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Abstract

For the classical risk model, in order to allow for a positive probability of survival,
a threshold dividend strategy has recently been introduced in the literature to im-
prove upon the horizontal barrier strategy at the expense of some profit in terms of
dividend payments. In this paper we both extend several of these results to a Sparre
Andersen model with generalized Erlang(n)-distributed interclaim times and com-
pare the performance of the threshold strategy to a linear dividend barrier model. In
particular, (partial) integro-differential equations for the corresponding ruin prob-
abilities and expected discounted dividend payments are provided for both models
and explicitly solved for n = 2 and exponentially distributed claim amounts. Fi-
nally, the explicit solutions are used to identify parameter sets for which one strategy
outperforms the other and vice versa.

Keywords: Sparre Andersen model; dividend payments, piece-wise deterministic
Markov processes, ruin probability

1 Introduction

In collective risk theory, the Sparre Andersen model to describe the surplus process of
an insurance portfolio has a long history, starting with the original paper |26|. In that
model, the claim counting process (N;)s>o for time ¢ is assumed to be an ordinary renewal
process, which can be written as

Nt:min{k:T1+...+Tk+1>t}, tZO,

where (7T;);en is the sequence of independent interarrival times.

This renewal assumption allows for more flexibility than the classical risk process (where
N, constitutes a homogeneous Poisson process) and enables to some extent contagion
between claim occurrences. As usual, the premium inflow is assumed to be continuous
over time with constant intensity ¢, and the claim amounts (Y;);cy are independent and
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identically distributed positive random variables with distribution function Fy and mean
p < oo. Then, for initial capital u, the risk reserve process (R;);>o of the insurance
portfolio at time ¢ is given by

Ri=u+ct—25,.

where S; = vaztl Y; denotes the aggregate claim amount at time ¢. The net profit condition
in this model is given by ¢ > u/E(T;). Typical quantities studied in this context are the
time of ruin

T(u) =inf{t >0 | R, <0, Ry = u},
and the probability of ruin

Y(u) = P{r(u) < oo | Ry = u}.

In this paper we will assume that the interarrival times (7;) follow a generalized Erlang(n)
distribution, in which case each T; is a convolution of n independent exponentially dis-
tributed random variables with parameters A{,..., \,. This specific property allows to
extend the Markovian character of the claim number process in the classical model to-
gether with the analytically strong tools to study properties of the risk process to this
renewal setting. This approach was recently exploited by Gerber & Shiu [16] where the
discounted penalty function for such an Erlang(n) risk model is studied. Working in a
similar model Li & Garrido |20] derive a defective renewal equation for the expected dis-
counted penalty at ruin. Expressions for the probability of ultimate ruin and the Laplace
transform of the time to ruin for an Erlang(2) risk process are obtained by Dickson [9]
and Dickson & Hipp [10, 11]. For the same model Cheng & Tang [6] use the discounted
penalty function to get integro-differential equations for the moments of the surplus before
ruin and the deficit at ruin.

The analytical tractability of this renewal setup has also been used to include a so-called
horizontal dividend barrier strategy in the model, i.e. whenever the surplus reaches a
certain level, all incoming premiums are immediately paid out as dividends (see Li &
Garrido [21] for properties of the resulting risk process generalizing results of Lin et al.
|23| for n = 1 and on the other hand, Albrecher et al. [1] for the calculation of moments
of dividend payments resulting from this strategy). However, one considerable disadvan-
tage of the horizontal barrier strategy is that the corresponding risk process will lead to
ruin with probability 1, which typically makes this strategy inappropriate in practice.
More than that, even if one is just interested in maximizing expected discounted dividend
payouts, while for the compound Poisson model there are some optimality properties for
horizontal barriers (see e.g. [12|), it can be shown that horizontal barrier strategies are
not optimal in the Sparre Andersen model (partly because then R, is not a Lévy process,
see [2]). These two issues motivate to look at alternative dividend payment strategies that
allow for a positive probability of survival, still have a satisfying level of dividend payouts
and allow for analytical expressions so that the parameters of the strategy can be tuned
towards a given target.

Among these, there is the so-called threshold dividend strategy (which for the classical
compound Poisson model was discussed in Asmussen [5] and recently studied in detail by
Lin & Pavlova |22| and Gerber & Shiu |18]; for a diffusion setup, see also [17]). Following
this strategy, one fixes a level b > 0 and no dividends are paid out if the surplus level is



below b. Whenever the surplus is above b, dividends are paid with intensity a, 0 < a < ¢
(and the surplus increases with intensity ¢ — a) until the surplus falls again below b due
to the occurrence of a claim. Finally, the dividend payments are stopped at the time of
ruin. So the dynamics of the modified risk process R are given by

dR" = cdt —dS,, 0<R" <,
dRI" = (c—a)dt—dS,, RI" >0,
dD!"" = adt, R >b,

where (D!"");5o denotes the accumulated dividend payments at time ¢ . The expected
discounted dividends of such a strategy are given by

7 (u)
W(u, b) - E (/ a [{Riher} 6_6t dt ) Rghr = u) ,
0

where 0 > 0 is the discounting factor. Observe that ¢ (u) = 1 if the process above b does
not fulfill the net profit condition (¢ — a)E(T;) > p, see |5].

The second strategy we will focus on is the so-called linear barrier dividend strategy,
where the barrier by = b+ (¢ —a)t (b > 0,0 < a < ¢) grows linearly in time and dividends
are paid out with intensity a whenever the surplus reaches b;, while the reserve increases
with intensity ¢ — a. On the other hand, nothing is paid out when the surplus is below
the barrier. Dividend payments again stop at the event of ruin. The dynamics of the
modified risk process R"" are thus given by

dR'™ = cdt —dS,, 0<R™ <b,
dR'™ = (c—a)dt—dS,, R'™=h,
dDI'™ = adt,  R'™=b,.

The expected discounted dividend payments are in this case

7(u) ‘
W(u’ b) -k (/ a ](Rii”=bt)e_5t dt Rém =u, by = b) .
0

The linearity of the barrier enables several classical techniques for the computation of
quantities of interest in this more general model (such as martingale techniques (see e.g.
Gerber [13])). Historically, together with the positivity of the corresponding survival
probability, this was one of the reasons to consider linear barriers. Explicit formulae for
W(u,b) and (u,b) for light-tailed claim sizes were derived in [14, 25]. Recently, the
discounted penalty function and higher moments of discounted dividend payments for the
linear barrier strategy were investigated in [3].

Figure 1 depicts the two strategies for a sample path that leads to ruin in both cases.
An objection sometimes raised against the linear barrier model is the fact that the strategy
depends on the point in time, i.e. the payment strategy is different for each ¢ for an
otherwise identical situation. However, if one is forced to fix a dividend strategy at time 0
and is interested in both maximizing W (u, b) and keeping ¢ (u, b) below a specified level, it
is intuitively clear that for small ¢ one will try to deduct a high dividend amount possibly
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Figure 1: The linear barrier- and the threshold strategy for a sample path of R,

involving some higher risk, whereas for larger ¢ the main focus will be on securing the
survival, since, due to the discount factor ¢, the dividend contributions at this later stage
will only be marginal. Indeed, as will be illustrated in Section 4, for higher values of
0 the linear barrier model often outperforms the threshold model in terms of finding a
compromise between the values of W (u,b) and 1 (u, b).

In this paper, we will derive (partial) integro-differential equations ((P)IDE’s) for the ruin
probability and moments of dividend payments for both the threshold and the linear bar-
rier strategy in the Sparre Andersen model with generalized Erlang(n) interclaim times.
These equations can in principle be solved explicitly whenever the claim size distribution
is itself of generalized Erlangian type. We will demonstrate this solution procedure for
the case of Erlang(2) interclaim times and exponential claim amounts. The explicit for-
mulae pave the way for a fast numerical assessment of the performance of these dividend
strategies for a given set of parameters.

In Section 2, we use the differential approach to establish a PIDE for the moment-
generating function of discounted dividend payments for the threshold strategy in the
Sparre Andersen model with Erlang(n) interclaim times. Subsequently, the correspond-
ing IDE’s for arbitrary moments of the discounted dividend payments and for the ruin
probability are derived. These equations are explicitly solved for n = 2 and exponential
claim amounts in Section 2.4. Section 3 provides PIDE’s for the survival probability as well
as the expected discounted dividend payments in the linear barrier model with Erlang(n)
interclaim times. As an alternative to the differential approach, these are derived using
the framework of piece-wise deterministic Markov processes. Again, an explicit solution
is provided for n = 2 and exponential claim amounts and the exact results are compared
with simulation in Section 3.2.4. Finally, in Section 4 the analytical results of the previous
sections are used to compare the performance of the threshold and linear barrier model
for various sets of parameters.



2 The Threshold Dividend Strategy

2.1 A system of PIDEs for the moment-generating function

Let us decompose every inter-occurrence time with generalized Erlang(n)-distribution into
the independent sum of n exponential random variables with possibly different parameters
A1, ..., Ap, €ach causing a “sub-claim” of size 0 and at the time of the n-th sub-claim an
actual claim with distribution function Fy occurs. This is done by defining n states for
the risk process (see e.g. [1]). Starting at time 0 in state 1, every sub-claim causes a
transition to the next state and at the time of occurrence of the n-th sub-claim, an actual
claim with distribution function Fy occurs and the risk process jumps into state 1 again.

Let
‘ 7(u)
MY (u,y,b) =E (exp (y/ e_étaI{Rith} dt)
0

denote the moment-generating function of the discounted dividend payments, given that
the risk process starts in state j(j = 1,...,n).

Furthermore we split up the moment-generating functions in two regions below and above
the barrier,

R =y, state = j)

M(]) (u> Y, b) = Ml(])(ua Y, b)I{u<b} + M2(]) (u> Y, b)[{uzb}

For j = 1,...,n — 1, we condition on the occurrence of a claim within an infinitesimal
time interval, which gives

Ml(j)(u, y,b) = (1— )\jdt)Ml(j)(u + cdt, ye % b) + \;dt M1(j+1)(u + cdt,ye™°% b) + o(dt),
and
M (u,y,b) = (1-— )\jdt)eyadth(j)(u + (¢ — a)dt, ye % b)
+Adt €% MU (u+ (¢ — a)dt, ye %, b) + o(dt).

The analogous equations for j = n are

M (u,y.b) = (1= Mdt) M (u + cdt, ye ™" D)

u+cdt
+>\ndt/ MY (u+ cdt — z,ye™** b) dFy(2)
0

F\ndt / dFy (2) + o(dt),

+cdt

M (u,y.0) = (1= Aadt)e™ M (u + (c — a)dt, e, b)

u+cdt
+ A dteve / MO (u+ (¢ — a)dt — z, ye " b) dFy(2)
0

e}

+ A dtev e / dFy(z) + o(dt).

u4cdt

Taylor expansion and collection of suitable terms leads to the following partial (integro-)
differential equations (j =1,...,n —1):



0 0

, —Ce + \j + 0y :
MEuy,b) = ( Y ay) M (u,9,0).
J

< (c—a)g; + (N — ya) +5y%)
Aj

MY (u,y,b) = MY (u,y,b),

and

H- H-
(—c% + A+ 0y
An

) Ml(n)(U‘?yab) 1_FY / M Z7y7b)dFY(Z) :Ov

( (c— )2 + (A — ya) + 6y

5 ) M (u, y, b)

—(1—Fy(u /M<1 (u— z,y,b)dFy(z) = 0.

The quantity of eventual interest is M® (u,y,b) := M(u,y,b), which from the above
equations is seen to be the solution of the following system of partial integro-differential
equations:
5 5
L —Con T A 0y,

0 = <H )\]] ) Ml(uvyv b) - (1 - FY(U))

M (u— z,y,b)dFy(z), (1)
no—(c—a)Z + (N —ya) + oy
0 — <U ( )au + ()\j Yy ) + yay) Mg(u,y,b) . (1 . Fy(u))
—/OuM u—z,y,b)dFy(z) (2)

note that the product y2 in the above operator is not commutative). Boundary condi-
Yoy
tions are given by

bli_)n;lO Mi(u,y,b) = 1,
lim Mo(u,y,b) = eva/d.
Moreover, at u = b, by continuity we have to have
Jim M7 (u,y,b) = lim M{(u,y,0)

for all states 7 = 1,...,n, which translates into

ot ot I
((c—a)%—éy8 —i—ya) M,

u=b
where the derivatives are assumed to be one-sided.



2.2 The moments of the discounted dividends

The results of the previous subsection can be used to derive an integro-differential equation
for the mth moment W,,(u,b) of the discounted sum of dividend payments (m € N).
Again, we write

Wm (u> b) = Wm,l(ua b) [{u<b} + Wm72(u> b) I{uzb}-
With the representation

M(u,y,b)zl%—Z%W

and the equations (1)-(3), a comparison of coefficients of y™ gives

e 4N 4 OA
(H e s ) (1,9, /Wm 2y b) By (2) = 0,
J

j=1
n 9. A
—(c—a)5 + (A\j —alA) + oA
(H (C a)au i : ‘ ) ) m2 u, ya / W Zayvb)dFY(Z):O>
j=1 ]
with the operators Aij: mWyn_1, AW, := mW,,,. Moreover, Wy = 1, W_; =0 (i €
N). Here, the product AA of operators is not commutative and is given by (AA)W,, =
A(AW,,) = m(m — 1)W,,_1 and (AA)W,, = A(AW,,,) = m*W,,_;.
We have the boundary conditions:
bhm Wm,l(u>y> b) = 07 (4)
: aym

Moreover, by assuming that all moments are continuous we have

-\’
(“Ba) W

Remark 2.1. Note that the above formulas extend equations (5.1)-(5.3) of Gerber &
Shiu [18], who studied the case m = 1,n = 1.

ot -
= ((C — a)% + CLA) Wm72

2.3 Probability of ruin
The probability of ruin is defined through

Y(u,b) = E (Ijr<oe} | RY" = u) .

Let us again split the function in two regions below and above the barrier b,

P(u, b) = 1 (u, b) Lpuary + V2, b) Liy>py-

Analogously to Section 2.1, one can now decompose the process into n states and subse-
quently apply the differential approach to obtain

7



"N — e
(H O )\j%u) P1(u,b) — (1= Fy(u / Y1(u—zb)dFy(z) = 0, (6)
j=1
<H j (i\ a)em) Vo (u, b) — (1 — Fy(u / Y(u—2z,0)dFy(z) = 0. (7)
j=1 /
The natural boundary conditions are
and _
Tim 1 (u, b) = (), (9)

where 9)(u) denotes the ruin probability without dividend payments. Moreover, from the
continuity assumptions,

., (U=1,...,n). (10)

u=>b

(o
p m <a_) Yal(w.0)

Remark 2.2. For the compound Poisson model n = 1, (6) and (7) appear implicitly in
5, 22].

(R

2.4 Erlang(2) interarrivals and exponential claims

In principle, the above equations can be explicitly solved for Erlang distributed claim
sizes. In the following we will illustrate the solution procedure for the specific case of
Erlang(2, \) distributed interclaim times (i.e. A\; = Ay = X and n = 2) and Exp(«)
distributed claim amounts. From Section 2.2, we then obtain

0-
()\+5m—c%) ml )\2/ Wml )dFy() 0

and
A+0 —(—)i —A2/W b) dFy (2)
m c—a ou m2 Y
=am <—2(c - a)g—u + 2\ + (2m — 1)5) W12 — a*(m — 1)mW,,_g,.

together with the boundary conditions (4),(5),
Wi (b,b) = Wina(b, b)

and

anl an2
c : =(c—a) :

ou u=b ou u=b ta me—172(b, b)



Let us consider the case m = 1. We then have

EWL (u,b) = 2¢(6 + N)WH 4 (u,b) + (6 + X)W (u,b) — Na e_a“/ Wii(v,b)e*dv =0
0
(11)

and
(c— a)2W1'f2(u, b) —2(c—a)(0 + N)W7 5(u,b) + (6 + A)2Wia(u,b) — a(2) + 6)
— Ma e“’“/ Wi(v,b)e*dv =0 (12)
0

together with

Wii(b—,b) = Wi(b+,b), (13)
and oW oW
1,1 1,2
’ =(c— ’ 14
ot )| | = (-5 wb) +a| (14)
Applying the operator (2 + a) to (11) and (12) yields the differential equations
0 = C2W{f’1(u, b) + (ac® — 2¢(6 + M)W (u, b) + (X + §)? — 2ca(s + )W i (u, D)
+(a(d + A)? — aX)Wi 1 (u, b), (15)

0 = (c— a)QW{f'Q(u, b) + (afc —a)* = 2(c — a)(6 + M)Wy (u,b)
+((6 4+ A)* = 2a(c — a) (6 + X)W 5(u, b) + (a(6 + X)* — aX*) Wi z(u, b) — aa(2X + 6).
(16)

The solution of (15) is of the form

3 .
Wia(ub) = 3 AP ()t (17)
i=1
where Rgl), R§2) > 0 and R&g) < 0 are the three roots of
(6+A—cRP*(R+a) —aX =0,

and Agi)(b) (1 =1,2,3) are coefficients (depending on the value of b) to be determined in
the following. Substitution in (11) then gives the condition

3 i
> AS)(b) =0
i1 Rgz) +n

On the other hand, equation (16) has a solution of the form

(1)
Wia(u,b) = 5 + AP (b) ", (18)
where % is a particular solution of (16) and Rgl) is the negative root of

(6+A—(c—a)R)*(R+a)—aX =0

9



(that this equation has indeed exactly one negative root follows by a Rouché-type argu-
ment, see e.g. Gerber & Shiu [16]). The coefficients of the positive roots have to be zero
according to (4), hence these terms do not appear in (18).

Substituting (17) and (18) in (12), a comparison of coefficients gives

Agl) eRgl)b Agl) eRgl)b Ag2) €R§2>b A§3) €R§3)b a
M o0 ) e to5- 0
RY+a RY”+a RY”+a RV4a ad

(note that the integral on the right hand side of (12) has to be written as [ W1 (v,b) e dv =

fob Wia(v,b) e dv + [ Wi2(v,b) e dv). Together with conditions (13) and (14), we
hence obtain the explicit solution (17) and (18), where the coefficients are determined by
the system of linear equations

0 1 1 1 0
RM+a RP+a R® 4o A, 0
__a  RrM a_ RV o RPb _a R A0 a
Rgl)-i-oe Rgl)—i-a R§2)+a R?)—i—a 1 — 9
_ RO R R SR AP 3

3
—(c— a)Rél’eRé”b CR§1)6R§1)b ch)eR?)b CR§3)eR§3)b Ag ) ¢

For the ruin probability, one has to apply the operator (% + ) on (6) and (7) to obtain
the differential equations

0= <<%+a) <H ‘%7“) —a) d(u,0),

7j=1

0= <<—+a) (i[l i 8“+A ) —a) ba(u, b).

Thus for ¢+ = 1,2, we have solutions of the form

and

2 .
) = AP+ 37 4D H

j=1
Consider the corresponding Lundberg equations

0=(R+ ) (H#j&)—a (19)

J=1

and

0=(R+a) <H _(C_;‘iRjLAj) _

J=1

10



For each of the two, one solution is 0 and both equations have exactly one negative solution
(see again [16]), which are denoted by REI), i = 1,2. The remaining positive solutions are
called RZ@). Thus for ¢« = 1,2, one has

2 .
Gilu,b) = AP £ 37 AP, (20)
j=1

where the Agj)(b) depend on the choice of b. Condition (9) gives

1
a+ Rg )eRﬁl)u

Jim ¢ (u, b) = —— (21)
(cf. [16]) and (8) translates into
Po(u,b) = Agl)ep”él)“. (22)

Thus, we now have four unknown constants. Two equations are obtained by using (10) for
j = 1,2 and the remaining two are found by a comparison of coefficients of the solutions
in the IDE’s (6) and (7). Altogether, the resulting system of equations is given by

) ) (3) )
€R1 b 6R1 b €R1 b _€R2 b Agl) 0
1 (1) 2 (2) 3 (3) 1 (1)
CR§ )b cRg )Rt CR§ )b —(c— a)Ré Jefis b A§2) 0
(63 [e% (63 O (3) =
a+R51)( ) a+R§2> a+R;3)( : Al 1
1 (2) 3 (1) 1
L _efi’b L efi’b L sefi b L Ry’ Ag ) 0
a+Ry a+Ry a+Ry a+R,

3 The Linear Dividend Barrier Strategy

Consider a linear barrier of the form b, = b+ (¢ — a)t. With this strategy, dividends
are paid out with intensity a whenever Rff” reaches b;, while the reserve increases with
intensity ¢ — a until the next claim occurs. On the other hand, nothing is paid if the
surplus is below the barrier.

3.1 Integro-differential equation for U(u,b)

For convenience, let us think of the risk process with linear dividend barrier as a piecewise
deterministic Markov process (PDMP) with n external states (see e.g. Davis |8] or Rolski
et al. [24]), where the transition from state i to state i 4+ 1 is generated by an Exp()\;)
random variable. This can again be interpreted as a decomposition of the interclaim time
T; into n exponential distributed summands, see |1|. For ¢ = 1,...,n — 1 the process
only changes the state, for © = n the state moves to state 1 and a claim with distribution
function Fy occurs. The generator A for a suitable function g (depending on the state i,
the risk process and the barrier b) is given by

(4) (4) , ,
)+ (= ) 2 ,) 4 0 (0D b) — 9O, ) . (O <u<bi=1 1)
(n) (n) u
2wt + o= 02wt ([T a = 0B -5 ) 0 <u <.
0

11



and at the barrier

(@) ,
(c—a)ag (u b)+)\( Z+1(u,b)—g(’)(u,b)), (u=b,i=1,...,n—1),
dg'
Ob

(c—a)

)+ A ([ o= nnarv) - "wn). =0

To get candidates for the survival probability U® (u) := 1 — @ (u) (for initial state i) we
have to solve the equations AU® (u,b) = 0 together with the boundary conditions given
below. From the equations above we get the following integro-differential equation for the
survival probability in state 1 (which is the one we are in fact interested in):

= 0- 0-
e _ (1 (1 _
| | (AZ o~ (c a)ab) U (u,b) = | | i / U (u—y,b)dFy. (23)

i=1

By continuity at u = b, the boundary conditions are

i—1 P (1)
(o)

Jj=1

u=>b

where H?:l - = 1. Moreover,
lim UM (u,b) = U(u)

b—o00

(with U(u) denoting the survival probability in the renewal model without dividend pay-
ments) and lim, ., UM (u,b) = 1 if u and b go to infinity uniformly (cf. [14]).

3.1.1 Erlang(2) interarrivals and exponential claims

In this section we look for an explicit solution for the survival probability in case of
Erlang(2, A)-distributed interclaim times and Exp(«) claim amounts. Write U(u,b) =
U (u,b). The integro-differential equation then reads

0- 0- 2 ) u ,

g e 4y = - - 24
together with the boundary conditions
ou

il — 9
)] =0 (25)
o*U 27

Cw(ua b) web + (C - a’) ou ab(ua b) web - Oa (26)

bllm U(u,b) = Ul(u), (27)

lblm U(u,b) = 1. (28)

Analogous to Section 2, equation (24) can be transformed into a partial differential equa-
tion with constant coefficients:

12



2 2
A _CQ _ (c—a)i a_U(u,b)+a )\—c2 — (c—a)i Ul(u, b) —ar?U(u,b) = 0.
ou u 0
(29)
From (21) we have
BERRC

Uu)=1- ——=
(w) e,

where Rﬁ is the unique negative solution of (19).

We will construct an explicit solution to the above problem. Using fixed-point arguments
it follows that there is a unique solution to the problem, so we have actually solved the
problem completely (see Albrecher & Kainhofer |4] for details on the uniqueness argument
in a related model and Cohen & Down [7] in a queueing framework). The solution of (29)
will be of the form

i eS™b (Agk) eRu Agk) et + Aék) eng)“> : (30)
k=0

where for each k > 0 the pairs (S®), R§k)), 7 =1,2,3, are zeroes of the polynomial
P(R,S)=(R+a) (A—cR - (c—a)S)* —a)’.

In the spirit of |25], the initial step & = 0 is chosen in order to satisfy (27), i.e.

1
CRlta

SO =0, R” =0, A" = 1,47 =
«

 AY = 0.

If S® <0 and all S® + R§-k) < 0forall k> 1,5 =1,2,3, then the two conditions (27)
and (28) are fulfilled. Thus, if for some k and j, S*) +R§-k) > 0, then necessarily Agk) =0.

It turns out that one can choose Agk) = 0 for all £ > 0. Plugging (30) into the original
equation (23), one obtains for each k

o _ R o
Ay = ——5 AT
R"” +
Boundary condition (25) reduces to
o0 (k)
ZAgk) (ng)e(s(kuR;’“))b _ R?k) +a ng)e(s(k)—l-Rék))b) —0
k=0 Ry” +a
and condition (26) can be rewritten as
o0 (k)
(k) R (k)
3 A (RY“’ (cR® 4 (¢ — a)SH)) (S®+RIDb _ 7}2?@ TX R0 (BRI 4 (¢ — a)S®)) oSO+ >b) —0
_ +
k=0 1

For each k, the summand in (30) solves the integro-differential equation (29). For k = 0,
SO — R§°) = 0, so only the second term produces an error concerning the two boundary
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conditions above (note that in |14, 25|, only one boundary condition had to be satisfied
this way). For each of the two conditions, the first summand of a larger index k in (30) will
be used to correct for it. However, the second summand will again provide a mismatch
with respect to this boundary condition and will itself be corrected by a first summand
of higher index etc. It will turn out that these correction terms converge to zero and thus
in the limit we have found the exact solution. In fact, the convergence is fast and with
only a few terms of the series (30) the approximation to the exact value is satisfying.

The deletion algorithm A
So, for a general step k, fix two new steps k > k and &’ > k such that

S® 1+ RE = 50 4 g = s® 4 RP. (31)

The coefficients A§’“') and A§k> of the new steps have to solve the linear equations

R +a\ o) ph) k) (k) | (k) p(k)
%5 AV Ry = AR+ AV Ry, (32)
R+«

(k) ’ ’ ’ ’ 7. 7. 7. a

<gfk) iZ) A® BRI CRP 4 (c—)8®) = A% RED(RE) 4 (e — )5y 4 AP R (crP) 4 (¢ — a)g®),
1

To that end, it is essential that S*") = S® and ng,) #* ng). In the following it is shown

that it is always possible to find two distinct roots ngl) and ng) such that S*) —l—ng/) <0

and S®) + Rgl%) < 0 and at the same time S*) 4 ng/), Sk 4 Rg%) < 0 holds.
For each fixed S < 0, P(R,S) has three real roots in R which satisfy

r1(S) <0 < r5(S) < M < 5(S) (33)
so that )
ra(S) + 8 < E+957
whence r5(S) + 5 < 0 if
A\
S < ——.
a

Later on we will see from the construction of S*) that this is guaranteed. Moreover, it
turns out that limg_,o, 71(S) = —a, whereas ry(S) and r3(S) do not have a finite limit.
On the other hand, if we fix R, then P(R,S) = 0 has two solutions in .S given by

wa(R) = LEZ D+ RIA = cR) £ Yale— V(a1 )

| (c—a)*(a+ R) :
We get that s3(R) < 0 for R € (—00,71(0)) U (min{2,75(0)}, min{2,r5(0)}) U (2, 00).
On the other hand, s1 (R) > 0if R € (ma{2,71(0)}, max{2, r2(0)}) U (max{2.73(0)} 00).

Let us now turn to the determination of ngl) and R§k> for a given step k so as to match
(31). For that purpose, consider the polynomial

P(R,5® + R — R),

14



which has three~ rez}l roots {RllRQ,Rg} in R. A closer look at its behavior reveals that
we again have Ry, R, > 0 and R3 < 0.

In the following it is shown that S*) + Rék) < 0, therefore the following choice is possible:

RM =R, 8% =35® gl R
RY =Ry, SW=3" 4 RgH _RP. (34)
If S®) 4 Rék) < 0, then clearly both S*) + ngl) <0and S® 4 Rg’c) < 0. Moreover, from

ng/), ng) > 0 it follows that S(k’)z S < 0, as required. Consequently, due to (33) it is
always possible to choose ngl), ng) < 0 as the negative solutions of P(R, S(k/)) =0.

Summarizing, starting with S© = 0, choose Rgo) as the negative zero of P(R,0), so that
SO 1 R <.

Then, the coefficients of two next steps &’ and k are chosen according to (34) and (32).
Subsequently, the same procedure is applied to each of the two steps and so on. By the
above considerations and induction, S* + Rék) < 0 holds for all £ > 0. In addition,

RY) 4+ 50 = p¥ 4 50 — p¥) 1 RYF) <« BRI 4 50,

since ngl) > 0 and Rék/) < 0. So this sum decreases in every step of the algorithm and,
moreover, S < S®) (the same argument holds with &’ replaced by k).
A numerical illustration of this solution algorithm will be given in Section 3.2.4.

3.2 Integro-Differential equation for W (u,b)

Since one of the boundary conditions to the equation for W (u, b) will involve the expected
discounted dividends of the linear barrier strategy in case the payments are continued after
the event of ruin, we will first discuss this variant of the model.

3.2.1 Dividend payments continue after ruin

It is well-known that in this case it suffices to look at the process z; = by — Rim (see
e.g. [14]). Dividends are then paid whenever z; = 0. The resulting expected discounted
dividends (with discounting factor 6 > 0) are

20 = Z) y

V(z) = E( / a I—ope " dt
0
lim V(z) = 0,

Z— 00

which are bounded by
/ ae tdt = a/é. (35)
0
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As in Section 3.1 we think of z = (2;)>¢ as a PDMP with n external states. The generator
A for a suitable function g depending on the state ¢ and the process z is given by

. (@) . .
Ag(z) = _aagz (2) + A (9 (2) — gD(2)), (2>0,i=1,...,n—1),
dag(™ o0
A7) = a2 ([T aR ) - a0 ) >0,
0

and at the boundary z = 0 we get for the generator

. (/OOO 9P wdFy ) - g(")(())) and X (¢"V(0) = g@(0), (i=1,...,n-1).

Here, a function g is suitable, if for all states 7 it is absolutely continuous on (0,00) and
E() ’g“’(zoj) - g(“(zgj—)) <oo WE>0,
J,05<t

where {o;};>1 denote the claim occurrence times (this condition is certainly fulfilled if ¢
is bounded). From |24, Thm. 11.2.3| we know that for a suitable function f which fulfills

Af(z) =0f(2) +7(2) =0,

the relation

f(z0) =E (/0 ' v(z)e O dt + 6_6t°fter(zt0)) ,

holds for any ¢y > 0 (and for a bounded function fi., the second summand vanishes for
to — OO)

Let V®(z) denote the value of the expected dividends for initial state i and set y(z) =
al(—p). Then we can write

. Yo
V(Z)(Z, to) =K (/ W(Zt)e_étdt + 6_&0%@7’(@ Zto)) :
0

From the upper bound (35) it is clear that Vi, is bounded and hence neglible in the limit
to — 0o in the above expression. Hence V®(z) = V(2 c0) is given as the solution of

oV
¢ 0z

(2) + N (VI (2) = VO(2)) —=6VD(z) =0, (i=1,....n—1, 2>0) (36)

and

(n) o]
_aagz (2) + An (/0 V(2 + y)dFy(y) — v(n>(z)) V™ () =0, (2>0). (37)

For z = 0 we get the boundary conditions
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A (VED(0) = vO(0)) —sVO(0) +a=0,i=1,...,n— 1,
An ( / VO (y)dFy (y) — V<">(0)> —oV™(0) +a=0.
0

Moreover, continuity of V(@ (z) implies 8‘8/; ! (0) = —1fori=1,...,n. Eventually, we are
interested in the quantity V(z) = V((2). From (36) we have

7 -
V(H—l)(Z) _ H (5 + )\;+ a&) V(l)(z)
J

j=1

and together with (37) we arrive at

n

H)\/ V(2 + y)dFy(y) H(5+>\ +a2)V(1(), (z>0) (38)

=1
and for the boundary z =0

7

ﬁ(é“ i +ag; >v<l>(0):—1, (i=1,....n). (39)

J=1

3.2.2 Dividend payments stop at ruin

If the dividend payments stop at the event of ruin, the value function of the expected
discounted dividend payments is given by

7(u) ‘
W(uv b) =E (/ a ](Réi"=bt)e_5t dt ‘ Rém =u, by = b) .
0

The PDMP approach analogous to Section 3.2.1 leads to the PDE

n

H)\/ W (uw— v, b)dFy (v :H<5+>\)—C%—(C—a)§b)W(u,b),

i=1
and boundary conditions are
V(z) = lim W(u,u+ 2),
L ﬁ 6+ M) — el — (c—a) 2\ oW (u,b) iz1.m
P Ak du u=b’ Y

3.2.3 Erlang(2) interarrivals and exponential claims

In the special case of Erlang(2, ) distributed interclaim times and Exp(a) distributed
claim amounts, the integro-differential equation (38) can (similarly to the previous sec-
tions) be transformed into the ordinary linear differential equation with constant coeffi-
cients

a?V"(2) + (2(6 + N)a — aa®)V"(2)
+ ((§+ X2 = 2a(6 + N)a)V'(2) + (aX? — a(d + A\)*)V(2) = 0,
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with a solution of the form
Vi(z) = A, Pz | A, P2z | Ay 6R3Z,
where {ﬁl, Ry, }%3} denote the roots of the polynomial
Pi(R) = a®R* + (2(6 + Na — aa®)R* 4+ ((§ + N)? — 2a(6 + N)a) R + (aX? — a(d + N)?).

It is easy to see that P;(R) has three real roots, two of which are negative. The condition
lim, .., V(z) = 0 implies that if Rz refers to the positive root, A3 = 0.

Under the assumption of exponential claim amounts, The boundary conditions (39) can
be rewritten as

5
V(0) =1 and V'(0)= .

Altogether this leads to the explicit solution

V(z) = Ay ez + Ay efo, (40)
with . 5 . 5
A Ry + 2 . Ry +2
Al = A and Ag = A.
RiRy — R2 2 — R\ Ry

The function V(z) is differentiable and bounded. Thus it fulfills the conditions of |24,
Thm.11.2.3] and is indeed the solution to the problem.

For W (u, b), one has to solve
0+ A— ci —(c— a)g 2 W(u,b) = \? /u W(u—v,b)ae”*dv (41)
ou b T 0 ’ ’

which by applying the operator (% + a) leads to the PDE

<5 + A - I (c — a)ﬁ>2 Mm <5+ Ao (c — a)i>2W(u, b)—a*W (u,b) = 0.

ou ob ou ou b
(42)
The boundary conditions simplify to

blim W (u,b) =0, (43)

OW (u, b)
g =1 44
ou u=b ’ ( )

O*W (u, b) O*W (u, b)
—q) = 4

e B TR T (45)
lim W (u,u+ z) = V(2), (46)

where V' (z) is given by (40).
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(42) is a homogeneous differential equation of third order with constant coefficients and
we will construct a solution of the form

W (u, b) = S<k>b(A() R )u+A(k R u+A(k
k=0

R

where ng)(S(k)), (1 =1,2,3), denote the roots of the polynomial
P(R,S®™) =R (0+X) —cR—(c— a)S(k))2 +a((6+A)—cR—(c— a)S(k))2 —a\?

for a given value of S*),

The main idea is again that each of the above summands solves (42) and the combination
of such solutions is used to match all the necessary boundary conditions. Substitution of
each term in the original integro-differential equation (41) gives

=0
R"+a RP+a RY +a

As in the case of the survival probability, the choice Aék) = 0 for all £ > 0 turns out to
be feasible and hence
Rék) +«

A(k) _ _ A(k).
2 ng) + « !
So we actually look for a solution of the form
- R}
W (u,b) = ZAgk) oSMb eng) fkim RFy . (47)
P R+«

Condition (43) is automatically satisfied as long as S®) < 0 for k > 0. In view of (40)
and (46), define for k =0

AV = A, SO.=pk  R":=-R,
Agl) = Ag, S(l) = pLg Rgl) = —ﬁ{Q.

At the same time this choice already determines the values of Rgo) and Rél). Note also that
the combination of R\’ and R{" is possible, since P(—R, R) = —P;(R). By construction,
R§°) and Rgl) are positive and for S® = R; the polynomial P(R,S™) also has a negative
root, the value of which is assigned to Rgi) (i =0,1). If both S© + Rgo) and S + Rgl)
and all remaining sums S®*) 4 ng), k> 2 1€ {1,2}, are negative, condition (46) will be
fulfilled.

Let us now turn the attention to (44). Inserting the above choice of the first terms, this
condition reads

(1)

( o A
AR — ARy — Alu RY B +ROY _ 4, Ry ta R SRS R

o — R1 o — R2
(k)

+ Z AP ( ) (B 15O _ 72?;@ 2 e(Rék>+S<k>>b> 1.
1 +

19



From V'(0) = —1 we know that ARy + AyRy = —1, so the above equation can be
simplified to

(1)

~ R(O) X R )
A, B T po v _ 5, T O p) (w) R

L k *) | q(k) Ry +a *) | q(k)
+ E:Ag ) (Rg ) By +5ENb ?k) Ré ) o(By"+5 )b) — 0,
PR Ry 4+«

which will be fulfilled by an appropiate definition of the coefficients Agk). However, in
addition we have to satisfy the boundary condition (45). Inserting all the chosen initial

values and using the identity A, R? + AyR2 = §/a, (45) can be written as

(1) Rgl) +

— A R 2L (RO 1 (c—a)Ry) B AP Ay RV L (R 4 (e a)Ry) el R
o — R1 o — R2
+ (Agk)R§k)(cR§k) + (e — a)s®)) A+
k=2

(k)
~ AP RPTZ L RO (¢ a)g®) R g,
R+«

The procedure needed now to create the correction terms for these two remaining bound-
ary conditions is analogous to the case of the survival probability in Section 3.1.1 and will
therefore not be given in detail. The additional factor ¢ in all the polynomial equations
does not cause any harm. A different feature of the present case as compared to Section
3.1.1 is that in order to satisfy condition (46), here coefficients for both the steps k = 0
and k£ = 1 have to be assigned, so we start with two (instead of one) terms to be deleted
and the algorithm of Section 3.1.1 has to be applied to each of the two separately; the
sequence (S™®).cy then consists of strictly decreasing subsequences and tends to —oo
again.

3.2.4 Numerical Illustration

In the following, the exact solutions derived in the previous sections are approximated
by truncating the series after 18 terms. The accuracy of this approximation is already
striking. One should note that these values are obtained virtually instantaneously, whereas
Monte Carlo simulation (including variance reduction procedures) takes several minutes
to achieve a comparable accuracy. Tables 1 and 2 show exact and simulated values of
the survival probability U'"(u,b) and the expected discounted dividends W'"(u,b) in
the linear barrier model with Erlang(2) interclaim times and exponential claim sizes for
two different parameter sets. In these tables, the Monte Carlo estimates are based on
N = 10000 iterations. As an illustration, for N = 20000 iterations, one obtains the
simulation estimates U'"(1.1,2) = 0.51925 and W'"(1.1,2) = 0.00046 in Table 2, which
is still not fully satisfying. One should note in this context that opposed to horizontal
barrier models, here one has positive probability of survival of the trajectories, which
increases the simulation time and effort.
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4 Comparing the two dividend models

The availability of exact solutions provides a quick way to compare the two dividend
models investigated in this paper. One motivation for the introduction of the threshold
dividend model was the positive survival probability, while the expected discounted div-
idend payments are still of reasonable size. Let us assume that we consider the survival
probabilities U and the expected sums of discounted dividend payments W as the only
quantities of interest and that we compare the two proposed dividend strategies at time 0
on that basis. Then, at least for larger values of the discounting factor, dividends earned
at a rather late stage do not provide a substantial contribution to the overall sum of
discounted dividend payments and hence it seems preferable to focus on securing survival
once time has evolved. At the same time, dividends paid out at an earlier stage contribute
significantly to the overall value of the discounted sum of dividend payments. For large
0, this aspect is perhaps better captured by linear dividend barrier models (where the
barrier departs from the ruin level as time evolves) than by threshold models (where the
payment strategy is not “safer” at later times).

The numerical values worked out in this section are intended to give an impression on
how the performance of the dividend strategy differs in various regions of the parameter
space.

In Table 3, for a given set of parameters including the value b of the linear barrier
model, the threshold """ is calibrated in such a way that the expected dividend payments
of the two strategies (which are calculated from (47), (17) and (18)) are of comparable
size. It turns out that in this case also the survival probabilities (computed from (30),
(20) and (22)) are comparable. However, if instead """ is more than halved, then the
survival probabilities are not affected, whereas the expected dividends are much higher
(see the two columns on the right of Table 3).

Table 4 depicts a situation where a' and b**" are chosen so that the ruin probabilities
of the two strategies are comparable, but where then the linear barrier strategy outper-
forms the layer strategy in terms of expected dividend payments. Table 5 illustrates the
importance of the discount factor ¢ in comparing the performance of the two strategies.

Table 6 shows a parameter choice with comparable survival probabilities, where the linear
barrier strategy is preferable although the discount factor is of moderate size (6 = 0.03).
For still smaller values of §, the situation is reversed again (see the two columns on the
right of Table 6).

This indicates that for every parameter setting and initial surplus w a critical value 6*(u)
exists such that for § > 0*(u) the linear barrier strategy performs better and for § < 6*(u)
the threshold strategy is to be preferred (while the level of survival probability is not
affected by the choice of 9).

Finally, in Table 7 we indicate a combination of parameters, for which much more risk
must be taken with the threshold strategy to achieve expected dividends of the order of
the linear barrier model.

Possible practical implications of these comparisons are two-fold: given the goal of max-

imizing expected discounted dividend payments with the ruin probability as a safety
constraint in the Erlang renewal model (and in the absence of a complete solution of this
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stochastic control problem, which is currently out of sight), one has to be careful which
strategy to choose from. Moreover, it should be kept in mind that even when ignoring
the safety aspect and purely looking at expected profits, the higher moments of the dis-
counted dividend payments under corresponding proposed strategies in the literature can
be considerably large (see for instance [1]), adding another perspective to this optimiza-
tion criterion. One way to improve that might be a utility-based approach (however,
identifying corresponding optimal dividend strategies is in general extremely difficult; for
recent progress in a diffusion framework see Hubalek & Schachermayer [19] and Gerber
& Shiu [15]).

Secondly, as shown in this paper, barrier strategies with barriers that depend on time
(rather than surplus level) can outperform other, intuitively more appealing dividend
strategies in terms of the specified optimization criteria. This may be another indication
that one should look for more refined objective functions and constraints for determining
a satisfying dividend strategy:.
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Table 1: Exact and simulated values for the survival probability and the expected sum of

Ut (u, 3) whn(y, 3)
u Exact Simulation | Exact | Simulation
2.1 ] 0.733224 0.7380 1.46862 1.46972
2.2 1 0.739212 0.7333 1.54505 1.53293
2.3 | 0.744364 0.7462 1.62477 1.65721
2.4 | 0.748668 0.7506 1.70782 1.72777
2.5 | 0.752118 0.7574 1.79422 1.80451
2.6 | 0.754721 0.7543 1.88392 1.89729
2.7 1 0.756511 0.7542 1.97677 1.95437
2.8 | 0.757559 0.7615 2.07247 2.04798
2.9 | 0.758001 0.7540 2.17051 2.18002
3.0 | 0.758073 0.7554 2.27010 2.27564

discounted dividend payments for \=n =2, a =1, =0.03, c= 1.5, ¢ = 0.8

Table 2: Exact and simulated values for the survival probability and the expected sum of

U (u,2) Whn(y,2)
U Exact Simulation Exact Simulation
1.1 | 0.518345 0.5226 0.000442681 | 0.00060890
1.2 | 0.536764 0.5355 0.000897554 | 0.00112367
1.3 | 0.554457 0.5453 0.001819520 | 0.00169736
1.4 | 0.571422 0.5630 0.003687090 | 0.00398161
1.5 | 0.587612 0.5858 0.007464610 | 0.00782931
1.6 | 0.602876 0.6070 0.015079200 | 0.01474820
1.7 | 0.616821 0.6167 0.030302600 | 0.02912370
1.8 | 0.628532 0.6319 0.060134400 | 0.06046390
1.9 | 0.636225 0.6347 0.115667000 | 0.11660100
2.0 | 0.638223 0.6319 0.204578000 | 0.20514300

discounted dividend payments for A\ =4, n =2, a = 1.5, § = 0.03, ¢ = 5/3, a"" = 1/3

uw | U™ (u,2) | UM (u,35) | Wi (u,2) | W (u,35) | U (u,15) | WP (u, 15)
1.0 | 0.910725 | 0.912509 2.47362 2.94955 0.912509 7.89945
1.1 | 0.921141 | 0.923443 2.56674 2.99669 0.923443 8.02571
1.2 | 0.930043 | 0.933011 2.66011 3.03995 0.933011 8.14155
1.3 | 0.937560 | 0.941383 2.75400 3.07981 0.941383 8.24831
1.4 | 0.943794 | 0.948709 2.84862 3.11672 0.948709 8.34716
1.5 | 0.948818 | 0.955119 2.94414 3.15106 0.955119 8.43914
1.6 | 0.952685 | 0.960728 3.04064 3.18318 0.960728 8.52515
1.7 | 0.955437 | 0.965636 3.13812 3.21335 0.965636 8.60597
1.8 | 0.957132 | 0.969931 3.23650 3.24185 0.969931 8.68228
1.9 | 0.957896 | 0.973689 3.33565 3.26888 0.973689 8.75468
2.0 | 0.958029 | 0.976977 3.43538 3.29465 0.976977 8.82371

Table 3: Comparison for « =2, A =2, § = 0.03, c = 1.1, a!™ = 0.55, a’*" = 0.55
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u | U™ (u,20) | U (u,25) | W (u,20) | W (u, 25)
10 | 0.270068 0.221158 0.972399 0.147233
11| 0.285057 0.235981 1.171740 0.166242
12 | 0.298725 0.250344 1.410030 0.187142
13| 0.311005 0.264260 1.695140 0.210175
14 | 0.321820 0.277744 2.036520 0.235608
15| 0.331085 0.290809 2.445470 0.263735
16 | 0.338698 0.303468 2.935500 0.294881
17 | 0.344551 0.315733 3.522600 0.329407
18 | 0.348533 0.327617 4.225038 0.367710
19 | 0.350586 0.339132 5.059620 0.410232
20 | 0.351000 0.350288 6.019980 0.457460

Table 4: Comparison for & = 0.5, A =4, ¢ = 4.2, § = 0.08, a!™ = 3.6, a'" = 0.1

0 =0.03 0=0.1
u | U™ (u,1.5) | UM (u,=2.5) | Win(u,1.5) | W (u,=2.5) | Wi (u,1.5) | W (u, = 2.5)
0.5 | 0.598238 0.522446 2.84655 4.13162 0.98854 0.919823
0.6 | 0.619711 0.545412 2.99965 4.33540 1.06783 0.976708
0.7 0.637969 0.566298 3.14423 4.52543 1.14843 1.032120
0.8 | 0.653200 0.585293 3.28100 4.70307 1.23070 1.086340
0.9 | 0.665577 0.602567 3.41055 4.86955 1.31493 1.139630
1.0 | 0.675266 0.618277 3.53345 5.02600 1.40141 1.192220
1.1 ] 0.682442 0.632565 3.65021 5.17343 1.49034 1.244320
1.2 | 0.687309 0.645560 3.76139 5.31275 1.58188 1.296120
1.3 ] 0.690138 0.657380 3.86771 5.44480 1.67609 1.347810
1.4 ] 0.691330 0.668132 3.97017 5.57032 1.77286 1.399530
1.5 ] 0.691525 0.677914 4.07045 5.69000 1.87191 1.451440
Table 5: Comparison for « =2, A =2, ¢ = 0.8, a!™ = 0.6, a!" = 0.25
0 =20.03 0 =10.01
u | U™ (u,10) | UM (u,20) | Wi (u, 10) | W (u,20) | WP (u, 10) | W (u, 20)
9.0 | 0.611476 0.622957 8.38890 5.44013 14.2771 22.0554
9.1 | 0.611840 0.625355 8.48463 5.47752 14.3777 22.1631
9.2 0.612144 0.627722 8.58098 5.51489 14.4781 22.2699
9.3 | 0.612390 0.630058 8.67791 5.55226 14.5784 22.3761
9.4 | 0.612584 0.632363 8.77540 5.58962 14.6786 22.4814
9.5 | 0.612729 0.634639 8.87343 5.62698 14.7788 22.5860
9.6 | 0.612831 0.636886 8.97194 5.66435 14.8788 22.6900
9.7 | 0.612895 0.639104 9.07090 5.70172 14.9789 22.7931
9.8 | 0.612930 0.641292 9.17025 5.73910 15.0788 22.8956
9.9 | 0.612944 0.643453 9.26991 5.77649 15.1788 22.9974
10.0 | 0.612946 0.645586 9.36982 5.81389 15.2788 23.0986

Table 6: Comparison for a = 0.5, A = 2, ¢ = 2.5, a!™ = 2, a'"" = 0.4.
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u | U (u,15) | U (u,20) | Wi (u,15) | W (u, 20)
14.0 | 0.210288 | 0.00589161 3.36797 3.90556
14.1 | 0.210418 | 0.00599345 3.45753 3.52634
14.2 | 0.210526 | 0.00609513 3.04874 3.54716
14.3 | 0.210615 | 0.00619665 3.64152 3.06801
14.4 | 0.210685 | 0.00629801 3.73579 3.58889
14.5 | 0.210737 | 0.00639921 3.83143 3.60981
14.6 | 0.210774 | 0.00650025 3.92832 3.63076
14.7 | 0.210797 | 0.00660113 4.02628 3.65174
14.8 | 0.210809 | 0.00670185 4.12513 3.67275
14.9 | 0.210814 | 0.00680241 4.22464 3.69389
15.0 | 0.210815 | 0.00690281 4.32454 3.71488

Table 7: Comparison for a = 0.25, A = 2, ¢ = 4.2, § = 0.02, a"™ = 2.3, a’" = 0.19
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