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Abstract 

Understanding the relative roles of geography and ecology in driving speciation, population 

divergence and population dynamics is a longstanding goal in ecology and evolutionary biology. This 

is especially true for organisms inhabiting in mountains that usually harbor extremely high species 

richness and endemism. In this thesis, I combine macro-evolutionary approaches and population 

genomic analyses at multiple evolutionary timescales to investigate how historically geological and 

climatic events affected diversification, speciation and demography of Primula section Armerina in 

the Qinghai-Tibet Plateau (QTP).  At macro-evolutionary level, I reconstruct phylogenetic trees of the 

section and discuss the factors accounting for the incongruence between the chloroplast and nuclear 

trees that mainly occur among closely related species. I demonstrate that the section originated from 

the Himalayas and the recent uplift of the QTP has probably triggered its diversification. I also show 

that niche evolution affects biogeographic patterns of three closely related species in this section. Then, 

I use population genomic data to examine the interspecific divergence and maintenance of species 

cohesion between these three closely related species. I successfully obtain a clear relationship among 

the three species and provide a strong evidence for an origin of the three species in the Himalayas. The 

following divergences between them coincide with the uplift of the Hengduan Mountains and the 

Northeast QTP, which highlights the important roles played by past geological events in triggering 

initial interspecific divergence. After a long period of divergence, the three species came into 

secondary contact triggered by past climatic changes but with no significant hybridization. I further 

show that spatial and environmental factors may play an important role in the maintenance of species 

cohesion. In the final two chapters, I investigate demographic histories of two of the three closely 

related species that are endemic to the QTP and evaluate the effects of the Quaternary climatic 

oscillations on their demography. I demonstrate that only the ancestral populations of the two species 

could survive in different refugia during the largest glaciation that occurred in the QTP. Most of the 

genetic lineages identified by the population genomic analyses diverged from their ancestral 

populations only after this glaciation event. The last glacial maximum (LGM) had littler effects on 

these genetic lineages. Moreover, the response to climatic changes of populations of a species depends 

on its specific ecological preferences. Finally, all the historical, spatial and environmental factors act 

as drivers of population differentiation in these alpine plant species. Overall, this work contributes to a 

significant advance to our understanding of the mechanisms of the interplay between geological and 

ecological factors in driving speciation and evolution in mountains. 
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Résumé 

 
Comprendre de quelle manière la géographie et l'écologie contribuent au processus de spéciation, à la 

divergence et la dynamique des populations est un des objectifs majeurs de l'écologie et de la biologie 

évolutive.  Cet intérêt est particulièrement fort pour les régions montagneuses qui présentent une 

grande diversité d'espèces et un fort taux d'endémisme. Dans cette thèse, j'intègre des approches 

macro-évolutive avec des analyses de génomique des populations à différentes échelles de temps pour 

étudier comment les évènements géologiques et climatiques passés ont affecté la diversification, la 

spéciation et la démographie des espèces de la section Armenia du genre Primula du plateau Tibétain. 

Au niveau macro-évolutif, j'ai reconstruit l'arbre phylogénétique du groupe et émis des hypothèses 

pour expliquer l'incongruence observée pour les espèces proches entre les arbres phylogénétiques 

basés sur des marqueurs nucléaires et chloroplastiques. J'ai démontré que la section Armenia est 

originaire de l'Himalaya et que la récente orogenèse de cette chaine de montagne a probablement été le 

facteur déclencheur de sa diversification. J'ai aussi montré que l'évolution de la niche a influencé la 

biogéographie de trois espèces proches de cette section dont j'ai pu établir avec précision les relations 

de parenté et leur origine dans l'Himalaya. La divergence entre ces trois espèces coincide avec 

l'orogenèse des monts Hengduan et le Nord-Est du plateau Tibétain, ce qui démontre l'importance des 

évènements géologiques passés dans la divergence inter-spécifique. Après une longue période 

d'isolation les trois espèces, des changements climatiques ont par le passé induit un contact secondaire 

mais sans que cela entraine une hybridisation significative. J'ai ensuite montré que les facteurs 

spatiaux et environnementaux pourraient jouer un rôle important dans le maintien de la cohésion des 

espèces. Dans les deux derniers chapitres, j'étudie l'histoire démographique de deux des trois espèces 

proches endémiques du plateau Tibétain et j'évalue les effets des oscillations climatiques du 

Quaternaire sur leur démographie. Je démontre que les populations ancestrales des deux espèces ont 

pu survivre dans différents refuges au cours de la plus longue glaciation du plateau Tibétain. La 

plupart des lignées génétiques identifiées par les analyses de génomique des populations ont divergé 

de ces populations ancestrales suite à cet évènement de glaciation. Le dernier maximum glaciaire n'a 

eu que peu d'effet sur ces lignées. D'autre part, la réponse des populations d'une espèce aux 

changements climatiques dépend de ses préférences écologiques spécifiques. Enfin, l'ensemble des 

facteurs historiques, spatiaux et environnementaux agissent comme des moteurs de la différenciation 

de ces espèces montagneuses. Dans l'ensemble ce travail contribue de manière significative à la 

compréhension des méchanismes de l'interaction entre les facteurs géologiques et écologiques dans la 

formation et l'évolution des espèces au sein des massifs montagneux. 
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General introduction 

Understanding the relative roles of geography and ecology in driving speciation, population 

divergence and population dynamics is a longstanding goal in ecology and evolutionary biology 

(Coyne & Orr 2004; Nosil 2012). Speciation is a by-product of various processes between diverging 

populations, such as allopatric isolation triggered by geological processes (Mayr 1963; Rice & Hostert 

1993), development of genomic incompatibilities (Dobzhansky 1936; Muller 1939), hybridization or 

polyploidy (Soltis & Soltis 2009; Abbott et al. 2013) and divergent natural selection (i.e. ecological 

speciation, Nosil 2012). Although geographical isolation leading to allopatric divergence is generally a 

key factor in speciation and a common process by which new species arises, ecological speciation has 

recently been indicated as another common speciation model (Berlocher & Feder 2002; Rundle & 

Nosil 2005; Nosil 2008; Nosil 2012). The interplay between these different processes may become 

very complex for organisms inhabiting mountainous areas, which usually harbor high species diversity 

and endemism, and are identified as biodiversity hotspots (Myers et al. 2000). At macro-evolutionary 

level, the historical orogenesis and associated climatic changes in mountains may have triggered 

evolutionary radiations (e.g. Liu et al. 2006; Hoorn et al. 2010). At smaller taxonomic scale, for 

example between closely related species, the past environmental changes may have caused the shifts 

of their distributions, leading to secondary contact between previously isolated species, which may 

result in introgression or even hybrid speciation if the reproductive isolation was incomplete (e.g. 

Rieseberg 1997; Abbott et al. 2013; Sun et al. 2014). Finally, demographic changes involved in these 

range shifts can also affect the spatial patterns of genetic variation within and among populations of a 

species (Hewitt 2004). Integrating studies at these three scales will advance our understanding of the 

effects of past geological and climatic changes on evolutionary history of species in mountains. 	
 

The temporal and spatial framework at macro-evolutionary level 

Evolution and diversification of organisms may be predominantly driven by biotic factors (e.g. 

competition and predation; Antonelli & Sanmartin, 2011), abiotic factors (such as geological and 

climatic events), or a combination of both. Biotic factors, as described by the ‘Red Queen’ model, tend 

to act over relatively short periods of time and more locally, whereas abiotic factors, as described by 

the ‘Court Jester’ model, tend to act over several millions of years and within a climatic zone, a 

continent, or globally, and generate large-scale patterns (Benton 2009; Favre et al. 2015). For 

mountains that have undergone uplifts over several dozen millions of years, the impact of abiotic 

processes on the observed patterns likely outweighs that of biotic processes. The effects of geological 

and associated climatic dynamics on species diversification have received attention of evolutionary 

biologist for many years. These past events have generally a differential effect on diversification 

through time and between geographical areas (Benton 2009) and studying this process is one of the 
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key aspects to identify the factors that promote biodiversity. 	
 

The dynamic of species diversification through time can be estimated by molecular clock analysis, 

such as using Bayesian approaches implemented in BEAST (Drummond & Rambaut 2007; 

Drummond et al. 2012) or MrBayes (Ronquist et al. 2012), or by estimating rates of speciation and 

extinction as they are often vary over time (e.g. Morlon et al. 2010; Stadler 2011). The effects of 

historical orogenesis on diversification can then be evaluated by studying the correlation between the 

timing of these events and the evolution of the organisms. Firstly, a dated phylogenetic tree can be 

ideally achieved by sampling a reasonable density of taxa and using multiple reliable fossil evidences, 

which could allow for a good calibration during the molecular dating analysis (Renner 2005; Albert et 

al. 2009). However, this might represent a challenge, since the fossil record is scarce for most 

taxonomic groups. In some cases, the sampling of the focal group might be amended by 

phylogenetically related clades, to be able to include fossils available for the latter. In fact, sampling 

more outgroup species to include more external fossils was suggested as a better alternative than 

secondary calibration, because the latter may be inherently subjected to bias and errors, and thus 

should be interpreted with caution (Blair Hedges & Kumar 2004; Graur & Martin 2004; Sauquet et al. 

2012). Secondly, studying the temporal variation of diversification rates can address questions such as 

rapid radiations, massive extinctions or temporal rate variation in general (e.g. Valente et al. 2010; 

Stadler 2011; Condamine et al. 2013). Furthermore, it allows comparisons between geographic units, 

between lineages and with respect to different traits (Valente et al. 2010; Linder 2008; Serrano-

Serrano et al. 2017). Currently, several programmes for the study of diversification rates derived from 

either extant or fossil data are available, for example MEDUSA (Modeling Evolutionary 

Diversification Using Stepwise Akaike Information Criterion, Alfaro et al. 2009), fossilMEDUSA, 

BayesRate (Silvestro et al. 2011) and PyRate (Silvestro et al. 2014). 

 

Another important aspect of studying species diversification is to investigate areas of origin as well as 

migration routes at the spatial scale. This can be deduced from biogeographic analyses with various 

analytical methods available to assess the likelihood of alternative biogeographic hypotheses 

(Lomolino et al. 2010), such as dispersal-vicariance analysis (DIVA) and dispersal-extinction-

cladogenesis (DEC), with software like RASP (Yu et al. 2015), Bayes-DIVA (Nylander et al. 2008) 

and LAGRANGE (Ree et al. 2008). All these methods are based on a phylogenetic inference that 

allows reconstructing the biogeographic history of ancestral clades. The integration of the temporal 

and spatial framework can provide insights into the patterns and processes of species diversification in 

response to historical events. 	
 

The recent literature has contributed great advances for our understanding of species diversification in 

response to past geological and climatic changes. For example, Andean uplift has played important 
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roles in the evolution of Amazonian landscapes and ecosystems, and the accumulation of current 

biodiversity (reviewed in Hoorn et al. 2010). Compared to the Andes, the evolution of biotas in the 

region of the Qinghai-Tibet Plateau (QTP) remains insufficiently understood despite its outstanding 

geographic extent (Liu et al. 2014; Wen et al. 2014; Favre et al. 2015). Additionally, insights into the 

patterns and processes of species diversification have been hampered by the often poorly resolved 

species phylogenies based on traditional markers. The advance of next-generation sequencing (NGS) 

approaches brings now great potentials for efficiently sampling entire genomes of species for 

phylogenetically informative variation (McCormack et al. 2013). The NGS approaches have provided 

unprecedented power and been recently utilized to explore phylogenetic relationships of recently 

diverged taxa or radiations, including East-African cichlids (Wagner et al. 2013), American oaks 

(Hipp et al. 2014), some American sedges (Escudero et al. 2014) and Primula section Auricula 

(Boucher et al. 2016). These new approaches should be employed across a wider range of taxa to 

better understand the processes occurring during species diversification in mountains. 	
 

Interspecific divergence among closely related species  

The study of closely related species at a population level can offer insights into relative importance of 

geographical versus ecological divergence (Abbott et al. 2000; Jia et al. 2012; Anacker & Strauss 

2014) and thus help to understand the mechanisms involved during speciation. To address this issue, 

we however need to clearly delimit the evolutionary relationships between closely related species. The 

application of genetic data to build a phylogenetic tree could provide satisfactory results in distantly 

related taxa, but suffers from a number of issues when dealing with evolutionary relationships at 

shallow time depths (i.e. closely related species; Nater et al. 2015). In such cases, a phylogenetic tree 

inferred from any given genomic locus (a ‘gene’ tree) might not unequivocally reflect the true order of 

speciation events (the ‘species’ tree), and inconsistent topologies are often obtained across the genome 

(Maddison 1997; Edwards 2009). Within groups of closely related species, genome-wide variation in 

gene trees are caused mainly by two biological processes, namely incomplete lineage sorting (ILS) 

and interspecific gene flow (Degnan & Rosenberg 2009). 	
 

ILS occurs when lineages fail to coalesce in the ancestral population of two species (Pamilo & Nei 

1988; Maddison & Wiens 1997; Degnan & Salter 2005). Therefore, the probability of ILS depends on 

both the effective population size (Ne) in the ancestral population of two species, which determines 

the rate of coalescence of lineages, and the time between two successive speciation events (Hudson 

1990; Degnan & Salter 2005). Interspecific gene flow occurs when previously geographically isolated 

species come into secondary contact usually due to environmental changes. Genes from one species 

can thus spread into the other one by hybridization and fertility of the hybrid progeny (Abbott et al. 

2013). The genealogy of these lineages will support a clustering of species that exchanged genes after 
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their initial split regardless of their evolutionary relationship. Interspecific gene flow can also occur 

during ecological speciation (Nosil 2012). However, the rate of gene flow varies along the genome, 

with restricted gene exchange in gene regions linked to reproductive isolation or local adaptation (Wu 

& Ting 2004; Via & West 2008; Nosil et al. 2009), which is called divergent hitchhiking. This 

restriction of gene flow can extend to the whole genome because of linkage disequilibrium, i.e., 

genome hitchhiking. Eventually, the barrier to gene flow between species evolves before post 

speciation divergence (Wu 2001; Feder et al. 2012).	
 

The NGS approach is essential to uncover the evolutionary histories of closely related species (e.g. 

Wagner et al. 2013; Pante et al. 2015; Meier et al. 2017). Given data from thousands of independent 

loci and multiple individuals per species, the coalescence-based modeling approaches under a given 

demographic model can reconstruct evolutionary relationships by taking into account both ILS and 

interspecific gene flow. They are further able to harvest information about effective population size 

(Ne) in both current and ancestral populations (Hudson 1990; Liu et al. 2007; Heled & Drummond 

2010). However, the calculation of the likelihood-based function is computationally expensive for 

genomic level data. Recent advances in approximate methods like approximate Bayesian computation 

(ABC) offer an elegant way around the problem of solving the complex likelihood function 

(Beaumont et al. 2002; Marjoram et al. 2003; Excoffier et al. 2013). These approximations allow the 

investigation of the influence of complex demographic processes on the reconstruction of species trees 

in closely related species, given the availability of both a large number of independent loci and a 

population sample from each species. With the software such as DIY-ABC, ABCtoolbox package, 

dadi and fastsimcoal, recent studies have successfully uncovered evolutionary relationships of closely 

related species in animals, fish and plants (Rubin et al. 2012; Nater et al. 2015; Wang et al. 2016; 

Meier et al. 2017). 	
 

Population structure and demographic history 

Species tend to occupy heterogeneous environments across their geographic range, and the magnitude 

and spatial distribution of their genetic variation is expected to vary accordingly (Linhart & Grant 

1996; Anderson et al. 2011). According to the model of isolation by distance (IBD, Wright 1943), 

genetic drift may cause populations to become more different from one another at greater geographical 

distances because gene flow declines among increasingly distant populations. This scenario has been 

largely supported since its formulation in the 1940s (Dobzhansky & Wright 1943; Imaizumi & Morton 

1969; Sharbel et al. 2000). Alternatively, a scenario coined ‘isolation by environment’ has been 

frequently recovered in animals and plants. It proposes that gene flow among populations living in 

different environments is limited primarily by selection against maladapted migrants (Nosil et al. 

2009). Furthermore, Quaternary climatic oscillations have been suggested to be a major factor in 
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shaping large-scale spatial genetic pattern (Hewitt 2000). During the cycles of glacial and interglacial 

periods, populations repeatedly retreated to one or multiple refugia and recolonized their preferred 

habitats with potential secondary contact among isolated populations (Abbott et al. 2000; Taberlet & 

Cheddadi 2002). The demographic changes involved in these range shifts affected the spatial patterns 

of genetic variation within and among populations (Hewitt 2004). Recent empirical studies have put 

forward that all spatial, environmental and historical factors act as drivers of spatial genetic patterns 

simultaneously at different spatial scales (Wang et al. 2013; Lexer et al. 2014; Muñoz-Pajares et al. 

2017), especially for the organisms inhabiting mountains. 	
 

Identifying the genetic structure of a species and the factors that drive it is an important step in 

understanding of speciation, adaptation and genetic change (Antonovics 1968). Knowing demographic 

history of a species in response to past environmental changes could shed light on population 

management because the dynamic spatio-temporal histories of populations can profoundly impact 

their future evolutionary potential (Lanier et al. 2015). Population genomic data provide accurate 

estimates of genetic structure (Avise 2010; Narum et al. 2013), and provide opportunities for 

estimating demographic hypotheses such as population divergence, constant population size though 

time, population expansion or bottlenecks, the rate of growth or decline, and migration and changes in 

population sizes in subdivided populations (e.g. Emerson et al. 2010; Bourret et al. 2013; Lanier et al. 

2015). The core of many methods for estimating these demographic parameters is Monte Carlo 

simulations based on coalescent theory. With the development of genomic sequencing technologies, 

big data sets from multiple populations will increase the accuracy of the estimation of demographic 

parameters, for example by using recent developed bioinformatics tools such as approximate Bayesian 

computation (ABC) modeling (Cornuet et al. 2014). Furthermore, a combination of evolutionary 

modeling and species distribution modeling (SDM) could provide new insights to predict the impact of 

future climatic changes on population dynamics (e.g. Lanier et al. 2015). Additionally, population 

genomics allow discerning genome regions that diverge neutrally from those that respond to divergent 

selection across heterogeneous landscapes (e.g. Lexer et al. 2014), which could provide a more 

accurate picture of the drivers of divergence compared with traditional neutral marker studies (Nosil 

2012).	
 

The study area and NGS approaches 

The Qinghai-Tibet Plateau (QTP) is the highest and largest plateau in the world with an average 

altitude of more than 4000 m, and arguably the most prominent topological feature on Earth. The 

uplifts of the plateau were driven by the collision of the Indian plate with the Eurasian plate, which 

began at ca. 50 million years ago (Ma; Rowley & Currie 2006; Royden et al. 2008). Nevertheless, the 

times of its following uplifts are controversial (as reviewed in Renner et al. 2016). Some scientists 
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believe that the QTP has reached 4000 m since the mid-Eocene (40 Ma; Renner et al. 2016 and 

references therein), while others suggest several recent uplifts that occurred since the early Miocene in 

at least three major periods: 30–23, 15–13, 8–1.6 Ma  (Harrison et al. 1992; Li et al. 1995; Shi et al. 

1998; Spicer et al. 2003). The recent uplift occurred particularly at its eastern and northern edge in the 

Hengduan Mountains and the Qaidam basin (Li & Fang 1999; Zheng et al. 2000; Mulch & 

Chamberlain 2006). The rise of the QTP created a large altitudinal gradient across the region and 

modified the global and East Asian climate dramatically (Ruddiman & Kutzbach 1989; Shi et al. 

1998), triggering and intensifying the Asian monsoon, which in turn profoundly influenced biological 

processes in the QTP (Li & Fang 1999). At present, about 9,000–12,000 species of vascular plants 

belonging to ca. 1,500 genera occur in this plateau, and at least 20% of these species and ca. 50 genera 

are endemic (Wu 1987). Therefore, the QTP flora comprises several of the important alpine 

biodiversity hotspots in the world. The fringe of the QTP encompasses parts of four different hotspots 

of biodiversity (Figure 1), which are listed among the main biodiversity hotspots of the Northern 

Hemisphere (Myers et al. 2000; Myers & Mittermeier 2003; Tang et al. 2006) and are assumed to be 

particularly vulnerable to climate change (Zheng 1996; Yao et al. 2007). During the Quaternary, there 

have been four major glaciations in the QTP, becoming progressively less extensive after the largest 

Naynayxungla Glaciation, which began ca. 1.2 Ma and reached its maximum between 0.8 and 0.5 Ma 

in the QTP (Shi 2002; Zheng et al. 2002). Glacier advances during the last glacial maximum (LGM) 

were significantly less extensive in this area (Shi et al. 1998; Zheng et al. 2002; Owen 2009). The 

uplifts of the QTP and Quaternary climatic oscillations have been widely proposed to facilitate 

speciation and diversification (Sun 2002), and to have shaped the geographic scale of genetic structure 

and the recolonization patterns from multiple glacial refugia in the QTP (Qiu et al. 2011; Liu et al. 

2014; Wen et al. 2014). 

 

Recent literature has greatly contributed to our understanding of the effects of these past geological 

and climatic changes on species evolution and diversification in the QTP (reviewed in Qiu et al. 2011; 

Liu et al. 2014; Wen et al. 2014; Favre et al. 2015). However, compared to other areas, such as 

Europe and North America, the evolution of biotas in the QTP remains insufficiently understood not 

only because of its remoteness and inaccessibility, but also because of the limited genetic information 

(i.e. traditional markers) and less powerful bioinformatics tools used in previous studies. So far, there 

are very few studies that explored how NGS data could help understand the evolution of organisms in 

the QTP. With the advent of NGS technologies, applications of genomic-level data at different 

taxonomic scales are particularly needed to provide a comprehensive understanding of evolutionary 

history of species in this region.	
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Figure 1. Maps of the region of the Qinghai-Tibet Plateau (QTP; modified from Favre et al., 2015). Four 

biodiversity hotspots (green areas) surrounding the QTP: (1) mountains of Central Asia; (2) Himalayas; (3) Indo-

Burma; (4) Hengduan Mountains. 

 

Currently, the most popular NGS methods include restriction-site associated DNA sequencing 

(RADseq; Miller et al. 2007; Baird et al. 2008; Emerson et al. 2010; Peterson et al. 2012), 

genotyping-by-sequencing (GBS; Elshire et al. 2011), exon capture (DNA enrichment; Hodges et al. 

2007) and whole genome sequencing (WGS). WGS is more expensive than other methods and rarely 

used in population genomics (Allendorf et al. 2010). RADseq or GBS enables collecting thousands of 

loci throughout the genome by sequencing short regions adjacent to restriction enzyme cut sites 

(Miller et al. 2007; Baird et al. 2008) and is being increasingly used for phylogenetic inference and 

population genomics (Rubin et al. 2012). These methods require no prior genome information and 

therefore can be used on any species. However, having at least a preliminary draft genome from the 

study species can improve several aspects of the downstream data analyses, such as the identification 

of paralogs and of loci that are close together in the genome and likely non-independent due to 

linkage. The latter can facilitate the identification of linkage groups or genomic regions under 

divergent or balancing selection (Hohenlohe et al. 2010; Andrews & Luikart 2014). The exon capture 

that requires knowledge of the exon sequences for the study species or a related species to design the 

capture bait oligonucleotides, is particularly useful for studies focusing on variation in protein-coding 

genes and the genetic basis of fitness and adaptation, because it provides a gene-targeted approach 

with SNPs from thousands of genes or the entire exome (Bi et al. 2012). The most popular statistical 

analysis software for RADseq and GBS data are STACKS (Catchen et al. 2011, 2013) and PyRAD 
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(Eaton 2014). The former one is suggested to be more suitable at shallow scales (i.e. population data), 

whereas the latter one is commonly employed for RADseq studies at deeper phylogenetic studies 

because of the inclusion of indel variation that improves identification of homology across highly 

divergent lineages. When a reference genome is available, other genotype calling programmes such as 

GATK (http://www.broadinstitute.org/gatk/) and SAMtools (Li et al. 2009) can also be used. 	
 

The Primula study system 

Primula L. (Primulaceae) is one of the genera that exhibit high levels of species diversity in the QTP. 

The group contains ca. 500 species and has a predominantly northern hemispheric distribution, with 

some representatives in Ethiopia and Southeast Asia and one isolated species in South America 

(Richards 2003). About 60 % of the species are present in the QTP and its adjacent regions (Hu & 

Kelso 1996). The floral syndrome ‘heterostyly’ presented in around 90% of the species in this genus is 

one of the most remarkable outcrossing mechanisms. Heterostyly is a condition in which populations 

consist of two floral morphs: ‘pins’, with anthers in the lower and stigmas in the upper portion of the 

corolla tube, respectively, and ‘thrums’ with a reverse arrangement of the sexual organs. The function 

of heterostyly as a mechanism to promote outcrossing has attracted great attention since Darwin who 

first elucidated this function in a series of studies of the primrose family (Darwin 1877). The genetic 

basis of heterostyly in Primula is controlled by the S-locus supergene that likely comprises five tightly 

linked genes, determining style length (the so-called G locus), anther height, pollen size and male and 

female intra-morph incompatibility (Lewis & Jones 1992). Recent works have built a whole genetic 

architecture of the S-locus supergene and identified a specific gene CYP734A50 that determines the 

style-length dimorphism (Huu et al. 2016; Li et al. 2016). At a macro-evolutionary level, heterostyly 

was suggested to accelerate species diversification via decreasing extinction rates rather than 

increasing speciation rates (de Vos et al. 2014). 	
 

Primula diverged from its closely related genus Soldanella ca. 25 Ma (de Vos et al. 2014) and has 

experienced rapid radiation since its origin. As the diversity center of the Primula, less attention has 

been paid to the QTP compared with other regions, such as Europe and North America, where several 

studies have been conducted to evaluate the effects of the past climatic changes on the genetic 

structure, hybridization and distribution patterns in multiple species of Primula (e.g. Guggisberg et al. 

2009; Theodoridis et al. 2013; Boucher et al. 2016; Theodoridis et al. 2016). The timeframe of the 

origin of Primula is consistent with the extensive uplifts of the QTP, however, how Primula species 

responded to these historical geological events and the Quaternary climatic oscillation is unclear, 

especially for the species that are distributed in the QTP. Consequently, the genus Primula provides an 

ideal system to study the mechanisms of the interplay between geological and climatic events in 

driving speciation and evolution of organisms in the QTP at both the macro- and micro-evolutionary 
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levels. 	
 

The objectives of the thesis 

The main goal of this thesis was to investigate the effects of past geological and climatic changes on 

the evolution and demography of Primula species that are distributed in the QTP. To reach this goal, I 

evaluated the effects of past events within a phylogenetic framework, and used population genomic 

data to examine interspecific divergence among three closely related species and to reconstruct 

detailed demographic histories of two species, respectively, at a population level.  More specifically:	
 

In chapter 1, I investigated the phylogenetic relationships and biogeography of Primula section 

Armerian based on five chloroplast and one nuclear genes. The aims were to obtain a detailed and 

resolved phylogenetic tree for the section, to assess the influence of the uplift of the QTP on its 

diversification and to illustrate how niche evolution under climatic changes influences biogeographic 

pattern. 	
 

In chapter 2, I examined the interspecific divergence and maintenance of species cohesion among 

three closely related species of Primula based on population genomic data (i.e. RADseq data). I chose 

the three species that are distributed mainly in the Himalayas, the Hengduan Mountains and the 

Northeastern QTP, respectively, to characterize the interspecific divergence in response to the uplift of 

the QTP, and to evaluate the effects of past climatic changes and drivers in maintaining species 

cohesion.  

 

In chapter 3 and 4, I focused on P. tibetica and P. fasciculata to investigate the genetic consequences 

of Quaternary climatic oscillation in the Himalayas and the Hengduan Mountains, respectively, based 

on population genomic data. I first identified genetic structure of populations in the two species and 

the drivers that triggered their intraspecific divergence. Secondly, I used ABC modeling to reconstruct 

detailed demographic histories of the two species, and combined SDMs with ABC modeling to 

evaluate the effects of the Quaternary climatic oscillations on their demographic histories. These two 

chapters represents the first population genomic level studies of alpine plant species occurring in the 

QTP and contributes to an advance understanding of the role played by Quaternary climatic changes 

on the present-day distributions of organisms in mountains. 	

 

Annex 

The annex of this thesis contains another project on which I had the opportunity to work on during the 

last year of my PhD thesis. In this project, I used 70 whole-genome resequencing data of Cannabis to 
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estimate its domesticated history and to identify genomic signatures of selection on different types, i.e. 

hemp and drug. The sampling represents worldwide cultivars and drugs, which allowed me to identify 

five distinct genetic groups, including two Chinese cultivar groups, European cultivar group, recent 

selected drug group and feral drugs in South Asia. I have also identified candidate genomic regions 

that may involve in selection in both the hemp and drug types. Next step will be annotation of these 

genomic regions to check which function was selected during its domestication. 
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Chapter 1 

 

Phylogeny and biogeography of Primula sect. Armerina: 

implications for plant evolution under climate change and the 

uplift of the Qinghai-Tibet Plateau 
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Abstract	
Background: The historical orogenesis and associated climatic changes of mountain areas have been 

suggested to partly account for the occurrence of high levels of biodiversity and endemism. However, 

their effects on dispersal, differentiation and evolution of many groups of plants are still unknown. In 

this study, we examined the detailed diversification history of Primula sect. Armerina, and used 

biogeographic analysis and macro-evolutionary modeling to investigate a series of different questions 

concerning the evolution of the geographical and ecological distribution of the species in this section.  

Results: We sequenced five chloroplast DNA and one nuclear gene for species of Primula sect. 

Armerina. Neither chloroplast nor nuclear trees support the monophyly of the section. The major 

incongruences between the two trees occur among closely related species and may be explained by 

hybridization. Our dating analyses based on the chloroplast dataset suggest that this section began to 

diverge from its relatives around 3.55 million years ago, largely coinciding with the last major uplift of 

the Qinghai-Tibet Plateau (QTP). Biogeographic analysis supports the origin of the section in the 

Himalayan Mountains and dispersal from the Himalayas to Northeastern QTP, Western QTP and 

Hengduan Mountains. Furthermore, evolutionary models of ecological niches show that the two P. 

fasciculata clades have significantly different climatic niche optima and rates of niche evolution, 

indicating niche evolution under climatic changes and further providing evidence for explaining their 

biogeographic patterns. 

Conclusion: Our results support the hypothesis that geologic and climatic events play important roles 

in driving biological diversification of organisms in the QTP area. The Pliocene uplift of the QTP and 

following climatic changes most likely promoted both the inter- and intraspecific divergence of 

Primula sect. Armerina. This study also illustrates how niche evolution under climatic changes 

influences biogeographic patterns. 

 

Keywords: Primula, incongruence, biogeography, niche evolution, Qinghai-Tibet Plateau	
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Background	
Understanding the processes that shape geographical and ecological distribution of biodiversity is one 

of the most challenging questions in evolutionary biology and ecology. This is particularly true for 

regions that have experienced rapid habitat changes and harbor high species diversity. These 

characteristics are present in many mountainous areas and historical orogenesis has been proposed to 

play an important role in shaping their current biodiversity [1-3]. The alteration of topography and 

climatic changes associated with mountain uplifts can cause fragmentation of species distributions, 

thus limiting gene flow between isolated populations and initiating allopatric divergence and 

speciation [4-7]. However, extreme environmental changes and fragmented distributions can also lead 

to the extinction of lineages and species (e.g., [8,9]). The processes occurring during mountain uplifts 

are therefore complex and we need to better understand the mechanisms that are at play during these 

events. 

 

The fragmentation of species distributions can be due to the presence of limits on dispersal due, for 

example, to geographical barriers. Such limitations can induce a reduction in the movement of 

individuals into new locations and will result in distinct biogeographic patterns in the extant species 

[10]. However, fragmentation can also occur because of a lower success of establishment of 

individuals in some areas, which will limit the range of species [11]. This process is primarily set by 

ecological factors, potentially including both abiotic and biotic variables [10-12]. The dynamics of 

species range evolution will be constrained by phylogenetic niche conservatism, which is defined as 

the tendency of species to retain their ancestral ecological niche, thus shaping the geographic ranges of 

species over time (e.g., [13,14]). However, evidence for rapid shifts in climatic preferences among 

species also exists [15,16] and macro-evolutionary modeling should be used to characterize the 

processes driving the evolution of ecological niches [17]. A complete assessment of these processes, 

coupled with detailed analyses of biogeographic patterns of species distribution, should then be used 

to help understand the distribution of species diversity [10].	
 

One region that experienced drastic habitat changes and harbors extremely rich species diversity and 

endemism is the Qinghai-Tibet Plateau (QTP; [18]). While the start of its uplift dates from 

approximately 50 million years ago (Ma; [19]), the extensive uplifts of the QTP occurred in at least 

four periods since the early Miocene, specifically between 25-17 Ma, 15-13 Ma, 8-7 Ma, and 3.4-1.6 

Ma [9,20-23]. At present, the QTP, with an average altitude of more than 4000 m (a.s.l.), is the highest 

and one of the most extensive plateaus on Earth [20]. About 9,000 to 12,000 species of vascular plants 

in ca. 1,500 genera are present in this plateau, and at least 20% of these species and ca. 50 genera are 

endemic [3,18]. The historical sequence of uplifts of the QTP has been suggested to partly account for 

the occurrence of high levels of biodiversity and endemism in the region [24]. However, the potential 

effects of climatic changes during the Quaternary on the diversification and distribution of many 
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groups of plant species in the QTP are not very well known (see review [2,3,25]).  

 

Primula L. (Primulaceae) is one of the genera that exhibit high levels of species diversity in the QTP. 

The group, with a predominantly northern hemisphere distribution, contains ca. 500 species. About 

60% of the species are present in the QTP and its adjacent regions [26,27].  Although this genus 

represents an important floristic element of alpine meadows in the region, it remains unclear whether 

the uplift of the QTP and the following climatic changes affected its diversification and distribution. In 

this context, a better understanding of the historical biogeography of key floristic elements of the 

region is an important way to illuminate the evolutionary history of these organisms in space and time. 

Available studies mainly utilize genus- or family-level phylogenies to elucidate the biogeographic 

connections between the QTP and neighboring regions [28-32]. However, the presence of a single 

sample per species hardly provides insights into the biogeographic patterns of species distributions 

within the QTP. Therefore, sampling multiple individuals per species and focusing on endemic species 

may help to better understand the mechanisms that were responsible for biogeographic patterns within 

the QTP. 

 

In this study, we include several samples per species to investigate the historical biogeography of 

Primula sect. Armerina Lindley (Primulaceae), which exhibits a typical Sino-Himalayas distribution. 

According to the most recent global monographic treatment of the genus, Primula sect. Armerina 

comprises 14 species [26]. Eight species (P. fasciculata, P. tibetica, P. conspersa, P. gemmifera, P. 

zambalensis, P. pumilio. P. pamirica and P. involucrata; Figure 1) are endemic to the QTP, with 

different geographic distributions [26,27]. Among them, there has been some confusion between P. 

tibetica and P. fasciculata because of their morphological similarities at high altitude ([26,27]; field 

observation). The two species can be easily distinguished when bracts are present. Primula tibetica has 

oblong and pouched bracts, while the bracts of P. fasciculata are linear and non-pouched (Figure 1A, 

D). However, at high altitude, bracts are usually missing in P. fasciculata (Figure 1B, C), while in P. 

tibetica, they can also be absent in small individuals with single flower (Figure 1E, F). Both species 

have wide altitude distributions, ranging from 2900 m to 5000 m [26,27] and the use of molecular data 

combined with macro-evolutionary modeling may provide useful insights into the dynamics of their 

range evolution. The four remaining species of this section (P. iljinskyii, P. chrysostoma, P. 

knorringiana and P. valentinae) have very restricted areas in regions adjacent to the QTP. Primula 

nutans has the most widespread distribution in the section, including N Europe, W & E Siberia, NW 

America to N Mongolia, NW China and NW QTP. All species from sect. Armerina are considered to 

be diploid (2n = 18, 20 or 22) [26,27], except P. egaliksensis, which is the only tetraploid species (2n 

= 36, 40) and occurs mainly in North America. It was assigned to sect. Armerina based on 

morphological features [33,34], and might be of hybrid origin between P. mistassinica (sect. Aleuritia) 

and P. nutans [35-37].  
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Figure 1. The five species of sect. Armerina which showed mainly incongruence between the two trees. (A) P. 

fasciculata with linear and non-pouched bracts, (B) P. fasciculata without bracts, (C) one photo of P. fasciculata 

collected from populations of clade F2 (see Results), (D) P. tibetica with oblong and pouched bracts at low 

altitude, (E) and (F) P. tibetica with and without bracts at high altitude, respectively, (G) P. nutans, (H) P. 

gemmifera, (I) P. conspersa. Bracts for P. fasciculata and P. tibetica are indicated by red arrows. All photos 

were taken by the first author in the field. 	
 

Most species of the Armerina section are thus prominent floristic elements of alpine meadows at high 

altitudes in the QTP and most are endemic to the QTP and its adjacent regions [26,27]. This section of 

Primula hence represents a good candidate to assess the biogeographic history of the QTP and to 

understand the effects of its uplift and associated climatic changes on the geographical distribution of 

biodiversity. We analyzed both nuclear and chloroplast DNA sequences of multiple samples per 

species in the Armerina section to reconstruct a comprehensive phylogenetic tree of this group. The 

aims of our study are to: i) test the inter-specific relationships of sect. Armerina to obtain a detailed 
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and resolved phylogenetic tree for the section; ii) assess whether the diversification of this section was 

influenced by the uplifts of the QTP; iii) combine biogeographic analyses with macro-evolutionary 

modeling of ecological niches to better understand the role of dispersal and ecological constraints 

during the diversification of the three main species in the section (P. fasciculata, P. nutans and P. 

tibetica). 	
 

Results	
Sequence characteristics 	

Five chloroplast (matK, rpl16, rps16, trnLF and trnH-psbA) and one nuclear (translin family protein, 

tfp) markers were sequenced in this study for phylogenetic analyses. The matK dataset used for 

phylogenetic analyses comprised 892 characters, 815 of which were constant, 22 variable but 

parsimony-uninformative, 55 variable and parsimony-informative. The rpl16 dataset comprised 1063 

characters, 903 of which were constant, 90 variable but parsimony-uninformative, 70 variable and 

parsimony-informative. The rps16 dataset comprised 877 characters, 789 of which were constant, 24 

variable but parsimony-uninformative, 64 variable and parsimony-informative. The trnLF dataset 

comprised 968 characters, 840 of which were constant, 54 variable but parsimony-uninformative, 74 

variable and parsimony-informative. The trnH-psbA dataset comprised 629 characters, 512 of which 

were constant, 46 variable but parsimony-uninformative, 71 variable and parsimony-informative. We 

combined the five plastid regions for all subsequent analyses, modeling them as five partitions. It was 

not possible to obtain these sequences for P. watsonii and four chloroplast sequences (matK-

DQ378314, rpl16-DQ378443, rps16-FJ786584 and trnLF-FJ794215) were downloaded from 

GenBank for this species.  

 

The aligned nuclear dataset comprised 648 characters, 445 of which were constant, 91 variable but 

parsimony-uninformative, and 112 variable and parsimony-informative. Despite repeated attempts, the 

tfp sequences for the three samples of P. tibetica, as well as the sample of P. pamirica, P. pumilio and 

two outgroup species (P. watsonii and P. pinnatifida) failed to amplify. Two copies were identified in 

the samples of P. fasciculata, P. conspersa and P. egaliksensis and these clones were added to the 

sequences obtained directly from PCR in subsequent phylogenetic analyses. 	
 

Phylogenetic analyses and molecular dating	

The Maximum Likelihood (ML) and Bayesian analyses done on each data set resulted in congruent 

topologies, but discrepancies were obtained between the two types of markers. The only tetraploid 

species, P. egaliksensis, was included in a well-supported clade with P. mistassinica and P. farinosa in 

the chloroplast tree. This result is in agreement with previous studies [35,37,38]. The node subtending 

the rest of the samples of Primula sect. Armerina received very low support (posterior probability, PP 

0.18, ML 6%) in the choloroplast phylogenetic tree and the relationships between species remained 
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partly unresolved (Figure 2). Three main clades were inferred in the chloroplast tree. The clade 

involucrata (including P. involucrata, P. pamirica, P. fasciculata, P. nutans and P. tibetica) and the 

clade conspersa (including P. conspersa, P. gemmifera and P. zambalensis) were strongly supported 

in both ML and Bayesian analyses, while the clade pumilio (P. pumilio) was not well-supported by 

ML (74%), but received very high posterior probabilities in the Bayesian analyses (PP 1.0). Overall, 

well-supported clades (PP > 0.95) in the chloroplast tree grouped sequences from the same species, 

except for P. fasciculata, which was separated into two groups (Figure 2).  

 

Figure 2. The maximum clade credibility (MCC) tree derived from BEAST analyses of five chloroplast genes. 

Maximum likelihood (ML) bootstrap values and Bayesian posterior probabilities (PP) are indicated at major 

nodes. Bootstrap values ≥ 80 and PP ≥ 0.95 are indicated with thicker branches. Outgroup species are shown in 

bold. 	
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Figure 3. The maximum clade credibility (MCC) tree derived from MrBayes analyses of the nuclear dataset. 

Maximum likelihood (ML) bootstrap values and Bayesian posterior probabilities (PP) are indicated at major 

nodes.  Bootstrap values ≥ 80 and PP ≥ 0.95 are indicated with thicker branches. Outgroup species are shown in 

bold. Two nuclear gene copies for some samples are indicated with “-1” or “-2”. 

 

In contrast to the plastid dataset, Primula sect. Armerina and two nested outgroup species received 

very high node support (PP 1.0, ML 100%) in the nrDNA phylogenetic tree, but the relationships 

between species were less well supported (Figure 3). Three main clades within the section identified in 

the chloroplast tree were also inferred in the nuclear tree (Figure 3). The clade involucrata was well-

supported (PP 1.0, ML 86%), while the clades conspersa (except for P. farinosa, P. mistassinica and 

P. egaliksensis) and pumilio received very weak nodal support in both types of analyses. The 

relationships within each clade were further incongruent between the trees obtained by the two 
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datasets. Primula fasciculata was divided into three clades in the nrDNA tree (Figure 3). One clade 

included samples from P. fasciculata that cluster with a moderately supported clade representing P. 

involucrata. A second clade included all samples of P. tibetica and P. fasciculata and one copy of P. 

fasciculata. Finally, the third clade included all samples of P. nutans and P. pamirica, one copy of P. 

egaliksensis and the remaining samples of P. fasciculata (Figure 3). Similarly, P. gemmifera separated 

into two groups, either with P. zambalensis or in a clade including all samples of P. conspersa (Figure 

3). Two copies of P. egaliksensis were clustered with either P. nutans or P. mistassinica, corroborating 

the hypothesis of the allopolyploid origin of this species [35-37].   

 

Previous dating analyses at the level of the family used low intra-sectional sampling and suggested 

that sect. Armerina diverged from its relatives about 5 Ma [38]. This date is generally congruent with 

the results of our dating analysis, which indicated that the section (except P. egaliksensis) diverged 

from its two relatives, P. watsonii and P. pinnatifida, 3.55 Ma (1.76-5.93 Ma, 95% highest probability 

density, HPD; Fig. 3). Most cladogenetic events in this section occurred during the past 3.4 million 

years (Figure 4). The crown age of the three closely related species, P. nutans, P. fasciculata and P. 

tibetica, was about 1.19 Ma (95% HPD: 0.51-2.13 Ma; Figure 4). 

 

Biogeographic inference 

Biogeographic analysis based on the chloroplast dataset was reconstructed by Statistical Dispersal–

Vicariance Analysis (S-DIVA). Fourteen dispersal and 15 vicariance events for the section were 

identified in this analysis (Figure 4). The origin of this section was inferred with high confidence in 

the Himalayan Mountains (B, 91%). We found that one clade (P. zambalensis, P. gemmifera and P. 

conspersa) colonized the Northeast QTP (C) and subsequently diversified and dispersed to the 

Hengduan Mountains (A), while P. pamirica colonized the Mountains of Central Asia (D). The 

common ancestral area of P. fasciculata, P. tibetica and P. nutans was inferred to be in the Himalayan 

Mountains (B, 86%). 

 

Evolution of ecological preferences	

We fitted a series of macro-evolutionary models based on 19 bioclimatic variables (i.e., climatic 

niches) to better understand the biogeographic patterns of three closely related species, P. fasciculata, 

P. tibetica and P. nutans. We extracted the 19 bioclimatic variables from the sampled localities of the 

three species (Additional file 3). For P. nutans, we used only the samples that were collected in the 

QTP. The first two axes of the principal component (PC) analysis based on this dataset explained 

53.2% and 25.3% of variance, respectively. The first axis (PC1) was strongly and positively correlated 

with temperature seasonality (BIO4, WorldClim variables) and negatively correlated with temperature 

in coldest and driest Quarter (BIO6 and BIO9). The second axis (PC2) was correlated strongly and 

positively with precipitation in coldest and driest Quarter (BIO14, BIO17 and BIO19), and strongly 
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and negatively with precipitation seasonality and mean diurnal range (BIO2 and BIO15).	
 

We used the values obtained for PC1 and PC2 (Additional file 4) to test for the evolution of the 

ecological niche in P. fasciculata, P. tibetica and P. nutans. The Brownian motion model was rejected 

for both PC1 and PC2 in all species sets tested (Additional file 5). For PC1, the best-performing 

models were OU1 for SET1, SET2 and SET3, and OUMV for SET4. Average AICc weights were 

0.46, 0.36, 0.66 and 0.48, respectively (see Additional file 5 for all AICc weights). The OUM was the 

second-best model for SET1 (Average AICc weights = 0.25). The OUMV, OUMA and OUM models 

that allow different niche optima for SET2 also received non-negligible AICc weights (0.29, 0.18, 

0.12). For PC2, all four sets were best modeled under OUMV (AICc weights 0.97, 0.93, 0.78 and 0.64 

respectively; Additional file 5). 

 

The parameters (niche optimum θ, rate of niche evolution σ2 and strength of selection α) estimated for 

the three species groups (F1, F2 and NT) from all supported models based on the four group sets were 

congruent (Additional file 6) and we showed the parameters estimated based on SET2 (Figure 5). We 

used model averaging to estimate the parameter values for PC1 over the supported models OUMV, 

OUMA and OUM. The averaged niche optima (θ) across models for group F1, F2 and NT were -0.17, 

-2.0 and 0.55, respectively (Figure 5). The averaged rate parameter (σ2) across models for group F2 

was two times slower than that for the groups F1 and NT (59 vs. 131 and 112). Finally, the averaged 

strength of selection estimated across models for the three groups was similar (6.9, 6.3, 6.9). For PC2, 

model OUMV, which allows for different niche optima and rates of niche evolution among groups, 

was the only supported model. The optimum values estimated based on this model for the three groups 

were also different from each other (F1: 0.2, F2: -0.99, NT: -0.33). The group F2 still exhibited the 

slowest rate of niche evolution (F1: 228, F2: 94, NT: 1723; Figure 5). 

 

Discussion	
Non-monophyly of Primula sect. Armerina	

The phylogenetic analyses of Primula sect. Armerina presented here contain samples of several 

individuals per species and cover most of the geographic distributions of the species. Neither the 

chloroplast tree nor the nuclear tree supports the monophyly of sect. Armerina. The section and the 

two outgroup species, P. watsonii and P. pinnatifida (sect. Muscarioides) form a well-supported clade 

in the chloroplast tree, despite the fact that these two outgroup species are distinguished from sect. 

Armerina by clear morphological traits (e.g., spicate inflorescence vs. umbel; [26,27]). Similarly, the 

two outgroup species, P. farinosa and P. mistassinica (sect. Aleuritia), are grouped with the section 

and form a well-supported clade in the nrDNA tree. The non-monophyly of sect. Armerina is in 

agreement with previous family-wide analyses [38,39]. Moreover, non-monophyly of sections in 

genus Primula seems pervasive in phylogenetic trees [38,39].  
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Phylogenetic relationships within the section 

The relationships among some of the basal nodes of the section in the nuclear tree are uncertain 

(Figure 3), which may result from low sequence divergence within the section. The use of a single 

nuclear gene is thus clearly not sufficient to resolve the relationships within the group, which is a 

pattern often found also in other lineages (e.g., [40,41]). Multiple nuclear genes or genomic data are 

therefore needed to resolve the precise relationships between the main clades in this group. However, 

both phylogenetic trees show three main clades within sect. Armerina, which is in agreement with 

previous phylogenetic studies [39,39] as well as morphological based taxonomy [26,27]. 

 

Phylogenetic relationships inferred from the nuclear and chloroplast datasets were incongruent (Figure 

2, 3). The tree obtained from the latter is in agreement with morphology-based taxonomy, which 

contrasts with other studies that showed a better congruence of taxonomy with the trees inferred from 

nuclear datasets (e.g., [42]). Incongruence between different plant genomic markers is found in 

numerous studies and can be explained by incomplete lineage sorting, hybridization and introgression 

[40,42-45]. Introgression represents the transfer of genes between species mediated primarily by 

backcrossing [46], but it does not seem a likely explanation for the incongruence that we observed. 

Maternally inherited chloroplast loci with relatively low rates of intraspecific gene flow should be 

more frequently introgressed [46]. In contrast, biparentally inherited nuclear loci that experience high 

rates of intraspecific gene flow should enhance species delimitation [46]. We find the opposite pattern 

in our results (Figure 2 and 3). The chloroplast tree has much clearer species delimitation than the 

nuclear tree and this pattern seems incompatible with the assumption that the incongruence results 

from introgression. 	
 

Although introgression cannot occur without hybridization, hybridization followed by no backcrossing 

and introgression could still occur and such phenomenon has been detected in numerous studies (e.g., 

[47,48]). Natural hybridization in Primula is common and has been confirmed by several studies 

[37,49-51], although, it is currently unclear to what degree species within sect. Armerina hybridize 

with each other. The incongruent placement of P. egaliksensis between chloroplast and nuclear gene 

trees can be explained by hybridization [35-37]. Moreover, our results provide further evidence in 

support of the hypothesis that P. egaliksensis originated from an intersectional allopolyploidization 

event, which places the two tfp copies of P. egaliksensis with either P. nutans or P. mistassinica 

(Figure 3), confirming previous results by Guggisberg et al. [35-37]. From this perspective, similar 

incongruence detected for sample number 14 of P. fasciculata (two tfp copies grouped with either P. 

nutans or P. tibetica) may also result from hybridization. Beside hybridization, incomplete lineage 

sorting is another important explanation for the incongruence between data sets, but the two processes 

are often difficult to distinguish from each other [52-54]. Although incomplete lineage sorting could 
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also be involved in the incongruences found in our results, the occurrence of such a process would 

imply that the origin of the haplotypes of P. pamirica preceded the speciation events of the whole 

clade [52]. Such extensive levels of incomplete lineage sorting may yield gene trees with random 

patterns of relationships among taxa [55]. The patterns of relationships are, however, non-random in 

the nuclear tree. The major incongruences result mainly from the division of P. fasciculata and P. 

gemmifera in different lineages. We thus consider hybridization as the most likely explanation for the 

major incongruence between chloroplast and nuclear trees.  

 

However, it should be noted that using a single nuclear gene that provides low resolution of the 

phylogenetic relationships might not be sufficient to elucidate the reasons of the genealogical 

incongruences between different genomic markers. Although our results tend to suggest a more 

probable role of hybridization as the most likely explanation for the major incongruence between two 

trees, incomplete lineage sorting and introgression cannot be completely excluded. We therefore 

recognize that gene trees/species trees analyses involving multiple nuclear loci or population genomic 

approaches would be necessary to clearly discriminate among these possible scenarios.	
 

Biogeographic history 	

The biogeographic reconstruction based on the chloroplast dataset showed that sect. Armerina 

originated in the Himalayas and subsequently dispersed to the Hengduan Mountains, Northeastern 

QTP and Western QTP (Figure 4). The lineages involved in these dispersal events further diversified 

in the Hengduan Mountains, Northeastern QTP and Western QTP, respectively, and gave rise to 

several of the extant species. Our dating analysis estimates that this section diverged from its closest 

relatives in the Pliocene about 3.55 Ma (95% HPD: 1.76-5.93 Ma, Figure 4). The timeframe of this 

event coincides with the recent uplift of the QTP, which occurred between 1.6-3.4 Ma [21,22,56]. A 

similar time of divergence was also observed in other groups of plants distributed in the QTP [32,57-

59]. It has been suggested that the uplifts of the QTP might have limited the spread of many species, 

but accelerated speciation via vicariance [60]. The timeframe of the uplift also coincides with a period 

of high climatic oscillations that could have reinforced the processes initiated by the uplifts [57,58].  

 

Vicariance and dispersal triggered by the uplift of the QTP and associated climatic changes are 

common mechanisms in the diversification of plants in the QTP (e.g., [59,61]), and also in other 

mountain areas (e.g., [1,62,63]). Based on the S-DIVA analysis, five of the 15 vicariance and seven of 

the 14 dispersal events account for cladogenetic events, and both events occurred during and after the 

Pliocene uplift of the QTP (Figure 4). Vicariance and dispersal triggered by the uplift of the QTP and 

Quaternary climatic oscillations may accelerate the early diversification of sect. Armerina, and further 

shape the biogeographic patterns [59]. Furthermore, ten “vicariance” (for ease of notation, here we 

still keep the word “vicariance” for the isolation of populations of the same species) and seven 
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dispersal events are identified within species-specific clades, which might play a role in promoting 

intraspecific divergence. Extensive inter- and intra-specific divergence took place in the QTP within 

the Pliocene and Quaternary climatic changes in many groups of plants (e.g., [64-68]). Our analyses 

together with previous studies thus highlight the importance of the Pliocene uplift of the QTP and 

Quaternary climatic changes in promoting the diversification of plants in this mountain area.  

Figure 4. Dispersal–vicariance scenarios for sect. Armerina and the outgroup speices based on the chloroplast 

dataset reconstructed by Statistical Dispersal–Vicariance Analysis (S-DIVA) optimization with the maximum 

number of area units set to two. Triangle: dispersal event; diamond: vicariance event. Letters denoting area units 

are indicated on the map.	Pie charts at internal nodes represent the marginal probabilities for each alternative 

ancestral area. Alternative ancestral areas (letters on nodes) are indicated for the major nodes. The grey bars on 

the nodes represent the 95% highest posterior density intervals of the dates obtained from BEAST analyses. 

Time scale is shown at the bottom. Three groups (F1, F2 and NT) are used for the evolutionary niche models: 

groups F1 and F2 are two clades of P. fasciculata in the chloroplast tree; group NT includes all samples of P. 

tibetica and samples of P. nutans that were only collected from the QTP. 	
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Niche evolution of P. fasciculata  

The S-DIVA analysis shows different biogeographic patterns for the two P. fasciculata clades. One 

clade (F2; Figure 4) occupies only Northern Tibet, while samples from the other clade (F1) can be 

found in the Hengduan Mountains, Eastern Tibet and Northeastern QTP. Wiens & Donoghue [69] 

argued that phylogenetic niche conservatism and niche evolution might be critical in the 

biogeographic history of many groups. In contrast to most previous studies that have suggested the 

importance of niche conservatism in setting range limits and creating biogeographic patterns (e.g., 

[70,71]), niche evolution under climatic changes seems to be the major factor explaining the 

biogeographic patterns detected here. Although the OU1 model that allows a single niche optimum is 

the best model along the temperature gradient (PC1), models that allow different niche optima 

received together higher AICc weights (AICcOUM+OUMV+OUMA=0.59). This result suggests that 

ecological differentiation (i.e., different niche optima) is occurring in this group.  

 

Figure 5. Parameter estimates of models of niche 

evolution for the three groups (F1, F2 and NT). 

For PC1, averaged parameters are obtained based 

on three supported models (OUM, OUMV and 

OUMA). The averaged strength of selection (α) 

estimated across models for the three groups is 

similar and not shown. For PC2, parameter 

estimates are from the only supported OUMV 

model (different rates σ2 and niche optima θ 

among the three groups). 

 

 

The two P. fasciculata clades and their two closely related species are estimated to diverge from each 

other during the Quaternary after the uplift of the QTP (Figure 4). Climatic oscillations during the 

Quaternary had a dramatic effect on species distribution ranges [72]. Many species have repeatedly 

retreated and expanded their distributions following these climatic oscillations (e.g., [57,58,72,73). In 

the context of a changing environment, dispersal plays a crucial role in tracking favorable 

environmental conditions through space [74]. It can also help adaptation of small populations through 

both demographic and genetic rescue effects [75,76]. Two dispersal events may have provided the 

opportunities for populations of clade F1 to occupy wide ranges and also invade new habitats and 

climatic regimes (Figure 4). These events are associated with relatively relaxed niches (i.e., niche 

optima are not strongly correlated with temperature and precipitation gradient; Figure 5) and fast niche 

evolution (Figure 5) and these characteristics might have allowed these populations to adapt to the 

changing environmental conditions [11,77]. In contrast, populations of clade F2 occur at higher 
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altitudes (average 4600 m) compared to those of clade F1 (average 4200 m). These populations of 

clade F2 might have been adapted to a colder climate characterized by lower temperature seasonality 

(i.e., cooler summers) and less precipitation in the coldest Quarter (see results of PCA and Figure 5). 

Clade F2 displays a lower rate of niche evolution than F1 populations and this lower rate could have 

limited its dispersal into lower and warmer places. A similar pattern was observed in tropical treefrogs 

[78], which were unable to extend their ranges further North into temperate regions. Furthermore, 

recent climatic changes are involved in a shift toward higher elevations in the climatic envelopes of 

two closely related monkey-flower species in the direction of higher elevations [79]. However, given 

the harsh environmental conditions, it is plausible that climatic warming in the future might adversely 

affect the populations of the clade F2 and cause their distributions to shrink [57]. Our results also 

indicate that contrasting evolutionary processes can occur within closely related lineages, reinforcing 

the idea that phylogenetic niche conservatism is unlikely to hold at lower spatial scales [80]. 	
 

While we focus on climatic variables (i.e., temperature and precipitation) to explain the biogeographic 

patterns detected here, additional ecological factors such as edaphic variables, competition, seed bank 

and seed number could be involved in creating biogeographic patterns [10,12]. As argued by Hoskin et 

al. [81], geographic isolation of populations within species and variation in ecological factors are 

major precursors to cryptic speciation. The ecological differences and biogeographic patterns found 

between the two P. fasciculata clades may have given rise to some degree of differential adaptation to 

their respective environmental conditions, as also suggested in Taxus wallochiana [58]. However, our 

data is not appropriate to gain a detailed knowledge of the processes at play here and further studies 

involving a finer sampling of populations associated with large scale genomic data should be 

employed to better understand the mechanisms involved in the separation of the P. fasciculata clades. 

 

Conclusion	

Our phylogenetic analyses, based on both chloroplast and nuclear datasets, show non-monophyly of 

Primula sect. Armerina, corroborating the results of previous family-level studies [38,39]. The 

topologies inferred from nuclear gene and concatenated chloroplast datasets are incongruent, which 

may mainly result from hybridization. This section was suggested to originate in the Himalayas during 

the Pliocene uplift of the QTP. Subsequent dispersals to the Hengduan Mountains, Northeastern QTP 

and Western QTP were considered as the consequence of the Pliocene uplift of the QTP and following 

climatic changes. We further provide a practicable framework for the first time to test the relationship 

between biogeographic patterns and ecological factors in the QTP area. Our evolutionary models 

suggest that niche evolution, rather than niche conservatism, seems to explain the biogeographic 

patterns of the two P. fasciculata clades. 

 

Methods	
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Sampling and extraction	

We collected in total 57 samples representing 10 of the 14 species belonging to Primula sect. 

Armerina (Additional file 1). We could not obtain plant material for P. iljinskyii, P. chrysostoma, P. 

knorringiana and P. valentinae, which have small distributions in Central Asian Mountains and are 

difficult to obtain due to their geographical locations. Widespread species were collected from 

different localities across their geographical ranges. For example, P. nutans was represented by two 

samples from N America, two from N Europe, one from NW Mongolia and four from China. Seven 

outgroup species were sampled based on the large phylogenetic tree of Primulaceae (Additional file 1; 

[38]). All samples were dried and stored in silica gel after collection, except for P. pamirica, which 

was obtained from Harvard University herbaria. The leaf tissues were ground to dust using an electric 

tissue homogenizer. Total genomic DNA was then isolated using the DNeasy Plant Mini Kit (Qiagen 

AG, Hombrechtikon, Switzerland) following the manufacturer’s instructions.	
 

Amplification and sequencing 	

Five chloroplast DNA regions and one nuclear gene were sequenced. Three cpDNA loci (rpl16 intron; 

trnL-F region, which comprises the trnL intron and the trnL-trnF intergenic spacer; rps16 intron) were 

amplified and sequenced using the published primers [34]. The matK gene and trnH-psbA intergenic 

spacers were amplified and sequenced following the protocol described in Li et al. [82]. For the 

nuclear gene, we designed three pairs of exon-primed-intron-crossing (EPIC) primers based on an 

Arabidopsis thaliana translin family protein locus (tfp, AT2G03780) and a Primula sieboldii seedling 

cDNA library (FS228429). Only one pair of primers: tfp_e1.F (5’-CGAGAAAGGGTGGTAAAAGC-

3’) and tfp_e1.R (5’-CTGGGGAGTAAGCTCGTCTG-3’), was amplified successfully for sect. 

Armerina. Polymerase chain reactions (PCR) generated double bands and direct sequencing of tfp_e1 

amplicons produced electropherograms with double peaks and non-complementarity between 

sequenced strands in the following accessions: P. fasciculata (populations 9, 14, 16), P. conspersa 

(population 3) and P. egaliksensis. These PCR products were applied on a 1.5% agarose gel, then 

excised and purified using a QIAquick Gel Extraction Kit (Qiagen, cat. no. 28704). The purified 

products were subsequently cloned into a pTZ57R/T vector and sequenced. Eight clones were 

sequenced per band.	
 

All PCR reactions were performed in 25 µL volumes containing 1	× buffer (including 1.5 mM MgCl2), 

2 mM MgCl2, 300 µM dNTPs, 0.2 µM of each primer and one unit Taq polymerase (GoTag DNA 

Polymerase, Promega, Madison, WI, USA). Amplifications were carried out on a thermocycler 

(Biometra, Goettingen, Germany) using the following conditions: a first cycle at 94℃ for 3 min; 36 

cycles at 94℃ for 40 s, 55 ℃ for 1 min and 72℃ for 1.2 min; a final cycle of 7 min at 72℃. All 

sequencing reactions used the Big Dye 3.1 Terminator cycle sequencing kit (Applied Biosystems, 

Foster City, CA, USA), then sequenced on an ABI Prism 3100 genetic analyzer (Applied Biosystems). 
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DNA sequences were aligned with Geneious 6.1.6 (Biomatters) using MAFFT [83] and revised 

manually. The nuclear gene data generated from direct sequencing were scanned carefully and edited 

when necessary to ensure that all double peaks were identified correctly with standard degeneracy 

codes (e.g., Y means C or T; R means G or A; W means A or T; K means G or T; M means C or A). 

When double peaks were detected at a site, the site was ascertained as ambiguous only if the weakest 

signal reached at least 25% of the peak signal strength [84,85]. For individuals that contained multiple 

clones for the tfp gene, we randomly chose a single representative sequence for the phylogenetic 

analysis if all the clones formed a well-supported clade in a preliminary analysis, while multiple 

sequences were retained otherwise. All sequences were submitted to GenBank (accessions KT259477-

KT259852).	
 

Phylogenetic reconstruction and molecular dating	

The five chloroplastic genes were concatenated into a single dataset using SequenceMatrix 1.7.8 [86], 

while the chloroplast and nuclear datasets were analyzed separately. The GTR+G model of sequence 

evolution was selected on the basis of the Akaike information criterion (AIC) for all DNA regions as 

estimated by jModelTest 2.1.4 [87]. Maximum likelihood analyses were done with PhyML (ver. 3.0; 

[88]) using the BEST algorithm for branch swapping and 103 bootstrap replicates to assess node 

support. We estimated tree topology by Bayesian inference using MrBayes 3.2 [89] with the GTR+G 

model of evolution and default priors. We unlinked the parameters of the GTR+G model between the 

five different genes for the analysis of the chloroplast dataset. We repeated the MrBayes analyses three 

times for each analysis (i.e., chloroplast and nuclear dataset) and each analysis consisted of four chains 

of 107 generations, sampling every 103 steps with temperature parameter set to 0.1. We determined 

convergence by examining trace plots of the log-likelihood values for each parameter in Tracer 1.5.  

 

We used the chloroplast dataset for dating analysis with a secondary calibration strategy, as described 

in de Vos et al. [38], However, age estimation obtained from this kind of calibration may be inherently 

subjected to bias and errors [90]. We addressed this concern by comparing our estimated age with 

previously published ones, but it should be noted that they are estimates that should be treated with 

caution. Divergence time analysis was performed in BEAST (ver. 1.7; [91]). The fossil record of 

Primulaceae is too sparse to provide multiple and reliable calibrations within the family [92,93]. The 

only available fossil that can be used as minimum-age estimate for the split between Primula and 

Soldanella is represented by seeds from Primula riosiae from the Miocene that are dated at 15.97 Ma 

(the early-mid Miocene boundary; [94]). Therefore, we performed a completely separate divergence-

time analysis from a taxonomically more inclusive sample of six plastid gene regions (matK, ndhF, 

rbcL, trnL-F, rps16 and rpl16) available in GenBank (Additional file 2). We included P. fasciculata, 

P. involucrata, P. sikkimensis and P. alpicola in the larger analyses to obtain a root age estimate for 

Primula sect. Armerina. The resulting data matrix comprised 7978 aligned sites and 13 species of 
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Primulaceae, with 8.3% missing data (Additional file 2). Sequence alignment and model specification 

proceeded as described above, unless otherwise stated. The GTR+G model of sequence evolution was 

selected by jModelTest 2.1.4 for rpl16, trnL-F, ndhF and matK, GTR+I model for rps16 and 

HKY+G+I model for rbcL. A normally distributed prior with a mean of 39.996 Ma and a standard 

deviation of 11.492 Ma [38] was used to constrain the root of the Soldanella/Androsace divergence to 

be within the interval 21.09-58.90 Ma with 95% probability. The calibration point between Primula 

and Soldanella based on the fossil of Primula riosiae was set to a lognormal prior with an offset of 

15.97, a mean of 2.1 and a standard deviation of 0.63. The analyses were run using a random starting 

tree for 108 generations sampling every 103 generations under the uncorrelated lognormal relaxed 

clock model, a birth-death tree prior and the selected models of substitution for different partitions. 

The analyses were repeated three times to verify convergence by examining the posterior distribution 

of parameters in Tracer 1.5. After the removal of the burn-in (10 million generations in each analysis, 

corresponding to 10% of the samples), the inferred age distribution of the node separating the groups 

containing either P. fasciculata and P. involucrata or P. sikkimensis and P. alpicola was estimated in 

Tracer 1.5. 	
 

The age obtained for the Armerina section was then used as a calibration point for the root age of the 

Armerina analysis and modeled as a γ prior with a shape of 9.7, a scale of 0.61 and an offset of 1.4. 

We used similar settings as described above and the samples retained after removal of the burn-in 

from the three runs were summarized as a maximum clade credibility tree with mean divergence times 

using TreeAnnotator (part of the BEAST package).  

 

Biogeographic reconstruction	

We ran Statistical Dispersal Vicariance Analysis (S-DIVA) using RASP v.2.1 [95,96] to infer 

the biogeographic history of this section based on the phylogenetic trees constructed only from our 

concatenated chloroplast dataset. We did not use the tfp nuclear dataset since two homologous copies 

were obtained from some samples, but multiple copies were not present in all species. We defined 

seven biogeographic regions for the individuals that were collected: A (East Tibet and Hengduan 

Mountains), B (Himalayas Mountains), C (Northeast QTP), D (Monutains of Central Asia), E (North 

Europe), F (North America) and G (Mongolian Plateau). Regions A-C were defined according to the 

biogeographic divisions of China [97], and had been applied in other studies (e.g., [59,98]). Region D 

was defined based on the distribution area of P. pamirica. Regions E-G were defined based on the 

distribution of P. nutans and some outgroup samples used in this study. To account for uncertainties in 

phylogenetic reconstructions, we randomly chose 20,000 trees from the posterior distribution of trees 

obtained by BEAST. The number of maximum areas was set to 2 and we estimated the possible 

ancestral ranges at each node of the selected phylogenetic trees.	
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Evolution of ecological preferences	

Climatic niche is one of the main factors for setting historically biogeographic patterns, especially 

during drastically climatic changes, such as Quaternary climate oscillations [10-12]. In order to better 

understand the biogeographic patterns obtained above, we fitted a series of macro-evolutionary models 

based on 19 bioclimatic variables. We focused on the clades formed by the species P. fasciculata, P. 

tibetica and P. nutans because they represent the main lineages in the group, and tested whether the 

evolutionary trajectories of the climatic niches differed among the different clades (F1, F2; Figure 4) 

obtained for P. fasciculata (see results) and its two closely related species P. nutans and P. tibetica 

(NT; Figure 4). For this test, we used only the samples of P. nutans that were collected in the QTP. 

 

We extracted the 19 bioclimatic variables of WorldClim (http://www.worldclim.org/current; [99]) for 

all samples of the three groups (F1, F2, NT) using the package raster [100] in R. All the 19 bioclimatic 

variables were then summarized into principle components using the prcomp function in the stats 

package of R [101]. We used the R package OUwie [102] to compare the fit of a series of models (see 

Table 1 for detailed interpretation for each model) to explain the differences in niche evolution 

between species inhabiting similar or different biogeographic regions. We tested these models on 

different sets of groups: (1) F1/F2 vs. NT (SET1); (2) F1 vs. F2 vs. NT (SET2); (3) F1 vs. F2/NT 

(SET3); and (4) F2 vs. F1/NT (SET4).	
 

Table 1. Models of niche evolution relevant to different group-sets with their parameters and interpretation, 

indicating for each model whether the optimal niche value, θ, the intensity of random fluctuations in the 

evolutionary trajectory, σ2, and the strength of selection toward the optimal value, α, are modeled with one 

global parameter or with two or three parameters that are group-specific.	

 

Stochastic mapping for all model tests were run 10 times for 100 trees randomly selected from the 

posterior distribution of trees from the BEAST analysis to account for possible uncertainty in the 

 Parameters	    

Model	 θ	 σ2 	 α	 Interpretation for models	
BM1	 Global	 Global	 -	 Evolution is random 	
BMS	 Global	 Group-specific	 -	 Different groups have different rates of niche 

evolution	
OU1	 Global	 Global	 Global	 Niche evolution is directed toward an optimal 

value without being affected by different groups	
OUM	 Group-specific	 Global	 Global	 Different groups have different optimal values	
OUMA	 Group-specific	 Global	 Group-specific	 Different groups have different optimal values 

and strength of selection	
OUMV	 Group-specific	 Group-specific	 Global	 Different groups have different optimal values 

and rates of niche evolution 	
OUMVA	 Group-specific	 Group-specific	 Group-specific	 Different groups have different optimal values, 

strength of selection and rates of niche evolution 	
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estimated values. Model fit was determined using AICc weights calculated from ΔAICc scores [103]. 

The highest value of AICc weight represents the best model. Finally, we calculated an average AICc 

weight and lower (2.5%) and upper (97.5%) quantiles of the distributions of AICc weights for each 

evolutionary niche model.  

 

Additional files 

Additional files can be found in https://ndownloader.figshare.com/collections/3635354/versions/1  
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Abstract 

Understanding the relative roles of geography and ecology in driving speciation, population 

divergence and maintenance of species cohesion is of great interest to molecular ecology. Closely 

related species that are parapatricly distributed in mountainous areas provide an ideal model to 

evaluate these key issues, especially when genomic data are analyzed within a spatially and 

ecologically explicit context. Here we used three closely related species of Primula that occur in the 

Himalayas, the Hengduan Mountains and Northeast Qinghai-Tibet Plateau (QTP) to examine spatial 

and ecological effects on interspecific divergence and maintenance of species cohesion. We used 

genomic data for 770 samples of the three species using restriction site-associated DNA (RAD) 

sequencing and combined approximate Bayesian computation (ABC) modeling, Bayesian generalized 

linear mixed modeling (GLMM) and niche-based species distribution modeling (SDM). The three 

species are clearly delimited by the RADseq data. Further ABC modeling indicates that the three 

species originated in the Himalayas and diverged from each other following the uplifts of the 

Hengduan Mountains and the Northern QTP during the Pliocene. After a long period of divergence, 

the three species came into secondary contact triggered by past climatic changes as suggested by the 

SDMs but with no significant introgression. The three species display complex and different drivers of 

genomic variation, which provides further insights into the effects of geographical and ecological 

factors on maintaining species cohesion. Our findings highlight the significance of combining the use 

of population genomics with environmental data when evaluating the effects of geography and 

ecology on interspecific divergence and maintenance of closely related species.  
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Introduction 

Understanding the relative roles of geography and ecology in speciation, population divergence and 

maintenance of species cohesion is a longstanding goal in molecular ecology and evolutionary biology 

(Coyne & Orr 2004; Nosil 2012). Historically, geographical isolation, leading to reduced gene flow 

between isolated populations, has been considered a prerequisite for reproductive isolation (i.e. 

allopatric speciation; Mayr 1963; Rice & Hostert 1993). It has however recently been proposed that 

adaptation to different environmental conditions, resulting in separated populations evolving different 

ecological niches, can also lead to divergence and speciation (Berlocher & Feder 2002; Rundle & 

Nosil 2005; Nosil 2008). The interplay between these different processes may become very complex 

in mountainous areas due to their rugged topographic features and the profound ecological 

heterogeneity created by historical orogenesis and associated climatic changes (Hoorn et al. 2010; 

Favre et al. 2014). Furthermore, the mechanisms associated with these historical events do not have 

similar effects on population divergence, speciation and species maintenance across organisms (e.g. 

Zhang et al. 2005; Opgenoorth et al. 2010; Sun et al. 2014; Ren et al. 2017). Despite their importance 

in driving the high biodiversity in mountainous areas (Myers et al. 2000), the specific roles played by 

these mechanisms are still unknown for most species in mountainous areas. 

  

Comparing closely related species at the population level can offer insights into the relative 

importance of geographical versus ecological segregation (e.g. Abbott et al. 2000; Jia et al. 2012; 

Anacker & Strauss 2014), helping to clarify the mechanisms of speciation. To address this issue, one 

however needs to resolve the phylogenetic relationships between closely related species. This task is 

usually difficult to achieve with traditional neutral markers, especially for genera that harbor high 

species richness and experience hybridization during their evolution, such as Primula L. (Guggisberg 

et al. 2009; Schmidt-Lebuhn et al. 2012) and Gentiana L. (Liu et al. 2016). This problem may be 

overcome by using many thousands of DNA markers (e.g. Wagner et al. 2013; Pante et al. 2015), for 

example using recently developed next-generation sequencing (NGS) methods such as restriction site 

associated DNA (RAD) sequencing (Baird et al. 2008). Additionally, population genomics allows for 

discerning genomic regions that diverge neutrally from those that respond to divergent selection across 

heterogeneous landscapes (e.g. Lexer et al. 2014), which could provide a more accurate picture of the 

drivers of divergence compared with traditional neutral marker studies (Nosil 2012). 

  

Here, we investigate the effects of geological and climatic factors on population divergence, speciation 

and the maintenance of species cohesion in three closely related species of the genus Primula 

(Primulaceae): P. nutans Georgi, P. fasciculata Balf. f. & Kingdon-Ward and P. tibetica Watt (section 
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Armerina). The three species represent prominent floristic elements of alpine meadows at high 

altitudes (Hu & Kelso 1996) and are widely distributed in the Qinghai-Tibet Plateau (QTP), which 

experienced drastic habitat changes and harbors extremely rich species diversity and endemism (Wu 

1987). The historical orogenesis and the associated climatic changes are likely to account for the 

establishment of high species richness in the region (Wu 1987). Although the uplifts of the QTP can 

be dated back as early as 50 million years ago (Ma), the times of its following uplifts are controversial 

(reviewed in Renner et al. 2016). Some scientists believe that the QTP has reached 4000 m since the 

mid-Eocene (40 Ma; Renner et al. 2016 and references therein), while others suggest that a more 

recent uplift has occurred during the late Miocene and Pliocene (2.4-8 Ma), particularly at its eastern 

and northern edge such as the Hengduan Mountains and the Qaidam basin (Li & Fang 1999; Zheng et 

al. 2000; Mulch & Chamberlain 2006). Many evolutionary studies have indicated that extensive 

species diversification took place in the region during the Pliocene (Liu et al. 2002, 2006; Wang et al. 

2010; Li et al. 2012; Li et al. 2013), which seem to support the latter hypothesis. The three species 

studied here, occurring in the Himalayas, the Hengduan Mountains and the Northeast QTP, 

respectively (Fig. 1a), represent a unique opportunity and the first time using population genomic data 

to evaluate whether their divergence may be triggered by such a recent uplift of the eastern and 

northern edge of the QTP. Previous phylogenetic and biogeographic analyses based on several plastid 

markers indicated a monophyletic clade formed only by the three Primula species that might have 

originated in the Himalayas during or after the Pliocene (de Vos et al. 2014; Ren et al. 2015). 

However, the roles played by historical geological events on the initial interspecific divergence of 

these three Primula species and the factors that are influencing the current distributions of the species 

and their maintenance remain unknown. 

 

All the three species are insect-pollinated, heterostylous, herbaceous, perennial plants and usually 

grow in wet meadows or along hill streams, but in different areas of the QTP (Hu & Kelso 1996). 

Primula tibetica and P. fasciculata both occur in high altitude between 2900 and 5000 m in the 

Himalayas and the Hengduan Mountains, respectively, these two mountain regions representing two 

key biodiversity hotspots in the QTP, while P. nutans is distributed mainly below 3800 m in the 

Northeast QTP (Fig. 1a). In contrast to the other two species endemic to the QTP, P. nutans can also 

be found in NW China, Central Asia, N Mongolia, N Europe, W&E Siberia and NW North America 

(Richards 2003). Furthermore, there is currently overlap in the geographical ranges between P. tibetica 

and P. fasciculata, and between P. nutans and P. fasciculata, respectively (Fig. 1). This distribution 

pattern coupled with the use of population genomic data provides an opportunity to investigate the 

relative roles of geography and ecology in population/species divergence. Specifically, the aims of our 

study are 1) to characterize interspecific divergence of the three species based on RADseq data by 

sampling multiple populations that represent most of the distribution in the QTP for each species; 2) to 

decipher their interspecific divergence, and link their divergence times with historical geological 
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events; 3) to investigate the effects of climatic changes and identify the drivers maintaining species 

cohesion. 

  

Materials and methods 

Sampling, RAD library preparation, sequencing and processing of Illumina data 

We selected a total of 43 populations from three closely related species, P. tibetica, P. fasciculata and 

P. nutans, which were collected from the QTP (Fig. 1; Table S1). For P. tibetica, we used the same 16 

populations sampled in a previous study (Ren et al. 2017). Fifteen populations of P. nutans and 12 out 

of 61 populations of P. fasciculata (i.e. same strategy as applied for P. tibetica to select populations 

that were representative of both the geographical distribution and the diversity of ecological niches) 

were used. Six to 20 individuals were chosen from each population, which gave us a total of 770 

individuals that were processed with a double-digestion restriction site-associated DNA sequencing 

(RADseq) following the same protocol used for P. tibetica (Ren et al. 2017). The libraries were 

sequenced using single-end reads of 100 bp of length. 

  

Single-end Illumina reads were processed into RAD-tags using the STACKS-1.30 software pipeline 

(Catchen et al. 2011, 2013). All reads were trimmed to 90 bp in length. We used all 770 samples to 

build a catalogue and matched each sample against the catalogue to identify alleles. The execution of 

the de novo assembly was accomplished using the denovo_map.pl script. Different combination of 

parameter settings for this script gave similar results as tested in Ren et al. (2017), we therefore only 

considered the following settings for assembly: minimum number of reads to create a stack (m) = 3; 

maximum distance allowed between stacks (M) = 3; maximum number of mismatches allowed 

between loci (n) = 3; -t flag to remove or break up highly repetitive RAD-tags during the ustacks 

component and upper bound of error rate (ε) = 0.1. We used rxstacks to further filter the data to 

increase quality, correct SNP calls and remove haplotypes that were in excess. The rxstacks used the 

output from the denovo_map.pl script as input combined with the following filters: --conf_filter --

conf_lim 0.25 --prune_haplo --model_type bounded --bound_high 0.1 --lnl_lim -10.0 --lnl_dist. After 

rxstacks, cstacks and sstacks were run again with the same setting as before to rebuild the catalogue of 

reads.   

 

We used the same settings as in Ren et al. (2017; m = 3, r = 0.5, min_maf = 0.01, max_obs_het = 0.5) 

to filter the catalogue of reads using the populations module to generate three data sets (i.e. one for 

each species; D1 - D3) and one data set considering all the three species (D4) for downstream 

population genetic analyses. We retained polymorphic RAD loci that were only present in all 

populations for each data set and scored for each RAD locus only the first SNP if several were present. 

Pairwise FST values and analysis of molecular variance (AMOVA) for different data sets and different 
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genomic fractions (see below) were calculated among populations in GENODIVE v.2.0b27 

(Meirmans & Van Tienderen 2004), and significance was determined using 1 × 104 permutations. 

 

  
Fig. 1 (a) Geographic locations of the 43 populations analyzed in the present study. Small grey squares and stars 

represent sampled populations for P. tibetica and P. fasciculata from fieldwork, respectively. (b) Plots of 

posterior probabilities for individuals of the three species assigned to K genetic clusters from STRUCTURE 

analyses for K = 3. 

 

Outlier detection 

Polymorphic loci from the datasets D1 to D3 potentially under balancing and divergent selection for 

each species were screened for statistical outliers as implemented in BAYESCAN 2.1 (Foll & 

Gaggiotti 2008). BAYESCAN estimates population-specific FST coefficients by the Bayesian method 

described in Beaumont & Balding (2004) and uses a cut-off based on the mode of the posterior 

distribution to detect SNPs under selection (Foll & Gaggiotti 2008). We used a prior odds value of 10, 

with 1 × 105 iterations and a burn-in of 5 × 104 iterations. We identified loci that were significant 

outliers at a false discovery rate (FDR) of 0.05. Loci that were identified as balancing and divergent 

outliers were segregated into a negative and a positive outlier data set, respectively; the remaining loci 

(with outliers removed) comprised the neutral data set. We further investigated whether outlier loci in 

one species were also detected as outlier loci in the other two species. 
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Interspecific divergence 

Dataset D4 was used for population structure analysis using a Bayesian method implemented in 

STRUCTURE 2.3.4 (Pritchard et al. 2000) and for reconstructing a maximum likelihood tree in 

PHYML 3.0 (Guindon et al. 2010) to investigate interspecific divergence among the three species. 

STRUCTURE analysis was performed under the “Admixture model” and the “Correlated allele 

frequency model” with K-values ranging from 1 to 10. Ten independent runs were performed for each 

value of K using 5 × 104 generations for the burnin and 2.5 × 105 generations for the sampling. The 

optimal K was chosen using the delta-K method of Evanno et al. (2005) as implemented in 

STRUCTURE HARVESTER (Earl & vonHoldt 2012). The coefficient for cluster membership of each 

individual was averaged across the ten independent runs using CLUMPP (Jakobsson & Rosenberg 

2007) and plotted using DISTRUCT (Rosenberg 2004). Nodal support of phylogenetic tree was 

estimated from 1000 bootstrap replicates in PHYML. 

  

Generalized linear mixed modeling of genomic, spatial and environmental data 

A generalized linear mixed modeling (GLMM) approach was performed on the three datasets D1 to 

D3 to test whether population divergence of different genomic fractions (negative, neutral and positive 

RAD loci) for each species was driven by isolation by distance (IBD) or isolation by environment 

(IBE) or both (e.g. Lexer et al. 2014). The modeling was run in the R package MCMCGLMM (Hadfield 

2010). Genetic divergence FST metrics for multilocus nuclear RADseq data sets (negative, neutral and 

positive RAD loci) were used as response variables for each species. 

  

We used geospheric distances between populations (‘GEO’ from here onwards) and pairwise 

differences of altitude between populations (‘ALT’ from here onwards) as predictor variables to assess 

the spatial effects. For environmental predictors, we used two different kinds of variables: 1) 19 

WorldClim variables (Hijmans et al. 2005; ‘CLI’ for climatic data from here onwards) and 2) three 

edaphic variables (Soil- carbon, moisture, PH; ‘SOI’ for edaphic variables from here onwards) 

obtained from the Center for Sustainability and the Global Environment 

(http://nelson.wisc.edu/sage/data-and-models/atlas/maps.php). The Euclidean distances of these 

variables between populations for each of the three species were calculated in the R package ade4 

(function ‘dist.quant’). 

  

We ran sixteen different models for each species that resulted from combinations of the four predictor 

variables: a null model without any predictor; four models with a single predictor variable (GEO, CLI, 

SOL or ALT); six models with different combinations of two predictors; four models with different 

combinations of three predictors and one with all the four predictors. The deviance information 

criterion (DIC) and associated DIC differences and weights were used to compare all models for each 

genomic fraction and draw conclusions on the relative roles of different drivers of divergence for each 
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of them. MCMCGLMM was initiated with standard priors and run with a burn-in of 2 × 106 followed by 

1 × 107 iterations with a thinning interval of 1 × 103. Chain convergence was confirmed by inspecting 

trace plots using the R package CODA. 

  

Modeling of historical divergence 

We used approximate Bayesian computation (ABC) method implemented in DIY-ABC v2.1.0 

(Cornuet et al. 2014) to further decipher the historical divergence of the three species. We subsampled 

from the D4 dataset two individuals from each of the 43 populations ten times and pooled individuals 

into ‘species’ groups to generate unbiased estimates of species history and to reduce computational 

time. We selected for each sub-dataset a single SNP per locus and the SNPs had to be present in at 

least 80% of the individuals from each species and in all the three species. The ten sub-datasets were 

listed in Supporting Information Table S2. We tested seven possible scenarios for the origins and 

relationships between species: P. nutans diverged first (S1-S2), P. tibetica diverged first (S3-S4), P. 

fasciculata diverged first (S5-S6) and all three species diverged simultaneously from their ancestor 

(S7, Fig. S1). We gave each scenario a uniform prior probability (Table S3) and selected all summary 

statistics to generate a reference table containing 7 × 106 simulated data sets (on average 106 per 

scenario). We used 1% of the simulated data sets closest to the observed data to estimate the relative 

posterior probabilities for each scenario via logistic and posterior distribution of historical 

demographic parameters according to the most likely scenario (Cornuet et al. 2010). The time 

parameters are estimated in generations and converted into years by multiplying generation time, 

which was set to one year for the three species (Ren et al. 2017). 

  

Species distribution models 

An ensemble of species distribution models was generated for P. nutans and P. fasciculata following 

the same methodology applied for P. tibetica (see Ren et al. 2017) using three different techniques: 

generalized linear model, gradient boosting machine and random forests, as implemented in the R 

package biomod2 (Thuiller et al. 2009). A total of 67 and 89 species occurrences obtained from the 

field collections and herbarium records were used as presences data to calibrate the models for P. 

nutans and P. fasciculata, respectively. As environmental variables we used the WorldClim database 

(Hijmans et al., 2005), and, to avoid multicollinearity, we used the same ones as in Ren et al. (2017). 

We run ten replicates per method, where each replicate was calibrated on 70% of the data and 

evaluated on the remaining 30% using the area under the curve (AUC) of a Receiver-Operating 

Characteristics (ROC) plot (Swets 1988) and the true skill statistics (TSS; Allouche et al. 2006). The 

averaged and pondered consensus model (the contribution of each replicate was weighted 

proportionally to their AUC values) was then projected onto the last Maximum Glacial (LGM) with 

three different general circulation models (GCMs): CCSM4, MIROC-ESM, MPI-ESM-P available 

from http://cmip-pcmdi.llnl.gov/cmip5/ processed on  WorldClim database. The consensus model was 
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converted into a binary model (presence/absence) by applying a threshold that allow a maximum of 

5% of omission error (i.e. omission error is the percentage of the real presence predicted as absences 

in the model; Fielding & Bell 1997), 

  

Results 

Sequence data quality and processing 

The average number of sequence reads among the 770 samples of the three species was 2.16 million 

(2.11-2.23 million) and the average number of reads per sample that were used in the assembly of the 

RAD-tags was 1.58 million (1.53-1.64 million; Table S4). Datasets D1-D3, containing 2822, 6086 and 

12925 single-SNP loci, were used for the outlier detection in P. tibetica, P. fasciculata and P. nutans, 

respectively. Dataset D4 including all samples of the three species used for structure analysis and 

building a phylogenetic tree contained 748 single-SNP loci. 

  

Table 1 Analysis of molecular variance (AMOVA) estimated for three different genomic fractions: negative, 

neutral and positive divergent outlier RADseq markers for three species. Number of loci was also shown for 

each data set. 

Genome fraction No. of loci Source of 
variation 

df Variance 
components 

% of 
variation 

FST 

P. nutans       
RAD/negative 36 Within 227 8.38 95.7  
  Among 14 0.38 4.3 0.043* 
RAD/neutral 12834 Within 227 906.30 85.0  
  Among 14 160.01 15.0 0.150* 
RAD/positive 55 Within 227 9.93 67.6  
  Among 14 4.76 32.4 0.324* 
P. fasciculata       
RAD/negative 94 Within 222 23.84 85.6  
  Among 11 101.74 14.4 0.144* 
RAD/neutral 5946 Within 222 385.37 69.4  
  Among 11 169.74 30.6 0.306* 
RAD/positive 46 Within 222 7.41 36.2  
  Among 11 13.04 63.8 0.638* 
P. tibetica       
RAD/negative 54 Within 277 10.67 77.1  
  Among 15 3.17 22.9 0.229* 
RAD/neutral 2727 Within 277 191.75 58.6  
  Among 15 135.59 41.4 0.414* 
RAD/positive 41 Within 277 5.29 33.4  
  Among 15 10.54 66.6 0.666* 
*, P < 0.001  

 

Outlier loci 

Outlier detection identified 140 potentially non-neutral outlier RAD loci in P. fasciculata, 94 of which 

were in the lower tail (negative outliers) and 46 in the upper tail (positive outliers; Fig. S2; Table 1). In 

P. nutans, 91 RAD loci were revealed as outliers, 36 of which were showing negative and 55 were 

positive. Similarly, 95 RAD loci in P. tibetica were identified as outliers, 54 of which were negative 
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and 41 were positive. None of these loci was shared as outlier in all of the three species. As expected, 

AMOVA of negative, neutral and positive RADseq polymorphisms revealed greatly increased among-

population variance for the latter ones in the three species. The among-population variances (FST) were 

smaller in P. nutans than in the other two species (Table 1). 

 

Interspecific divergence 

Both the STRUCTURE and phylogenetic tree suggested a clear species delimitation of the three 

species (Fig. 1b, S3). At K = 3 (the best K value chosen by STRUCTURE HARVESTER), we 

detected only one individual of P. fasciculata that was significantly introgressed by P. nutans. Little 

gene flow among species was detected. 

 

Modeling of genetic, spatial and environmental data 

Generalized linear mixed models (GLMM) of genetic divergence for negative, neutral and positive 

RAD polymorphisms with GEO, CLI, SOI and ALT as predictor variables revealed complex and 

different drivers of variation in the genomic data for the three species (Table 2). For P. nutans, 

geographical distance (GEO) was the main driver for the variation of negative and neutral RAD data 

sets, with DIC weights equal to 0.396 and 0.353, respectively. The best predicted models for the 

divergence of positive outlier RAD loci were GEO+CLI (DIC weight 0.199) or GEO+CLI+SOI (DIC 

weight 0.198), indicating that climatic and edaphic variables were involved in triggering divergent 

selection between populations in P. nutans. GEO alone also received non-negligible support for the 

divergent selected fraction of genomes in this species (DIC weight 0.168). By contrast, the model 

including all of the four predictors (GEO+CLI+SOI+ALT) was best supported in driving the variation 

of negative, neutral and positive RAD polymorphisms in P. fasciculata. The highest DIC value (0.861) 

for the positive data set indicated that both the geographical and environmental variables have played 

important roles in divergent selection between populations of this species. The model including all 

four predictors also best predicted the divergence of positive outlier RAD polymorphisms in P. 

tibetica (DIC weight 0.367). For negative and neutral data sets in P. tibetica, the best-supported model 

was GEO+CLI+ALT. Similarly, more variables were involved in driving divergent selection among 

populations as expected. 

 
 
Estimates of historical divergence 

ABC modeling of historical divergence of the three species indicated that the scenario involving an 

initial divergence of P. fasciculata from P. tibetica followed by a later origin of P. nutans from P. 

fasciculata (S3; Fig. S1) provided the best fit to our RADseq data in all of the ten data sets (Table S5). 

The parameter values were estimated for each data set based on the best-fit scenario, and we showed 

only the averaged values here (Table S6). Our ABC modeling suggested that P. fasciculata diverged 
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from P. tibetica ca. 4.65 Ma (95% highest posterior density (HPD): 1.74-8.80 Ma; Fig. 2), and P. 

nutans originated from P. fasciculata ca. 3.17 Ma (HPD: 1.58-5.21 Ma). After the divergences, all 

three species experienced a long period of founder events, and started to expand their population sizes 

by a factor of five or ten times at the beginning or middle of Pleistocene (Table S6).  

 
Table 2 Results of GLMM set up to predict genetic divergence between populations of the three species with 
GEO, CLI, SOI and ALT as predictor variables. Deviance information criterion (DIC), DIC difference to the 
best-supported model (delta DIC) and DIC weights for each model are shown. For each mode comparison, the 
best-supported model is shown in bold italics. 
 
    RAD/negative     RAD/neutral     RAD/positive 

Model DIC 
Delta 
DIC 

DIC 
weight   DIC 

Delta 
DIC 

DIC 
weight   DIC 

Delta 
DIC 

DIC 
weight 

P. nutans            
NULL -519.0 11.25 0.001  -394.3 37.07 0.000  -137.8 79.56 0.000 
GEO -530.3 0.00 0.396  -431.3 0.00 0.353  -217.0 0.34 0.168 
CLI -523.7 6.57 0.015  -410.6 20.77 0.000  -167.8 49.51 0.000 
SOI -522.2 8.10 0.007  -409.2 22.11 0.000  -185.4 31.92 0.000 
ALT -516.9 13.37 0.000  -392.4 38.90 0.000  -136.2 81.14 0.000 
GEO+CLI -528.2 2.09 0.139  -429.7 1.61 0.158  -217.3 0.00 0.199 
GEO+SOI -528.2 2.12 0.137  -429.6 1.77 0.146  -215.9 1.45 0.096 
GEO+ALT -528.2 2.13 0.137  -429.5 1.87 0.139  -215.5 1.83 0.080 
CLI+SOI -522.0 8.32 0.006  -411.3 20.03 0.000  -185.8 31.55 0.000 
CLI+ALT -275.6 254.7 0.000  -408.5 22.87 0.000  -165.8 51.51 0.000 
SOI+ALT -520.1 10.21 0.002  -407.3 23.99 0.000  -183.7 33.60 0.000 
GEO+CLI+SOI -526.0 4.28 0.047  -427.7 3.60 0.058  -217.3 0.01 0.198 
GEO+CLI+ALT -526.0 4.26 0.047  -428.0 3.36 0.066  -216.1 1.25 0.106 
GEO+SOI+ALT -526.0 4.26 0.047  -427.7 3.65 0.057  -214.4 2.97 0.045 
CLI+SOI+ALT -519.8 10.45 0.002  -409.3 22.07 0.000  -184.0 33.39 0.000 
GEO+CLI+SOI+ALT -523.9 6.40 0.016   -425.9 5.41 0.024   -216.2 1.19 0.109 
P. fasciculata           
NULL -216.3 24.35 0.000  -131.5 57.42 0.000  -19.5 27.38 0.000 
GEO -229.7 10.87 0.002  -153.4 35.59 0.000  -26.0 20.88 0.000 
CLI -214.1 26.54 0.000  -138.8 50.12 0.000  -19.5 27.42 0.000 
SOI -218.7 21.96 0.000  -130.3 58.68 0.000  -20.6 26.27 0.000 
ALT -214.5 26.10 0.000  -133.5 55.48 0.000  -27.8 19.12 0.000 
GEO+CLI -229.0 11.65 0.001  -156.6 32.37 0.000  -26.3 20.63 0.000 
GEO+SOI -239.1 1.52 0.182  -154.4 34.52 0.000  -34.9 12.04 0.002 
GEO+ALT -232.7 7.90 0.007  -152.3 36.63 0.000  -28.0 18.85 0.000 
CLI+SOI -219.6 20.99 0.000  -156.5 32.42 0.000  -32.9 13.99 0.001 
CLI+ALT -212.5 28.09 0.000  -137.7 51.24 0.000  -26.7 20.15 0.000 
SOI+ALT -218.6 22.06 0.000  -133.0 55.94 0.000  -31.2 15.72 0.000 
GEO+CLI+SOI -238.7 1.94 0.147  -187.0 1.92 0.277  -42.6 4.31 0.100 
GEO+CLI+ALT -231.0 9.66 0.003  -157.8 31.21 0.000  -28.0 18.92 0.000 
GEO+SOI+ALT -239.9 0.72 0.270  -148.3 40.69 0.000  -35.5 11.41 0.003 
CLI+SOI+ALT -218.6 22.00 0.000  -157.0 31.94 0.000  -40.4 6.52 0.033 
GEO+CLI+SOI+ALT -240.6 0.00 0.388   -189.0 0.00 0.723   -46.9 0.00 0.861 
P. tibetica            
NULL -265.9 99.33 0.000  -157.5 165.5 0.000  -23.9 133.8 0.000 
GEO -328.3 36.94 0.000  -297.9 25.12 0.000  -129.4 28.26 0.000 
CLI -276.7 88.53 0.000  -176.8 146.2 0.000  -47.2 110.5 0.000 
SOI -264.4 100.8 0.000  -156.7 166.3 0.000  -23.3 134.4 0.000 
ALT -344.7 20.55 0.000  -216.8 106.2 0.000  -43.1 114.5 0.000 
GEO+CLI -333.0 32.22 0.000  -317.2 5.82 0.030  -155.9 1.69 0.157 
GEO+SOI -326.4 38.76 0.000  -297.1 25.83 0.000  -128.4 29.28 0.000 
GEO+ALT -360.5 4.72 0.064  -304.0 19.00 0.000  -129.2 28.46 0.000 
CLI+SOI -275.3 89.93 0.000  -176.3 146.7 0.000  -48.4 109.3 0.000 
CLI+ALT -351.5 13.71 0.001  -232.8 90.13 0.000  -65.5 92.16 0.000 
SOI+ALT -342.5 22.68 0.000  -215.1 107.9 0.000  -41.3 116.3 0.000 
GEO+CLI+SOI -331.2 33.99 0.000  -317.0 5.98 0.027  -155.5 2.10 0.128 
GEO+CLI+ALT -365.2 0.00 0.676  -323.0 0.00 0.546  -157.5 0.11 0.348 
GEO+SOI+ALT -358.4 6.82 0.022  -302.8 20.16 0.000  -128.4 29.21 0.000 
CLI+SOI+ALT -349.4 15.81 0.000  -231.3 91.66 0.000  -64.6 93.01 0.000 
GEO+CLI+SOI+ALT -363.1 2.10 0.237   -322.3 0.64 0.397   -157.6 0.00 0.367 
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Fig. 2 Summary of inferred interspecific divergence of the three species. Effective population sizes (N1 and 

N1b, P. tibetica; N2 and N2b, P. fasciculata; N3 and N3b, P. nutans), times of divergence in years (t1, t2) and 

durations of founder events (db1-db3) are indicated. 

 

 
Fig. 3 (a) Habitat suitability of the three species predicted by species distribution models (SDM) for present and 

LGM. SDMs for the LGM are based on three different general circulation models (GCM). (b) The predicted and 

the overlapping distributions between the three species for the present and LGM. Only the distributions predicted 

by all the three GCMs during the LGM (red areas in a) were considered here. (c) The number of pixels counted 

based on (b).  
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Species distribution models 

The results of SDMs showed that the three species occupy mostly different environments (Fig. 3a,b). 

The predicted potential distribution at the current conditions was consistent with current records for 

each species, with some overlap between P. tibetica and P. fasciculata (880 pixels), but large overlap 

between P. nutans and P. fasciculata (5520 pixles; Fig. 3c). During the LGM, the predictions based on 

the three GCMs (CCSM4, MIROC and MPI) were mostly consistent, although large mismatches 

between the estimated distributions were observed for the three species. We only considered here the 

most likely predictions that were recovered based on all three GCMs (Fig. 3). When comparing the 

predicted distributions during the present and LGM for each species, all three species have 

experienced expansions from the LGM to present. Two main glacial refugia were identified for P. 

tibetica, which were located in the central and southwestern Himalayas. P. fasciculata was predicted 

to have retreated to eastern QTP after having occupied a much larger region during the LGM. Finally, 

the prediction for P. nutans during the LGM yielded restricted refugia distributed mainly in the 

Northeast QTP and some valleys of the Hengduan Mountains, mostly nested in the main refugium of 

P. fasciculata. 

 

Discussion 

Our results based on RAD sequencing clearly distinguished the three Primula species, in contrast to a 

previous study based on few chloroplast and nuclear genes that failed to delimit the relationships 

among them (Ren et al. 2015). Our analyses based on ABC modeling provide strong evidence that the 

three species originated in the Himalayas. The timeframes of the first divergence of P. tibetica and P. 

fasciculata and the later origin of P. nutans from P. fasciculata coincide with the extensive uplift of 

the Hengduan Mountains and the Qaidam basin, which occurred during the late Miocene and the 

Pliocene. These results suggest an important role of geography in driving the initial interspecific 

divergence. After the divergences, both spatial and environmental factors have been involved in 

population divergence and to maintain species divergence despite secondary contact triggered by 

Pleistocene climatic oscillations. Our study thus contributes to a better understanding of how 

prominent floristic elements of alpine meadows at high altitudes distributed in three most fascinating 

regions (i.e. Himalayas, Hengduan Mountains and Northeast QTP) in the QTP responded to historical 

orographic uplift and climatic changes. 

  

Interspecific divergence in response to the uplifts of the QTP 

A clear delimitation of the three closely related Primula species was recovered based on RADseq data 

(Fig. 1, S3), which allowed us to estimate accurately their times of divergence. Using a replicated 

subsampling strategy, all the ABC models support a scenario that P. fasciculata diverged from P. 

tibetica first and that P. nutans originated from P. fasciculata in a later stage. Given the endemic 

distribution of P. tibetica and P. fasciculata in the QTP region, these results provide strong evidence 
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that the three species originated in the Himalayas. P. fasciculata was estimated to diverge from P. 

tibetica ca. 4.65 Ma (HPD: 1.74-8.80 Ma), whereas P. nutans originated from P. fasciculata more 

recently ca. 3.17 Ma (HPD: 1.58-5.21 Ma; Fig. 2; Table S6). These divergence times were largely 

consistent with a period of recent uplift of the eastern and northern of the QTP during the late Miocene 

and Pliocene (Li et al. 1995; Mulch & Chamberlain 2006). In fact, numerous studies of other herb, 

shrub, and conifer groups that grow in the QTP have demonstrated that intra- or interspecific 

divergences took place during the Pliocene (Liu et al. 2002; Xu et al. 2010; Wang et al. 2010; Zhou et 

al. 2012; Li et al. 2013; Liu et al. 2013). Furthermore, our sampling of the three species that covers the 

Himalayas, the Hengduan Mountains and Northeast QTP, respectively, provided a unique opportunity 

to evaluate the effects of the uplift of a particular region in the QTP on species divergence.   

 

The time frames of the interspecific divergence among the three species are congruent with the 

extensive uplift of the Hengduan Mountains and the Qaidam basin that occurred during the Late 

Miocene and the Pliocene (8-2.4 Ma; Li & Fang 1999; Zheng et al. 2000). Elevations as high as 

today’s elevations already occurred in the Himalayas as early as 15-10 Ma (Favre et al. 2015; or 40 

Ma in Renner et al. 2016). The origin of the three species in the Himalayas indicates that the common 

ancestor may have already adapted to high altitudes (i.e. cold niches), which is congruent with a 

previous study on P. tibetica (Ren et al. 2017). If the Hengduan Mountains and the Northeast QTP 

already reached their current altitudes 40 Ma, the open cold habitats would have probably allowed the 

expansion of the common ancestor rather than divergence. Instead, in a recent uplift scenario, the 

extensive uplift of the Hengduan Mountains followed by the occurrence of high mountains separated 

by deep valleys may have created cold conditions for the geographical isolation and origin of P. 

fasciculata, which is also capable of surviving and reproducing currently at high altitudes in Hengduan 

Mountains. Similarly, a rapid uplift of the Qaidam basin that occurs nearly at the same time (Zhang et 

al. 2013) may have further triggered the divergence between P. nutans and P. fasciculata through 

geographical isolation. Furthermore, the niche differentiation that can be observed in the current 

SDMs of these three species (Fig. 3) would suggest that adaptation to their specific ecological niches 

have occurred. The long periods with founder events that were identified for all three species followed 

by a rapid expansion (Fig. 2) could have allowed the establishment of different adaptive alleles in the 

populations (Gavrilets & Boake 1998), which in turn may have further reinforced the initial 

interspecific divergence (Templeton 1980; Barton 1984; Weinberg et al. 1992).  

 

It should be noted that the timeframes of divergence estimated based on our RADseq data are much 

older than previous estimates based on few chloroplast markers (1.7-8.8 vs. 0.5-2 Ma; Table 3; Ren et 

al. 2015). Previous estimates were obtained by secondary calibration that is inherently subject to bias 

and errors (Sauquet et al. 2012) and should be treated with caution (Ren et al. 2015). In particular, P. 

nutans occupies now a wide geographical range from Northern Europe eastward to Northeastern 
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Siberia, Alaska, and central Asian mountains. It is difficult to imagine how this small plant species 

(10-30 cm tall), which is pollinated mainly by insects and has barochore seeds (Richards 2003), could 

have dispersed so widely within about one million years. The origin of P. nutans based on RADseq 

data in the present study is estimated at ca. 3.17 Ma (HPD: 1.58-5.21 Ma), which is in agreement with 

macrofossil evidence that suggests the present-day arctic flora developed ca. 3-4 Ma at a time when 

global temperature decreased sharply (Matthews Jr. & Ovenden 1990; Zachos et al. 2001). However, 

the present study only focused on the QTP and further studies involving a finer sampling across the 

entirely distribution of P. nutans associated with large-scale genomic data should be employed to gain 

a detailed knowledge of evolutionary history of this species (e.g. Wang et al. 2016). 

  

Species maintenance in secondary contact zones 

Climatic oscillations during the Pleistocene had a dramatic effect on species distribution ranges 

(Comes & Kadereit 1998; Hewitt 2004). The postglacial expansion or retreat to the same refugium 

may have resulted in secondary contact of previously isolated species, which may cause introgression 

between species (e.g. Li et al. 2013), or even trigger hybrid speciation if reproductive isolation is 

incomplete (Rieseberg 1997; Ma et al. 2006; Abbott et al. 2013; Sun et al. 2014). However, our 

analyses based on population genomic data indicate no hybridization between the three Primula 

species (Fig. 1) despite clear overlap in their geographic distribution and potential secondary contacts, 

especially between P. fasciculata and P. nutans, identified based on the niche modeling analysis  (Fig. 

3b,c) or during our field collection (Fig. 1). The lack of hybridization or introgression is unexpected 

between these species because hybridization in the genus Primula is common and has been described 

in multiple studies (Guggisberg et al. 2009; Zhu et al. 2009; Ma et al. 2014). Furthermore, P. nutans 

(section Armerina) can even hybridize with P. mistassinica (section Aleuritia), a more distantly related 

species, which resulted in an intersectional allopolyploidization event giving rise to the tetraploid 

species P. egaliksensis (Guggisberg et al. 2009). Hybridization was also a likely explanation for the 

incongruent relationships of the three species between chloroplast and nuclear trees, but the conclusion 

may be biased by the use of a single nuclear gene that provides low resolution to infer phylogenetic 

relationships (Ren et al. 2015). The lack of evidence for nuclear introgression in contact zones based 

on our population genomic data may suggest complete or nearly complete reproductive isolation 

between the species. However, the biological characteristics of the three species are not well described 

and further experimental and field studies are needed to investigate the degree of reproductive 

isolation among them.  

 

Although there is no clear explanation for the lack of hybridization between the three species in the 

contact zone, the different drivers of variation in the genomic data observed for the three species 

(Table 2) may provide some insights to explain the maintenance of species cohesion. Our GLMM 

analyses revealed that the drivers of population divergence in P. tibetica and P. fasciculata are 
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complex and different from those of P. nutans (Table 2). The former two species occur mainly in the 

Himalayas and Hengduan Mountains, respectively. These regions display extreme elevational 

gradients within relatively short distances, which lead to profound ecological heterogeneity. Therefore, 

it is not surprising that both the spatial and environmental variables are involved in population 

divergence across genomic regions (Table 2). Muñoz-Pajares et al. (2017) also found that both 

spatial/environmental variables and historical factors play important roles in shaping patterns of 

genetic differentiation in a montane herb at different spatial scales. The similar pattern found between 

these two species may suggest adaptation to their specific ecological niches as also shown in the niche 

modeling (Fig. 3) and could help the maintenance of species boundaries between them (e.g. Zhou et 

al. 2014; Twyford et al. 2015).  

 

By contrast, geographic distance is the predominant mechanism explaining the patterns of divergence 

and gene flow in the negative and neutral genomic fractions of DNA in P. nutans. Geographic distance 

also received non-negligible support for the fraction of SNPs under divergent selection in this species 

(Table 2). The variation among populations in neutral and selected genomic regions is much lower in 

P. nutans than in the other two species (Table 1), indicating higher gene flow among populations in P. 

nutans. The occurrence of this species at lower altitude (average altitude 3311 m compared with P. 

fasciculata - 4256 m and P. tibetica - 4093 m) where topography is less complex (Fig. 1), and higher 

dispersal ability suggested by the much wider distribution occupied by P. nutans when compared to 

the two other species (Richards 2003) may account for the high gene flow observed in this species. 

Interspecific gene flow between P. nutans and P. fasciculata may be restricted because the genomic 

regions in the latter species were probably linked to local adaptation as indicated by GLMM (Table 2; 

Wu & Ting 2004; Via & West 2008; Nosil et al. 2009). If hybridization has occurred between them, 

high gene flow among populations in P. nutans and local selection in P. fasciculata may have 

potentially diluted the introgressed alleles (Du et al. 2009; Petit & Excoffier 2009; Zhou et al. 2010, 

2014).  

 

Conclusions 

We combined population genomics and SDMs to identify the relative roles of geography and ecology 

in speciation, population divergence and the maintenance of species cohesion of three high-altitude 

plant species over a large area of the QTP. Our results highlight the power and importance of the use 

of population genomic data in delimiting relationship of closely related species that is failed with 

traditional markers. Our analyses provide clearly evidence for an origin of the three species in the 

Himalayas and demonstrate the important roles of the uplifts of the Hengduan Mountains and 

Northern QTP in driving their initial interspecific divergence. The combination of evolutionary 

modeling on neutral and selected genomic regions and SDMs also provides new insights in 

maintaining species divergence in secondary contact zones. These findings indicate that a combination 
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of geography and ecology has played a fundamental role in promoting diversification and evolution of 

species in mountainous regions such as the QTP.  
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Summary 

• The effects of Quaternary climatic oscillations on the demography of organisms vary across 

regions and continents. In taxa distributed in Europe and North America several paradigms 

regarding the distribution of refugia have been identified. By contrast, less is known about the 

processes that shaped the species’ spatial genetic structure in areas such as the Himalayas, 

which is considered a biodiversity hotspot. Here, we investigated the phylogeographic 

structure and population dynamics of Primula tibetica by combining genomic phylogeography 

and species distribution models (SDMs).  

• Genomic data were obtained for 293 samples of P. tibetica using restriction site-associated 

DNA sequencing (RADseq). Ensemble SDMs were carried out to predict potential present and 

past distribution ranges.  

• Four distinct lineages were identified. Approximate-Bayesian-Computation analyses showed 

that each of them experienced both expansions and bottlenecks since their divergence, which 

occurred during or across the Quaternary glacial cycles. The two lineages at both edges of the 

distribution were found to be more vulnerable and responded in a different way to past 

climatic changes.  

• These results illustrate how past climatic changes affected the demographic history of 

Himalayan organisms. Our findings highlight the significance of combining genomic 

approaches with environmental data when evaluating the effects of past climatic changes. 

 

Keywords: demography, Himalayas, Isolation by Distance, phylogeography, population structure, 

Quaternary climatic changes, RADseq  
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Introduction 

Biodiversity hotspots that harbor extremely high species richness are often associated with mountains 

(Myers et al., 2000). The origin and evolution of biodiversity in mountainous areas is highly 

dependent on historical orogenesis and associated climatic changes (Hoorn et al., 2010; Favre et al., 

2014; Liu et al., 2014; Wen et al., 2014). The alteration of topography and past climatic changes 

associated with mountain uplifts can cause fragmentation of species distributions, which can lead to 

reduced gene flow between isolated populations. This process initiates allopatric divergence that can 

ultimately drive populations towards speciation (Mayr, 1963; Rice & Hostert, 1993). It has recently 

been proposed that mountain uplift can also result in divergence and speciation in the face of gene 

flow across a continuous altitudinal gradient (Filatov et al., 2016). In this context, climatic oscillations 

during the Quaternary could have reinforced allopatric divergence and driven intraspecific divergence 

as well as local adaptation (Davis & Shaw, 2001; Hewitt, 2004; Li et al., 2013; Liu et al., 2013; Schorr 

et al., 2013), as populations experienced repeated cycles of retreat to refugia and post-glacial 

expansions (Abbott, 2000; Avise, 2000; Petit et al., 2003). The demographic changes involved in these 

range shifts affected the spatial patterns of genetic variation within and among populations (Hewitt, 

2004). However, the detailed processes involved are still poorly understood in most species. 

 

The Himalayas, especially its core region (i.e. the Qinghai-Tibet Plateau; QTP), comprise one of the 

key high-altitude biodiversity hotspots in the world (Myers et al., 2000). The uplift of the QTP created 

a large altitudinal gradient across the region spanning from 500 to 8848 meters (Wu, 1987). The 

eastern Himalayas are associated with deep valleys and characterized mainly by warm and wet climate 

(Liu et al., 2013; Fig. 1). By contrast, the central and western Himalayas are characterized by a cold 

and dry climate because of high mountains forming the southern ridge of the Himalayas (six mountain 

summits exceed 8000 meters; Favre et al., 2014) and the high average altitude (more than 4000 

meters). The geological events created large and profound ecological heterogeneity (Li et al., 1995; 

Shi et al., 1998; Yin & Harrison, 2000), which potentially led to divergent selection and adaptation 

associated with different ecological niches that created numerous endemic species (Wu, 1987; Favre et 

al., 2014; Liu et al., 2014). It is also proposed that these geological events have provided opportunities 

for species to migrate out of the region (Liu et al., 2006; Jia et al., 2012; Zhou et al., 2013; Wen et al., 

2014; Ren et al., 2015). Although the region is assumed to be particularly vulnerable to climatic 

changes (Zheng, 1996; Yao et al., 2007), the pattern and extent of glaciation during the Quaternary 

and their effects on the evolutionary history of species within the Himalayas have not yet been fully 

examined, especially based on population genomic data.  

 

By contrast, large-scale phylogeographic studies based mainly on few plastid DNA regions have been 

conducted on species occurring in the QTP (e.g. Zhang et al., 2005; Meng et al., 2007; Yang et al., 

2008; Wang et al., 2009; Shimono et al., 2010; Qiu et al., 2011; Li et al., 2013; Liu et al., 2013). The 
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existence of a deep divergence between the Himalayan populations and those occurring in other 

regions of the plateau was already inferred and extensive private haplotypes have been found in the 

Himalayan populations (e.g. Opgenoorth et al., 2010; H. Wang et al., 2010; Jia et al., 2011), implying 

that multiple plant refugia probably existed in the Himalayas. However, these studies were unable to 

detect the detailed effects of past climatic changes on the demographic history of the studied 

organisms. Next-Generation Sequencing (NGS) methods (Davey et al., 2011), such as restriction site-

associated DNA sequencing (RADseq; Peterson et al., 2012), which have been shown to be highly 

effective in tracing postglacial recolonization and reconstructing detailed demographic histories of 

species (e.g. Emerson et al., 2010; Lanier et al., 2015), could provide opportunities to better 

understand the effects of past climatic changes in driving speciation and evolution of alpine organisms 

in the Himalayas.  

 

In this study, we focus on Primula tibetica (Primulaceae), one of the most widely distributed alpine 

plant species in the Himalayas (Hu & Kelso, 1996; Richards, 2003). Primula tibetica is an insect-

pollinated (mostly by bees), heterostylous, herbaceous, perennial plant that occurs in diverse habitats 

at elevations ranging from 2600 to 5000 meters (Hu & Kelso, 1996). Its scape is sometimes hidden 

among the leaves or can be as long as 13 centimeters. Primula tibetica is an outcrossing small herb of 

variable height (2-13 centimeters) that disperses its seeds largely by gravity and usually grows in wet 

meadows or along hill-streams (Hu & Kelso, 1996; Richards, 2003). Previous biogeographic analyses 

indicated that P. tibetica originated in the Himalayas after the recent QTP uplift (i.e. 3.4-1.6 Ma; Ren 

et al., 2015) and subsequent climatic oscillations during the Quaternary are likely to have played 

important roles in its intraspecific divergence and demographic history. This herbaceous species hence 

represents an ideal candidate to evaluate the effects of past climatic changes on a species’ evolutionary 

history in the Himalayas. We use an integrative approach combining genomic phylogeography with 

niche modeling (e.g. Schorr et al., 2012) to elucidate the divergence and demographic history of P. 

tibetica. The aims of our study are to identify the phylogeographic pattern of this species in the 

Himalayas and the factors that triggered its intraspecific divergence; to reconstruct a detailed 

demographic history of P. tibetica; and to combine species distribution models with approximate 

Bayesian computation (ABC) modeling to evaluate the effects of Quaternary climatic changes on its 

demographic history. This study represents the first RADseq analysis of a plant species occurring in 

the QTP and contributes to a better understanding of the role played by Quaternary climatic changes 

on the present-day distributions of organisms in mountain ranges.   
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Fig. 1 Sampling locations of all 61 populations of Primula tibetica (red stars) and the 16 selected populations 

(large colored circles) used for genomic analyses in this study.  

 

Materials and methods 

Sampling, RAD library preparation and sequencing 

We sampled a total of 61 populations (10-40 individuals for each population) of Primula tibetica Watt 

in Tibet by using the distribution described in Flora of China (Hu & Kelso, 1996) as a reference to 

include all the relevant regions for the species. All materials were dried and stored in silica gel in the 

field. We selected 16 populations for the genetic study (Fig. 1; Table S1) that were representative of 

both the geographical distribution and the diversity of ecological niches of P. tibetica. We estimated 

the latter by extracting the 19 bioclimatic variables of WorldClim (http://www.worldclim.org/current) 

from the occurrences of the individuals sampled in the 61 populations. We did a principal component 

analysis (PCA) using the prcomp function in the stats package of R (R Core Team, 2012) and 

identified the 16 populations based on the PC1 and PC2 axes (explained nearly 80% of the variance; 

Fig. S1). Fifteen to 20 individuals were chosen from each population, which gave us a total of 293 

individuals that were processed with RADseq. The leaf tissues were ground to dust using an electric 

tissue homogenizer. Total genomic DNA was then isolated using the DNeasy Plant Mini Kit (Qiagen 

AG, Hombrechtikon, Switzerland) following the manufacturer’s instructions. The extracted DNA was 

further cleaned with phenol-chloroform to remove salts or inhibitors that may reduce the activity of 

restriction enzymes.  

 

The cleaned genomic DNA was individually barcoded and processed into three libraries using a 

double-digestion restriction-fragment-based procedure following a modified protocol listed in the 
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Supporting Information of Mastretta-Yanes et al. (2015). Briefly, the DNA was double-digested with 

EcoRI and MseI restriction enzymes, followed by the ligation of Illumina adapter sequences and 

unique 8-base-pair barcodes that differed by at least three bases. Ligation products were purified with 

AMPure XP beads (Beckman Coulter, Brea, CA, USA) and amplified by Phusion High-Fidelity DNA 

Polymerase (New England, Biolabs, Ipswich, MA, USA) with 12 cycles. The amplified products were 

pooled among samples and size-selected between 300 and 500 base pairs (bp) using AMPure XP 

beads with beads:sample ratios 0.8 and 0.2 modified from a protocol in 

https://www.neb.com/protocols/1/01/01/size-selection-e6270. The libraries were sequenced using 

single-end reads of 100 bp of length in three lanes of Illumina HiSeq2500 according to the 

manufacturer’s instructions.  

 

Processing of Illumina data 

Single-end Illumina reads were processed into RAD-tags using the STACKS-1.30 software pipeline 

(Catchen et al., 2011; 2013) based on its ease of use, features and performance (Davey et al., 2013). 

Initially, samples were demultiplexed with process_radtags. Reads with an average Phred score of at 

least 30 and an unambiguous barcode and restriction cut site were retained. All reads were trimmed to 

60 bp in length. The raw data were deposited in GenBank (Accession no. PRJNA339808). Next, the 

ustacks program was used for the de novo assembly of raw reads into RAD-tags. We used all 293 

samples to build a catalogue in cstacks and matched each sample against the catalogue to identify 

alleles in sstacks. The execution of these components was accomplished using the denovo_map.pl 

script with the following settings: minimum number of reads to create a stack m=3; maximum distance 

allowed between stacks M=2; maximum number of mismatches allowed between loci n=2; -t flag to 

remove or break up highly repetitive RAD-tags during the ustacks component and upper bound of 

error rate ε= 0.1. A conservative bound was preferred over the unbounded model because the latter has 

been shown to underestimate heterozygotes (Catchen et al., 2013). We used rxstacks to further filter 

the data to increase quality, correct SNP calls and remove haplotypes that were in excess. The rxstacks 

used the output from the denovo_map.pl script as input combined with the following filters: --

conf_filter --conf_lim 0.25 --prune_haplo --model_type bounded --bound_high 0.1 --lnl_lim -10.0 --

lnl_dist. After rxstacks, cstacks and sstacks were run again with the same setting as before to rebuild 

the catalogue of reads. To test the sensitivity of our results to different sets of parameters, we further 

processed our RAD data with two other parameter settings: i) using the same settings as above except 

for M = 3 and n = 3, and trim the reads to 90 bp in length (M = 3, n = 3 and 90bp), and ii) M = 5, n = 3 

and 90bp. The results of the population structure analyses based on the three datasets were 

qualitatively similar (Fig. 2, S2), and we only presented results from our analyses based on the dataset 

generated by M = 2, n = 2 given the increased number of assembled loci (3509 vs. 2822 vs. 2031). 
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We filtered the catalogue of reads using the populations module to produce data sets for downstream 

population genetic analyses. We first retained RAD-tags with a minimum stacks depth m=3. 

Polymorphic RAD loci that were present in at least 50% of the individuals of each population and in 

all 16 populations were retained. Potential homeologs were excluded by removing loci showing 

heterozygosity > 0.5 within samples (Hohenlohe et al., 2011). We further filtered our data set with a 

minor allele frequency (MAF) > 0.01 and kept only biallelic SNPs to comply with the assumptions of 

the current methods for analyzing SNP data. Population genetic statistics, including nucleotide 

diversity (π), Wright’s F-statistic (FIS) and observed heterozygosity (Hobs) were calculated using the 

populations program in the STACKS pipeline (Holsinger & Weir, 2009; Catchen et al., 2013). 

Pairwise FST values were calculated among populations in GENODIVE v.2.0b27 (Meirmans & 

Tienderen, 2004), and significance was determined using 1 × 104 permutations.  

 

Characterization of population genetic structure 

We first identified population genetic structure using the Bayesian method implemented in 

STRUCTURE 2.3.4 (Pritchard et al., 2000). SNPs located at the same locus are physically linked and 

cannot be handled by STRUCTURE. We thus filtered out linked SNPs using the –write_single_snp 

option in the populations script. Analyses were performed under the “Admixture model” and the 

“Correlated allele frequency model” with K-values ranging from 1 to 18. Ten independent runs were 

performed for each value of K using 1 × 105 generations for the burnin and 2 × 105 generations for the 

sampling. The optimal K was chosen using the delta-K method of Evanno et al. (2005) as 

implemented in STRUCTURE HARVESTER (Earl, 2012). The coefficient for cluster membership of 

each individual was averaged across the ten independent runs using CLUMPP (Jakobsson & 

Rosenberg, 2007) and plotted using DISTRUCT (Rosenberg, 2004). We further performed a principal 

components analysis (PCA) to visualize the major axes of variation of the population genetics using 

the adegenet package (glPCA function; Jombart, 2008) in R. Finally, we estimated a maximum-

likelihood phylogeny of the 16 populations from unlinked SNPs with a GTR + G model using 

PHYML 3.0 (Guindon et al., 2010). Primula nutans and P. fasciculata were used as outgroups. Nodal 

support was estimated using 1000 bootstrap replicates.  

 

Relationships between genetic differentiation and geography 

The first two components of the PCA performed on the genetic data and the geographic coordinates 

(latitude and longitude) of the 16 populations were used in a Procrustes analysis using the R package 

vegan (Oksanen et al., 2013). This analysis minimizes the sum of squared Euclidean distances 

between two sets of points by rotating one set of points to match the other, while preserving the 

relative distances among all points within the map (Wang et al., 2012). The similarity of the two maps 

is quantified using the Procrustes similarity statistic t0 = 1 −  !, where D is the minimum sum of the 

squared Euclidean distances between the two maps, scaled to range between 0 and 1 (C. Wang et al., 
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2010; 2012). We used the protest function in vegan to test, using 1 × 105 permutations, the probability 

of observing a similarity statistic higher than the observed t0 if no geographic pattern is assumed 

(Wang et al., 2012). We also tested for the presence of Isolation by Distance (IBD) by comparing 

pairwise FST values and Euclidean geographic distances among populations within and among groups 

that were identified by the PCA and STRUCTURE analyses. We further tested the significance of the 

relationship between geographic and genetic distance within groups with a Mantel test in the package 

vegan using 1 × 105 permutations.  

 

Estimates of historical demography 

To decipher the historical demography of P. tibetica, we estimated divergence times, admixture and 

changes in population size among different population groups using approximate Bayesian 

computation (ABC). We pooled the population samples into four ‘groups’ (eastern group E: R01-R02; 

central-eastern group CE: R03; central group C: R04-R12; western group W: R13-R16) for the ABC 

simulations based on the first two axes of the PCA that captured the main characteristics in population 

histories (Fig. 2). We tested three competing scenarios using DIY-ABC v.2.1.0 (Cornuet et al., 2010, 

2014) based on the results from STRUCTURE and the phylogenetic tree (Fig. S3). In all scenarios, 

groups E and C diverged first and group W originated from group C. The scenarios modeled the 

possible hypotheses about the origin of the group CE, which can arise from either groups E or C, or be 

the result of an admixture between the two groups (Fig. S4a). We selected for these analyses a single 

SNP per locus and the SNPs further had to be present in at least 70% of the individuals from each 

group and in all four groups. The simulated SNP data set was generated following the algorithm 

proposed by Hudson (2002). We further chose MAF = 0.01 to increase the mean level of genetic 

variation of both the observed and simulated data sets and to reduce the proportion of loci which may 

correspond to sequencing errors. We gave each scenario a uniform prior probability (Table S2) and 

selected all summary statistics to generate a reference table containing 3 × 106 simulated data sets (on 

average 106 per scenario). We used 1% of the simulated data sets closest to the observed data to 

estimate the relative posterior probabilities for each scenario via logistic and posterior distribution of 

historical demographic parameters according to the most likely scenario (Cornuet et al., 2010). The 

time parameters are estimated in generations and converted into years by multiplying generation time, 

which was set to one year for P. tibetica. Although there is no information of generation time for P. 

tibetica, filed observations are coherent with this assumption and other studies on related species of 

Primula have also used a generation time of one year to study demographic history of P. obconica 

(Yan et al., 2012). In addition, we also considered the substructure (R11-R12) identified by the PCA 

and STRUCTURE as a fifth group for ABC modeling (Fig. S5). However, simulations based on five 

groups were not stable enough to provide a convincing outcome compared with the ABC modeling 

with four groups, which could further indicate that these two populations do not form a homogeneous 

cluster (see Note S1 for a full description of the ABC modeling with five groups). 
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Finally, DIY-ABC was used to investigate changes in population sizes of the four groups in the recent 

past. We first selected only one SNP per locus and used two thresholds (i.e. SNP had to be present in 

at least 70% vs. 80% of the individuals in each group) to generate datasets for each group. We then did 

PCA based on these datasets, and the two thresholds resulted in similar structure patterns for each 

group (Fig. S6). We used the datasets generated based on the 80% threshold for these ABC analyses 

because they have less missing data and it saved computational time. We tested the following 

scenarios of demographic changes: i) continuous expansion since divergence; ii) recent expansion; iii) 

expansion followed by shrinkage; iv) expansion followed by shrinkage and a new expansion event 

(Fig. S7a; Wang et al., 2016). We used the same strategy as above to choose the most likely scenario 

and estimate the parameters of interest.  

 

Species distribution models 

An ensemble of species distribution models (SDM, Guisan & Zimmermann, 2000) was generated for 

P. tibetica using three different techniques: generalized linear model, gradient boosting machine and 

random forests, as implemented in the R package biomod2 (Thuiller et al., 2009; see Methods S1 for 

similar results with MAXENT as a fourth technique, and explanations therein; Fig. S8). A total of 58 

species occurrences obtained directly from the filed collections were used as presences data to 

calibrate the models. We used the 19 bioclimatic variables of Worldclim (http://www.worldclim.org, 

Hijmans et al., 2005) as environmental predictors. To avoid multicollinearity, we ran a Pearson 

correlation analysis to eliminate one of the variables in each pair with a correlation value higher than 

0.8 (Dormann et al., 2013). A set of seven variables was finally used to carry out the SDM (Methods 

S1). For a proper evaluation, models were calibrated on 70% of the data and evaluated on the 

remaining 30% using AUC and TSS statistics (Allouche et al., 2006). This sampling procedure was 

replicated 10 times. The potential distribution was considered as a consensus across statistical 

techniques (Mateo et al., 2012) and their contribution to the ensemble was proportional to their AUC 

values. The consensus model was converted in a binary model (presence/absence) applying three 

different threshold criteria (Methods S1): thresholds that allow a maximum of 5% or 10% of omission 

error (i.e. omission error is the percentage of the real presence predicted as absences in the model; 

Fielding & Bell, 1997), and the threshold maximizing AUC statistic. The consensus model was then 

projected onto different past climatic periods using the data available in the Worldclim dataset: 1) the 

last interglacial (LIG; 0.12-0.14 Ma), 2) the last Maximum Glacial (LGM; 0.022 Ma), and 3) the mid-

Holocene (MH; 0.006 Ma). For the MH and LGM we employed three different general circulation 

models (GCMs, earth-system climatic models coupling the ocean, the atmosphere and the land 

surface; CCSM4, MIROC-ESM, MPI-ESM-P available from http://cmip-pcmdi.llnl.gov/cmip5/ 

processed on www.worldclim.org). Only one GCM is available for the LIG period.  
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Results 

Sequence data quality and processing 

We sequenced 293 individuals of P. tibetica using three lanes of Illumina that produced a total of more 

than 730 million reads. Over 560 million reads passed our quality controls and over 460 million reads 

were used in the assembly of the RAD-tags (Table S3). We obtained 3,509 RAD loci containing 8,930 

SNPs that could be used for population genetics analyses. The data set was used to estimate historical 

scenarios of P. tibetica containing 4,882 single-SNP loci. Finally, four data sets containing 8,579, 

5,401, 7,777, 10,431 single-SNP loci were used to estimate the changes in population sizes of groups 

E, C, CE and W, respectively. 

 
 

 

 

 

 

 

Fig. 2 Distribution of individuals of Primula tibetica 

along principal component (PC) scores (PC1, 20% vs 

PC2, 9.4%; PC1 vs PC3, 6.6%) of genetic variation 

based on the analysis of single nucleotide 

polymorphism (SNP) dataset; individuals are color-

coded according to their population identities (see Fig. 

1). 

 

 

 

 

 

 

 

 

 

Population structure 

The first two axes of PCA identified four genetic groups and explained 20% and 9.4% of the total 

variation, respectively (Fig. 2). The first axis PC1 showed a large degree of correspondence between 

the genetic data and the east-west geographic axis. The two eastern populations (R01, R02) and four 

western populations (R13 - R16) formed two separate groups (groups E and W) that were located on 

the two extreme sides of the distribution. One central-eastern population (R03) and the rest of 
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populations (R04 - R12) were further isolated from the groups E and W by the second axis of the PCA 

(PC2; Fig. 2) and formed two other groups (groups CE and C), respectively. The third axis of the PCA 

(PC3; 6.6% of the total variation) showed a substructure within group C with four populations 

separating gradually from the rest of five populations following the increase of geographic distance 

(Fig. 1, 2). This pattern of population structure was also supported by the STRUCTURE analysis, 

which best explained the data with a K equal to 4  (Fig. 3). Looking at intermediate K values, the 

analyses showed that, at K = 2 (the second-most probable number of genetic clusters; Fig. S9), group 

E first diverged from the rest of the populations (Fig. 3), which was also evident in the phylogenetic 

tree (Fig. S3). Group CE was always represented by admixed populations between the groups E and C 

at any values of K between 2 and 4 (Fig. 3). By contrast, the substructure (R09-R12) within group C 

identified by the PC3 was not always represented by admixed populations in STRUCTURE from K = 

2 to K = 4. Moreover, the populations comprising this substructure were not clustered together along 

the PC3. We therefore did not include this substructure when performing ABC modeling (see more 

details in Note S1 for the reason not including the substructure in ABC analyses). Finally, the 

Procrustes analysis identified a significant similarity score between the populations in genetic PC 

space and their actual geographic locations (t0 = 0.815, P_value < 10-5). A graphical examination of 

the rotated genetic coordinates (Fig. 4) showed that individuals of P. tibetica were more genetically 

similar within each group than would be expected given the geographic distance among populations.  

 
Fig. 3 Plots of posterior probabilities for individuals of Primula tibetica assigned to K genetic clusters from 

STRUCTURE analyses for K = 2–4. Populations are delimited by black lines, with the corresponding population 

names listed along the bottom of the plot. The four groups are delimited by a dashed black line. E, eastern group; 

CE, central- eastern group; C, central group; W, western group. 

 

Genetic diversity and Isolation by Distance 

The average within-population genetic diversity π ranged from 0.0011 to 0.0044, when considering all 
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exhibited the lowest genetic diversity, which was three times lower than the diversity measured in 

groups CE and C, or two times lower than that of group W. The same pattern was also suggested by 

other standard measures of genetic diversity (e.g. observed heterozygosities; Table 1).  

 

Table 1 Population summary statistics calculated for the 3509 RADSeq loci. Included are the average number of 

individuals genotyped at each locus (N), the proportion of polymorphic SNPs unique to each population (% 

private), the percentage of SNPs (% polymorphic) in each population, the average nucleotide diversity (π), the 

average observed heterozygosity per locus (Hobs) and the Wright’s inbreeding coefficient (FIS). The total number 

of DNA sites (polymorphic + invariable) in the RADSeq loci is 210,540. 

Group Pop N % Private % Polymorphic  π Hobs FIS 
Group E R01 15 0.22 0.40 0.0013 0.0012 0.0003 
 R02 18 0.19 0.34 0.0011 0.0011 0.0002 
Group CE R03 15 2.58 1.13 0.0037 0.0029 0.0021 
Group C R04 12 1.15 1.33 0.0038 0.0028 0.0029 
 R05 15 1.31 1.50 0.0042 0.0033 0.0027 
 R06 16 0.64 1.60 0.0041 0.0033 0.0025 
 R07 17 10.64 1.82 0.0043 0.0035 0.0028 
 R08 15 0.11 1.80 0.0044 0.0035 0.0029 
 R09 15 0.36 1.40 0.0038 0.0031 0.0022 
 R10 13 0.31 1.29 0.0038 0.0031 0.0019 
 R11 16 0.48 0.67 0.0021 0.0018 0.0007 
 R12 16 2.41 1.08 0.0031 0.0025 0.0019 
Group W R13 18 0.10 1.02 0.0029 0.0026 0.0009 
 R14 18 0.01 1.09 0.0029 0.0026 0.0011 
 R15 15 0.00 1.08 0.0030 0.0025 0.0014 
 R16 13 0.10 0.84 0.0025 0.0024 0.0006 
 

Differentiation among populations was significant, with FST values ranging from 0.032 to 0.807 (Table 

S4). Genetic distances between populations of different groups increased with geographical distances 

larger than 200 km, but populations among groups located at smaller geographical distances displayed 

high genetic divergence (Fig. 5a). The genetic distance between populations of the same group was 

however always smaller than the distances among groups, which is congruent with the strong genetic 

structure observed in P. tibetica (see above). Furthermore, genetic distances increased with larger 

geographic distances among populations within groups (Fig. 5a), which was consistent with the 

significant pattern of IBD when performing mantel test among populations of group C (r = 0.51, 

P_value  = 0.016; Fig. 5b). Although genetic distances among populations of group W were small 

(Table S4), we found a strong effect of IBD on population differentiation of this group (r = 0.99, 

P_value = 0.042; Fig. 5b).  
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Fig. 4 Procrustes-transformed principal component analysis (PCA) plot of genetic variation with each individual 

of Primula tibetica mapped in PC space (the small circles) relative to the geographic location of populations (the 

larger circles). Black lines show the orientation of PC1 and PC2 for the genetic data (explaining 20% and 9.4% 

of the genetic variation, respectively) relative to the geographic longitude and latitudinal axes. The length of the 

line connecting individuals in PC space to their geographic location represents the extent of the deviation from 

the expected pattern of genetic variation based on geography.  

 

 

 

 

 

Fig. 5 (a) Averaged pairwise genetic differentiation 

between populations (FST) within and among 

genetic clusters for Primula tibetica based on six 

categories of geographic distances. (b) Correlations 

between pairwise genetic differentiation among 

populations (FST) within the central group (C; red; 

r = 0.51, P = 0.016) or the western (W) group 

(blue; r = 0.99, P = 0.042) and the geographic 

distance between populations. 
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Estimates of historical demography 

ABC modeling of the demographic history of P. tibetica indicated that the scenario depicting an origin 

of group CE as a result of admixture between groups C and E, provided the best fit to our RADseq 

data (Fig. S4b), with posterior probabilities significantly higher than the other scenarios (0.816, 95% 

credible interval 0.797, 0.834; Table S5). Modeling the changes in population size for each group 

recovered complicated demographic histories for the four groups of populations. Analyses for groups 

E and CE supported a scenario of “expansion–shrinkage–expansion”, while the two other groups were 

better modeled by a scenario of “expansion–shrinkage” (Fig. S7; Table S5).  

 
Fig. 6 Summary of inferred demographic history of the four genetic clusters of Primula tibetica. Changes in 

population sizes are integrated into the divergent scenario. Times on the vertical axis represent the glaciation 

periods that occurred in the Qinghai-Tibet Plateau (QTP) (Zheng et al., 2002). Population sizes are indicated on 

each cylinder. Times of divergence and changes in population sizes are indicated by horizontal dashed lines. 

Only the mean values are shown (see Supporting Information Tables S6, S7 for 95% highest posterior density 

for all values). E, eastern group; CE, central-eastern group; C, central group; W, western group. 

 

We estimated the divergence time and the population sizes as well as the timing and extent of these 

changes for the four groups. Group C was found to be the ancestral population of P. tibetica and 

started to expand its distribution ca. 1.11 Ma (95% highest posterior density (HPD): 0.53-1.65 Ma; 

Table S6), followed by a slight bottleneck around 0.063 Ma (HPD: 0.007-0.136 Ma). Group E 

diverged from the ancestral populations ca. 0.76 Ma (HPD: 0.49-0.96 Ma; Table S7). It started to 

expand until ca. 0.45 Ma (HPD: 0.15-0.92 Ma), before experiencing a severe bottleneck that decreased 

by about 25 times its population size around 0.12 Ma (HPD: 0.063-0.2 Ma). Then it quickly expanded 

just before LGM around 0.037 Ma (HPD: 0.011-0.078 Ma) and reached the previous level of 

population size. During the first expansion of group E, it came into secondary contact with group C, 

exchanged genes and resulted in the formation of group CE around 0.37 Ma (HPD: 0.213-0.525 Ma). 
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Group CE experienced ancient expansion and shrinkage, and a recent expansion during the LGM (Fig. 

6). Group W diverged from the ancestral population more recently, ca. 0.095 Ma (HPD: 0.037-0.203 

Ma), followed by expansion and a slight bottleneck during the LGM.  

 

Species distribution models 

The consensus models were highly accurate in regards to AUC (0.996) and TSS (0.998) values. 

Current potential distribution based on the three threshold approaches predicted similar results, but the 

5% omission error yielded generally a better representation of the actual distributions of the species, 

we therefore presented all results based on the 5% omission threshold. The paleo-climatic conditions 

of LIG predicted large differences in annual mean precipitation in the Himalayas compared with the 

ones observed at either the present, the MH or the LGM (Table S8). Therefore, it was not possible to 

predict the optimum climatic niche for the species during the LIG in this area considering the only 

available GCM model (Fig. S10; Methods S1). The predictions to MH conditions based on three 

GCMs (CCSM4, MIROC and MPI) yielded a continuous and less occupied overall distribution 

compared to current conditions, but larger distributions than the prediction at the LGM (Fig. 7, S10).  

During the LGM, the three GCMs yielded similar patterns but fragmented palaeodistributions of P. 

tibetica (Fig. 7, S10). All three GCMs suggested a main refugium in the central Himalayas and 

another in the southwestern Himalayas. The incongruence between models at the LGM yielded eastern 

or western expansions of suitable habitat compared with the predictions for the present and MH.  

 

 

 

 

 

 

Fig. 7 Habitat suitability of Primula tibetica predicted 

by species distribution models (SDMs) for present (a), 

mid-Holocene (MH) (b) and last Maximum Glacial 

(LGM) (c) using three techniques. SDMs for theMH 

and LGM are based on three climatic models. GCMs, 

general circulation models. 
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Discussion 

Primula tibetica displays a strong geographic structure and we identified four main groups of 

populations that may represent multiple past refugia for this species in the Himalayas. Isolation by 

Distance had an effect on genetic distance among populations within groups but not among groups. 

Instead, past climatic events were inferred to be the major factors in shaping the large-scale spatial 

genetic structure into four groups. The divergent times of the four groups based on ABC modeling are 

dated to less than 1 Ma and the divergences are congruent with past glacial and interglacial events, 

providing support for intraspecific divergence driven by the Quaternary climatic oscillations. The use 

of genomic data coupled with extended evolutionary modeling allowed us to recover for the first time 

a detailed demographic history of a plant species native and endemic to the Himalayas. The changes in 

population sizes that we inferred, combined with species distribution modeling, suggest that the two 

easternmost and westernmost gene pools were more affected by past climatic changes than the 

ancestral populations. The response to climatic changes of populations of a species depends on its 

specific ecological preferences and the range dynamics identified for this cold-tolerant species during 

the last glaciation differ from species associated with warmer environments. 

 

Multiple refugia and Isolation by Distance 

The use of genomic data allowed us to identify four distinct groups of populations for P. tibetica, 

which occupy the eastern, central-eastern, central and western areas of the species distribution (Fig. 1, 

2). These results, as well as the projected habitat at the LGM (Fig. 7c), suggest that multiple potential 

allopatric refugia existed for this species, likely located in the eastern, central and southwestern 

Himalayas. Although previous studies have found extensive private haplotypes in populations of 

diverse species and suggested multiple plant refugia in the Himalayas (Opgenoorth et al., 2010; H. 

Wang et al., 2010; Jia et al., 2011), the clear pattern identified by our genomic-level data was not yet 

described in the region. For example, Opgenoorth et al. (2010) found that private haplotypes were 

evenly spread across the distribution range of a juniper complex, indicating that these junipers 

maintained multiple glacial (cryptic) refugia throughout their current range and underwent only 

localized postglacial expansions. The use of plastid and nuclear markers, which provide less resolution 

compared with genomic-level data, may prevent the detection of a clear pattern.  

 

Procrustes analysis shows a high similarity score between the overall rotated genetic space and their 

geographic locations (t0 = 0.815, P_value < 10-5; Fig. 4), which is likely due to the large-scale spatial 

genetic structure shaped by the refugium-driven vicariance. Long-distance dispersal and gene flow 

that may disturb this pattern of population structure is unlikely in P. tibetica, because this small herb 

(2-13 centimeters) is pollinated mainly by insects (e.g. bees) and disperses its seeds largely by gravity 

(Richards, 2003). Its poor ability to disperse, associated with the extreme altitudinal gradient present 

in the Himalayas, has likely caused fragmentation, reduced gene flow and further reinforced the 
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genetic structure (Liu et al., 2014, Wen et al., 2014). Isolation by Distance plays a minor role in the 

large-scale pattern of population structure in P. tibetica (Fig. 5a). However, at narrow scales, there are 

IBD effects on the genetic distance of populations within groups (Fig. 5). The decrease of genomic 

similarities between populations within groups is likely due to limited dispersal among populations 

(e.g. Ferchaud et al., 2010; Lanier et al., 2015). However, separating the specific effects of geography 

and the environment on population structure is difficult (Thorpe et al., 2008; Wang et al., 2013). Our 

results show some differentiation of the ecological niches of the populations (Fig. S1), but finer-scale 

analyses are needed to identify and quantify the importance of these variables (e.g. Lexer et al., 2014). 

 

Quaternary climatic oscillations trigger intraspecific divergence in P. tibetica 

The genomic data presented here provide clear evidence that intraspecific divergence in P. tibetica 

was mainly driven by Quaternary climatic oscillations. The effects of Quaternary climatic oscillations 

on the distribution patterns and phylogeographic structure of species in the mid- to high-latitude 

regions of Europe and North America (Comes & Kadereit, 1998; Abbott et al., 2000; Avise, 2000; 

Hewitt, 2004; Anderson et al., 2006; Emerson et al., 2010), and in high-altitude areas (Qiu et al., 

2011; Liu et al., 2014; Wen et al., 2014; Sun et al., 2015) have been already described. However, no 

studies yet exist for the Himalayas, and our analysis therefore provided a unique opportunity to 

uncover the detailed Quaternary demographic history of high-altitude populations and to better 

understand the processes playing a role in their distribution in this region. 

 

The timeframe of the first divergence between the eastern and central populations (groups E and C; 

Fig. 6) is congruent with the largest Naynayxungla glaciation in the QTP. This event reached its 

maximum between 0.8 and 0.5 Ma with an ice sheet covering an area five to seven times larger than 

its current range (Shi et al., 2002; Zheng et al., 2002). Such extensive ice sheet could have caused 

fragmentation of ancestral populations and triggered the earliest divergence into two groups. The 

formation of the admixed central-eastern population (group CE) was dated to ca. 0.37 Ma (HPD: 

0.213-0.525 Ma) and coincides with the old expansion of group E (Fig. 6). During this period, the 

glaciation became progressively less extensive, but a cold climate is thought to have still prevailed in 

the QTP until 0.17 Ma (Shi et al., 2002). The old expansion of group E may have been favored by 

such cold climate, eventually resulting in a secondary contact with group C and the formation of group 

CE. Group W diverged from group C most likely during the last interglacial period when the climate 

was warmer (Thompson et al., 1997; Shi et al., 1998; Zheng et al., 2002) and may have allowed the 

ancestral populations to colonize the western high-altitude region. 

 

Demographic history of P. tibetica 

Our analyses of the demographic history of each group of populations show that all have experienced 

ancient expansions followed by bottlenecks (Fig. 6). The western, central and central-eastern groups of 
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populations that occur at high altitudes have experienced only slight bottlenecks during the last 

glaciation (Fig. 6), a period that started from 0.07 Ma and continued until the end of the LGM in the 

QTP (0.01 Ma; Thompson et al., 1997; Zheng et al., 2002). Our ABC modeling of changes in 

population sizes shows that populations comprising group C experienced the most ancient expansion 

ca. 1.11 Ma (HPD: 0.53-1.65 Ma), which indicates that the origin of this species likely occurred in the 

central Himalayas (Fig. 6). The time estimated for the most ancient expansion of this species is 

congruent with the divergent time from its two closely related species obtained from previous 

phylogenetic study (1.19 Ma, HPD: 0.51-2.13 Ma; Ren et al., 2015). The current populations of group 

C occur at an average altitude of 4260 m (Table S1) and are thus likely adapted to live in cold 

environments. Their tolerance to cold might thus have facilitated the persistence of populations at 

high-altitude glacial refugia during past glaciations (Fig. 7c).   

 

By contrast, the eastern populations (group E), which occur at the lowest altitude (average 2887 m; 

Table S1), experienced a severe bottleneck during the last interglacial period, but expanded during the 

LGM. The unusual demographic history of the eastern populations (group E) can be explained by the 

warmer climate in this region of the Himalayas, which displays a difference of more than 8°C in 

comparison with the region of the central populations (assuming that current temperature in the 

Himalayas decreases by 0.64 °C/100 m; Li & Zhang, 2010). The warmer interglacial period could 

have been detrimental for a cold-adapted species, whereas the population expansion during the LGM 

corresponds to a period of colder climate more similar to the situation that prevailed for its ancestral 

populations, but warm enough in the eastern regions to avoid extensive coverage by ice sheets (Shi et 

al., 1998; Zheng et al., 2002; Owen, 2009). Evidence supporting the reduction of population size 

during warmer periods further comes from the current and MH SDMs that show restricted predicted 

distributions in the eastern Himalayas (Fig. 7). Nevertheless, the possible recent reduction of 

population size in the eastern Himalayas detected by SDM is not supported by our genomic data (Fig. 

6, 7). This period represents however a small timescale (i.e. 18,000-25,000 years) and small density of 

population sampling (i.e. two populations) of group E may not provide enough information for such a 

recent reduction.  

 

Finally, the western populations (group W) occur at the highest average altitude (4552 m; Table S1) 

and expanded during the last interglacial period before retreating to a southwestern refugium during 

the LGM (Fig. 6, 7). The warm climate during the last interglacial period may have, in contrast to the 

eastern populations, facilitated expansion of this group through the opening of new potential habitats. 

The expansion to high-altitude areas in western Himalayas during warmer periods is also supported by 

the comparison of the SDMs between the present and MH, where more areas were predicted at present 

than the MH (temperature is higher at present than the MH; Table S9). During the LGM, this area may 

have become too cold for this species to persist in such high altitudes as shown in the SDMs (Fig. 7). 
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The two marginal populations that have colonized opposite geographical directions corresponding to 

very different altitudinal ranges are more vulnerable and respond differently to past climatic changes. 

Knowing the possible effect of past climatic changes on current populations may thus provide new 

insights into their future range dynamics in facing ongoing climatic changes and be useful for future 

management strategies (e.g. Lanier et al., 2015).  

 

Conclusion 

We combined genomic information and SDMs to identify the processes driving the phylogeographic 

structure of a high-altitude plant species over a large area of the Himalayas. Our analyses demonstrate 

the effects of past climatic changes on the intraspecific divergence of P. tibetica and highlight new 

patterns that are important to understand the current distributions of plant species in the Himalayas. 

The combination of population genomics and SDMs also provides new insights to predict the impact 

of future climatic changes on population dynamics. Taken together, we suggest that the central 

Himalayas was an ancient glacial refugium throughout the Quaternary glaciations in the area. The 

remaining lineages have persisted in additional refugia with different responses to climatic cooling 

during the LGM. Our study, taken together with those recently reported for other cold-adapted species 

that occur in the QTP (e.g. Shimono et al., 2010; Li et al., 2013; Liu et al., 2013), make clear that such 

species have exhibited different range dynamics (i.e. population persistence at high-altitude areas or 

even expansion) during the last glaciation relative to species associated with warmer environments.  
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Abstract 

Understanding the factors that drive genetic structure of a species and how it responded to past 

climatic changes is an important first step in modern population management. This is especially true 

for species inhabiting in highly heterogeneous mountains. Recent advances in population genomics 

hold great promise to detect cryptic structure and obtain more accurate estimates of demographic 

parameters, potentially revolutionizing the way genetic data are used to manage wild populations. 

Here we investigated population structure and demographic history of Primula fasciculata that occurs 

in a highly fragmented biodiversity hotspot, the Hengduan Mountains. We obtained genomic data for 

234 samples of the species using restriction site-associated DNA (RAD) sequencing and combined 

approximate Bayesian computation (ABC) modeling and species distribution modeling (SDM). The 

structure analyses showed that P. fasciculata displays a striking population genetic structure and six 

genetic lineages were identified. ABC modeling suggested that the current lineages diverged from an 

ancestral lineage in the eastern Hengduan Mountains after the largest glaciation occurred in the region. 

Each of them has experienced expansions and/or bottlenecks since their divergence during or across 

the following Quaternary glacial cycles. By contrast, the last glacial maximum (LGM) had little 

effects on these genetic lineages. Our study demonstrates the usefulness of population genomics with 

environmental variables for evaluating the effects of past climatic changes in alpine plant species with 

shallow population structure.  

 

Keywords: demography, genetic structure, Hengduan Mountains, population genomics, Quaternary 

climatic changes 

 

Introduction 

Plant populations are not randomly arranged assemblages of genotypes but are structured in space and 

time (Loveless & Hamrich 1984). Because of the limited mobility of plants, their genetic structure 
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implies spatial structure, where genetic differentiation increases with geographic distance (Wright 

1943). Yet, recent empirical studies have put forward that geographic distance by itself fails to fully 

explain genetic variation in natural systems (e.g. Shafer & Wolf 2013). In fact, geographic, 

environmental and historical factors have been suggested to act as drivers of spatial genetic patterns 

simultaneously at different spatial scales (Wang et al. 2012, Muñoz-Pajares et al. 2016, Ren et al. 

2017). Identifying the genetic structure of a plant species and the factors that drive it is then an 

important step not only in understanding speciation, adaptation and genetic change (Antonovics 1968), 

but also in population management. In the latter case, the dynamic spatio-temporal histories of 

populations can profoundly impact their future evolutionary potential (e.g. Lanier et al. 2015). This is 

especially true for climate-sensitive species inhabiting highly fragmented environments, such as 

mountain ranges. 

  

One of the key high-altitude biodiversity hotspots in the world were these processes could be studied 

are the Hengduan Mountains. They were formed by a recent uplift of the Qinghai-Tibet Plateau (QTP) 

during the late Miocene and Pliocene (Myers et al. 2000; Li & Fang 1999; Zheng et al. 2000; Mulch 

& Chamberlain 2006). The origin and maintenance of the high biodiversity in this region are 

suggested to result from its specific topographic feature and profound ecological heterogeneity created 

by the historical orogenesis and associated climatic changes (Wu 1987). Today, the region is 

characterized by parallel and deep north-south oriented valleys surrounded by high mountain peaks 

(Fig. 1). The mountains display drastic altitudinal variations ranging from 1000 m to numerous peaks 

above 6000 m, and the area is particularly vulnerable to climate change (Zheng 1996; Yao et al. 2007). 

With such a complex geological, climatic and ecological diversity, the region has attracted attention of 

numerous biologists to study the factors affecting species diversification and evolution (reviewed in 

Qiu et al. 2011; Liu et al. 2014; Wen et al. 2014). Some studies focused on species-level 

diversification resulted from the uplift of the QTP (e.g. Liu et al. 2002, 2006; Ren et al. 2015), while 

others looked at intraspecific levels to investigate the effects of past geological events and Quaternary 

climatic oscillations on population genetic structure (e.g. Li et al. 2013; Liu et al. 2013). However, 

because of the limited genetic information used in previous studies (but see Li et al. 2013), a 

comprehensive understanding of the factors triggering current genetic structure in this region is scarce. 

 

Integrative approaches combining population genomics (e.g. Ren et al. 2017) with species distribution 

modeling (SDMs, Guisan & Zimmermann 2000) have shown excellent results to understand current 

spatial genetic patterns and the processes behind. Population genomic data can provide accurate 

estimates of genetic structure (Avise 2010; Narum et al. 2013) and increased accuracy when 

estimating demographic parameters (e.g. Emerson et al. 2010; Bourret et al. 2013; Larson et al. 2013; 

Lanier et al. 2015; Izuno et al. 2016; Ren et al. 2017), whereas species distribution models allow 

predicting geographic areas being part of the ecological niche of species at different temporal and 
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spatial scales. A recent study based on these approaches has contributed a significant advance in 

understanding of how alpine plant species responded to the Quaternary climatic changes in a adjacent 

region, the Himalayas (Ren et al. 2017). Although the Next-Generation Sequencing (NGS) methods 

became cost-effective, the application of population genomics on the taxa distributed in the Hengduan 

Mountains remains rare because of its remoteness and inaccessibility, and consequently, such genomic 

level studies are particularly needed for this region to provide a better understanding of evolutionary 

history of species. 

  

Here we focus on Primula fasciculata (Primulaceae), one of the most widely distributed alpine plant 

species in the Hengduan Mountains (Hu & Kelso 1996). It is an insect-pollinated, heterostylous, 

herbaceous, perennial plant that occurs in diverse habitats at elevations ranging from 2900 to 5000 m. 

As an outcrossing small herb of variable height (2-10 centimeters), P. fasciculata disperses its seeds 

largely by gravity and usually grows in wet meadows or along hill-streams (Hu & Kelso 1996; 

Richards 2003). A recent study indicated that P. fasciculata originated from its closely related species 

P. tibetica during the Pliocene uplift of the Hengduan Mountains and experienced expansion during 

the Quaternary (Ren et al. submitted). However, the effects of Quaternary climatic oscillations on its 

intraspecific divergence and demographic history are unknown. Here, we use an integrative approach 

combining genomic phylogeography with niche modeling to address these issues. The aims of our 

study are to: i) identify the population structure of this species and understand the factors driving it; 

and ii) reconstruct a detailed demographic history of P. fasciculata and combine species distribution 

models with ABC modeling to evaluate the effects of Quaternary climatic changes on its demographic 

history. 

  

Materials and methods 

Dataset 

The same dataset as the one assembled in Chapter 2 for P. fasciculata was used here. It comprises 234 

individuals from 12 populations sampled throughout the Hengduan Mountains. We removed the 140 

outlier SNPs found in this species (Chapter 2; Ren et al. submitted) to obtain estimates of neutral 

population genetic structure based on 5946 single-SNP loci. 

 

Characterization of population genetic structure 

Population genetic structure of P. fasciculata was estimated by using the Bayesian method 

implemented in STRUCTURE 2.3.4 (Pritchard et al. 2000) and a principal components analysis 

(PCA). Structure analyses were performed under the “Admixture model” and the “Correlated allele 

frequency model” with K-values ranging from 1 to 12. Ten independent runs were performed for each 

value of K using 1 × 105 generations for the burnin and 2 × 105 generations for the sampling. The 

optimal K was chosen using the delta-K method of Evanno et al. (2005) as implemented in 
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STRUCTURE HARVESTER (Earl 2012). The coefficient for cluster membership of each individual 

was averaged across the ten independent runs using CLUMPP (Jakobsson & Rosenberg 2007) and 

plotted using DISTRUCT (Rosenberg 2004). PCA was performed with the glPCA function in 

adegenet package (Jombart 2008) in R to visualize the major axes of variation of the population 

genetics. 

 

 
Fig. 1 Sampling locations of all 61 populations of P. fasciculata (grey stars) and the 12 selected populations 

(large colored cycles) used for genomic analyses in this study. 

 

Pairwise FST values and analysis of molecular variance (AMOVA) among populations were calculated 

in GENODIVE v.2.0b27 (Meirmans & Tienderen 2004), and significance was determined using 1 × 

104 permutations. AMOVA for populations that were further clustered into several groups based on 

STRUCTURE and PCA results (see Results; Table 1) was applied to evaluate which grouping strategy 

explains the most percentage of total variance among groups. 

  

The first three components of the PCA performed on the genetic data and the geographic coordinates 

(latitude and longitude) of the 12 populations were used in a Procrustes analysis using the R package 

vegan (Oksanen et al. 2013). This analysis minimizes the sum of squared Euclidean distances between 

two sets of points by rotating one set of points to match the other, while preserving the relative 

distances among all points within the map (Wang et al. 2012). The similarity of the two maps is 

quantified using the Procrustes similarity statistic t0 (Wang et al. 2010; 2012). We used the protest 
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function in vegan to test the probability of observing a similarity statistic higher than the observed t0 if 

no geographic pattern is assumed using 1 × 105 permutations (Wang et al. 2012). 

  

We used BARRIER v2.2 (Manni et al. 2004) to compute the Monmonier’s maximum-difference 

algorithm for identifying biogeographic boundaries or areas exhibiting the largest genetic 

discontinuities between population pairs based on pairwise genetic distances (FST). We randomly 

selected 5,000 loci from the neutral dataset 100 times to generate 100 FST distance matrices by using 

populations module in the STACTS v1.30 (Catchen et al. 2013). The number of barriers was set to 

vary from 1 to 10, reflecting their descending order of relative importance (‘priority’) for genetic 

dispersion (Manni et al. 2004). The robustness of the genetic boundaries was assessed by running 

BARRIER on the 100 FST distance matrices. 

  

Estimates of historical demography 

To decipher the historical demography of P. fasciculata, we estimated historical divergence times, 

admixture and changes in population sizes among different population groups using ABC modeling. 

We stratified the procedure in three steps (Fig. S1): (i) we investigated the most likely population tree 

topologies for the three main population lineages (see Results) that were identified by the 

STRUCTURE and PCA analyses among 13 scenarios describing all possible topologies (Fig. S1); (ii) 

we selected the tree topology obtained in (i), then split the three main lineages into six groups (see 

Results; Fig. S1) to estimate their divergence times between two scenarios; (iii) we tested changes in 

population sizes of each of the six groups in the recent past among four scenarios (Fig. S1; Ren et al. 

2017). Five individuals that had the least missing data from each of the 12 populations were selected 

for steps one and two to reduce computational time. For step three, we used those same five 

individuals for the two groups that contained multiple populations, whereas all individuals were used 

for all groups that included only one population.  

  

For each step, we tested different scenarios using DIY-ABC v.2.1.0 (Cornuet et al. 2010, 2014). We 

selected for these analyses a single SNP per locus, which had to be present in i) at least 80% of the 

individuals from each lineage/group and ii) all lineages/groups. We chose MAF = 0.01 to increase the 

mean level of genetic variation of both the observed and simulated data sets and to reduce the 

proportion of loci that may correspond to sequencing errors. The datasets used for the ABC modeling 

and the distributions of prior probabilities for each modeling are summarized in Table S1. We selected 

all summary statistics to generate a reference table (on average 106 datasets per scenario) and used 1% 

of the simulated data sets closest to the observed data to estimate the relative posterior probabilities for 

each scenario via logistic regression. Posterior distributions of historical demographic parameters 

based on the most likely scenario (Cornuet et al. 2010) were estimated. The time parameters are 
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estimated in generations and converted into years by multiplying by the generation time, which was 

set to one year (Ren et al. 2017). 

  

Species distribution models 

An ensemble of SDMs (Guisan & Zimmermann 2000) was generated for P. fasciculata following the 

same approach as applied for P. tibetica using three different techniques: generalized linear model, 

gradient boosting machine and random forests, as implemented in the R package biomod2 (Thuiller et 

al. 2009). A total of 89 species occurrences were used as presences data to calibrate the models. We 

used the 19 bioclimatic variables of Worldclim (http://www.worldclim.org, Hijmans et al. 2005) as 

environmental predictors. The potential distributions of 1) the present; 2) the last Maximum Glacial 

(LGM; 0.022 Ma), and 3) the mid-Holocene (MH; 0.006 Ma) were estimated. For the MH and LGM 

we employed three different general circulation models (GCMs, earth-system climatic models 

coupling the ocean, the atmosphere and the land surface; CCSM4, MIROC-ESM, MPI-ESM-P 

available from http://cmip-pcmdi.llnl.gov/cmip5/ processed on www.worldclim.org). 

  

Results 

Structuring of population genetic variation 

Although the most possible K values of STRUCTURE analyses based on the ΔK method of Evanno 

was K = 2, the differences of ΔK among K values were very small (Fig. 2).  The ΔK of the second 

most probable K value (K = 6) differed from the best one by only 2. Other K values (3, 4, 5 and 9) also 

received considerable support. We decided to show all these K values in Fig. 2 and combined them 

with the PCA results to capture the most reasonable lineages for the ABC modeling. 

 

The first two axes of PCA identified three main genetic lineages and explained 13.04% and 7.76% of 

the total variation, respectively (Fig. 3). The two southwestern populations (PF05, PF06) and four 

northwestern populations (PF09-PF12) formed two separate lineages (L1 and L2), while the rest of 

populations form a third lineage (L3). This was in agreement with the STRUCTURE results when K 

=3 (Fig. 2). The third axis of the PCA (PC3; 6.12% of the total variation) showed a separation of 

population PF07 from lineage L3, which was also shown when K = 4 in the STRUCTURE. We 

identified this population as G1. Looking at K values from K = 2 to K = 6, population PF08 was 

always represented as an admixed population, which was labeled as G2. The remaining populations of 

L3 were grouped as G3. The two populations (L1) that diverged from each other in the PCA (Fig. 3) 

were identified as lineages G4 and G5. The four northwestern populations form the sixth group (G6) 

evident both in STRUCTURE and PCA. The three main lineages (L1-L3) were used in step one of the 

ABC modeling to identify the most likely population tree topology, and the six groups (G1-G6) were 

used in step two of the ABC modeling to estimate the divergence times among these groups. 
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Fig. 2 ΔK values identified using STRUCTURE HARVESTER and plots of posterior probabilities for 

individuals of P. fasciculata assigned to K genetic clusters from STRUCTURE analyses for K = 2 – 6 and 9. 

Populations are delimited by black lines, with the corresponding population names listed along the bottom of the 

plot. 

 

In order to evaluate the reliability of the grouping strategy defined above used for the ABC modeling, 

we further assigned populations into four, five or seven groups (PF05 and PF06 were separated based 

on PCA) based on K=3, K=4 and K=5 in the STRUCTURE (Fig. 2), respectively. The strongest 

signature of population spatial differentiation was obtained (22.3% of total variance; Table 1) when 

populations were assigned to six groups, which suggest that our grouping strategy for the ABC 

modeling was reasonable. Differentiation among populations was significant, with FST values ranging 

from 0.089 to 0.608 with a mean value of 0.381 (Table S2), which was consistent with AMOVA for 

the total dataset (FST=0.306; Table 1). 
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Fig. 3 Distribution of individuals of P. 

fasciculata along PC scores (PC1-13.04% vs. 

PC2-7.76%; PC1 vs. PC3-6.12%) of genetic 

variation based on the analysis of SNP dataset; 

individuals are colour-coded according to their 

population identities (see Fig. 1). 

 

 

 

 

 

 

 

 

 

Procrustes analysis was used to quantify the association between the genetic variation of populations 

and their geographic locations. The first two PC spaces identified a significant similarity score (t0 = 

0.579, P_value < 10-5), which increased to t0 = 0.777 when genetic variation in PC1 and PC3 spaces 

were considered (Fig. 4a). This was caused by the clear separation of the most geographically isolated 

population PF07 from other populations by the PC3 axis.  Individuals from G6 are genetically more 

similar with each other than would be expected given the geographic distance among the populations 

forming this group. The general pattern of association with geography for the rest of populations was 

robust, indicating high level of population divergence. Such level of divergence was also evident in 

the BARRIER analysis that gave high support to all ten barriers (bootstrap support 100%; Fig. 4b). 

The presence of such strong barriers between P. fasciculata populations indicates an abrupt change in 

the genetic profile of populations across the species distribution. Although the ranking of the 

population barriers (Fig. S2) was not in agreement with the STRUCTURE and PCA analyses, the 

general pattern of spatial genetic structure identified by the BARRIER analysis was consistent with the 

other analyses. 
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Table 1 AMOVAs for neutral genomic variation based on several groupings of P. fasciculata populations. 
Grouping/source of 
variation df 

Variance 
components 

Percentage of total 
variance F-statistica 

Total 
    Within populations 222 385.925 69.4 -- 

Among populations 11 170.004 30.6 FST=0.306 
     
Three lineages 

    Within populations 222 385.246 65.7 FST=0.343 
Among populations 9 108.798 18.6 FSC=0.220 
Among lineages 2 91.935 15.7 FCT=0.157 
     
Four groups  

    Within populations 222 385.862 66.8 FST =0.332 
Among populations 8 103.728 18.0 FSC =0.212 
Among groups 3 88.247 15.3 FCT =0.153 
     
Five groups  

    Within populations 222 386.703 66.9 FST =0.331 
Among populations 7 82.003 14.2 FSC =0.175 
Among groups 4 109.023 18.9 FCT =0.189 
     
Six groups 

    Within populations 222 386.743 66.7 FST =0.333 
Among populations 6 64.083 11.1 FSC =0.142 
Among groups 5 128.675 22.2 FCT =0.222 
     
Seven groups 
Within populations 222 385.383 67.7 FST =0.323 
Among populations 5 71.91 12.6 FSC =0.157 
Among groups 6 111.893 19.7 FCT =0.197 

Abbreviations: AMOVAs, analyses of molecular variance; df = degrees of freedom;  
a All F-values were significant (P < 0.001) based on 1000 permutations. 
 

Estimates of historical demography 

We used a three-step procedure to estimate the demographic history of P. fasciculata. Among the 13 

scenarios tested in step one, the scenario depicting an origin of both L1 and L2 from L3, provided the 

best fit to our data, with posterior probabilities significantly higher than the other scenarios (0.995, 

95% credible interval (CI) 0.99, 1.00; Table S3; Fig. S1). According to the main tree topology inferred 

from step one, the analyses done in step two showed that groups G1, G6 and G4/G5 (i.e. alternative 

scenarios; Fig. S1) originated from G3, while G2 was formed by admixture between G3 and G6. The 

scenario where G4 originated from G3 and later G5 diverged from G4 fitted the data much better 

(0.93, CI: 0.93-0.94; Table S3; Fig. S1). Modeling the changes in population size for each group 

recovered complicated demographic histories for the six groups of populations. Analyses for groups 

G3 supported a scenario of “expansion–shrinkage”, while groups G2, G4 and G6 were better modeled 

by a scenario of “expansion–shrinkage–expansion”. The other two groups (G1 and G5) were better 

modeled by a scenario of “recent expansion” (Table S3). 
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Fig. 4 (a) Procrustes-transformed PCA plot of genetic 

variation with each individual of P. fasciculata mapped 

in PC space (the small circles) relative to the geographic 

location of populations (the larger circles). Black lines 

show the orientation of the genetic space relative to the 

geographic longitude and latitudinal axes. The length of 

the line connecting individuals in PC space to their 

geographic location represents the extent of the deviation 

from the expected pattern of genetic variation based on 

geography. (b) Result of BARRIER analysis showing the 

spatial separation of P. fasciculata populations. All the 

ten barriers (red lines) are highly supported over 100 FST 

distance matrixes. Barriers are delimited by small red 

triangle. Numbers (1-10) represent descending order of 

relative importance (‘priority’). 

 

 

 

 
Fig. 5 Summary of inferred demographic history of the six groups of P. fasciculata. Changes in population sizes 

are integrated into the divergent scenario. Times on the vertical axis represent the glaciation periods that 

occurred in the QTP (Zheng et al. 2002). Population sizes are indicated on each square. Times of divergence and 

changes in population sizes are indicated next to each change in population size. Only the mean values are 

shown (see Table S4, S5 for 95% credible interval for all values). 
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We estimated the divergence times and the population sizes as well as the timing and extent of these 

changes for the six groups. Group G3 was found to be the ancestral population of P. fasciculata and 

started to expand its distribution ca. 0.60 Ma (95% highest posterior density (HPD): 0.27-0.86 Ma; 

Fig. 5; Table S4), followed by a slight bottleneck around 0.038 Ma (HPD: 0.004-0.075 Ma). G6 

diverged from the ancestral populations formed by G3 ca. 0.47 Ma (HPD: 0.38-0.55 Ma; Table S5). It 

started to expand until ca. 0.36 Ma (HPD: 0.18-0.49 Ma), before experiencing a bottleneck ca. 0.06 

Ma (HPD: 0.02-0.09 Ma). Then, it quickly expanded just after the LGM. During the first expansion of 

this group, it came into secondary contact with the ancestral populations of G3, exchanged genes and 

resulted in the formation of G2 around 0.12 Ma (HPD: 0.07-0.17 Ma; Table S5). G2 experienced 

ancient expansion (0.10 Ma) and shrinkage (0.054 Ma) before and during the last glaciation (i.e. 

0.015-0.075 Ma), respectively, and a recent expansion after the LGM. G1 diverged from the ancestral 

populations ca. 0.36 Ma (HPD: 0.23-0.49 Ma) and stayed stable through time before experiencing a 

recent expansion after the LGM. G4 diverged from G3 ca. 0.41 Ma (HPD: 0.26-0.54 Ma) and started 

to expand before experiencing a bottleneck during the last glaciation. A recent expansion after the 

LGM was also detected for this group. G5 was isolated from the ancient expansion of G4 (0.15 Ma, 

HPD: 0.09-0.21 Ma; Table S5) and experienced a recent expansion after the LGM. 

  

Species distribution models 

The predictions to MH conditions based on three GCMs (CCSM4, MIROC and MPI) for this species 

yielded a continuous and less occupied overall distribution compared to current conditions, but larger 

distributions than the prediction at the LGM (Fig. 6). During the LGM, P. fasciculata was predicted to 

retreat to eastern QTP and occupied a huge region and to some restricted refugia in the eastern 

Himalayas based on the three GCMs. 

  

Discussion 

Based on population genomic data, we found a striking population genetic structure for P. fasciculata 

in the highly fragmented biodiversity hotspot of the Hengduan Mountains. The patterns of genetic 

differentiation detected by different structure analyses were congruent, and we identified six groups of 

populations that capture the main characteristics of the population history of this species. ABC 

modeling suggested that the divergent times of the six groups are congruent with past glacial and 

interglacial events, providing support for population divergence driven by the Quaternary climatic 

oscillations. All six groups have experienced bottlenecks or stayed stable during the last glaciation, 

while five groups started to expand just after the LGM. These results obtained with genomic data were 

also supported by the SDM analyses. Taking together with a recent study that investigated factors in 

driving genomic variation in this species (Ren et al. submitted), our results suggest that all the 

historical factors (i.e. past climatic changes), spatial and environmental variables act as drivers of 

spatial genetic patterns. This study thus contributes a significant advance to our understanding of how 
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alpine species were genetically structured and responded to Quaternary climatic oscillations in the 

Hengduan Mountains. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Habitat suitability of P. fasciculata predicted 

by SDMs for the present, the MH and the LGM. 

SDMs for the MH and LGM are based on three 

climatic models. The predicted distributions for the 

present and the LGM are modified from Ren et al. 

(submitted). The black dots represent the currently 

geographic locations of the 12 populations used in 

this study for population genetic analyses. 

 

 

 

 

 

 

 

 

Spatial patterns of genomic diversity 

Our results revealed exceptionally high levels of population divergence across the distribution of P. 

fasciculata, with a FST value of 0.306 (Table 1). This value is slightly lower than the level of genetic 

differentiation among populations reported for its closely related species Primula tibetica (0.414; Ren 

et al. submitted) and Bulbophyllum occultum (0.387; Jaros et al. 2016), but it is still within the range 

usually ascribed for plants with particularly restricted dispersal ability and mainly selfing species. The 

divergence of populations detected with our neutral genomic markers is thus generally considered 

‘very high’ and translates into <1 migrant per generation under equilibrium conditions (Conner & 

Present

MH

LGM
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Hartl 2004), a value often considered the minimum for maintaining species cohesion. The level of 

population differentiation found here contrasts with species that are characterized by extensive long-

distance gene flow facilitated by the dust-like and wind-dispersed pollen and seeds exhibit rather low 

genetic differentiation among populations (e.g. orchids, Tremblay et al. 2005; epiphytic species, 

Phillips et al. 2012; Restio capensis, Lexer et al. 2014). 

  

Spatial patterns of nuclear genomic differentiation inferred from STRUCTURE, PCA and BARRIER 

analyses were largely concordant with each other (Fig. 2, 3, 4b), which suggest a strong 

correspondence between population differentiation and their geographic locations. The pattern was 

further supported by the procrustes analysis, which showed a high similarity score between the overall 

rotated genetic space and their geographic locations (Fig. 4a). The persistent of population divergence 

may be facilitated by the poor dispersal ability of the species (Richards 2003) and reinforced by the 

rugged topographic features and profound ecological heterogeneity found in the Hengduan Mountains. 

Indeed, a recent study has shown that both the spatial (i.e. geographic distance and elevation 

differences between populations) and environmental (i.e. climatic and edaphic variables) factors acted 

as drivers of population differentiation in not only the selected but also the neutral genomic regions 

(Ren et al. submitted). Such strong correlation may suggest local adaptation, which may have further 

reinforced the genetic structure (Savolainen et al. 2013; Twyford et al. 2015). Furthermore, historical 

factors (i.e. past climatic oscillations) were inferred to drive the large-scale spatial genetic structure in 

this species (see below). Similar spatial, environmental and historical factors have been suggested to 

drive the spatial genetic patterns in a montane pollination-generalist herb (Muñoz-Pajares et al. 2016). 

By contrast, for the plant species Restio capensis that occurs in the Cape Floristic Region of South 

Africa, another biodiversity hotspot in the world, climatic variables were the major drivers of 

population divergence (Lexer et al. 2014). Therefore, drivers of population differentiation may be 

different and complex in different taxa and areas, and more factors should be considered when 

evaluating population differentiation of organisms and in particular for those that are distributed in 

mountainous areas. 

  

Demographic history of P. fasciculata 

Quaternary climatic oscillations had a dramatic effect on distribution patterns and phylogeographic 

structure of species (Comes & Kadereit 1998; Abbott et al. 2000; Hewitt 2004), especially for those 

distributed in high mountains such as the QTP that are assumed to be particularly vulnerable to past 

climatic changes (Zheng 1996; Yao et al. 2007). Despite much effort, we are lacking a detailed 

demographic history for the species present in this area because of limited genetic information (e.g. 

Yang et al. 2008; Du & Wang 2016; Wan et al. 2016; but see Li et al. 2013; Shang et al. 2015). By 

contrast, our analysis uncovers a detailed Quaternary demographic history of an alpine species in the 
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Hengduan Mountains. It corroborates our previous study on P. tibetica, which showed similar effects 

of the different factors in another biodiversity hotspot in the QTP, the Himalayas. 

  

Our ABC modeling of divergence times and changes in population sizes shows that populations 

included in G3 experienced the most ancient expansions ca. 0.60 Ma (HPD: 0.27-0.86 Ma; Fig. 5) and 

all other genetic groups originated from G3. This suggests that current populations originated from 

ancestral populations located in the eastern Hengduan Mountains. The divergence times between the 

genetic groups and the ancestral populations (Fig. 5) are dated after the largest Naynauxungla 

glaciation that began ca. 1.2 Ma and reached its maximum between 0.8 and 0.5 Ma in the QTP (Shi 

2002; Zheng et al. 2002). However, a previous study suggested that P. fasciculata originated from its 

closely related species P. tibetica during the Pliocene period (4.65 Ma) and expanded its distributions 

at the beginning of the Quaternary when the climate became cold (Ren et al. submitted). During the 

period between 4.65Ma and 0.6 Ma, it is unlikely that no population divergence have occurred given 

the varied topographic features in the region. A more possible explanation would be that extensive 

extinction of ancestral populations might have occurred during the past environmental changes, most 

likely during the largest Naynauxungla glaciation, which produced an ice sheet covering an area five 

to seven times larger than its current range (Shi 2002). Such huge ice sheet and extremely cold climate 

during the largest glaciation could have caused fragmentation of ancestral populations, lending to 

isolation and eventual extinction of populations located at high-altitude regions considering the fact 

that all the current northwestern and southwestern populations occur at more than 4000 m (Table S6). 

By contrast, the eastern populations, occurring at lower altitude, could have survived in an eastern 

refugium during the largest glaciation. When the climate became less cold, these populations could 

have recolonized high-altitude areas again and further gave rise to other genetic lineages triggered by 

the afterwards glacial and interglacial events (Wang et al. 2009; Opgenoorth et al. 2010). 

 

The timeframes of the divergence between groups G1, G4 and G6 and the ancestral populations (i.e. 

G3) are congruent with a period where two other glaciation events and multiple interglacial periods 

occurred in the QTP (Ou et al. 2015). The glaciations during this period became progressively less 

extensive, but a cold climate prevailed in the QTP until 0.17 Ma (Shi 2002), which may have triggered 

these divergences. The ABC modeling of changes in populations for each group indicates that both G4 

and G6 have experienced ancient expansions while G1 has stayed stable through time until the end of 

the LGM (Fig. 5). Such different demographic changes may depend on their specific ecological niches 

(e.g. Ren et al. 2017). The current population of G1 occurs at an altitude of 4845 m. The cold climate 

and less available ecological niches as indicated in the SDMs for this population (Fig. 6) may have 

prevented the ancient expansion of this group. By contrast, the current populations of the other two 

groups G4 and G6 occur at lower altitude (4170 m and average 4583 m, respectively). The open new 

habitats may have facilitated their ancient expansions. 
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Finally, the remaining two groups G2 and G5 were formed in different ways during the last 

interglacial when the climate was warm (Fig. 5). It seems that during the ancient expansions of G6 and 

ancestral populations (G3), the two groups came into secondary contact and resulted in the formation 

of G2. The divergence between G5 and G4 may due to complex topographic features in this region 

(Fig. 1). The deep valleys and high mountains may have probably caused fragmentation of the ancient 

expansion of G4, reduced gene flow between them and reinforced the divergence. Taken together, ice-

age cycles pre-dating the LGM have had a much stronger influence on the evolutionary histories of 

plants in the QTP than previously thought (Qiu et al. 2011), especially the largest glaciation period 

which may have caused massive extinction of ancient populations of plants (see also Ren et al. 2017). 

However, the results of this study, combined with previous studies (Wang et al. 2009; Opgenoorth et 

al. 2010; Wang et al. 2010; Ren et al. 2017), clearly indicate that the alpine species in the QTP could 

have survived in different refugia at high altitude, conflicting with Renner’s opinion that a unique ice-

sheet has occurred in the QTP (Renner 2016). Furthermore, all genetic lineages have experienced 

bottlenecks or stayed stable during the last glaciation and post-glacial expansions, which is also 

evident in the SDMs (Fig. 6). This result, taken together with those recently reported for other alpine 

herbs (Hu et al. 2016; Wan et al. 2016; Ren et al. 2017), suggests that alpine plant species survived 

the last glaciation in multiple refugia in the QTP where most of the diverged lineages were preserved. 

  

Conclusions 

Our analysis of population genomic data in a spatially and ecologically explicit context using 

appropriate analytical tools could identify an accurate genetic structure and uncover a detailed 

demographic history of an alpine plant species, which could further allow us to demonstrate the effects 

of past climatic changes on its intraspecific divergence. Knowing these possible effects of past 

climatic changes on current populations may be useful for predicting their future range dynamics in 

facing ongoing climatic warming and for future management strategies. The results of this study on P. 

fasciculata, taken together with a recently reported for its closely related species occurs in the 

Himalayas, P. tibetica (Ren et al. 2017), and a study that investigated interspecific divergence between 

them (Ren et al. submitted), put forward that the largest glaciation occurred in the QTP has markedly 

affected the evolution and demography of these two species, which probably has caused extensive 

extinction of their ancestral populations. The afterwards divergences are associated with the following 

climatic oscillations. By contrast, the LGM has little effect on these recent diverged lineages that may 

likely survive in multiple refugia, as also suggested by other studies in this area (e.g. Wang et al. 2009; 

Opgenoorth et al. 2010; Li et al. 2013; Hu et al. 2016). This response pattern to past climatic changes 

may be also applicable for other plant species in the QTP that share a preference for cold 

environments.  
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Fig. S1 Alternative demographic scenarios for the three steps analyzed by DIY-ABC. The best-fit scenario was 
indicated by square in step 1 and 2.  
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Fig. S2 Result of BARRIER analysis shows the spatial separation of P. fasciculata populations for number of 
barriers from 1 to 10.   
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Conclusions and perspectives 

Understanding the relative roles of geography and ecology in driving species diversification, 

speciation, population divergence and range dynamics is significantly advanced with an integrative 

research that connects the macro-evolutionary pattern of biodiversity, interspecific divergence among 

closely related species, with demographic history of species (Liu et al. 2014; Wen et al. 2014). The 

massive amounts of genome level data are transforming the field of population genetics to population 

genomics, and simultaneously, are revolutionizing our understanding of how natural populations and 

species evolve (Luikart et al. 2003; Charlesworth 2010; Weigel & Nordborg 2015). In my thesis I 

integrated three taxonomic levels to better understand the evolutionary history of alpine Primula 

species in the QTP. I selected section Armerica of Primula that mainly occurring in the QTP to 

investigate the effects of past geological and climatic changes by combining macro-evolutionary 

approaches and population genomic data at multiple evolutionary timescales. This thesis represents the 

first population genomic level study in the QTP and contributes to a significant advance of 

understanding of how plant species responded to historical geological and climatic changes in 

mountains. Each of these scales has advantages and limitations, and open up the door to many 

possibilities for future work.	
 

In chapter 1, I have reconstructed detailed phylogenetic trees for Primula sect. Armerina using both 

chloroplast and nuclear markers and demonstrated that the section originated from the Himalayas and 

its diversification timescale matched well with the latest uplift of QTP. I also illustrated the roles that 

niche evolution has played in shaping biogeographic patterns of three closely related species in this 

section. Taken all together, my findings in this chapter indicated that both the past geological and 

climatic events have played important roles in the evolution and distribution of this section, which 

prompts a question that whether these past events have triggered diversification of the whole genus or 

across the entire family.  

 

The influence of the historical orogenesis and associated climatic changes on the evolution of 

organisms in the QTP is frequently investigated at a population level (e.g. Zhang et al. 2005; Wang et 

al. 2009; Li et al. 2013; Liu et al. 2014), but such effects on larger taxonomic level are still elusive in 

the region. The QTP, one of the world’s biodiversity hotspots, is suggested as one of biogeographic 

source areas in Eurasia. However, only a handful of plant groups have been confirmed with this 

pattern of origin (Zhang et al. 2009; Jia et al. 2012; Wen et al. 2014). Whether Primula or other plant 

groups that most diversify in the QTP have this pattern of origin, and, if so, how did they dispersed to 

other regions need further investigation with a biogeographic framework. Furthermore, future work 

should be conducted to assess whether the uplifts of the QTP have increased the diversification rate in 
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Primula. More specifically, studies could test if differences in diversification rates occur between QTP 

lineages and non-QTP lineages, as well as QTP organisms and taxa from other mountain systems 

versus lowland taxa. As the QTP has experienced at least three extensive uplifts since the Miocene, 

whether there is correlation between these uplift events and the diversification rates over time is also 

interesting to test. However, carrying out these evaluations will face the difficulties of obtaining a 

highly resolved phylogenetic tree and reliable fossil records. A good taxonomic sampling and 

excellent coverage of the genus distribution range, combined with phylogenomic approaches (e.g. 

Wagner et al. 2013; Escudero et al. 2014; Hipp et al. 2014; Boucher et al. 2016) could be helpful to 

provide new insights into the evolution of biodiversity hotspots associated with mountain formation 

(Favre et al. 2014). 	
 

In chapter 2, I have examined the interspecific divergence between three closely related species of 

this section based on population genomic data. I successfully obtained a clear relationship among the 

three species based on population genomic data, which highlight the power and importance of the use 

of population genomic data in delimiting relationship of closely related species. I also found clear 

evidence for an origin of the three species in the Himalayas and demonstrated that their initial 

interspecific divergence may have been driven by the uplifts of the Hengduan Mountains and Northern 

QTP, pointing to an important role of historical geological events in the speciation process of the 

genus. Unexpectedly, I found no significant hybridization/introgression between the three species even 

in secondary contact zones. This is surprising because one of the three species, P. nutans, can even 

hybridize with P. mistassinica (section Aleuritia), a more distantly related species, and resulted in an 

intersectional allopolyploidization tetraploid species P. egaliksensis (Guggisberg et al. 2009). I 

primarily showed that the spatial and environmental variables could have played a role in the 

maintenance of divergence between them, but further studies are needed to investigate the degree of 

reproductive isolation among them. 	
 

What mechanism facilitates the maintenance of reproductive isolation and trait differences in hybrid 

zones between closely related species is a challenging topic of molecular ecology and evolutionary 

biology (Coyne & Orr, 2004; Arnold, 2006). A first question that remains is whether the formation of 

hybrid zones results from primary intergradation or secondary contact. Our results in chapters 2, 3 and 

4 indicated that the three species might have retreated to different and isolated glacial refugia during 

glaciations, suggesting that the current contact zones were formed by secondary contact. Second, 

although our results showed little introgression in general among the three species, the sampling did 

not include any sympatric populations. Therefore, whether there is no hybridization/introgression in 

contact zones need further investigation by sampling more sympatric populations (i.e. mosaic contact 

zones). Whole genomic sequencing analyses will provide more detailed information on the effects of 

hybridization in these contact zones (e.g. Meier et al. 2016). Third, patterns of heterogeneous genomic 
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divergence may reflect differential introgression following secondary contact or could result from 

variation in selection and recombination across the genome in the absence of any gene flow (Payseur 

2010; Nachman & Payseur 2012; Cruickshank & Hahn 2014). It is essential to distinguish between 

genome regions that are divergent between pure parental populations and regions that show restricted 

introgression where these populations interact in hybrid zones. The latter, more so than the former, 

reveal the likely genetic architecture of reproductive isolation and local adaptation (Harrison & Larson 

2016). Finally, as a complement to genomic analyses, experimental and field studies should be 

explored to evaluate the evolutionary and ecological consequences of hybridization and introgression 

in contact zones (Christe et al. 2016; von Rönn et al. 2016). Combining all these knowledge will help 

to obtain a more complete understanding of the factors that may allow species to originate and be 

maintained in the face of gene flow (Abbott et al. 2016).	
 

Finally, in chapters 3 and 4, I have reconstructed detailed demographic histories of P. tibetica and P. 

fasciculata, respectively, and combined with the SDMs to evaluate the effects of the Quaternary 

climatic oscillations in the QTP on the intraspecific divergence and range dynamics of the two species. 

Our results highlight the power of population genomic data in revealing fine-scale population genetic 

structure in mountains and the significance of combining genomic approaches with environmental data 

when evaluating the effects of past climatic changes. More specifically, the largest glaciation that 

occurred in the QTP has markedly affected the evolution and demography of these two species, which 

has probably caused extensive extinction of ancestral populations, while the LGM had little effects on 

the recent diverged lineages. Moreover, the response to climatic changes of populations of a species 

depends on its specific ecological preferences. Our results provide a new response pattern of alpine 

plant species to the past climatic changes in the QTP, and this pattern may be also applicable for other 

species that share a similar preference of ecological niches. 	
 

In contrast to the two species endemic to the QTP, P. nutans is widely distributed in NW China, 

Central Asia, N Mongolia, N Europe, W&E Siberia and NW North America (Richards, 2003). I have 

shown in chapter 2 that this species might originate from the QTP, but the routes and timing of 

migration events during the spread of this species into its current distribution remain unclear. A similar 

study involving a finer sampling across the entirely distribution of P. nutans associated with large-

scale genomic data should be employed to gain a detailed knowledge of evolutionary history of this 

species (e.g. Wang et al. 2016). 	
 

When populations inhabit heterogeneous environments, how do populations locally adapt to their 

ecological niches? Detecting the footprints of local selection at sequence level is difficult, because 

demographic histories such as expansions and bottlenecks may generate similar patterns of genetic 

variation (Tajima, 1989; Zeng et al. 2007). However, recent improved genomic tools now allow 
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genomic-wide studies of local adaptation, as only restricted genomic islands are under local selection 

underlying specific selective pressures while demographic histories affect genome-wide variation and 

differentiation (Wright & Gaut 2005; Excoffier et al. 2009). The results in chapter 2, 3 and 4 have 

shown that historical, spatial and environmental factors act as drivers of genomic variation, especially 

in the divergent selected genomic regions, which may primarily suggest local adaptation at different 

environments. However, more data (e.g. whole genomic data) are needed to provide more insights into 

the following key questions in local adaptation: what traits are involved (e.g. flowering time along 

altitude gradient)? What environmental variables are the most important (e.g. altitude)? Does local 

adaptation target the same genes in related species? Do loci responsible for local adaptation exhibit 

trade-offs across environments (Tiffin & Ross-Ibarra 2014)? Identifying which traits or genes are 

locally selected could contribute to a better understanding of the mechanisms involved in the processes 

during climate change adaptation, convergent adaptation and speciation, and improve predictions of 

long-term climatic change responses (Savolainen et al. 2013).	
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Annex:  Ren et al. in prep. 

 

Cannabis whole-genome resequencing reveals domestication history and 

signatures of selection for drug and hemp 
 

Guangpeng Ren, Kate E. Ridout, Martha Liliana Serrano-Serrano, Nicolas Salamin, Luca Fumagalli 

 

 

Summary 

Cannabis is a predominantly diecious phenotypically diverse domesticated genus with few if any 

extant natural populations. Despite millennia of cultivation and current widespread use across the 

globe, its genetic identities, origins of most varieties and selection signatures on different types (i.e. 

hemp or drug) are unknown. Here we analyzed whole-genome resequencing data for 69 samples, 

including cultivar populations from China and Europe, feral populations from central Asia and drug 

samples that are currently used in Europe, Asia and South America, and identified more than one 

million SNPs that present in more than 90% of the samples. Using a Hop whole-genome data as 

outgroup, I identified five distinct genetic lineages (Fig. 1). The two Chinese populations formed two 

genetic lineages were in the basal position of the phylogenetic tree, which is consistent with the early 

domestication in China. The cultivars from Europe, feral populations and drugs were grouped into 

another three well-supported lineages. The third Chinese population was nested in the European 

cultivar clade and clustered with monoecious samples (Fig. 1, 2). Coalescent modeling was used to 

further simulate the changes in population size, divergence times and gene flow among these lineages. 

930 and 173 candidate genomic regions that may involve in selection in cultivars and drugs, 

respectively, were identified (Fig. 3). Next step will be annotation of these regions to test which 

functions were selected during its domestication.  
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Fig. 1 Phylogenetic tree reconstructed based on 1.09 million SNPs for 69 samples of Cannabis with 

Hop as outgroup. Bootstrap values are shown on the top of braches.  
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Fig. 2 Genetic structure of Cannabis inferred using NGSadmix. The y-axis quantifies subgroup 

membership, and the x-axis shows the sample ID for each individual.  
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Fig. 3 Genomic regions with selection sweep signals in both drugs (red dots) and cultivars (blue dots) 

shown by plotting the distribution of log10 ratio (θπ,drug/θπ,cultivar) and FST of 50 kb windows with 10 kb 

steps. The windows with the top 5% values for the log10 ratio (θπ,drug/θπ,cultivar) and FST simultaneously 

as the candidate outliers under strong selective sweeps. 


