probability of ruin is de�ned through
ψ(u, b) = E

(

I{τ<∞}|R
thr
0 = u

)

.Let us again split the funtion in two regions below and above the barrier b,
ψ(u, b) = ψ1(u, b)I{u<b} + ψ2(u, b)I{u≥b}.Analogously to Setion 2.1, one an now deompose the proess into n states and subse-quently apply the di�erential approah to obtain7



(

n
∏

j=1

λj − c ∂·
∂u

λj

)

ψ1(u, b) − (1 − FY (u)) −

∫ u

0

ψ1(u− z, b) dFY (z) = 0, (6)
(

n
∏

j=1

λj − (c− a) ∂·
∂u

λj

)

ψ2(u, b) − (1 − FY (u)) −

∫ u

0

ψ(u− z, b) dFY (z) = 0. (7)The natural boundary onditions are
lim

u→∞
ψ2(u, b) = 0 (8)and

lim
b→∞

ψ1(u, b) = ψ̄(u), (9)where ψ̄(u) denotes the ruin probability without dividend payments. Moreover, from theontinuity assumptions,
(

(c− a)
∂+·

∂u

)j−1

ψ2(u, b)
∣

∣

∣

u=b
= lim

u→b−

(

c
∂−·

∂u

)j−1

ψ1(u, b)
∣

∣

∣

u=b
, (j = 1, . . . , n). (10)Remark 2.2. For the ompound Poisson model n = 1, (6) and (7) appear impliitly in[5, 22℄.2.4 Erlang(2) interarrivals and exponential laimsIn priniple, the above equations an be expliitly solved for Erlang distributed laimsizes. In the following we will illustrate the solution proedure for the spei� ase ofErlang(2, λ) distributed interlaim times (i.e. λ1 = λ2 = λ and n = 2) and Exp(α)distributed laim amounts. From Setion 2.2, we then obtain

(

λ+ δm− c
∂·

∂u

)2

Wm,1 − λ2

∫ u

0

Wm,1(u− z, b) dFY (z) = 0and
(

λ+ δm− (c− a)
∂·

∂u

)2

Wm,2 − λ2

∫ u

0

Wm(u− z, b) dFY (z)

= am

(

−2(c− a)
∂·

∂u
+ 2λ+ (2m− 1)δ

)

Wm−1,2 − a2(m− 1)mWm−2,2.together with the boundary onditions (4),(5),
Wm,1(b, b) = Wm,2(b, b)and

c
∂Wm,1

∂u

∣

∣

∣

u=b
= (c− a)

∂Wm,2

∂u

∣

∣

∣

u=b
+ amWm−1,2(b, b).8



Let us onsider the ase m = 1. We then have
c2W ′′

1,1(u, b) − 2c(δ + λ)W ′
1,1(u, b) + (δ + λ)2W1,1(u, b) − λ2α e−αu

∫ u

0

W1,1(v, b) e
αvdv = 0(11)and

(c− a)2W ′′
1,2(u, b) − 2(c− a)(δ + λ)W ′

1,2(u, b) + (δ + λ)2W1,2(u, b) − a(2λ+ δ)

− λ2α e−αu

∫ u

0

W1(v, b) e
αvdv = 0 (12)together with

W1,1(b−, b) = W1,2(b+, b), (13)and
c
∂−W1,1

∂u
(u, b)

∣

∣

∣

u=b
= (c− a)

∂+W1,2

∂u
(u, b) + a

∣

∣

∣

u=b
. (14)Applying the operator ( ∂·

∂u
+ α

) to (11) and (12) yields the di�erential equations
0 = c2W ′′′

1,1(u, b) + (αc2 − 2c(δ + λ))W ′′
1,1(u, b) + ((λ+ δ)2 − 2cα(δ + λ))W ′

1,1(u, b)

+(α(δ + λ)2 − αλ2)W1,1(u, b), (15)
0 = (c− a)2W ′′′

1,2(u, b) + (α(c− a)2 − 2(c− a)(δ + λ))W ′′
1,2(u, b)

+((δ + λ)2 − 2α(c− a)(δ + λ))W ′
1,2(u, b) + (α(δ + λ)2 − αλ2)W1,2(u, b) − aα(2λ+ δ).(16)The solution of (15) is of the form

W1,1(u, b) =

3
∑

i=1

A
(i)
1 (b)eR

(i)
1 u, (17)where R(1)

1 , R
(2)
1 > 0 and R(3)

1 < 0 are the three roots of
(δ + λ− cR)2(R+ α) − αλ2 = 0,and A(i)

1 (b) (i = 1, 2, 3) are oe�ients (depending on the value of b) to be determined inthe following. Substitution in (11) then gives the ondition
3
∑

i=1

A
(i)
1 (b)

R
(i)
1 + η

= 0On the other hand, equation (16) has a solution of the form
W1,2(u, b) =

a

δ
+ A

(1)
2 (b) eR

(1)
2 u, (18)where a

δ
is a partiular solution of (16) and R(1)

2 is the negative root of
(δ + λ− (c− a)R)2(R+ α) − αλ2 = 09



(that this equation has indeed exatly one negative root follows by a Rouhé-type argu-ment, see e.g. Gerber & Shiu [16℄). The oe�ients of the positive roots have to be zeroaording to (4), hene these terms do not appear in (18).Substituting (17) and (18) in (12), a omparison of oe�ients gives
A

(1)
2 eR

(1)
2 b

R
(1)
2 + α

−
A

(1)
1 eR

(1)
1 b

R
(1)
1 + α

−
A

(2)
1 eR

(2)
1 b

R
(2)
1 + α

−
A

(3)
1 eR

(3)
1 b

R
(3)
1 + α

+
a

αδ
= 0(note that the integral on the right hand side of (12) has to be written as ∫ u

0
W1(v, b) e

αv dv =
∫ b

0
W1,1(v, b) e

αv dv +
∫ u

b
W1,2(v, b) e

αv dv). Together with onditions (13) and (14), wehene obtain the expliit solution (17) and (18), where the oe�ients are determined bythe system of linear equations












0 1

R
(1)
1 +α

1

R
(2)
1 +α

1

R
(3)
1 +α

− α

R
(1)
2 +α

eR
(1)
2 b α

R
(1)
1 +α

eR
(1)
1 b α

R
(2)
1 +α

eR
(2)
1 b α

R
(3)
1 +α

eR
(3)
1 b

−eR
(1)
2 b eR

(1)
1 b eR

(2)
1 b eR

(3)
1 b

−(c− a)R
(1)
2 eR

(1)
2 b cR

(1)
1 eR

(1)
1 b cR

(2)
1 eR

(2)
1 b cR

(3)
1 eR

(3)
1 b























A
(1)
2

A
(1)
1

A
(2)
1

A
(3)
1











=









0
a
δ
a
δ

a









.For the ruin probability, one has to apply the operator ( ∂·
∂u

+ α) on (6) and (7) to obtainthe di�erential equations
0 =

(

(

∂·

∂u
+ α

)

(

2
∏

j=1

−c ∂·
∂u

+ λj

λj

)

− α

)

ψ1(u, b),and
0 =

(

(

∂·

∂u
+ α

)

(

2
∏

j=1

−(c− a) ∂·
∂u

+ λj

λj

)

− α

)

ψ2(u, b).Thus for i = 1, 2, we have solutions of the form
ψi(u, b) = A

(3)
i +

2
∑

j=1

A
(j)
i eR

(j)
i u.Consider the orresponding Lundberg equations

0 = (R+ α)

(

2
∏

j=1

−cR + λj

λj

)

− α (19)and
0 = (R+ α)

(

2
∏

j=1

−(c− a)R + λj

λj

)

− α.

10



For eah of the two, one solution is 0 and both equations have exatly one negative solution(see again [16℄), whih are denoted by R(1)
i , i = 1, 2. The remaining positive solutions arealled R(2)

i . Thus for i = 1, 2, one has
ψi(u, b) = A

(3)
i +

2
∑

j=1

A
(j)
i eR

(j)
i u, (20)where the A(j)

i (b) depend on the hoie of b. Condition (9) gives
lim
b→∞

ψ1(u, b) =
α +R

(1)
1

α
eR

(1)
1 u (21)(f. [16℄) and (8) translates into

ψ2(u, b) = A
(1)
2 eR

(1)
2 u. (22)Thus, we now have four unknown onstants. Two equations are obtained by using (10) for

j = 1, 2 and the remaining two are found by a omparison of oe�ients of the solutionsin the IDE's (6) and (7). Altogether, the resulting system of equations is given by












eR
(1)
1 b eR

(2)
1 b eR

(3)
1 b −eR

(1)
2 b

cR
(1)
1 eR

(1)
1 b cR

(2)
1 eR

(2)
1 b cR

(3)
1 eR

(3)
1 b −(c− a)R

(1)
2 eR

(1)
2 b

α

α+R
(1)
1

α

α+R
(2)
1

α

α+R
(3)
1

0

1

α+R
(1)
1

eR
(1)
1 b 1

α+R
(2)
1

eR
(2)
1 b 1

α+R
(3)
1

eR
(3)
1 b − 1

α+R
(1)
2

eR
(1)
2 b























A
(1)
1

A
(2)
1

A
(3)
1

A
(1)
2











=









0
0
1
0









.

3 The Linear Dividend Barrier StrategyConsider a linear barrier of the form bt = b + (c − a)t. With this strategy, dividendsare paid out with intensity a whenever Rlin
t reahes bt, while the reserve inreases withintensity c − a until the next laim ours. On the other hand, nothing is paid if thesurplus is below the barrier.3.1 Integro-di�erential equation for U(u, b)For onveniene, let us think of the risk proess with linear dividend barrier as a pieewisedeterministi Markov proess (PDMP) with n external states (see e.g. Davis [8℄ or Rolskiet al. [24℄), where the transition from state i to state i + 1 is generated by an Exp(λi)random variable. This an again be interpreted as a deomposition of the interlaim time

Ti into n exponential distributed summands, see [1℄. For i = 1, . . . , n − 1 the proessonly hanges the state, for i = n the state moves to state 1 and a laim with distributionfuntion FY ours. The generator A for a suitable funtion g (depending on the state i,the risk proess and the barrier b) is given by
c
∂g(i)

∂u
(u, b) + (c− a)

∂g(i)

∂b
(u, b) + λi

(

g(i+1)(u, b) − g(i)(u, b)
)

, (0 ≤ u < b, i = 1, . . . , n− 1),

c
∂g(n)

∂u
(u, b) + (c− a)

∂g(n)

∂b
(u, b) + λn

(
∫ u

0

g(1)(u− y, b)dFY (y) − g(n)(u, b)

)

, (0 ≤ u < b).11



and at the barrier
(c− a)

∂g(i)

∂b
(u, b) + λi

(

g(i+1)(u, b) − g(i)(u, b)
)

, (u = b, i = 1, . . . , n− 1),

(c− a)
∂g(n)

∂b
(u, b) + λn

(
∫ u

0

g(1)(u− y, b)dFY (y) − g(n)(u, b)

)

, (u = b).To get andidates for the survival probability U (i)(u) := 1−ψ(i)(u) (for initial state i) wehave to solve the equations AU (i)(u, b) = 0 together with the boundary onditions givenbelow. From the equations above we get the following integro-di�erential equation for thesurvival probability in state 1 (whih is the one we are in fat interested in):
n
∏

i=1

(

λi − c
∂·

∂u
− (c− a)

∂·

∂b

)

U (1)(u, b) =

n
∏

i=1

λi

∫ u

0

U (1)(u− y, b)dFY . (23)By ontinuity at u = b, the boundary onditions are
i−1
∏

j=1

(

λj − c ∂·
∂u

− (c− a) ∂·
∂b

λj

)

∂U (1)

∂u
(u, b)

∣

∣

∣

u=b
= 0, i = 1, . . . , n,where ∏0

j=1 · = 1. Moreover,
lim
b→∞

U (1)(u, b) = Ū(u)(with Ū(u) denoting the survival probability in the renewal model without dividend pay-ments) and limu,b→∞U (1)(u, b) = 1 if u and b go to in�nity uniformly (f. [14℄).3.1.1 Erlang(2) interarrivals and exponential laimsIn this setion we look for an expliit solution for the survival probability in ase ofErlang(2, λ)-distributed interlaim times and Exp(α) laim amounts. Write U(u, b) :=
U (1)(u, b). The integro-di�erential equation then reads

(

λ− c
∂·

∂u
− (c− a)

∂·

∂b

)2

U(u, b) = λ2

∫ u

0

U(u− y, b)αe−αydy (24)together with the boundary onditions
∂U

∂u
(u, b)

∣

∣

∣

u=b
= 0 (25)

c
∂2U

∂u2
(u, b)

∣

∣

∣

u=b
+ (c− a)

∂2U

∂u ∂b
(u, b)

∣

∣

∣

u=b
= 0, (26)

lim
b→∞

U(u, b) = Ū(u), (27)
lim

u,b→∞
U(u, b) = 1. (28)Analogous to Setion 2, equation (24) an be transformed into a partial di�erential equa-tion with onstant oe�ients: 12



(

λ− c
∂·

∂u
− (c− a)

∂·

∂b

)2
∂U

∂u
(u, b)+α

(

λ− c
∂·

∂u
− (c− a)

∂·

∂b

)2

U(u, b)−αλ2U(u, b) = 0.(29)From (21) we have
Ū(u) = 1 −

α +R
(1)
1,1

α
eR

(1)
1,1u,where R(1)

1,1 is the unique negative solution of (19).We will onstrut an expliit solution to the above problem. Using �xed-point argumentsit follows that there is a unique solution to the problem, so we have atually solved theproblem ompletely (see Albreher & Kainhofer [4℄ for details on the uniqueness argumentin a related model and Cohen & Down [7℄ in a queueing framework). The solution of (29)will be of the form
∞
∑

k=0

eS(k)b
(

A
(k)
1 eR

(k)
1 u + A

(k)
2 eR

(k)
2 u + A

(k)
3 eR

(k)
3 u
)

, (30)where for eah k ≥ 0 the pairs (S(k), R
(k)
j ), j = 1, 2, 3, are zeroes of the polynomial

P (R, S) = (R+ α) (λ− cR− (c− a)S)2 − αλ2.In the spirit of [25℄, the initial step k = 0 is hosen in order to satisfy (27), i.e.
S(0) = 0, R

(0)
1 = 0, A

(0)
1 = 1, A

(0)
2 = −

R
(1)
1,1 + α

α
, A

(0)
3 = 0.If S(k) < 0 and all S(k) + R

(k)
j < 0 for all k ≥ 1, j = 1, 2, 3, then the two onditions (27)and (28) are ful�lled. Thus, if for some k and j, S(k) +R

(k)
j ≥ 0, then neessarily A(k)

j = 0.It turns out that one an hoose A(k)
3 = 0 for all k ≥ 0. Plugging (30) into the originalequation (23), one obtains for eah k

A
(k)
2 = −

R
(k)
2 + α

R
(k)
1 + α

A
(k)
1 .Boundary ondition (25) redues to

∞
∑

k=0

A
(k)
1

(

R
(k)
1 e(S

(k)+R
(k)
1 )b −

R
(k)
2 + α

R
(k)
1 + α

R
(k)
2 e(S

(k)+R
(k)
2 )b
)

= 0and ondition (26) an be rewritten as
∞
∑

k=0

A
(k)
1

(

R
(k)
1 (cR

(k)
1 + (c− a)S(k)) e(S

(k)+R
(k)
1 )b −

R
(k)
2 + α

R
(k)
1 + α

R
(k)
2 (cR

(k)
2 + (c− a)S(k)) e(S

(k)+R
(k)
2 )b
)

= 0For eah k, the summand in (30) solves the integro-di�erential equation (29). For k = 0,
S(0) = R

(0)
1 = 0, so only the seond term produes an error onerning the two boundary13



onditions above (note that in [14, 25℄, only one boundary ondition had to be satis�edthis way). For eah of the two onditions, the �rst summand of a larger index k in (30) willbe used to orret for it. However, the seond summand will again provide a mismathwith respet to this boundary ondition and will itself be orreted by a �rst summandof higher index et. It will turn out that these orretion terms onverge to zero and thusin the limit we have found the exat solution. In fat, the onvergene is fast and withonly a few terms of the series (30) the approximation to the exat value is satisfying.The deletion algorithmSo, for a general step k, �x two new steps k̂ > k and k′ > k suh that
S(k) +R

(k)
2 = S(k′) +R

(k′)
1 = S(k̂) +R

(k̂)
1 . (31)The oe�ients A(k′)

1 and A(k̂)
1 of the new steps have to solve the linear equations

(

R
(k)
2 + α

R
(k)
1 + α

)

A
(k)
1 R

(k)
2 = A

(k′)
1 R

(k′)
1 + A

(k̂)
1 R

(k̂)
1 , (32)

(

R
(k)
2 + α

R
(k)
1 + α

)

A
(k)
1 R

(k)
2 (cR

(k)
2 + (c − a)S(k)) = A

(k′)
1 R

(k′)
1 (cR

(k′)
1 + (c − a)S(k′)) + A

(k̂)
1 R

(k̂)
1 (cR

(k̂)
1 + (c − a)S(k̂)).To that end, it is essential that S(k′) 6= S(k̂) and R(k′)

1 6= R
(k̂)
1 . In the following it is shownthat it is always possible to �nd two distint roots R(k′)

1 and R(k̂)
1 suh that S(k′)+R

(k′)
1 < 0and S(k̂) +R

(k̂)
1 < 0 and at the same time S(k′) +R

(k′)
2 , S(k̂) +R

(k̂)
2 < 0 holds.For eah �xed S < 0, P (R, S) has three real roots in R whih satisfy

r1(S) < 0 < r2(S) <
λ− (c− a)S

c
< r3(S) (33)so that

r2(S) + S <
λ

c
+
a

c
S;whene r2(S) + S < 0 if

S < −
λ

a
.Later on we will see from the onstrution of S(k) that this is guaranteed. Moreover, itturns out that limS→∞ r1(S) = −α, whereas r2(S) and r3(S) do not have a �nite limit.On the other hand, if we �x R, then P (R, S) = 0 has two solutions in S given by

s1,2(R) =
(c− a)(α +R)(λ− cR) ±

√

α (c− a)2λ2(α +R)

(c− a)2(α +R)
.We get that s2(R) < 0 for R ∈ (−∞, r1(0)) ∪ (min{λ

c
, r2(0)},min{λ

c
, r3(0)}) ∪ (λ

c
,∞).On the other hand, s1(R) > 0 ifR ∈ (max{λ

c
, r1(0)},max{λ

c
, r2(0)})∪ (max{λ

c
, r3(0)},∞).Let us now turn to the determination of R(k′)

1 and R(k̂)
1 for a given step k so as to math(31). For that purpose, onsider the polynomial

P (R, S(k) +R
(k)
2 − R),14



whih has three real roots {R̃1, R̃2, R̃3} in R. A loser look at its behavior reveals thatwe again have R̃1, R̃2 > 0 and R̃3 < 0.In the following it is shown that S(k) +R
(k)
2 < 0, therefore the following hoie is possible:

R
(k′)
1 := R̃1, S(k′) = S(k) +R

(k)
2 −R

(k′)
1 ,

R
(k̂)
1 := R̃2, S(k̂) = S(k) +R

(k)
2 − R

(k̂)
1 . (34)If S(k) +R

(k)
2 < 0, then learly both S(k′) +R

(k′)
2 < 0 and S(k̂) +R

(k̂)
2 < 0. Moreover, from

R
(k′)
1 , R

(k̂)
1 > 0 it follows that S(k′), S(k̂) < 0, as required. Consequently, due to (33) it isalways possible to hoose R(k′)

2 , R
(k̂)
2 < 0 as the negative solutions of P (R, S(k′)) = 0.Summarizing, starting with S(0) = 0, hoose R(0)

2 as the negative zero of P (R, 0), so that
S(0) +R

(0)
2 < 0.Then, the oe�ients of two next steps k′ and k̂ are hosen aording to (34) and (32).Subsequently, the same proedure is applied to eah of the two steps and so on. By theabove onsiderations and indution, S(k) +R
(k)
2 < 0 holds for all k ≥ 0. In addition,

R
(k′)
2 + S(k′) = R

(k)
2 + S(k) − R

(k′)
1 +R

(k′)
2 < R

(k)
2 + S(k),sine R(k′)

1 > 0 and R(k′)
2 < 0. So this sum dereases in every step of the algorithm and,moreover, S(k′) < S(k) (the same argument holds with k′ replaed by k̂).A numerial illustration of this solution algorithm will be given in Setion 3.2.4.3.2 Integro-Di�erential equation for W (u, b)Sine one of the boundary onditions to the equation forW (u, b) will involve the expeteddisounted dividends of the linear barrier strategy in ase the payments are ontinued afterthe event of ruin, we will �rst disuss this variant of the model.3.2.1 Dividend payments ontinue after ruinIt is well-known that in this ase it su�es to look at the proess zt = bt − Rlin

t (seee.g. [14℄). Dividends are then paid whenever zt = 0. The resulting expeted disounteddividends (with disounting fator δ ≥ 0) are
V (z) = E

(
∫ ∞

0

a I(zt=0)e
−δt dt

∣

∣

∣
z0 = z

)

,

lim
z→∞

V (z) = 0,whih are bounded by
∫ ∞

0

ae−δtdt = a/δ. (35)15



As in Setion 3.1 we think of z = (zt)t≥0 as a PDMP with n external states. The generator
A for a suitable funtion g depending on the state i and the proess z is given by

Ag(i)(z) = −a
∂g(i)

∂z
(z) + λi

(

g(i+1)(z) − g(i)(z)
)

, (z > 0, i = 1, . . . , n− 1),

Ag(n)(z) = −a
∂g(n)

∂z
(z) + λn

(
∫ ∞

0

g(1)(z + y)dFY (y) − g(n)(z)

)

, (z > 0),and at the boundary z = 0 we get for the generator
λn

(
∫ ∞

0

g(1)(y)dFY (y) − g(n)(0)

) and λi

(

g(i+1)(0) − g(i)(0)
)

, (i = 1, . . . , n− 1).Here, a funtion g is suitable, if for all states i it is absolutely ontinuous on (0,∞) and
E





∑

j,σj<t

∣

∣

∣
g(i)(zσj

) − g(i)(zσj
−)
∣

∣

∣



 <∞ ∀t > 0,where {σi}i≥1 denote the laim ourrene times (this ondition is ertainly ful�lled if gis bounded). From [24, Thm. 11.2.3℄ we know that for a suitable funtion f whih ful�lls
Af(z) − δf(z) + γ(z) = 0,the relation

f(z0) = E

(
∫ t0

0

γ(zt)e
−δtdt+ e−δt0fter(zt0)

)

,holds for any t0 > 0 (and for a bounded funtion fter the seond summand vanishes for
t0 → ∞).Let V (i)(z) denote the value of the expeted dividends for initial state i and set γ(z) =
aI(z=0). Then we an write

V (i)(z, t0) = E

(
∫ t0

0

γ(zt)e
−δtdt+ e−δt0Vter(i, zt0)

)

.From the upper bound (35) it is lear that Vter is bounded and hene neglible in the limit
t0 → ∞ in the above expression. Hene V (i)(z) = V (i)(z,∞) is given as the solution of
−a

∂V (i)

∂z
(z) + λi

(

V (i+1)(z) − V (i)(z)
)

− δV (i)(z) = 0, (i = 1, . . . , n− 1, z > 0) (36)and
−a

∂V (n)

∂z
(z) + λn

(
∫ ∞

0

V (1)(z + y)dFY (y) − V (n)(z)

)

− δV (n)(z) = 0, (z > 0). (37)For z = 0 we get the boundary onditions 16



λi

(

V (i+1)(0) − V (i)(0)
)

− δV (i)(0) + a = 0, i = 1, . . . , n− 1,

λn

(∫ ∞

0

V (1)(y)dFY (y) − V (n)(0)

)

− δV (n)(0) + a = 0.Moreover, ontinuity of V (i)(z) implies ∂V (i)

∂z
(0) = −1 for i = 1, . . . , n. Eventually, we areinterested in the quantity V (z) = V (1)(z). From (36) we have

V (i+1)(z) =
i
∏

j=1

(

δ + λj + a ∂·
∂z

λj

)

V (1)(z)and together with (37) we arrive at
n
∏

i=1

λi

∫ ∞

0

V (1)(z + y)dFY (y) =
n
∏

i=1

(

δ + λi + a
∂·

∂z

)

V (1)(z), (z > 0) (38)and for the boundary z = 0

i−1
∏

j=1

(

δ + λj + a ∂·
∂z

λj

)

V (1)(0) = −1, (i = 1, . . . , n). (39)3.2.2 Dividend payments stop at ruinIf the dividend payments stop at the event of ruin, the value funtion of the expeteddisounted dividend payments is given by
W (u, b) = E

(

∫ τ(u)

0

a I(Rlin
t =bt)e

−δt dt
∣

∣

∣
Rlin

0 = u, b0 = b

)

.The PDMP approah analogous to Setion 3.2.1 leads to the PDE
n
∏

i=1

λi

∫ u

0

W (u− v, b)dFY (v) =

n
∏

i=1

(

(δ + λi) − c
∂·

∂u
− (c− a)

∂·

∂b

)

W (u, b),and boundary onditions are
V (z) = lim

u→∞
W (u, u+ z),

1 =

j−1
∏

k=1

(

(δ + λk) − c ∂·
∂u

− (c− a) ∂·
∂b

λk

)

∂W (u, b)

∂u

∣

∣

∣

u=b
, j = 1, . . . , n.3.2.3 Erlang(2) interarrivals and exponential laimsIn the speial ase of Erlang(2, λ) distributed interlaim times and Exp(α) distributedlaim amounts, the integro-di�erential equation (38) an (similarly to the previous se-tions) be transformed into the ordinary linear di�erential equation with onstant oe�-ients

a2V ′′′(z) + (2(δ + λ)a− αa2)V ′′(z)

+ ((δ + λ)2 − 2α(δ + λ)a)V ′(z) + (αλ2 − α(δ + λ)2)V (z) = 0,17



with a solution of the form
V (z) = Â1 e

R̂1z + Â2 e
R̂2z + Â3 e

R̂3z,where {R̂1, R̂2, R̂3} denote the roots of the polynomial
P1(R) = a2R3 + (2(δ + λ)a− αa2)R2 + ((δ + λ)2 − 2α(δ + λ)a)R+ (αλ2 − α(δ + λ)2).It is easy to see that P1(R) has three real roots, two of whih are negative. The ondition

limz→∞ V (z) = 0 implies that if R̂3 refers to the positive root, Â3 = 0.Under the assumption of exponential laim amounts, The boundary onditions (39) anbe rewritten as
V ′(0) = −1 and V ′′(0) =

δ

a
.Altogether this leads to the expliit solution

V (z) = Â1 e
R̂1z + Â2 e

R̂2z. (40)with
Â1 =

R̂2 + δ
a

R̂1R̂2 − R̂2
1

and Â2 =
R̂1 + δ

a

R̂2
2 − R̂1R̂2

.The funtion V (z) is di�erentiable and bounded. Thus it ful�lls the onditions of [24,Thm.11.2.3℄ and is indeed the solution to the problem.For W (u, b), one has to solve
(

δ + λ− c
∂·

∂u
− (c− a)

∂·

∂b

)2

W (u, b) = λ2

∫ u

0

W (u− v, b)αe−αvdv, (41)whih by applying the operator ( ∂·
∂u

+ α
) leads to the PDE

(

δ + λ − c
∂·

∂u
− (c − a)

∂·

∂b

)2
∂W (u, b)

∂u
+α

(

δ + λ − c
∂·

∂u
− (c − a)

∂·

∂b

)2

W (u, b)−αλ2W (u, b) = 0.(42)The boundary onditions simplify to
lim
b→∞

W (u, b) = 0, (43)
∂W (u, b)

∂u

∣

∣

∣

u=b
= 1, (44)

c
∂2W (u, b)

∂u2

∣

∣

∣

u=b
+ (c− a)

∂2W (u, b)

∂u∂b

∣

∣

∣

u=b
= δ, (45)

lim
u→∞

W (u, u+ z) = V (z), (46)where V (z) is given by (40). 18



(42) is a homogeneous di�erential equation of third order with onstant oe�ients andwe will onstrut a solution of the form
W (u, b) =

∞
∑

k=0

eS(k)b(A
(k)
1 eR

(k)
1 u + A

(k)
2 eR

(k)
2 u + A

(k)
3 eR

(k)
3 u).where R(k)

i (S(k)), (i = 1, 2, 3), denote the roots of the polynomial
P (R, S(k)) = R

(

(δ + λ) − cR− (c− a)S(k)
)2

+ α
(

(δ + λ) − cR− (c− a)S(k)
)2

− αλ2for a given value of S(k).The main idea is again that eah of the above summands solves (42) and the ombinationof suh solutions is used to math all the neessary boundary onditions. Substitution ofeah term in the original integro-di�erential equation (41) gives
A

(k)
1

R
(k)
1 + α

+
A

(k)
2

R
(k)
2 + α

+
A

(k)
3

R
(k)
3 + α

= 0As in the ase of the survival probability, the hoie A(k)
3 = 0 for all k ≥ 0 turns out tobe feasible and hene

A
(k)
2 = −

R
(k)
2 + α

R
(k)
1 + α

A
(k)
1 .So we atually look for a solution of the form

W (u, b) =
∞
∑

k=0

A
(k)
1 eS(k)b

(

eR
(k)
1 u −

R
(k)
2 + α

R
(k)
1 + α

eR
(k)
2 u

)

. (47)Condition (43) is automatially satis�ed as long as S(k) < 0 for k ≥ 0. In view of (40)and (46), de�ne for k = 0

A
(0)
1 := Â1, S(0) := R̂1 R

(0)
1 := −R̂1,

A
(1)
1 := Â2, S(1) := R̂2 R

(1)
1 := −R̂2.At the same time this hoie already determines the values of R(0)

2 and R(1)
2 . Note also thatthe ombination of R(0)

1 and R(1)
1 is possible, sine P (−R,R) = −P1(R). By onstrution,

R
(0)
1 and R(1)

1 are positive and for S(i) = R̂i the polynomial P (R, S(i)) also has a negativeroot, the value of whih is assigned to R(i)
2 (i = 0, 1). If both S(0) + R

(0)
2 and S(1) + R

(1)
2and all remaining sums S(k) +R

(k)
i , k ≥ 2, i ∈ {1, 2}, are negative, ondition (46) will beful�lled.Let us now turn the attention to (44). Inserting the above hoie of the �rst terms, thisondition reads

− Â1 R̂1 − Â2 R̂2 − Â1
R

(0)
2 + α

α− R̂1

R
(0)
2 e(R

(0)
2 +R̂1)b − Â2

R
(1)
2 + α

α− R̂2

R
(1)
2 e(R

(1)
2 +R̂2)b

+

∞
∑

k=2

A
(k)
1

(

R
(k)
1 e(R

(k)
1 +S(k))b −

R
(k)
2 + α

R
(k)
1 + α

R
(k)
2 e(R

(k)
2 +S(k))b

)

= 1.19



From V ′(0) = −1 we know that Â1R̂1 + Â2R̂2 = −1, so the above equation an besimpli�ed to
− Â1

R
(0)
2 + α

α− R̂1

R
(0)
2 e(R

(0)
2 +R̂1)b − Â2

R
(1)
2 + α

α− R̂2

R
(1)
2 e(R

(1)
2 +R̂2)b

+

∞
∑

k=2

A
(k)
1

(

R
(k)
1 e(R

(k)
1 +S(k))b −

R
(k)
2 + α

R
(k)
1 + α

R
(k)
2 e(R

(k)
2 +S(k))b

)

= 0,whih will be ful�lled by an appropiate de�nition of the oe�ients A(k)
1 . However, inaddition we have to satisfy the boundary ondition (45). Inserting all the hosen initialvalues and using the identity Â1R̂

2
1 + Â2R̂

2
2 = δ/a, (45) an be written as

−Â1 R
(0)
2

R
(0)
2 + α

α − R̂1

(cR
(0)
2 +(c−a)R̂1) e(R

(0)
2 +R̂1)b−Â2 R

(1)
2

R
(1)
2 + α

α − R̂2

(cR
(1)
2 +(c−a)R̂2) e(R

(1)
2 +R̂2)b

+
∞
∑

k=2

(

A
(k)
1 R

(k)
1 (cR

(k)
1 + (c − a)S(k)) e(R

(k)
1 +S(k))b

− A
(k)
1 R

(k)
2

R
(k)
2 + α

R
(k)
1 + α

(cR
(k)
2 + (c − a)S(k)) e(R

(k)
2 +S(k))b

)

= 0.The proedure needed now to reate the orretion terms for these two remaining bound-ary onditions is analogous to the ase of the survival probability in Setion 3.1.1 and willtherefore not be given in detail. The additional fator δ in all the polynomial equationsdoes not ause any harm. A di�erent feature of the present ase as ompared to Setion3.1.1 is that in order to satisfy ondition (46), here oe�ients for both the steps k = 0and k = 1 have to be assigned, so we start with two (instead of one) terms to be deletedand the algorithm of Setion 3.1.1 has to be applied to eah of the two separately; thesequene (S(k))k∈N then onsists of stritly dereasing subsequenes and tends to −∞again.3.2.4 Numerial IllustrationIn the following, the exat solutions derived in the previous setions are approximatedby trunating the series after 18 terms. The auray of this approximation is alreadystriking. One should note that these values are obtained virtually instantaneously, whereasMonte Carlo simulation (inluding variane redution proedures) takes several minutesto ahieve a omparable auray. Tables 1 and 2 show exat and simulated values ofthe survival probability U lin(u, b) and the expeted disounted dividends W lin(u, b) inthe linear barrier model with Erlang(2) interlaim times and exponential laim sizes fortwo di�erent parameter sets. In these tables, the Monte Carlo estimates are based on
N = 10000 iterations. As an illustration, for N = 20000 iterations, one obtains thesimulation estimates U lin(1.1, 2) = 0.51925 and W lin(1.1, 2) = 0.00046 in Table 2, whihis still not fully satisfying. One should note in this ontext that opposed to horizontalbarrier models, here one has positive probability of survival of the trajetories, whihinreases the simulation time and e�ort. 20



4 Comparing the two dividend modelsThe availability of exat solutions provides a quik way to ompare the two dividendmodels investigated in this paper. One motivation for the introdution of the thresholddividend model was the positive survival probability, while the expeted disounted div-idend payments are still of reasonable size. Let us assume that we onsider the survivalprobabilities U and the expeted sums of disounted dividend payments W as the onlyquantities of interest and that we ompare the two proposed dividend strategies at time 0on that basis. Then, at least for larger values of the disounting fator, dividends earnedat a rather late stage do not provide a substantial ontribution to the overall sum ofdisounted dividend payments and hene it seems preferable to fous on seuring survivalone time has evolved. At the same time, dividends paid out at an earlier stage ontributesigni�antly to the overall value of the disounted sum of dividend payments. For large
δ, this aspet is perhaps better aptured by linear dividend barrier models (where thebarrier departs from the ruin level as time evolves) than by threshold models (where thepayment strategy is not �safer� at later times).The numerial values worked out in this setion are intended to give an impression onhow the performane of the dividend strategy di�ers in various regions of the parameterspae.In Table 3, for a given set of parameters inluding the value blin of the linear barriermodel, the threshold bthr is alibrated in suh a way that the expeted dividend paymentsof the two strategies (whih are alulated from (47), (17) and (18)) are of omparablesize. It turns out that in this ase also the survival probabilities (omputed from (30),(20) and (22)) are omparable. However, if instead bthr is more than halved, then thesurvival probabilities are not a�eted, whereas the expeted dividends are muh higher(see the two olumns on the right of Table 3).Table 4 depits a situation where athr and bthr are hosen so that the ruin probabilitiesof the two strategies are omparable, but where then the linear barrier strategy outper-forms the layer strategy in terms of expeted dividend payments. Table 5 illustrates theimportane of the disount fator δ in omparing the performane of the two strategies.Table 6 shows a parameter hoie with omparable survival probabilities, where the linearbarrier strategy is preferable although the disount fator is of moderate size (δ = 0.03).For still smaller values of δ, the situation is reversed again (see the two olumns on theright of Table 6).This indiates that for every parameter setting and initial surplus u a ritial value δ∗(u)exists suh that for δ > δ∗(u) the linear barrier strategy performs better and for δ < δ∗(u)the threshold strategy is to be preferred (while the level of survival probability is nota�eted by the hoie of δ).Finally, in Table 7 we indiate a ombination of parameters, for whih muh more riskmust be taken with the threshold strategy to ahieve expeted dividends of the order ofthe linear barrier model.Possible pratial impliations of these omparisons are two-fold: given the goal of max-imizing expeted disounted dividend payments with the ruin probability as a safetyonstraint in the Erlang renewal model (and in the absene of a omplete solution of this21



stohasti ontrol problem, whih is urrently out of sight), one has to be areful whihstrategy to hoose from. Moreover, it should be kept in mind that even when ignoringthe safety aspet and purely looking at expeted pro�ts, the higher moments of the dis-ounted dividend payments under orresponding proposed strategies in the literature anbe onsiderably large (see for instane [1℄), adding another perspetive to this optimiza-tion riterion. One way to improve that might be a utility-based approah (however,identifying orresponding optimal dividend strategies is in general extremely di�ult; forreent progress in a di�usion framework see Hubalek & Shahermayer [19℄ and Gerber& Shiu [15℄).Seondly, as shown in this paper, barrier strategies with barriers that depend on time(rather than surplus level) an outperform other, intuitively more appealing dividendstrategies in terms of the spei�ed optimization riteria. This may be another indiationthat one should look for more re�ned objetive funtions and onstraints for determininga satisfying dividend strategy.Referenes[1℄ H. Albreher, M. M. Claramunt, and M. Mármol. On the distribution of dividendpayments in a Sparre Andersen model with generalized Erlang(n) interlaim times.Insurane Math. Eonom., 37(2):324�334, 2005.[2℄ H. Albreher and J. Hartinger. On the non-optimality of horizontal dividend barrierstrategies in the Sparre Andersen model. Hermis J. Comp. Math. Appl., to appear,2006.[3℄ H. Albreher, J. Hartinger, and R. F. Tihy. On the distribution of dividend paymentsand the disounted penalty funtion in a risk model with linear dividend barrier.Sand. Atuar. J., (2):103�126, 2005.[4℄ H. Albreher and R. Kainhofer. Risk theory with a non-linear dividend barrier.Computing, 68(4):289�311, 2002.[5℄ S. Asmussen. Ruin probabilities. World Sienti�, Singapore, 2000.[6℄ Y. Cheng and Q. Tang. Moments of the surplus before ruin and the de�it at ruin inthe Erlang(2) risk proess. North Amerian Atuarial Journal 7, 1-12, 2003.[7℄ J. Cohen and D. Down. On the role of Rouhé's theorem in queueing analysis.Queueing Systems, 23:281�291, 1996.[8℄ M. H. A. Davis. Pieewise-deterministi Markov proesses: a general lass of nondif-fusion stohasti models. J. Roy. Statist. So. Ser. B, 46(3):353�388, 1984.[9℄ D.C.M. Dikson. On a lass of renewal risk proess. North Amerian Atuarial Jour-nal 2 (3), 60-73, 1998.[10℄ D.C.M. Dikson and C. Hipp. Ruin probabilities for Erlang(2) risk proess. InsuraneMath. Eonom. 22, 251-262, 1998. 22
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U lin(u, 3) W lin(u, 3)
u Exat Simulation Exat Simulation2.1 0.733224 0.7380 1.46862 1.469722.2 0.739212 0.7333 1.54505 1.532932.3 0.744364 0.7462 1.62477 1.657212.4 0.748668 0.7506 1.70782 1.727772.5 0.752118 0.7574 1.79422 1.804512.6 0.754721 0.7543 1.88392 1.897292.7 0.756511 0.7542 1.97677 1.954372.8 0.757559 0.7615 2.07247 2.047982.9 0.758001 0.7540 2.17051 2.180023.0 0.758073 0.7554 2.27010 2.27564Table 1: Exat and simulated values for the survival probability and the expeted sum ofdisounted dividend payments for λ = n = 2, α = 1, δ = 0.03, c = 1.5, alin = 0.8

U lin(u, 2) W lin(u, 2)
u Exat Simulation Exat Simulation1.1 0.518345 0.5226 0.000442681 0.000608901.2 0.536764 0.5355 0.000897554 0.001123671.3 0.554457 0.5453 0.001819520 0.001697361.4 0.571422 0.5630 0.003687090 0.003981611.5 0.587612 0.5858 0.007464610 0.007829311.6 0.602876 0.6070 0.015079200 0.014748201.7 0.616821 0.6167 0.030302600 0.029123701.8 0.628532 0.6319 0.060134400 0.060463901.9 0.636225 0.6347 0.115667000 0.116601002.0 0.638223 0.6319 0.204578000 0.20514300Table 2: Exat and simulated values for the survival probability and the expeted sum ofdisounted dividend payments for λ = 4, n = 2, α = 1.5, δ = 0.03, c = 5/3, alin = 1/3

u U lin(u, 2) U thr(u, 35) W lin(u, 2) W thr(u, 35) U thr(u, 15) W thr(u, 15)1.0 0.910725 0.912509 2.47362 2.94955 0.912509 7.899451.1 0.921141 0.923443 2.56674 2.99669 0.923443 8.025711.2 0.930043 0.933011 2.66011 3.03995 0.933011 8.141551.3 0.937560 0.941383 2.75400 3.07981 0.941383 8.248311.4 0.943794 0.948709 2.84862 3.11672 0.948709 8.347161.5 0.948818 0.955119 2.94414 3.15106 0.955119 8.439141.6 0.952685 0.960728 3.04064 3.18318 0.960728 8.525151.7 0.955437 0.965636 3.13812 3.21335 0.965636 8.605971.8 0.957132 0.969931 3.23650 3.24185 0.969931 8.682281.9 0.957896 0.973689 3.33565 3.26888 0.973689 8.754682.0 0.958029 0.976977 3.43538 3.29465 0.976977 8.82371Table 3: Comparison for α = 2, λ = 2, δ = 0.03, c = 1.1, alin = 0.55, athr = 0.5524



u U lin(u, 20) U thr(u, 25) W lin(u, 20) W thr(u, 25)10 0.270068 0.221158 0.972399 0.14723311 0.285057 0.235981 1.171740 0.16624212 0.298725 0.250344 1.410030 0.18714213 0.311005 0.264260 1.695140 0.21017514 0.321820 0.277744 2.036520 0.23560815 0.331085 0.290809 2.445470 0.26373516 0.338698 0.303468 2.935500 0.29488117 0.344551 0.315733 3.522600 0.32940718 0.348533 0.327617 4.225038 0.36771019 0.350586 0.339132 5.059620 0.41023220 0.351000 0.350288 6.019980 0.457460Table 4: Comparison for α = 0.5, λ = 4, c = 4.2, δ = 0.08, alin = 3.6, athr = 0.1

δ = 0.03 δ = 0.1
u U lin(u, 1.5) U thr(u,= 2.5) W lin(u, 1.5) W thr(u,= 2.5) W lin(u, 1.5) W thr(u,= 2.5)0.5 0.598238 0.522446 2.84655 4.13162 0.98854 0.9198230.6 0.619711 0.545412 2.99965 4.33540 1.06783 0.9767080.7 0.637969 0.566298 3.14423 4.52543 1.14843 1.0321200.8 0.653200 0.585293 3.28100 4.70307 1.23070 1.0863400.9 0.665577 0.602567 3.41055 4.86955 1.31493 1.1396301.0 0.675266 0.618277 3.53345 5.02600 1.40141 1.1922201.1 0.682442 0.632565 3.65021 5.17343 1.49034 1.2443201.2 0.687309 0.645560 3.76139 5.31275 1.58188 1.2961201.3 0.690138 0.657380 3.86771 5.44480 1.67609 1.3478101.4 0.691330 0.668132 3.97017 5.57032 1.77286 1.3995301.5 0.691525 0.677914 4.07045 5.69000 1.87191 1.451440Table 5: Comparison for α = 2, λ = 2, c = 0.8, alin = 0.6, athr = 0.25

δ = 0.03 δ = 0.01
u U lin(u, 10) U thr(u, 20) W lin(u, 10) W thr(u, 20) W lin(u, 10) W thr(u, 20)9.0 0.611476 0.622957 8.38890 5.44013 14.2771 22.05549.1 0.611840 0.625355 8.48463 5.47752 14.3777 22.16319.2 0.612144 0.627722 8.58098 5.51489 14.4781 22.26999.3 0.612390 0.630058 8.67791 5.55226 14.5784 22.37619.4 0.612584 0.632363 8.77540 5.58962 14.6786 22.48149.5 0.612729 0.634639 8.87343 5.62698 14.7788 22.58609.6 0.612831 0.636886 8.97194 5.66435 14.8788 22.69009.7 0.612895 0.639104 9.07090 5.70172 14.9789 22.79319.8 0.612930 0.641292 9.17025 5.73910 15.0788 22.89569.9 0.612944 0.643453 9.26991 5.77649 15.1788 22.997410.0 0.612946 0.645586 9.36982 5.81389 15.2788 23.0986Table 6: Comparison for α = 0.5, λ = 2, c = 2.5, alin = 2, athr = 0.4.25



u U lin(u, 15) U thr(u, 20) W lin(u, 15) W thr(u, 20)14.0 0.210288 0.00589161 3.36797 3.5055614.1 0.210418 0.00599345 3.45753 3.5263414.2 0.210526 0.00609513 3.54874 3.5471614.3 0.210615 0.00619665 3.64152 3.5680114.4 0.210685 0.00629801 3.73579 3.5888914.5 0.210737 0.00639921 3.83143 3.6098114.6 0.210774 0.00650025 3.92832 3.6307614.7 0.210797 0.00660113 4.02628 3.6517414.8 0.210809 0.00670185 4.12513 3.6727514.9 0.210814 0.00680241 4.22464 3.6938915.0 0.210815 0.00690281 4.32454 3.71488Table 7: Comparison for α = 0.25, λ = 2, c = 4.2, δ = 0.02, alin = 2.3, athr = 0.19
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