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Abstract
Background and Objectives
Recent studies fueled doubts as to whether all currently defined central disorders of hyper-
somnolence are stable entities, especially narcolepsy type 2 and idiopathic hypersomnia. New
reliable biomarkers are needed, and the question arises of whether current diagnostic criteria of
hypersomnolence disorders should be reassessed. The main aim of this data-driven observa-
tional study was to see whether data-driven algorithms would segregate narcolepsy type 1 and
identify more reliable subgrouping of individuals without cataplexy with new clinical
biomarkers.

Methods
We used agglomerative hierarchical clustering, an unsupervised machine learning algorithm, to
identify distinct hypersomnolence clusters in the large-scale European Narcolepsy Network
database. We included 97 variables, covering all aspects of central hypersomnolence disorders
such as symptoms, demographics, objective and subjective sleep measures, and laboratory
biomarkers. We specifically focused on subgrouping of patients without cataplexy. The number
of clusters was chosen to be the minimal number for which patients without cataplexy were put
in distinct groups.

Results
We included 1,078 unmedicated adolescents and adults. Seven clusters were identified, of
which 4 clusters included predominantly individuals with cataplexy. The 2most distinct clusters
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consisted of 158 and 157 patients, were dominated by those without cataplexy, and among other variables, significantly differed
in presence of sleep drunkenness, subjective difficulty awakening, and weekend-week sleep length difference. Patients formally
diagnosed as having narcolepsy type 2 and idiopathic hypersomnia were evenly mixed in these 2 clusters.

Discussion
Using a data-driven approach in the largest study on central disorders of hypersomnolence to date, our study identified distinct
patient subgroups within the central disorders of hypersomnolence population. Our results contest inclusion of sleep-onset
REM periods in diagnostic criteria for people without cataplexy and provide promising new variables for reliable diagnostic
categories that better resemble different patient phenotypes. Cluster-guided classification will result in a more solid hyper-
somnolence classification system that is less vulnerable to instability of single features.

The classification of central disorders of hypersomnolence has
been a topic of debate for decades and has been revised
multiple times. This is due mainly to insufficient knowledge
about the pathophysiology, reflected in a lack of validated and
reliable biomarkers within this group of disorders, apart from
narcolepsy with cataplexy. Different opinion articles have re-
cently been published, all stressing the need for revision of the
current classification because its application causes problems
for physicians and patients when applied in daily practice.1-6

The current version of the International Classification of
Sleep Disorders (ICSD-3) is based largely on a consensus of
expert opinion and describes 3 different categories of chronic
central disorders of hypersomnolence: narcolepsy type 1
(almost completely overlapping the former category called
narcolepsy with cataplexy), narcolepsy type 2 (almost com-
pletely overlapping the former category called narcolepsy
without cataplexy), and idiopathic hypersomnia. The disor-
ders share the symptom of excessive daytime sleepiness, and
in the absence of cataplexy and hypocretin-1 deficiency, the
multiple sleep latency testing (MSLT) results and possible
increased sleep duration differentiates between them. Only
narcolepsy type 1 is a clinically distinct phenotype because of
the specific presence of cataplexy and its strong correlation
with hypocretin-1 deficiency (<110 pg/mL in the CSF).7

Despite these apparently clear and distinct criteria, it often
proves difficult to differentiate reliably between narcolepsy
type 2 and idiopathic hypersomnia. Recent studies have
shown that test-retest reliability of the MSLT is poor in the
absence of cataplexy, and diagnostic crossover of up to 53%
was seen for narcolepsy type 2 and 75% for idiopathic
hypersomnia.8-10 Narcolepsy type 2 may also evolve over time
in some individuals; for example, individuals in whom daytime
sleepiness is the sole initial manifestation may develop cata-
plexy many years later and thereby transition into narcolepsy
type 1.11,12 More reliable biomarkers are needed to better
differentiate between individuals with central hypersomno-
lence disorders, specifically in those without cataplexy. As a

data-driven approach, agglomerative hierarchical clustering
has previously proved useful in other diseases, objectively
identifying subgroups and corresponding divisive variables by
grouping people with similar characteristics in clusters.13-17

In this study, we used an unsupervised machine learning ap-
proach, agglomerative hierarchical clustering, to identify clusters
of clinically distinct central hypersomnolence disorders. We
used the advantageously large-scaled European Narcolepsy
Network (EU-NN) database.18-20 The EU-NN is an association
of 21 leading European sleep centers that launched the first
prospective European web-based database for narcolepsy and
idiopathic hypersomnia. One main goal of the EU-NN database
is to identify new biomarkers specific to central hypersomno-
lence disorders and to improve definitions and understanding of
its subtypes. The comprehensiveness of variables and large
number of individuals across different European countries
provide the opportunity to implement unsupervised machine
learning algorithms in an unprecedented fashion and allows
comprehensive data-driven insights into the different pheno-
types of central hypersomnolence disorders.

We hypothesized that clustering would result in clear sepa-
ration of individuals with the current diagnosis of narcolepsy
type 1 from those without cataplexy, while mixing people
currently diagnosed as narcolepsy type 2 and idiopathic
hypersomnia over multiple clusters according to differences in
sleep duration and presence of sleep drunkenness. Given the
known poor test-retest reliability of narcolepsy type 2 and
idiopathic hypersomnia diagnoses,8-10 our main focus was on
grouping those without cataplexy.

Methods
The analysis steps are divided into core and advanced
analyses (Table 1). The core analyses are essential for un-
derstanding the clinical implications of the clustering results,

Glossary
EU-NN = European Narcolepsy Network; ICSD-3 = International Classification of Sleep Disorders, 3rd edition; MSLT =
multiple sleep latency testing; SOREMP = sleep-onset REM period.
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whereas the advanced analyses in eAppendix 1 (links.lww.
com/WNL/B970) validate why we deem the clustering re-
sults trustworthy.

EU-NN Database
Records of 1,078 adults and adolescents (≥13 years old) with
central hypersomnolence disorders from 21 European sleep
centers were included. In line with diagnostic ICSD-3 rec-
ommendations, only data of individuals unmedicated at the
time of evaluation (including polysomnography and MSLT)
were used. In total, 97 variables were input into the hierar-
chical clustering (eAppendix 2, links.lww.com/WNL/B970).
Variables were assessed by sleep experts (e.g., symptom
presence), objectively assessed (e.g., sleep tests, hypocretin
and HLA-DQB1*0602 positivity), or self-reported through
questionnaires (Epworth Sleepiness Scale and Fatigue Se-
verity Score). Except for the questionnaire results that were
fully patient rated, other subjective variables were entered by
the clinician after the clinical interviews. For the database
preprocessing steps, we refer to eAppendix 3.

Clustering Algorithm
In clustering, similarity is measured by calculating a distance
between individuals; similar values on the input variables re-
sult in a smaller distance. Each individual is initially a cluster of
their own, and the closest individuals (or clusters) are then
sequentially combined into larger clusters until there is only 1
cluster left. Details on the distance calculations are reported in
eAppendix 3 (links.lww.com/WNL/B970).

Number of Clusters
The number of clusters was determined combining 2 tech-
niques. We first calculated multiple standard clustering evalua-
tion metrics (i.e., clustering quality scores) that describe how
well the clustering algorithm performs with different numbers of
clusters (eAppendix 3, links.lww.com/WNL/B970). These
metrics are normally high when individuals are similar to others
in the cluster and distinct from the individuals in other clusters.
The main aim of this study was to see whether data-driven
algorithms would segregate narcolepsy type 1 and identify more
reliable subgrouping of individuals without cataplexy because
current diagnostic criteria struggle most with this subpopulation.
We therefore also focused on subgrouping of individuals without
cataplexy by visual inspection of the clustering steps of the full
dataset from 15 to 2 clusters to better understand how people
without cataplexy were subdivided and when these clusters were
merged. The final model is usually a compromise of the evalu-
ation metrics and the clinical aim of the study.

Clustering Outcome
Clustering results were visualized as barcodes representing
the mean normalized values per cluster on all variables (also
called means barcodes). Variables were ordered according to
the aforementioned categories, and clustering mean values
were left blank when <10 values were present within a cluster.

Differentiating Variables
Two methods were used to quantify differentiating variables
between clusters. First, we used a resampling technique to test

Table 1 Overview of Clustering Analysis Steps

Core analysis steps

1. EU-NN database. In the data preparation phase, we explain how the EU-NN database was prepared for the clustering algorithm and how variable
weightings were determined.

2. Clustering algorithm. In this step, we explain how the clustering algorithmworks and how similarity between individuals is assessed through calculating
distances between them.

3. Number of clusters. To determine at which number of clusters to stop the clustering algorithm, we combined standard clustering evaluationmetrics (i.e.,
clustering quality scores) and visual inspection of grouping of individuals without cataplexy.

4. Clustering outcome. Once the number of clusters was determined, the cluster characteristics were visualized as barcodes per cluster per variable.

5. Differentiating variables. To identify the distinguishing variables, we visualized how distinct the clusters were per variable from the entire EU-NN
database. We post hoc statistically compared the clusters containing mainly individuals without cataplexy on all variables.

6. Current diagnosis and centers of inclusion. After finishing the clustering algorithm, we identified the distributions of current diagnoses per cluster. We
also checked the possible influence of center of inclusion on cluster formation.

Advanced analysis steps (eAppendix 1, links.lww.com/WNL/B970)

1. Clusterability of the EU-NN database. The intrinsic clusterability of the EU-NN database was assessed to test whether the EU-NN database entries show
sufficient tendency (similarities) to be clustered by comparing the coefficient of determination of the clustering results in the EU-NN database with
similarly shaped but randomly generated datasets.

2. Cluster distinctness. To test which clusters were most distinctly grouped, we calculated the silhouette coefficients per cluster. This metric of distinctness
represents the ratio between the mean distance to individuals in the same cluster and the mean distance to individuals in the nearest other cluster.

3. Cluster reproducibility. To test whether the EU-NN database had sufficient entries to ensure that sample size variations are unlikely to change the
clustering results, we repeated the clustering algorithm on random subsets of 80% of the EU-NN database and quantified similarity to the original
clustering through mixing of individuals between clusters.

Abbreviation: EU-NN = European Narcolepsy Network.
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Figure 1 Cluster Means Barcodes

Blue represents a lowmean value or infrequent presence on a variable; redmeans a highmean value or frequent presence. Cluster sizes are displayed under
the cluster number. eAppendix 2 (links.lww.com/WNL/B970) provides details on individual variables. AHI = apnea-hypopnea index; BMI = body mass index;
EDS = excessive daytime sleepiness; EIDS = episodes of irresistible daytime sleep; HLA = human leukocyte antigen; MSLT =multiple sleep latency testing; NS =
nocturnal sleep; PLMI = periodic leg movement index; PSG = polysomnography; PVT = psychomotor vigilance task; REM = rapid eye movement; SOREMP =
sleep-onset REM period.
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Figure 2 Cluster Significances Barcodes

Blue represents a significantly lower value on a variable for a cluster compared to the entire European Narcolepsy Network (EU-NN) database; red means a
significantly higher value. Difference with the entire EU-NN database is displayed in SDs. Cluster sizes are displayed under the cluster number. eAppendix 2
(links.lww.com/WNL/B970) provides details on individual variables. Blank fields included <25 observations. AHI = apnea-hypopnea index; BMI = body mass
index; EIDS = episodes of irresistible daytime sleep; HLA = human leukocyte antigen; MSLT = multiple sleep latency testing; PLMI = periodic leg movement
index; PSG = polysomnography.
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Table 2 Significant Differences Between Clusters 5 and 6

Cluster 5 Cluster 6

n5 Median (IQR)/% n6 Median (IQR)/%
Effect
size

Corrected
p value

Variable (>50% data available)

Presence: sleep drunkennessa 157 96.2% 158 1.3% 0.950 <0.0001

Difficulty waking daytime sleep 93 On average, easy to wake
up: 36.6%
On average, difficult to
wake up: 51.6%
On average, nearly
impossible to wake up: 11.8%

65 On average, easy to
wake up: 78.5%
On average, difficult to
wake up: 21.5%
On average, nearly
impossible to wake up:
0.0%

−0.427 <0.0001

Presence: hypnagogic
hallucinations

157 No: 72.0%
Possible: 0.0%
Probable: 5.1%
Definite: 22.3%

158 No: 90.5%
Possible: 0.6%
Probable: 1.9%
Definite: 7.0%

−0.239 0.0007

PSG-AHI 123 1.1 (0.2–3.1) 109 2.8 (0.6–7.0) −0.239 0.0054

Weekend-week sleep length
difference, h

155 1.0 (0.0–2.5) 158 0.1 (0.0–1.5) −0.191 0.0086

Presence: sleep paralysis 157 No: 77.1%
Possible: 0.6%
Probable: 2.5%
Definite: 19.7%

158 No: 89.9%
Possible: 0.6%
Probable: 5.1%
Definite: 4.4%

−0.185 0.0101

Subjective daily sleep length, h 157 8.0 (7.3–9.0) 158 7.8 (7.0–8.3) −0.182 0.0128

Subjective daytime sleep length, h 138 1.0 (0.3–2.0) 135 1.0 (0.0–1.0) −0.192 0.0134

Hypnagogic hallucinations
frequency

156 Never: 91.0%
<1/y: 0.6%
1/y–1/mo: 2.6%
1/mo–1/wk: 4.5% 1/wk–1/d: 1.3%
>1/d: 0.0%

158 Never: 98.7%
<1/y: 0.6%
1/y–1/mo: 0.6%
1/mo–1/wk: 0.0%
1/wk–1/d: 0.0%
>1/d: 0.0%

−0.175 0.0168

No. of scheduled naps per day 154 Never: 47.4%
1/d: 40.9%
>1/d: 11.7%

152 Never: 63.2%
1/d: 32.9%
>1/d: 3.9%

−0.176 0.0168

Hypnagogic hallucinations,
appears waking upa

125 8.0% 145 0.7% 0.184 0.0183

Sleep paralysis frequency 156 Never: 89.7%
<1/y: 0.6%
1/y–1/mo: 4.5% 1/mo–1/wk: 2.6% 1/
wk–1/d: 1.9%
>1/d: 0.6%

158 Never: 97.5%
<1/y: 1.3%
1/y–1/mo: 1.3%
1/mo–1/wk: 0.0%
1/wk–1/d: 0.0%
>1/d: 0.0%

−0.161 0.0273

PSG-PLMI 114 1.0 (0.0–4.5) 91 3.7 (0.0–12.1) −0.196 0.0281

Feeling refreshed after sleep 103 No: 43.7%
Not always: 26.2%
Yes: 30.1%

89 No: 24.7%
Not always: 30.3%
Yes: 44.9%

−0.198 0.0327

EIDS length per day 105 60 min: 18.1%
15–60 min: 32.4%
1–15 min: 39.0%
<1 min: 10.5%

91 60 min: 3.3%
15–60 min: 28.6%
1–15 min: 58.2%
<1 min: 9.9%

−0.190 0.0373

Variable
(<50% data available)

HLA-DQB1*0602 positivitya 66 33.0% 80 65.0% 0.315 0.0034

Presence: memory complaintsa 41 68.3% 30 26.7% 0.411 0.0086

Length of scheduled naps 81 52.2 (20.9–114.8) 55 20.9 (10.4–52.2) −0.247 0.0273

Continued
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how different the clustering means were from the entire EU-
NN database. We then also formally compared clusters
dominated by individuals without cataplexy on all variables.

A resampling technique was implemented to test whether the
clustering results deviated from the entire EU-NNdatabase. The
resampling technique enabled us to deduce the extent to which
the means barcodes were different fromwhat would be expected
if the same number of clusters with the same sizes were randomly
drawn from the entire EU-NN database. We generated 10,000
such draws and calculated the mean and SD of each draw per
cluster per variable. For each variable, we divided the difference
between the resampled mean and corresponding original clus-
tering mean by the SD of the resampled means. This was done
per variable per cluster and visualized as the significances barc-
odes. Only values with >25 observations were displayed. The
significances barcodes better represent how substantially differ-
ent the means barcodes are from the entire EU-NN database.

We post hoc statistically compared the resulting clusters with
a substantial proportion of individuals without cataplexy on all
included variables using Mann-Whitney tests. If the variables
contained count data, we used χ2 tests instead. Corrected
values of p < 0.05 were reported after multiple-comparisons
correction with the Benjamini-Hochberg procedure to de-
crease the false discovery rate to 0.05.

Current Diagnosis and Centers of Inclusion
Researchers were blinded to the center of inclusion and cur-
rent diagnosis of the individuals until the hierarchical clus-
tering was completed. After the clustering was finished, pie
charts were generated per cluster representing the current
diagnosis (with physician’s diagnostic certainty) and centers
of inclusion. Contingency table statistics (sensitivity, speci-
ficity, positive predictive value, and negative predictive value)
were separately computed for clusters dominated by narco-
lepsy type 1, and narcolepsy type 2 and idiopathic hyper-
somnia. Centers of inclusion were shown to check whether
these could have influenced the clustering. To better un-
derstand the general characteristics of the study population,
the characteristics of the current ICSD-3 diagnoses are in-
cluded in eAppendix 2 (links.lww.com/WNL/B970).

Data Availability
For this study, we used the newly developed clustering
package Bowerbird, which integrates widely used agglomer-
ative hierarchical clustering algorithms with clustering vali-
dation methods and intuitive data visualization options. This
flexible, open-source clustering package is Python based and
available online.21 The data that support the findings of this
study are available from the authors on reasonable request.

Results
EU-NN Database
The database included 1,078 individuals, of whom 108 were
adolescents (between 13 and 18 years of age) and 970 were
adults. There were 489 female and 589 male participants.
Cataplexy was present in 724 and absent in 354. In line with
ICSD-3 criteria, 752 people were diagnosed as having nar-
colepsy type 1 (646 definite, 51 probable, 33 possible, and 33
unknown diagnostic certainty), 200 as having narcolepsy type
2 (132 definite, 49 probable, 10 possible, and 9 unknown
certainty), and 126 as having idiopathic hypersomnia (83
definite, 32 probable, 6 possible, and 5 unknown certainty).
eAppendix 4 (links.lww.com/WNL/B970) provides an
overview of the number of inclusions per center and ethical
approval. The clustering algorithm and the researchers were
blinded to the current diagnosis and inclusion center until the
analyses were finished.

Clustering Algorithm and Number of Clusters
The clustering evaluation metrics did not clearly favor any
single number of clusters below 15 (eAppendix 5, links.lww.
com/WNL/B970). This suggests that individuals in the EU-
NN database are not organized according to a single number
of archetypes. This means that subdivision can still result in
distinct clusters but in the presence of individuals closely
bordering different clusters. The number of clusters was
therefore based on subgrouping of people without cataplexy
because data-driven subdivision of these individuals was our
main aim. A simple model with a small total number of
clusters was preferred. Visual inspection of the clustering steps
from 13 to 7 clusters revealed that changes occurred only in

Table 2 Significant Differences Between Clusters 5 and 6 (continued)

Cluster 5 Cluster 6

n5 Median (IQR)/% n6 Median (IQR)/%
Effect
size

Corrected
p value

CSF hypocretin-1 level 43 259.0 (173.0–366.0) 41 179.0 (73.0–299.5) −0.308 0.0281

Presence: fatiguea 35 71.4% 27 37.0% 0.344 0.0346

Abbreviations: AHI = apnea-hypopnea index; EIDS = episodes of irresistible daytime sleep; HLA = human leukocyte antigen; IQR = interquartile range; PLMI =
periodic leg movement index; PSG = polysomnography.
Variables that were significantly different between clusters 5 and 6 are listed and split based on their availability (above and below 50%). eAppendix 2 (links.
lww.com/WNL/B970) provides details on individual variables. The variables are included with the individual values for both clusters, and the effect size and
corrected p value of the difference. Mann-Whitney U tests were performed (with effect size r), except when indicated otherwise.
a Chi-square tests (and φ effect sizes) were used.
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clusters with people with cataplexy and that people without
cataplexy were consistently divided into the same 2 clusters.
Thus, 7 was chosen as the final number of clusters.

The dendrogram showing the clustering steps from 7 to 2 clusters
is included in eAppendix 5 (links.lww.com/WNL/B970). People
without cataplexy were generally grouped as 1 large cluster when 6
and 5 clusters were selected. This large cluster of people without
cataplexy was subsequently combined with people with cataplexy
at 4 clusters. This resulted in a steep worsening of clustering
evaluationmetrics, indicating poorer performance below5 clusters.

Clustering Outcome
The means barcodes (Figure 1) show that people with cata-
plexy were grouped into 4 clusters (1–4) with 231, 298, 92,
and 99 individuals, respectively. Those without cataplexy were
grouped into clusters 5 (157 people) and 6 (158 people), and
there was 1 smaller cluster (7) mixing 43 people with and
without cataplexy. The variable categories nighttime sleep, dif-
ficulties in waking up, cataplexy, hypnagogic hallucinations, sleep
paralysis, sleepiness, and biomarkers were most often different
between clusters. eAppendix 6 (links.lww.com/WNL/B970)
gives a full overview of raw variable values per cluster.

Figure 3 Current Diagnoses and Centers of Inclusion

(A) Current diagnosis with physician’s diagnostic certainty, visualized as pie charts per cluster. Central number in the pie charts corresponds to cluster
identification. Clusters 1 through 4 are dominated by narcolepsy type 1 (NT1), whereas narcolepsy type 2 (NT2) and idiopathic hypersomnia (IH) are more
common in clusters 5 through 7. (B) To check whether center of inclusion (or country) could have introduced bias in the clustering, distribution of the centers
of inclusion is visualized as pie charts per cluster. This shows that there is no clear dominance of single centers in individual clusters and that individuals from
one center are spread over multiple clusters.
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Differentiating Variables
From the significances barcodes (Figure 2), it is noticeable
that the first 4 clusters were different mainly in noncataplectic
symptoms and represented different narcolepsy with cata-
plexy subtypes. Cluster 1 included the most severe phenotype
with frequent presence of disturbed nocturnal sleep (72%),
sleep attacks (94%), cataplexy attacks (97%) that were most
often complete with many potential triggers, hypnagogic
hallucinations (90%), and sleep paralysis (82%). Cluster 2 was
the largest but least affected cluster in which hypnagogic
hallucinations (22%) and sleep paralysis (5%) were notably
absent. In contrast to the other clusters of people with cata-
plexy, those in cluster 3 reported more difficulty in waking up
(77%) with frequent presence of sleep drunkenness (83%),
fatigue complaints (88%), and not feeling refreshed after sleep
(36% not refreshed, 36% not always refreshed). This cluster
was composed predominantly of male participants (74%).
Cluster 4 mainly consisted of female participants (99%) with
present (but infrequent) hypnagogic hallucinations (61%)
and sleep paralysis (73%). Clusters 1 through 4 all had fre-
quent MSLT sleep-onset REM periods (SOREMPs), HLA-
DQB1*0602 positivity, and low mean hypocretin-1 levels.

People without cataplexy were generally grouped into clusters
5 and 6 (157 and 158 people, respectively). As displayed in
Table 2, individuals in cluster 5 presented with significantly
more sleep drunkenness, subjective difficulty in awakening,
memory complaints, fatigue, and larger weekend to week
sleep length difference compared to those in cluster 6. In
addition, cluster 6 had a relatively higher percentage of HLA-
DQB1*0602 positivity and lower hypocretin-1 concentra-
tions. No significant differences were found between clusters
5 and 6 on MSLT-related variables and the Epworth Sleepi-
ness Scale.

Cluster 7 is a smaller cluster evenly mixing individuals with
and without cataplexy. Apart from the presence of hypnagogic
hallucinations and sleep paralysis, there are no clear dis-
tinguishing variables from other clusters.

Current Diagnosis and Centers of Inclusion
Physicians were, in general, most confident in diagnosing
narcolepsy type 1 and more doubtful with narcolepsy type 2
and idiopathic hypersomnia (Figure 3A). Clusters 1 through 4
includedmainly people diagnosed with narcolepsy type 1 with
a definite diagnostic certainty (91%, 75%, 65%, and 83%).
Contingency table statistics for narcolepsy type 1 within
clusters 1 through 4 showed a sensitivity of the clusters of
0.76, specificity of 0.83, positive predictive value of 0.93, and
negative predictive value of 0.76. Within cluster 3, there were
18 individuals (20%) without cataplexy but with sleep
drunkenness, hypnagogic hallucinations, and often sleep pa-
ralysis. Clusters 5 and 6 were dominated by people without
cataplexy, and narcolepsy type 2 and idiopathic hypersomnia
diagnoses were similarly mixed over the 2 clusters (cluster 5,
45% narcolepsy type 2 and 40% idiopathic hypersomnia;
cluster 6, 45% narcolepsy type 2 and 27% idiopathic

hypersomnia). Contingency table statistics for narcolepsy
type 2 and idiopathic hypersomnia within clusters 5 and 6
showed a sensitivity of the clusters of 0.76, specificity of 0.91,
positive predictive value of 0.78, and negative predictive value
of 0.90. There was also a considerable proportion of indi-
viduals with narcolepsy type 1 in clusters 5 and 6 (cluster 5,
15%; cluster 6, 28%). Most of these individuals had atypical or
mild cataplexy (cluster 5, 35%; cluster 6, 38%) or absent
cataplexy but low hypocretin-1 levels (cluster 5, 26%; cluster
6, 33%). Cluster 7 was a mixed cluster of mainly narcolepsy
types 1 and 2. Centers of inclusion were evenly spread over
the clusters (Figure 3B). In eAppendix 2 (links.lww.com/
WNL/B970), we present summary measures of the pop-
ulation using current ICSD-3 diagnoses.

Discussion
This work presents the largest study to date on central hyper-
somnolence disorders that includes >1,000 adolescents and
adults and the full scope of central hypersomnolence disorder
characteristics. Our results provide important data-driven in-
sights into new clinical biomarkers to improve future diagnostic
criteria, especially for individuals without cataplexy. The clus-
tering algorithm is able to identify distinct subgroups, principally
separating people with cataplexy from those without. Further
subdivision of those without cataplexy resulted in 2 clusters
evenly mixing individuals with narcolepsy type 2 and idiopathic
hypersomnia, which were separated on the basis of variables
related to awakening (e.g., sleep drunkenness and subjective
difficulty in awakening), sleep need (e.g., weekend-week sleep
length difference), and objective biomarkers (HLA-DQB1*0602
positivity and hypocretin-1 level). MSLT parameters were not
significantly different between the 2 clusters with individuals
without cataplexy. The advanced cluster distinctness and
resampling analyses revealed (eAppendix 1, links.lww.com/
WNL/B970) that the 2 clusters of people without cataplexy
were most distinctly grouped of all clusters (also from each
other) and had good cluster reproducibility. People
with cataplexy (generally diagnosed as having narcolepsy type 1)
were further split into multiple subtypes that likely reflect dif-
ferent disease severities. These subtypes were different mainly in
sex distribution and presence and severity of cataplexy, hypna-
gogic hallucinations, sleep paralysis, and sleep drunkenness.

Thanks to the large number of patients and hypersomnolence-
related variables, our analyses have produced more reliable and
detailed results than 2 other studies that have previously tried to
identify subtypes in central hypersomnolence disorders using
agglomerative hierarchical clustering.22,23 These studies re-
spectively included only 96 participants or only people with
idiopathic hyperomnia.22,23 included only people with idio-
pathic hypersomnia. Clustering in both studies was performed
on just 7 and 3 variables, respectively. The small number of
clustered variables in these studies limited their ability to
identify differentiating variables among all hypersomnolence
aspects.
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Multiple narcolepsy experts have advocated revising the cur-
rent classification, but guidance is lacking in defining new
subgroups and corresponding diagnostic criteria.1-6 Our data-
driven approach provides the opportunity to critically evaluate
current ICSD-3 classification and shows that refinement of the
hypersomnolence without cataplexy criteria is needed that
would yield more consistent categorization. The advanced
analyses in eAppendix 1 (links.lww.com/WNL/B970) revealed
that the 2 clusters with people without cataplexy had good
reproducibility and were most distinctly grouped compared to
other clusters. The most prominent differential variables for
subgrouping people without cataplexy include the presence of
sleep drunkenness, subjective difficulty in awakening, mean
weekend-week sleep length difference, and HLA-DQB1*0602
positivity. These differentiating symptoms suggest that certain
subtypes/phenotypes of central disorders of hypersomnolence
involve neuronal networks different from the cataplectic phe-
notype, probably mediated by other (still largely unknown)
pathophysiology or comorbid conditions. Redefining key
symptoms may help to establish new diagnostic methods such
as forced awakening, unrestricted/extended sleep opportunity,
and other biomarkers.

Sleep inertia is the complaint of difficulty in achieving complete
wakefulness at the end of a sleep period, potentially accom-
panied by confusion, disorientation, and poor motor co-
ordination or even ataxia. Sleep drunkenness is considered a
severe manifestation of this phenomenon.24 Historically
speaking, sleep drunkenness had already been introduced by
Roth25 as an important differential marker when idiopathic
hypersomnia was first conceptualized in the 1950s.26,27 To
date, quality of awakening has consistently been undervalued
by the ICSD criteria for central hypersomnolence disorders,
despite multiple studies suggesting its importance in people
without cataplexy.24-32 Besides the presence of subjective sleep
drunkenness by patient history, the sensitivity and specificity of
standard vigilance testing directly before and after MSLT naps
could be explored to quantify the level of sleep drunkenness.
The Sustained Attention to Response Task33-35 and Psycho-
motor Vigilance Test36 have previously been used to quantify
vigilance deficits in people with central hypersomnolence dis-
orders but not yet in relation to sleep drunkenness. A smaller
study including different central hypersomnolence disorders
has also previously reported event-related potentials during
forced awakening to potentially quantify sleep inertia.37

Difficulties in waking up and increased sleep demand frequently,
but not always, coexist in people without cataplexy.27,28,30,31,38

Classically, these individuals were grouped in the ICSD-2
diagnosis idiopathic hypersomnia with long sleep time.39 In
our results, cluster 5 reported a substantially greater sub-
jective weekend-week sleep length difference, a variable
quantifying unfulfilled sleep need. People with increased
sleep need are often unable to satisfy sleep requirements
during the week because of professional/social obligations,
whereas the weekend generally allows opportunity for more
unrestricted sleep.40 The mean duration of nocturnal sleep

during actigraphy may therefore not always reliably reflect
the presence of an increased need for sleep. Moreover, in
most sleep clinics, the MSLT routine prevents the objective
confirmation of a long duration of nocturnal sleep because
individuals are forced to wake early in the morning. We
previously applied supervised machine learning to classify
people with narcolepsy types 1 and 2 in the EU-NN data-
base, and longer weekend-week sleep length difference was a
more important deterministic parameter for narcolepsy type
2 than for type 1, further highlighting its potential to become
a new clinical biomarker.20 It is important to keep in mind
that chronic sleep deprivation and sometimes circadian
disturbances also may show a similar difference. These dis-
orders are, however, currently not included in our database.
Extended 32-hour polysomnography recordings6,41 or
actigraphy assessment of weekend-week sleep length dif-
ferences during consecutive weekends may help find all
potential causes for hypersomnolence without cata-
plexy.40,42 Our analyses highlight the potential of adding
quality of awakening variables and weekend-week sleep
length difference as sensitive new clinical biomarkers for
future diagnostic criteria because they are potentially more
reliable than overall mean sleep duration exclusively. Clinical
interviews and questionnaires are normally used to assess
these variables,43 but optimal quantification practices need
to be validated through future studies.

Because the number of clusters was determined on the sub-
grouping of people without cataplexy, the differences between
clusters 1 through 4 and 7 should not be overinterpreted.
Clusters 1 through 4 should instead be treated as validation of
the algorithm to separate people with and without cataplexy and
to identify subtypes rather than strict subgroups within the
narcolepsy type 1 population that likely reflect different sever-
ities. Among clusters 1 through 4, the dendrogram (eAppendix
5A, links.lww.com/WNL/B970) indicates that cluster 2 (mild
severity with virtually absent hypnagogic hallucinations and sleep
paralysis) is the closest to clusters 5 and 6 (clusters without
cataplexy). The striking female preponderance within cluster 4,
in combination with mild cataplexy, hypnagogic hallucinations,
and sleep paralysis, suggests the existence of a female narcolepsy
type 1 subtype. Possible sex-specific narcolepsy and the influence
of hormone levels should be investigated in future studies be-
cause such mild cataplexy with fewer triggers may be easily
overlooked by clinicians. The influence of sex on narcolepsy
symptomatology remains essentially understudied, even though
longer diagnostic delay in females individuals has previously
been reported.44 Interpretation of cluster 7 remains difficult
without evident differential variables, apart from the presence of
hypnagogic hallucinations and sleep paralysis. Cluster 7 is the
smallest cluster among all with poor distinctness and clustering
reproducibility (eAppendix 1) and could therefore reflect an
inhomogeneous group of borderline phenotypes with limited
clinical relevance.

The strong differences between clusters in the significances
barcodes (Figure 2) and the substantially better goodness of
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fit in the original clustering compared with the randomly
generated datasets (eAppendix 1, links.lww.com/WNL/
B970) emphasize the possibility of identifying distinct sub-
groups within the larger central hypersomnolence population.
Lack of a clear clustering evaluation metrics peak suggests
that, independently of the number of subgroups, there will
always be people with central hypersomnolence who are
difficult to categorize, especially when strict cutoffs are used
(e.g., during theMSLT). This impression matches our clinical
experience, and our results suggest that the introduction of
diagnostic certainties in new diagnostic criteria could better
depict confidence levels in diagnosing hypersomnolence
subtypes. This idea has recently been proposed by different
European experts3 and should be further investigated in future
studies.

In addition to direct implications on current classification, the
organization of the hypersomnolence disorders in multiple
clusters offers opportunities for new hypothesis testing on
disease etiology, disease progression, and treatment effects.
Longitudinal studies will provide the opportunity to see
whether some individuals are prone to change from 1 cluster
to another due to either the natural course of the disease or
the effects of medication. This could provide important in-
sights into prestages of narcolepsy and data-driven treatment
regimens for newly diagnosed individuals. More frequent
HLA-DQB1*0602 positivity and lower hypocretin-1 levels
were, for example, seen in cluster 6 than in cluster 5, sug-
gesting a pathophysiologic nature of hypersomnolence com-
plaints closer to narcolepsy type 1. Individuals within cluster 6
may be more likely to show disease progression and should
therefore be closely monitored for development of cataplexy.

A major strength of the EU-NN database is the harmonized
prospective data acquisition protocol, resulting in a true Pan-
European collaboration with minimal inclusion site–specific
biases. This is supported by the uniform distribution of in-
clusion sites over the clusters (Figure 3B). We included both
adolescents and adults to best incorporate different stages of
disease in our clustering analyses. Post hoc testing indicated a
similar distribution of age at evaluation over different clusters.
Children <13 years of age were, however, not included and
should be studied in light of our proposed clusters in future
studies. Even though the EU-NN database covers most im-
portant hypersomnolence-related aspects, incomplete avail-
ability of nonmandatory variables related to vigilance, cognitive
functioning, and mood has hindered their full integration into
our clustering analyses. Future studies should focus on these
variables in relation to our proposed subgroups.

Our analyses cannot be considered fully unbiased because
agglomerative hierarchical clustering algorithms require
manual input of variable weightings. We tried to overcome
this issue by carefully designing the analysis strategy with
predetermined weighting and grouping of variables, poten-
tially to give every asset of central hypersomnolence disorders
a fair chance of influencing the clustering. Post hoc testing to

determine the influence of clustering settings by resampling
with random subsets of the entire database (eAppendix 1,
links.lww.com/WNL/B970) showed that the EU-NN data-
base is adequately sized with solid cluster (and biomarker)
reproducibility for people without cataplexy. Separate post
hoc analyses were performed to test whether our methodo-
logic choices could have influenced the results. Clustering was
repeated 3 times by excluding those with cataplexy and/or
hypocretin deficiency (<110 pg/mL), with uniform weight-
ings for all variables, and by recoding the polysomnography
REM latency variable to polysomnography SOREMP pres-
ence. All 3 analyses demonstrated grouping and differentiat-
ing variables for subgrouping of those without cataplexy
similar to those in the full dataset (sleep drunkenness, sub-
jective difficulty in awakening, and weekend-week sleep
length difference). These robustness checks further validate
that the differentiating variables for those without cataplexy
are reproducible.

Within the EU-NN database, no data entries are available for
people with other conditions that could lead to daytime
sleepiness complaints such as chronic sleep deprivation, my-
algic encephalomyelitis/chronic fatigue syndrome, and cir-
cadian rhythm disorders. These disorders could function as
control groups in future clustering analyses on central hy-
persomnolence disorders to test the specificity of our results.
Narcolepsy type 1 could also be considered a control group
with a distinct cataplectic phenotype. The fact that the clus-
tering algorithm recognized narcolepsy type 1 as separate
clusters while we were blinded for the current diagnosis
provides an important argument that the algorithm is able to
identify distinct, clinically relevant subgroups. Future studies
should focus on external validation of our clustering results in
a substantially sized independent dataset and prove internal
validation by standardized follow-up data. Both approaches
will validate the clinical impact of our clustering results by
assessing how cluster assignments relate to clinical decisions
such as treatment planning, prognosis, and mechanisms of
disease.

We report an exceptionally sized quantitative subgroup as-
sessment in people with central hypersomnolence disorders
using the full range of clinical and diagnostic variables. Our
study further illustrates the urgent need for new biomarkers in
central hypersomnolence disorders that allow robust sub-
classification and improve our understanding of disease eti-
ology. The main finding is not the number of clusters but the
fact we found subgrouping consistent with current diagnosis
of narcolepsy type 1, not type 2 or idiopathic hypersomnia.
Instead, people with narcolepsy type 2 and idiopathic
hypersomnia were divided over 2 distinctly separated clusters,
differing mainly on clinical variables related to quality of
awakening, including presence of sleep drunkenness and
feeling refreshed after daytime sleep, weekend-week sleep
length difference, and HLA-DQB1*0602 positivity. Sub-
division of these individuals based only on absolute sleep
duration or presence of SOREMPs is not supported by our
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findings. Introduction of new clinical biomarkers such as sleep
drunkenness and weekend-week sleep length difference pro-
vides necessary opportunity to develop improved diagnostic
criteria for people without cataplexy. At its very best, new
data-driven classification of hypersomnolence disorders with
levels of certainty would result in a reproducible, holistic
classification system that better identifies borderline individ-
uals and is less susceptible to volatility in single features.
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