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Abstract

The use of the Bayes factor as a metric for the assessment of the probative
value of forensic scientific evidence is largely supported by recommended
standards in different disciplines. The application of Bayesian networks en-
ables the consideration of problems of increasing complexity. The lack of
a widespread consensus concerning key aspects of evidence evaluation and
interpretation, such as the adequacy of a probabilistic framework for han-
dling uncertainty or the method by which conclusions regarding how the
strength of the evidence should be reported to a court, has meant the role of
the Bayes factor in the administration of criminal justice has come under in-
creasing challenge in recent years. We review the many advantages the Bayes
factor has as an approach to the evaluation and interpretation of evidence.
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1. THE BAYES FACTOR AND ITS ROLE IN THE ADMINISTRATION
OF JUSTICE

1.1. Definition and Example

In a civil or criminal court case, the trier of fact—the judge or jury—has to make a decision. In a
civil case, the decision is to find in favor of the plaintiff or defendant, and in a criminal case, the
decision is to find the defendant guilty or not guilty. In this article, the focus is on criminal justice.
In a trial, evidence E is presented to aid the trier of fact. Each trier of fact brings to the court
their own background knowledge I, which, consciously or otherwise, affects their opinion on, or
belief in, the guilt or otherwise of the defendant. Beliefs have differing strengths; there can be a
strong belief, a weak belief, or beliefs of other strengths. The strength of belief may be thought
of as a measure of belief. A numerical equivalence as a measure of belief, to the verbal measure as
a strength, is given by subjective probability. A strong belief may be represented by a probability
close to one, and a weak belief may be represented by a probability close to zero. In a trial, the
trier of fact’s belief in the guilt of the defendant prior to the presentation of evidence may be
represented by the probability Pr(H, | I), where H, is the proposition favored by the prosecution
that the defendant is guilty. It is to be hoped that, under the presumption of innocence until proven
guilty, this probability is close to zero. After the presentation of the evidence E, it is reasonable
to assume that the probability will have changed. It may now be represented by Pr(H, | E,I), a
probability posterior to the presentation of E at the trial. This latter probability may now be so
large (i.e., close to one) that it is beyond a threshold probability that has to be achieved for guilt
to be found beyond reasonable doubt.

The rules of probability show how the change from prior probability, given I, Pr(H, | I) to the
posterior probability Pr(H,, | E, I) may be made. The change is described in an uncontroversial
theorem, known as Bayes’ theorem. The defense has its own proposition, Hy, which may just be
the negation of Hj,. Bayes’ theorem relates the prior odds, Pr(f, | I)/Pr(H; | I), to the posterior
odds, Pr(H, | E,I)/Pr(Hy | E,I), by the equation

Pr(H, | E,I) _Pr(E|H,I) Pr(H,|I)
Pr(Hy | E,I) _ Pu(E | Hy, 1) « Pr(Hy D)’

The factor

Pr(E | Hy, I)
Pr(E | Hy, D)

that converts the prior odds in favor of Hj, to posterior odds in favor of H,, is known as the Bayes
factor. When the competing propositions take the form of simple hypotheses, the Bayes factor
simplifies to a likelihood ratio. It is nonnegative with no upper bound.

Many practical situations are encountered where available measurements are in the form of
realizations of experiments that assume only two mutually exclusive outcomes. Consider a scenario
involving shoe marks recovered from a crime scene. A simplistic derivation of the value of the
evidence illustrates the role of the Bayes factor. A person of interest owns a pair of shoes that
produce prints, of type 7, that are indistinguishable from marks recovered from the crime scene.
The evidence E has two components, so that E may be written as E = (E,, E.), where E, = T,
the recovered material, and E. = T, the material of the pair of shoes owned by the person of
interest, and thus whose source is known and that may be called the control material. Assume the
probability that a shoe print is of type T is 6. The prosecution proposition, H,,, is that the shoe
prints and shoe marks originate from the same source. The defense proposition, Hy, is that the
shoe prints and shoe marks originate from different sources. If H, is true, and conditioning on 6
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and ignoring I for the moment, the numerator of the Bayes factor is
PI'(E | Hp’e) = Pr(EnEc | Hp76) =1,

as the probability of a match between the shoe print and the shoe mark if the shoe mark is made
by the shoe from which the shoe print is taken is 1, under the assumptions that there are no
transcription or contamination issues (not discussed here due to space constraints). If Hy is true,
and still conditioning on 6 and ignoring I for the moment, the denominator of the Bayes factor is

Pr(E | Hy,0) = Pr(E;, Ec | Hy, 0) =0,

as the probability of a match between the shoe print and the shoe mark if the shoe mark is not
made by the shoe from which the shoe print is taken is the probability of a random match, which
is 6.
The likelihood ratio is then
Pr(E,, E. | H,,0) 1
Pr(E, E. | Hy,0) 6
Any uncertainty in 6 needs to be modeled. A beta prior distribution Be(«, 8) can be used for
this purpose. A police database reports a total number of # prints of type T out of a database of
N shoe prints; this may be taken as the background information I. If H,, is true, there are then
n + 1 shoe prints of type 7, out of N + 1 distinct shoe prints. Similarly, if Hy is true, then there are
n + 2 shoe prints of type 7, out of N + 2 distinct shoe prints. If the recovered shoe mark and the
control shoe print originate from the same source (i.e., if H,, holds), and available measurements
are in the form of realizations of independent counts that can be well modeled by a binomial
distribution, the probability of the evidence can be obtained as

Pr(E, = T,E. =T | H,,I) = Pr(E,,E. | Hy,n,N —n)
= / 9<N)9"(1 — 0N x 0*71(1 — 0)1/B(a, B)dO
6] n
- / 00°1(1 — 9)*N-"1 /B(q 4+ m, B+ N — n)do,
[S]

where © = [0, 1], B(a, ) = T(@)I'(8)/T(« + B), and Pr(E, = E.) if H;, is true equals 6 in this
context.

If the recovered shoe mark and the control shoe print originate from different sources (i.e., if
H, holds), the probability of the evidence can be obtained as

Pr(Er = TQEC =T | del) = Pr(Er,Ec | Hd,?’l,N - 71)
= / 92<N>9”(1 — 0N x 04711 — 0)P1/B(a, B)dO
c) n

_ f 0201 (1 — 0NV /B(a 4+ m, B + N — m)do,
®

where Pr(E, = E.) if H is true equals 67 in this context. The value of the evidence is then

Jo 04" (1 —0)™N""1do Bla+n+1,8+N —n)
Jo 001 — 0)pN--1d9 — Bla+n+2,8+N —n)

_a+p+N+1
T oa+n+1
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This is the reciprocal of the posterior mean of 6. In such a case, the beta posterior distribution for
0 is Be(w + 7 + 1, B + N — n), where the prior parameter « is increased by the number of items
(n + 1) that match the recovered shoe mark, and the prior parameter g is increased by the number
of items (N — 7) that do not match the recovered shoe mark. It has been argued (e.g., Sjerps et al.
2016, Morrison & Enzinger 2016) that a report of such a value (the reciprocal of the posterior
mean of 0) would deprive the legal system of relevant information about the case. However, all
available information, including prior uncertainty about the unknown value of 6, is encapsulated
in the reported value of the Bayes factor, as explained in more detail in Section 5. Clearly, different
prior probability distributions may be used, or different databases might be available, and in such
cases a different value will be reported.

Implementation of Bayes’ theorem assumes that the evidence E is known without uncertainty
(such evidence is often termed unequivocal evidence). The philosopher Richard Jeffrey developed
a generalization of Bayes’ theorem, known as Jeffrey conditionalization, for the situation where
there is doubt about the truth of the evidence E (Jeffrey & Hendrickson 1989, Jeffrey 1992).
This development is not discussed here as it is beyond the scope of this article. The interested
reader is referred to Taroni et al. (2020), who introduce a Bayes factor for situations where there
is uncertainty about the knowledge of the evidence, so-called equivocal evidence.

The European Network of Forensic Science Institutes (ENFSI 2015, p. 6) recommends the
use of probability to quantify uncertainty and the use of what it calls the likelihood ratio:

Evaluation. . .is based on the assignment of a likelihood ratio. Reporting practice should conform to
these logical principles. This framework for evaluative reporting applies to all forensic science dis-
ciplines. The likelihood ratio measures the strength of support the findings provide to discriminate
between propositions of interest. It is scientifically accepted, providing a logically defensible way to
deal with inferential reasoning.

In applications to forensic science, the Bayes factor is usually referred to as the likelihood ratio,
though we emphasize that the Bayes factor does not always simplify in this way.

1.2. The Weight of Evidence and Multiple Items of Evidence

The Bayes factor has intuitively pleasing properties. A value greater (less) than one in which the
evidence has a higher (lower) probability if H), is true than if Hy is true increases (decreases) the
odds in favor of H,. There is a good analogy with the scales of justice if logarithms are used.
Consider a logarithmic transformation of the odds form of Bayes’ theorem:

| g:lljr(Hp |ED) _ Og{Pr(E | HP,I)} g{Pr(Hp | 1)}
r(Hy | E,I) Pr(E | Hy, I) Pr(Hy | I)
= log{Pr(H, | E,I)} — log{Pr(Hy | E,I)} = log{Pr(E | H,,I)} —log{Pr(E | Hy,I)}
-Hog{Pr(HP | I)} — log{Pr(Hd | I)}
= log{Pr(H, | E,D)} — log{Pr(Hy | E,D)} = log{Pr(£ | H,, D)} + log{Pr(I, | 1)}
- (log{Pr(E | Hd,I)} + log{Pr(Hd | I)}) .
The logarithms of the probabilities may be considered as weights in the scales of justice, those

involving H,, on one scale and those involving Hy on the other. The expression on the left side
of Equation 1 is the difference in weights on the scales after the presentation of the evidence:
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log{Pr(H, | E,I)} on the prosecution side and log{Pr(Hy | E,I)} on the defense side. This
difference is equal to the difference in the sums of the weights for the prior probabilities and con-
ditional probabilities of the evidence, conditional on H,, and Hy, respectively: log{Pr(E | H,, 1)} +
log{Pr(H, | I)} on the prosecution side and log{Pr(E | Hy,I)} 4+ log{Pr(H, | I)} on the defense
side.

The Bayes factor also satisfies logical requirements such as adequacy, logicality, and symmetry.
The interested reader can refer, for example, to Fitelson (1999, 2011), Eells (2000), and Eells
& Fitelson (2002) for a detailed list of measurements of evidential value and a critical analysis.
The satisfaction by the Bayes factor of all the reasonable logical requirements put forward in
the philosophical literature justifies its use as a measure for the value of evidence in general and
supports its use scientifically in forensic science.

Another pleasing property is the ability to consider more than one piece of evidence and to
update the posterior odds sequentially as each piece of evidence is presented. Consider two pieces
of evidence, E; and E,. The posterior odds after presentation of E; may be used as the prior odds
before presentation of E;:

Pr(Hp |E15E2’I) _ Pr(EZ |Hp7EI5I) Pr(Hp |E151)
Pr(Hy | Er, Ex, 1) Pr(E, | Hy, By, 1) - Pr(Hy | By, 1)’

where the possible dependency of E; and E; is reflected in the Bayes factor Pr(E; | H,, E1, 1)/
Pr(E; | Hy, E1, I). The Bayes factor and the logarithm of the Bayes factor may be thought of as
the value and the weight of the evidence, respectively. Good (1989, 1991) showed that, under
reasonable assumptions, the Bayes factor is the best measure of the value of evidence.

Since a seminal paper by Lindley (1977) in Biometrika, much work has been done in the de-
velopment of statistical models, such as Bayesian hierarchical multivariate models (e.g., Aitken &
Lucy 2004, Bozza et al. 2008, Zadora et al. 2014), for the evaluation of evidence. This work was
given added impetus in the late 1980s with the introduction of DNA profiling, which led to greater
appreciation in the criminal justice system of the benefits of a probabilistic approach based on the
Bayes factor.

1.3. Early Ideas

Separate from this mathematical formulation, there was an analogous debate in the legal literature
about the role of probabilistic reasoning in legal cases; see, for the sake of illustration, Anglo-
American legal articles by Finkelstein & Fairley (1970), Kaye (1979, 1986), Fienberg & Schervish
(1986), and Fienberg (1986). Robertson & Vignaux (1993, p. 457) clarified the interest of a large
majority of jurists in probabilistic methods:

One of the main areas of interest of the so-called “New Evidence Scholarship” is the application of
probability theory to arguments about facts in legal cases. As a preliminary to making [a] decision,
courts have to “find facts” which requires them to reason under uncertainty. In some cases it may be
the reasoning process itself which is examined in an appeal. The result may be a statement by the court
about how facts ought to be thought about. Alternatively the way facts are thought about in a particular
case may be seized upon as a precedent for future cases. Should there be “rules” about how facts are to
be thought about? And, if so, does probability theory offer a prescription for those rules?

Philosophers of science and forensic scientists also promote the probabilistic (and Bayesian)
method, for example, with reference to subjective degrees of belief (Salmon 1967, Howson &
Urbach 1993, Taroni et al. 2014):
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[Assign] numbers, but these numbers are not important by themselves: what really matters is the fact
that numbers allow us to use powerful rules of reasoning which can be implemented by computer
programs. What is really important is not whether the numbers are “precise,” whatever the meaning of
“precision” may be in reference to subjective degrees of belief based upon personal knowledge. What
is really important is that we are able to use sound rules of reasoning to check the logical consequences
of our propositions, that we are able to answer questions like: what are the consequences with respect
to the degree of belief in A if assuming that the degree of belief in B is high? And how the degree of
belief in A does change, if we lower the degree of belief in B? (Taroni et al. 2014, pp. 1-2)

This approach allows scientists to assign values to their probabilities, not only by certified
knowledge and experience but also by any data relevant for the event of interest, such as knowledge
of an event that may be available in terms of a relative frequency. Frequency is taken here to be
a term that relates to data, and probability is taken to be a term that relates to personal belief.
This perspective of probability as a term that relates to personal belief is relevant to forensic
science, where there are unique events (e.g., aspects of a crime) or propositions (e.g., the guilt of a
defendantin a criminal trial). This idea was mentioned by de Finetti (1930, 1989), who insisted that
probability is conditional on the status of the information available to the subject who assesses it.
Note that alternative definitions of probability do exist (see, e.g., the discussion in Lindley 1991).

de Finetti (1931) also showed that coherence, a simple economic behavioral criterion, implies
that a given individual should avoid a combination of probability assignments that is guaranteed to
lead to a loss. All that is needed to ensure such avoidance is for uncertainty to be represented and
manipulated using the laws of probability. In this context, the possibility of representing subjective
degrees of belief in terms of betting odds is often put forward in a two-part line of argument to
require that subjective degrees of belief should satisfy the laws of probability. The first part is that
betting odds should be coherent, in the sense that they should not be open to a sure-loss contract.
The second is that a set of betting odds is coherent if and only if it satisfies the laws of probability.

1.4. Challenges and Philosophical Properties

The role of the Bayes factor in the evaluation of evidence has been challenged in recent years.
First, the role of probability (in the subjective paradigm) in legal reasoning as the best measure of
uncertainty has been disputed in a discussion of the concept of relative plausibility (e.g., Allen &
Pardo 2019, 2023; Aitken et al. 2022). Second, the Bayes factor quantifies the evidential value as
a single number. It has been argued that a single number is insufficiently informative to provide
enough nuance to the value of the evidence and that an interval is a better measure (see Section 5
for further details).

The purpose of evidence evaluation is the provision of support for a proposition, in the con-
text of two or more propositions. Support may be qualified as weak, moderate, strong, etc. Such
qualitative interpretations were proposed by Jeffreys (1983) and, more recently, in the context of
forensic science (e.g., Nordgaard et al. 2012). The evidence under consideration here is taken to
be scientific, in the form of continuous measurements or discrete data. Such evidence could in-
clude the elemental composition of glass for continuous measurements (Aitken & Lucy 2004) or
the number of gunshot residue particles collected on the surface of individuals suspected to be
involved in the discharge of a firearm for discrete data (Biedermann et al. 2009, 2011).

Consideration of the value of the evidence has to be coherent and logical. Also, there is variation
associated with the evidence, and representing this variation with a probability function for cate-
gorical evidence or with a probability density function for evidence in the form of measurements
is an important part of the evaluation.

There are certain properties that a measure for the value of evidence should satisfy to be coher-
entand logical, and there are also concepts to which it should not be related (Buckleton et al. 2020).
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It should not comment on a proposition under consideration by the court. The role of the scientist
evaluating the evidence should be distinct from that of the trier of fact. The measure should not
be related to the presumption of innocence. The propositions for which the measure is providing
support should be mutually exclusive. All of these properties are satisfied by the Bayes factor.

The distinction between the role of a factfinder and that of a witness or an expert was specified
by one of the fathers of forensic science, Edmond Locard (1940, pp. 286-87):

The physical certainty provided by scientific evidence rests upon evidential values of different orders.
These are measurable and can be expressed numerically. Hence the expert knows and argues that he
knows the truth, but only within the limits of the risks of error inherent to the technique. This num-
bering of adverse probabilities should be explicitly indicated by the expert. The expert is not the judge:
he should not be influenced by facts of a moral sort. His duty is to ignore the trial. It is the judge’s duty
to evaluate whether or not a single negative evidence, against a sextillion of probabilities, can prevent
him from acting. And finally, it is the duty of the judge to decide if the evidence is in that case, proof
of guilt.

It is becoming more common to read papers published in scientific and legal journals that
criticize the role of Bayes’ theorem for probabilistic reasoning in the interpretation of evidence
and the use of the Bayes factor for the assessment of the value of the evidence to which a scientist
reports (e.g., Stiffelman 2019). Kaye & Sensabaugh (2011, p. 173) presented some examples and
responded to criticisms expressed by others by affirming that it appears that “the major objection
to likelihoods is not statistical but psychological.”

The use of the Bayes factor is generally supported by the affirmations (Buckleton et al. 2020)
that (#) the Bayes factor does not infringe on the ultimate issue (i.e., it does not express an opinion
on the proposition of judicial interest), (») the Bayesian approach clearly separates the role of the
scientist from that of the decision-makers (e.g., the judge and jury) so that the scientist is distanced
from comment on the hypotheses put forward by parties at trial, (c) the Bayes factor does not affect
the reasonable doubt standard and it does not infringe on the presumption of innocence, and
(d) the Bayes factor can be easily deduced from the ratio between posterior odds and prior odds.
Those desiderata in evidential assessment clarify why one can give preference to some evaluative
methods and views rather than to others. Justification of the use of Bayes’ theorem in a forensic
context has also been provided by, for example, Finkelstein & Fairley (1970), Lempert (1977), and
Evett & Weir (1998).

More generally, desirable properties of the Bayes factor are balance, transparency, robustness,
added value, flexibility, and logic. For an inferential process to be balanced (or impartial), attention
cannot be restricted to only one side of the argument (Jackson 2000). Evett (1996, p. 122) noted
that “a scientist cannot speculate about the truth of a proposition without considering at least one
alternative proposition. Indeed, an interpretation is without meaning unless the scientist clearly
states the alternatives he has considered.” The requirement to consider alternative propositions
is a general one that applies to many instances in daily life (Lindley 1985), but, in a legal context,
the requirement is fundamental. Evett specified that

balance means that when I am doing anything for a court of justice, I do it in full knowledge that there
are two sides represented in that court. Even though the evidence that I've found appears to favor one
or the other of those sides, my view of that evidence is directed not to proving the case for that side,
but to helping the court to set that evidence into the context of all the other evidence and the views of
both teams, prosecution and defence. (Joyce 2005, p. 37)

There is more in this quotation than the requirement to consider at least two alternatives. It also
states that forensic scientists should primarily be concerned with the evidence and not with the
competing propositions that are put forward to explain it. This distinction is crucial in that (as
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Locard previously wrote) it provides a demarcation of the boundaries of the expert’s and court’s
areas of competence.

Besides balance, a forensic scientist’s evaluation should also comply with the requirements of
transparency, i.e., it should “explain in a clear and explicit way what we have done, why we have
done it and how we have arrived at our conclusion. We need to expose the reasoning, the rationale,
behind our work” (Jackson 2000, p. 84). The requirement for robustness challenges a scientist’s
ability to explain the ground for their opinion together with their degree of understanding of the
particular evidence type (Jackson 2000). These desiderata help determine the role of the scientist
with regard to the evaluation and interpretation of evidence. The degree to which the scientist
succeeds in meeting these criteria depends on the chosen inferential framework, which may be
judged through its flexibility (a criterion that demands a form of reasoning to be generally ap-
plicable, i.e., not limited to specific subject matter) (Robertson & Vignaux 1998) and through its
logic (a set of principles that qualify as rational) (Robertson & Vignaux 1993).

2. COMPLEXITY: THE USE OF PROBABILISTIC GRAPHICAL MODELS
TO DEAL WITH PHENOMENA IN EVIDENCE-BASED REASONING
THROUGH A COHERENT APPROACH

The application of Bayesian networks or nets (BNs) to forensic science and the evaluation of
evidence, following a foundational paper with a medical example (Lauritzen & Spiegelhalter 1988),
enabled the consideration of problems of increasing complexity. Roberts & Aitken (2014) review
the assistance of BN for inferential reasoning in the administration of criminal justice, and the
following three quotations illustrate the benefits of their use in legal proceedings:

Bayes nets are able to model sets of conditional probabilities in a strictly disciplined way and to put
numbers on a range of compounded possibilities. [In so doing] they can supply information that could
be highly informative, perhaps even decisive, in the conduct of legal proceedings. (Roberts & Aitken
2014, p. 105)

None of this implies that jurors in criminal trials need to know the first thing about Bayes nets. . .. The
key challenges and relationships are entirely professional, concerning how and when forensic scientists
employ Bayes nets in their analyses and how properly contextualised analytical results are successfully
communicated to, and comprehended by police, prosecutors, defense lawyers and trial judges. How
advocates argue cases in court, and how judges sum up cases for the benefit of the jury, remain perforce
questions of professional /ega/ judgement and expertise. (Roberts & Aitken 2014, p. 108; emphasis in
original)

Bayes nets assist their users (e.g., forensic scientists and lawyers) to understand the structure of complex
inferential problems, to form a better appreciation of mutual dependencies between uncertain events
and compound probabilities, and to express this understanding in a graphical form that both assists in
deepening their own comprehension and enables them to communicate their insights to others. Bayes
nets help to clarify the nature of arguments predicated on probabilistic assumptions and thus promote
logical analysis and rational further discussion and evaluation of factual propositions. (Roberts & Aitken
2014, pp. 109-110)

BN have attracted researchers in forensic science since the late 1980s (Aitken & Gammerman
1989), and this attention has intensified considerably throughout the last decade (see, e.g., Taroni
etal. 2014, Dawid & Mortera 2021).

BN can be loosely defined as a pictorial representation of the dependencies and influences
(represented by arcs) among variables (represented by nodes) deemed to be relevant for a particular
probabilistic inferential problem. BNs are a combination of graph theory, which is used to provide
a qualitative model structure, and probability theory, which is used to characterize the nature and
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strength of the relationships that reign within a model. More formally, a BN covers the following
elements:

m A finite collection of random variables that are represented by nodes. Each of these
nodes either has a finite set of mutually exclusive states or may represent a continuous
measurement.

m A set of directed arcs that connect pairs of nodes.

m A combination of the set of variables and the set of directed arcs in such a way that a directed
acyclic graph is obtained, i.e., a graph where no loops are permitted.

m The association of node probability tables with each variable of the network. The probabil-
ity table of a variable, say A, that receives entering arcs from variables By, ..., B, contains
conditional probabilities Pr(4 | By, ..., B,), whereas a variable 4 with no entering arcs from
other variables contains unconditional probabilities Pr(A4). It is assumed that personal de-
grees of belief can be assigned to these states when, but not only when, relevant data are
unavailable.

The actual state of a variable may not be known with certainty. For example, there may be
uncertainty about the truth or otherwise of a proposition that explains why, for example, a crime
stain has been left by the person of interest (e.g., they were guilty of the crime). Within a BN, such
a proposition is conceptualized in terms of a Boolean node, whose states represent the truth and
the falsity of that proposition. The degree of belief maintained in each of these states is expressed
numerically, i.e., in terms of probabilities. These probabilities are organized in that node’s proba-
bility table. The arcs in a BN represent relationships that correspond to a property that a modeler
assumes to hold within the context of an inferential problem at hand. A directed arc from a node H
to a node E signifies that variable H has a direct influence on variable E. In Figure 1, node H can
have two states, H, (for prosecution) and Hy (for defense). Node E may be the outcome of a com-
parison between the DNA profile of a bloodstain found at a crime scene and the profile of a person
of interest. Then, the probability of E is dependent on the state of node H (i.e., states H, or Hy).

A key task of BNs is to process newly acquired information—i.e., to revise the conditional
probabilities of the states of the nodes in the network in which one is interested (e.g., a proposition
node) given that the states of some other nodes (e.g., evidence nodes) have been observed.

The analysis of inferential interactions plays an important role in the description of the line
of reasoning for a forensic evaluator in a case involving several items of evidence. Consider
the following example (Taroni et al. 2014). A young girl, Lulu, has been found murdered in her
home with many knife wounds. Bloodstains found at the crime scene have a DNA profile that does
not match Lulu’s. Jack, a friend of Lulu’s, has been seen by a witness, John, near her house around
the time of the murder. Jack was said to be in love with Lulu. John said that he, John, was also in
love with Lulu. This information may be used to form the BN in Figure 2, where the Boolean
nodes represent the following propositions, scientific and nonscientific evidence:

m Proposition: Jack stabbed Lulu.
m Scientific evidence: The bloodstain at the scene was determined to have come from the

offender.

Simple two-node Bayesian network for a proposition, E, relating to a scientist’s observation (i.e., evidence) of
corresponding features between questioned and known materials, and propositions, H, referring to a
common source (Aitken et al. 2021, p. 269).

Figure 1
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@om Jack
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Figure 2
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Jack stabbed Lulu Jack loved Lulu

Jack near the house John was jealous

John bears witness

A Bayesian network to illustrate the interaction between scientific and nonscientific (testimony) evidence in an assault case (Taroni et al.
2014, pp. 56-57). Node descriptions are given in the text.

212

Testimony: Jack loved Lulu.

Proposition: The stain came from Jack.

Scientific evidence: The DNA profile of the stain matches that of Jack.
Proposition: John was jealous of Jack.

Testimony: John bears witness that Jack was near the scene shortly after the time the crime
was committed.
m Proposition: Jack was near the house shortly after the time the crime was committed.

The network could be enlarged by accounting for the testimony, and its reliability, of a wit-
ness that John was jealous of Jack, and also by accounting for an analysis of eyewitness reliability
through consideration of the variables involved in the analysis of testimonial evidence (Schum
1994, pp. 100-114, 324-344).

Studies on the evidential foundations of probabilistic reasoning may be extended by using the
notion of the association of weight of evidence with the measurement of evidential phenomena in
the presence of a mass of evidence, which gives rise to complex reasoning patterns. Consideration
of masses of evidence and their role in a given criminal case (Schum 1994) leads to methods to
measure the following features: (#) relative contributions of items of evidence to the overall weight
of evidence, (}) interactions among items of evidence, and (¢) dissonances among items of evidence.
Clear definitions of the measurements of all three features help with inferential tasks involving
the combination of items of evidence from amid a mass of evidence. Measurements of these three
features enable a detailed examination of recurrent phenomena in evidence-based reasoning, such
as convergence, contradiction, redundancy, and synergy, to be made. P. Juchli, F. Taroni & C.G.G.
Aitken (manuscript submitted) integrate these evidential phenomena into the development of the
formulae for Bayes factors for the evaluation and interpretation of evidence.

Masses of evidence and their interaction measures have a role in the management of justice.
The idea that any scientific or judicial decision should be based on the available evidence, with a
potential need to gather more evidence, has been explored from various points of view (see, e.g.,
Raiffa & Schlaifer 1961, Good 1985)—for example, through a decision-making approach calling
for a calculus of the expected value of sample information (Good 1967) and through the expecta-
tion of the weights of evidence considered as a criterion for the value of an experimental design
(Good 1979). The intuitively attractive notion that it is better to use all available information is
a simple consequence of Bayesian confirmation theory, where posterior probabilities can be up-
dated with the acquisition of new information in order to discriminate better between hypotheses
(Carnap 1947; F. Taroni, C.G.G. Aitken, S. Bozza & P. Juchli, manuscript submitted).
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Historically, Ayer (1957) was the first to ask why new observations should be made. He related
the question to Carnap’s (1947) principle of total evidence, where the use of all available infor-
mation is recommended in the assignment of a probability. In other words, “the requirement of
total evidence. . .says that, in evaluating a hypothesis, you should take account of all evidence you
have” (Barrett & Sober 2020, p. 191). In the Bayesian paradigm, the assessment of the probability
of the truth of a hypothesis should be conditioned on all the available evidence. This approach
represents an example of what Carnap defined as the methodology of induction.

Bayesian decision theory explains how the expected value of information may be calculated
by taking advantage of the recommendation to maximize the expected utility. This approach is
not new in forensic science. Consider a scenario involving information provided by finger marks
yet to be processed in a forensic science laboratory. Gittelson et al. (2013) examined the question
of whether or not to process a finger mark from a decision-theoretic point of view, based on
theoretical work by Lindley (1985) with a series of forensic applications by Taroni etal. (2010) and
Gittelson (2013). The question was answered with a quantified expression of the expected value
of the information associated with the processed finger mark, which could be compared with the
cost of processing the mark. A general review of Bayes factors for forensic decision analysis from
an operational perspective, with practical relevance and applicability that keeps theoretical and
philosophical justifications limited, is given by Bozza et al. (2022).

3. PROBABILISTIC CONFIRMATION THEORY

The impact of an item of evidence on the credibility of a hypothesis can be studied through
what is known as probabilistic confirmation theory (Maher 1996, Crupi & Tentori 2016, Taroni
et al. 2021). This theory provides both a qualitative and a quantitative response to the question
of whether or not a piece of evidence E confirms, is neutral with respect to, or disconfirms a
hypothesis of interest H:

m E confirms or supports H if and only if Pr(H | E,I) > Pr(H | I).
m E is neutral with respect to H if and only if Pr(H | E,I) = Pr(H | I).
m E disconfirms or undermines H if and only if Pr(H | E,I) < Pr(H | I).

An appropriate measure ¢(E, H) of the degree of confirmation (or degree of support) that a
hypothesis H receives from information E is specified as one that quantifies the change in belief
of H. Such a measure ¢ does not initially need to be either a probability or a function of a proba-
bility, and a question of interest is whether some appropriate function of probability can be such a
measure of confirmation. Philosophers of science and statisticians have expressed some reasonable
requirements for a quantitative confirmation measure ¢ and have shown that probability satisfied
them. In particular, these logical requirements are satisfied by the Bayes factor and its logarithm.

A list of those requirements is provided, for example, by Crupi & Tentori (2014). As an illustra-
tion, consider the so-called compatibility requirement. Take evidence E that a DNA profile from
a person of interest matches, in some sense, that of a crime stain, and the proposition H that the
person of interest is the source of the crime stain. Then E may be said to confirm H. Alternatively,
consider evidence F that a DNA profile from a person of interest does not match that of a crime
stain, and the same previous proposition H. Then F may be said to disconfirm H and «(E, H) >
¢(F, H). Another reasonable assumption is that the confirmation measure depends solely on the
degrees of belief about the two events of interest (this is called the formality requirement), so it
depends only on the probability values concerning E, F, and H.

A confirmation measure should also satisfy a classificatory requirement that confirmation
implies ¢«(E, H) > 0, neutrality implies «(E, H) = 0, and disconfirmation implies ¢«(E, H) < 0,
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as illustrated in the DNA profile example, where evidence E confirms H and F disconfirms H,
so that Pr(H | E,I) > Pr(H | I) and Pr(H | F,I) < Pr(H | I). This implies that ¢(E, H) > 0 and
«(F,H) < 0.

Different measures agree with those requirements. Measures that agree are the Bayes factor
and any monotonic function of the Bayes factor, such as its logarithm (Good 1950). The Bayes
factor confirms a hypothesis if its value is greater than one and disconfirms the hypothesis if the
value is less than one; its logarithm confirms a hypothesis if its value is greater than zero and
disconfirms the hypothesis if the value is less than zero.

Any form of presentation for the evidence that is adopted by scientists must be demonstrably
logical according to well-defined criteria. So-called Bayesian confirmation measures or evidential
support measures offer a numerical expression for the impact of a piece of evidence on a judicial
hypothesis of interest. The Bayes factor satisfies a number of necessary conditions on normative
logical adequacy; the same cannot be said for alternative expressions put forward in some legal
and forensic circles.

As an illustration, compare the properties of the Bayes factor with two alternative expressions
for evidential value. Consider two mutually exclusive and exhaustive propositions, Hj, and Hy, and
evidence E. The three expressions considered are:

1. The Bayes factor: BF = Pr(E | H,,)/Pr(E | Hy)

2. The difference between the posterior probability and the prior probability of H,, given
E: D = Pr(H, | E) — Pr(H,)

3. The ratio of the posterior probability and the prior probability of H, given E: R =
Pr(H, | E)/Pr(H,)

One desirable property of a measure for the value of evidence is that it takes minimal and
maximal values that are independent of E, H,,, and Hy. Otherwise, it would not be possible to
compare values between different items of evidence and propositions. Fitelson (2006) defined a
property of logicality that was satisfied by a measure of evidential value that was maximal when
evidence E implied the proposition H,, in that Pr(H, | E) = 1, and minimal when evidence E
implied the complement of H},, namely Hy, in that Pr(H | E) = 1 and so Pr(H,, | E) = 0. Consider
the three expressions immediately above in this context:

1. When evidence E implies hypothesis H,, Pr(H,|E)=1 and, hence, Pr(H, |E)/
Pr(Hy | E) = oo. The Bayes factor is the ratio of posterior odds to prior odds and is thus
equal to co and is at its maximum. If evidence E implies hypothesis Hy, then Pr(H, | E) = 0,
Pr(H, | E)/Pr(Hy | E) = 0, and the Bayes factor takes its minimal value of zero. These
maximal and minimal values are independent of the evidence and the propositions.

2. When E implies H,,, D = 1 — Pr(H,), and when E implies Hy, D = 0 — Pr(H,,). Thus, the
maximal and minimal values of the measure D depend on H, and fail the property of
logicality.

3. When Eimplies H,, R = 1/Pr(H,). When E implies Hy, Pr(H, | E) = 0,50 R = 0/Pr(H,) =
0. Thus, the minimal value of the measure R is independent of H,, and E, but the maximal
value is not. Again, measure R fails the property of logicality.

Probabilistic reasoning also enables definitions of the possible interactions between the
evidence transferred in each direction (criminal to scene, scene to criminal) and hence eases the
interpretation of such evidence. Given that the decision to collect new evidence has to be made
before the information is available, another problem is the calculation of the expected gain of
this new (unknown) information, so that the gain can be compared with the cost of the search.
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Provided that the utilities, or losses, of the outcomes of decisions may be quantified in such a way
that they can be compared with the cost of the experiment, Bayesian decision theory explains how
the expected value of information may be calculated by taking advantage of the recommendation
to maximize the expected utility.

4. LEGAL REASONING AND PROBABILISTIC REASONING

According to the preface to the first edition of Robertson et al. (2016) (Robertson & Vignaux
1995, p. xi), “the examination of the applicability of logical and probabilistic reasoning to evidence
generally. . .has been the subject of vigorous discussion in the legal literature and is one of the main
threads of the ‘New Evidence Scholarship,”” a term coined by Lempert (1986). This discussion
continues to the present day. The preface to the second edition (Robertson et al. 2016, p. xv) notes
that there is “little sign of great increase in understanding in the legal profession or academia.”
Some have suggested that probabilistic reasoning is ill-suited to many aspects of the administration
of civil and criminal justice (see, e.g., Allen & Pardo 2019, 2023). Common criticisms are:

m the use of numbers for the comparison of the value of evidence with the standard of proof,

m the incompatibility of probabilistic reasoning and the way in which factfinders evaluate and
reason with evidence, and

m the conjunction problem,

which are discussed in turn.

4.1. The Use of Numbers for the Comparison of the Value of Evidence
with the Standard of Proof

Factfinders are presented with various explanations for the contested events, and, individually, they
compare these explanations, informed by both the evidence and their own background knowledge.
The factfinder has to make a decision thatis, in turn, informed by the standard of proof applicable
in the case at hand. Probabilistic reasoning enlists probability as a measure of uncertainty to aid
the comparison. Critics of probabilistic reasoning argue that it is not possible to assign numbers
to the degree of uncertainty; supporters of probabilistic reasoning give the example of the use of
hypothetical bets by which a person’s subjective belief about evidence or an event may be elicited
as a probability (see, e.g., de Finetti 1940, Edwards et al. 1963, Lindley 2014). The probabilities or
subjective beliefs for the various explanations may then be compared. For consistency, the expla-
nation with the highest probability is the one which forms the basis for any decision to be made. As
a person has a subjective belief about evidence or an event that can be elicited as a probability, so
they may have a subjective belief about the standard of proof. For each threshold of, for example,
() belief beyond reasonable doubt, (b) clear and convincing evidence, or (¢) the preponderance
of the evidence, the person may assign a probabilistic threshold. Their beliefs about the evidence
and events may then be compared with the appropriate threshold.

4.2. The Incompatibility of Probabilistic Reasoning and the Way in Which
Factfinders Evaluate and Reason with Evidence

In a court case, evidence is presented sequentially. Before the case begins, the factfinder will have
some prior subjective belief about the veracity of the case. In a civil case, this could be that the
plaintiff’s case and the defendant’s case are equally likely to be true: Each has a probability of
0.5 of being true. In a criminal case, this could be that the defendant is as likely to be innocent
as any other member of some relevant population (a population that could initially be that of
the world but which would be rapidly and drastically reduced through the progression of the
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consideration of the evidence). Evidence is led sequentially. The posterior odds in favor of the
prosecution/plaintiff’s proposition, H, say, compared with the defendant’s proposition Hy after
two pieces of evidence E; and E; are led, are then given by Equation 2.

Of course, as more evidence is led, the updating procedure becomes more complex. However,
the complexity is independent of the mode of reasoning by the factfinder. Probabilistic reasoning
is a more transparent approach to the updating than verbal reasoning. An interesting comment
on this updating procedure is given by Lindley (1991). At the beginning of a trial, the members
of the jury will, almost certainly, have different beliefs—perhaps as many different beliefs as there
are members of the jury:

Suppose on knowledge K, two people have different beliefs in the truth of an event G: their probabilities
are not the same. Suppose, now, additional evidence E relevant to G is produced. Then it can be shown
rather generally that E will tend to bring the two probabilities closer together, and that, for sufficiently
large amounts of evidence, they will agree for all practical purposes. Briefly, additional evidence makes
for agreement in beliefs. (Lindley 1991, p. 49).

There is a clear analogy with the reasoning process in a jury room. Lindley (1991, p. 49) further
notes that “[t]here is nothing to force agreement, but experience shows that agreement is usually
reached.”

BN, as illustrated in Figures 1 and 2, may be presented as a summary of the evidence, though
they are usually more complex than these illustrations. These may be thought of as a development
of Wigmore charts (Wigmore 1913). A review of Wigmore charts and Bayes nets is provided by
Roberts & Aitken (2014).

4.3. The Conjunction Problem

Consider two elements A and B that are parts of a plaintiff’s case. Both need to be “proven” on
the balance of probabilities to satisfy the burden of proof. There is one item of evidence, de-
noted E, and A and B are deemed independent, given E. The evidence may be thought to support
both elements if it can be shown that Pr(4 | E) and Pr(B | E) are both greater than 0.5. Assume
Pr(4 | E)and Pr(B | E) are both equal to 0.6; both prove the plaintiff’s case on the balance of prob-
abilities. However, 4 and B, given E, are independent, and Pr(4,B | E) = Pr(4 | E) x Pr(B | E) =
0.36; the case would fail on the balance of probabilities. Examples such as this one have been
raised [e.g., by Cohen (1977) and Allen & Pardo (2019)] to show that probabilistic reasoning is
incompatible with legal reasoning.
An example is given by Cohen (1977, p. 59):

Perhaps a car driver is suing his insurance company because it refuses to compensate him after an
accident. Suppose the two component issues that are disputed are first, what were the circumstances
of the crash, and secondly, what were the terms of the driver’s insurance contract. Then, if each of
these two issues is determined with a probability of 0.71, their joint outcome can be determined with
a sufficiently high probability, since 0.717 is greater than 0.501. But if one of the component issues is
determined with only a 0.501 probability, then the other component issue must be determined with a
probability of very nearly 1. Otherwise the product of the two probabilities would not be high enough
to satisfy the requirements of justice. Or, in other words, if one of the component issues is determined
on the balance of probability (whether this balance be understood to lie at 0.501, 0.51, 0.6 or even a
higher figure), the other must, in effect, be determined beyond reasonable doubt.

However, further analysis (see, e.g., Nesson 1985, Aitken et al. 2022) reveals that the plaintiff’s
case (argument) has a higher probability than any other case (argument). Denote the complement
(negation) of A as A and the complement of B as B such that Pr(4 | E) = 0.6 = Pr(4 | E) = 0.4
and Pr(B | E) = 0.6 = Pr(B | E) = 0.4. Then, we have
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m Pr(4,B | E)=Pr(4 | E) x Pr(B | E) = 0.36,
m Pr(4,B|E)=Pr(4 | E) x Pr(B | E) = 0.24,
m Pr(4,B | E)=Pr(d | E) x Pr(B | E) = 0.24, and
m Pr(d,B|E)=Pr(4 | E) x Pr(B | E) = 0.16.

The case with the highest probability, conditional on E, is {4, B}. A holistic evaluation would
assign a probability less than 0.5 to the joint occurrence of these two events. However, the joint
occurrence of A and B has a higher probability than the joint occurrence of any other combination
of the events or their negations. Whatever argument is put forward by the defendant will have a
lower probability than that of the plaindff. It is a matter for the lawyers as to which argument
to support. This raises the question of whether the argument of the plaintiff has to be of higher
probability than each individual alternative or of all alternatives considered as one, but this is a
legal argument, not a failure of probability.

A similar approach to this conjunction problem is illustrated by what is known as Linda’s ex-
ample (Sides et al. 2002). Here, the evidence E is the following information about Linda: “she
is 31 years old, single, outspoken, and very bright; she majored in philosophy and, as a student,
she was deeply concerned with issues of discrimination and social justice, and also participated in
antinuclear demonstrations” (p. 191).

The elements are:

m A: Linda is a bank teller;
m B: Linda is active in the feminist movement; and
m (4, B): Linda is a bank teller and is active in the feminist movement.

A majority of respondents across a variety of studies ranked the conjunction of 4 and B as more
probable than 4. Hertwig & Chase (1998) provide a review of findings; the original report is by
Tversky & Kahneman (1983). This ranking is in contradiction to the laws of probability that state
that, for two events A and B, Pr(4, B) = Pr(B | A) Pr(4) < Pr(A), since Pr(B | A) < 1.

This paradoxical finding can be understood by considering relative values of unconditional and
conditional probabilities. Consider a definition that evidence E favors (4, B) more than it favors
A if and only if

Pr(4,B|E) Pr(4|E)
Pr4,B)  Pr(A)

It can be shown that this inequality holds if and only if
Pr(E | 4,B) > Pr(E | A).

This inequality asserts that Linda is more likely to be single, outspoken, etc. on the assumption that
she is a feminist bank teller than on the assumption that she is a bank teller. This is a reasonable
assertion.

5. THE PRESENTATION OF EVIDENCE: SINGLE NUMBERS
AND INTERVALS

The measurement and reporting of the value of evidence have been widely debated in the foren-
sic literature. Following Taroni et al. (2016), many articles have been published on these topics,
including those in a special issue of the journal Science & Fustice (Morrison 2016). While the use
of a Bayes factor to assess the probative value of evidence is now supported by recommended
standards in different forensic disciplines (ENFSI 2015), there is not a widespread consensus on
how conclusions regarding the strength of the evidence should be reported to a court. On the one
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hand, there is a school of thought that a forensic expert should report a single value for a Bayes
factor (e.g., Berger & Slooten 2016, Ommen et al. 2016, Taroni et al. 2016). On the other hand,
a different school of thought fears that reporting a single value would deprive the legal system of
essential information needed to assess the reliability of the evidence and advocates that a reported
value should be accompanied by an interval that would allow account to be taken of inherent un-
certainties characterizing the assessment of the evidence in order to maximize scientific objectivity
and avoid personal opinions (e.g., Morrison & Enzinger 2016, Sjerps et al. 2016).

The Bayes factor is often expressed as a ratio between two conditional probabilities, and the
task of the expert is focused on the assessment of these probabilities. An important issue that is
often debated concerns the interpretation of probabilities as personal expressions of belief held
by an individual and the reasonableness of such an interpretation in applications in forensic sci-
ence. Subjective probabilities are often thought to be an arbitrary expression of an individual’s
belief, with the consequence that such assessments are labeled as unfounded guesses (Morrison &
Enzinger 2016) or as bare assertions of belief (Martire et al. 2017). Such arguments are, however,
unsound. Subjective probabilities are conditioned on all task-relevant information; subjectivism is
not unconstrained, and it is the duty of the forensic scientist to express their probability (measure
of belief) responsibly. Different experts may present different values, as the knowledge bases of
different people on which assessments of the truth or otherwise of a given proposition are based
may differ. Such differences reflect the capacity of the Bayesian framework to account for dif-
ferences in personal knowledge bases between individuals. Any claimed accuracy of the reported
value (Morrison 2016) is unlikely be achieved.

The Bayes factor, like probability, is not a quantity that could be well approximated if only
there were sufficient data. It is, rather, a construction of the human mind for reasoning under
uncertainty. It can be argued that objective probabilities do not exist, but are, at best, assignments
of probability on which several individuals may find agreement (Biedermann et al. 2017). Leaving
aside philosophical matters concerning the soundness of a personal interpretation of probability,
the objection is often raised (see, e.g., Kafadar 2015) that such a personal interpretation does not
match the daily case work of a forensic scientist, which often relies on the combination of data on
the occurrence of target features, summarized in terms of relative frequencies. However, nothing
in the Bayesian paradigm prevents the use of relative frequencies, whenever available information
may be expressed in such a form, from a contribution to the process of the assignment of subjec-
tive probabilities, a process known as elicitation. This is not only acknowledged as reasonable but
is the subject of the representation theorem of de Finetti, as discussed by Taroni et al. (2018). The
assumptions that underlie the assignment of a probability are always open to question. Different
assumptions may lead to different assignments and, perhaps, different interpretations. These po-
tential differences have led to the suggestion that the provision of a lower and an upper bound for
the assigned probability may better reflect uncertainty arising from these differences than reliance
on a single value. Assignment of an interval for a probability is problematic, however, as it provides
no guidance to the recipients of such expert information on how the pair of values represented by
the lower and upper bounds of the interval may be used (Biedermann et al. 2016).

5.1. Sources of Uncertainty

The assessment of a value for a Bayes factor can indeed be a challenging task that can be subjected
to many sources of uncertainty in addition to the elicitation of probabilities. These include the
formulation of hypotheses, the model choice, the selection of the control samples and recovered
items to be analyzed, the elicitation of prior probability distributions, or the computational im-
passes that may be encountered. In some cases, the forensic results may be seen as the outcome
of a process about which there is enough knowledge to formulate a probabilistic model, and it
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will be a matter of judgement by the expert as to whether this is adequate. Different experts may
provide different models, even starting from the same data, and it is desirable that information be
provided to help recipients of the models’ output understand how these experts have reached their
conclusions. Since the expression of a Bayes factor often involves model parameters (say, 6) that are
unknown, the existence of a true value of the Bayes factor that can be estimated, and thus accom-
panied with some interval, has been widely debated. However, that premise is unsound, as there
is no true value that can be estimated. Take the case where an analytical feature F is observed, and
the probability Pr(F | 6) for an unknown individual to be associated with this analytical feature is
to be assessed. Personal beliefs concerning the analytical feature for the unknown individual can
be formulated as Pr(F) = [ Pr(F | 0) f(6)d6, where f() describes the available knowledge about
6. Clearly, a change in the available knowledge about 6 will lead to a different f(6).

A further complication originates from the fact that in some situations, the marginal likelihoods
are unavailable in closed form. The error that may result from the implementation of numerical
techniques is an important source of information about which the scientist should be transparent.
Following the ideas of Tanner (1996), reconsidered by Ommen et al. (2017) in a forensic context,
numerical precision can be estimated by an associated Monte Carlo standard error. With reference
to the computational impasses that can make an analytical solution unachievable, some scientists
prefer to adopt a so-called Bayesian-likelihood approach, according to which the likelihoods in
the numerator and in the denominator are considered to be functions of the parameter 0 (e.g.,
van den Hout & Alberink 2016). Though such a proposal has an apparent appeal, objections can
be raised either from a philosophical point of view, as its compatibility with the Bayesian perspec-
tive can be questioned (see Gelman et al. 2014), or from a practical point of view, as it must be
decided which distribution for 6 should be used for the numerator and which for the denomi-
nator. A forensic scientist may alternatively choose a frequentist approach. However, a difficulty
with such an approach, in which a parametric estimate 6 is plugged into the Bayes factor (which
in this case is a likelihood ratio), is the decision as to which estimate of 8 to use for the numerator
and which for the denominator, and there is not necessarily a unique answer (Dawid 2017). The
Bayesian approach requires simply the calculation of a Bayes factor. Uncertainty about a popula-
tion parameter 6 is taken into account in its computation; this is the integration of the available
information into the evaluation of evidence to provide the best assessment of its value.

It is advisable and insightful to consider different values for input parameters and investigate
the impact on the Bayes factor, as well as that of different data sets. This would amount to the
determination of a distribution for the Bayes factor, independent of observations made in a given
case, that can be informative about the sensitivity of the Bayes factor to variation in the input
parameters. Marginal distributions can be highly sensitive to the choice of the prior distribution,
and situations characterized by an abundance of information for prior elicitation purposes are
rare. Such information is obtainable before findings are made, and it informs about the potential
of misleading evidence (Aitken et al. 2021). Conversely, when deciding whether to allocate more
resources to obtain more information, it is relevant whether or not more information would lead
to a different Bayes factor. The collection of more data represents a potentially key aspect of
a criminal investigation, but a study of whether or not to gather more data to assist further in
the determination of the input parameters is a separate issue that should not distract from the
evidential interpretation of the current value of the Bayes factor (Berger & Slooten 2016, Taroni
etal. 2016, Taylor et al. 2016, Meester & Slooten 2020).

5.2. Combination of Values

Another argument against an interval-based formulation of the Bayes factor is that even if the
argument were accepted that an interval should be determined, it is not clear how such an interval
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should act as a multiplication factor in the odds-form of Bayes’ theorem, and therefore how
it should be used by the trier of fact for the purpose of making a decision (Berger & Slooten
2016). The combination of supports for different pieces of evidence with the Bayes factor is
multiplicative. It is difficult to envisage how interval supports for different pieces of evidence can
be combined meaningfully (Biedermann et al. 2016). The choice of various endpoints may result
in an incoherent or biased process (Ommen et al. 2016).

The discovery of a transparent and logical explanation of the different forms of evidence, such
as scientific, testimonial, and circumstantial, relied upon by forensic experts and the use to which
these different forms may be put for the elicitation of probabilities are major challenges for the
use of probabilistic reasoning in the administration of justice. If a single value of the Bayes factor
is thought to represent an incomplete expression of the value of the evidence, then all possible
sources of uncertainty should be considered. However, an interval would be inadequate, and a
multidimensional representation would need to be chosen. Much work is still required concerning
all the important aspects raised in this section and the communication of results so that the best
representation of the value of the evidence under consideration can be achieved.

6. CALIBRATION

There is a mathematical result that the likelihood ratio of the likelihood ratio is the likelihood
ratio:

Pr(LR | H,)
——— =LR 3.

Pr(LR | Hy)
(van Leeuwen & Briimmer 2013, Aitken et al. 2021), for which an outline proof is given in the
Appendix.

A criticism of some approaches to the evaluation of evidence is that their results do not satisty
this result. This result is given by van Leeuwen & Briimmer (2013) as a definition of calibration.
Methods of obtaining Bayes factors that do not satisfy Equation 3 are said to be poorly calibrated.
Critics, for example, Vergeer etal. (2020) [written in response to Aitken etal. (2019), with a reply by
Aitken et al. (2020)], use the likelihood ratio as a score. They argue that “LR-values coming from
assumed statistical model families. . .often cannot be interpreted as such and require a so-called
posthoc calibrating step” (p. 1). Consider the standard approach for the statistical evaluation of
evidence. Statistical models are developed based on training data. Likelihood ratios follow. Their
performance is assessed, ideally with validation data or, failing their availability, a cross-validation
analysis of the training data. These likelihood ratios are likelihood ratios by definition. The post
hoc calibrating step does not then produce a likelihood ratio, in the sense that evaluation of evi-
dence defines a likelihood ratio. The resultant statistic is not the ratio of the probabilities (loosely
defined) of the evidence given the prosecution proposition and the evidence given the defense
proposition. The original likelihood ratio can be defined as a score, as Vergeer et al. (2020) sug-
gest, but this is an artificial construct based on a post hoc desire to obtain a better result. Once
a likelihood ratio is determined, it cannot be adjusted in the manner suggested by calibration,
namely to determine its likelihood ratio.

The results from a model that is not well calibrated cannot be adjusted to obtain something
that is well calibrated. This would be an adjustment made after the analysis to obtain a result that
looks better in some sense. The correct response to poor calibration is to look for a better model.
Consider the weather forecaster whose 90% predictions tend to be right only 70% of the time.
The correct response is not an automatic adjustment of 90% to 70%. It is to obtain a better model
for forecasting.
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Calibration is a measure for the assessment of performance of a model. It is not a method for
the evaluation of evidence. Some further comments about the role of calibration in the evaluation
and interpretation of evidence are given by Aitken et al. (2021).

7. CONCLUSION

The role of the Bayes factor as the factor that converts prior odds in favor of a proposition to
posterior odds in favor of the proposition after consideration of evidence is well known and is in-
tuitively very attractive. Historically, it has been shown that, with certain reasonable assumptions,
the Bayes factor is the best way to evaluate evidence. More generally, the probabilistic line of rea-
soning in the administration of criminal justice has other attractive features in addition to that
provided by the Bayes factor. It satisfies a number of necessary conditions on normative logical
adequacy. It may also be used to assess, with versatile applicability, evidential phenomena for the
combination of evidence and in the presence of a mass of evidence, which gives rise to complex
reasoning patterns.

The role of the Bayes factor in the evaluation of evidence has been challenged in recent years.
For example, the role of probability (in the subjective paradigm) in legal reasoning as the best
measure of uncertainty has been disputed in a discussion of the concept of relative plausibility. It
has been shown that careful use of probabilistic reasoning counters the criticisms of the proponents
of relative plausibility.

The benefits to the administration of criminal justice system of the roles of probabilistic rea-
soning in general and the Bayes factor in particular have been reviewed. Other proposals for the
evaluation of evidence have been discussed, and it has been shown that appropriate use of the
Bayes factor is able to counter the criticisms by these other proposals of its use.

APPENDIX

A speaker recognition system has as input two speech segments, denoted X and Y. Lets = f(X, )
be a single, scalar score. The likelihood ratio, here denoted 7 for consistency with van Leeuwen
& Briimmer (2013), is a function of s:

_ Pr(s | Hy,M)

"= s | Hy M)’ +

where H,, is the proposition that X and ¥ originate from the same speaker, Hy is the proposition
that X and Y are from different speakers, and M is a probabilistic model for s.
Let Pr(H, | M) = w. Then, we have

Pr(s | Hy, M, )7

Pr(H, | 5, M, ) =
rHy |5 M,7) Pr(s | Hy, M, 7)7 + Pr(s | Hy, M, m)(1 — )
_ rw
T+ —-n)

and a similar argument holds for Hy with

(1 —m)

Pr(Hd |5,M,7T) = m.

Thus, the posterior probability may be written as

Pr(h | s,M,m) =Pr(h | r,M', ), b € {H,, Hy}, 5.
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where M’ has been introduced to denote M, augmented with Equation 4. Then, we have

Pr(H, | s,M, ) = Pr(s | Hy, M)
Pr(Hy | s,M,7) (1 —m) Pr(s| Hy,M)
b1

= —F—- 7.

(I-m) "’
Pr(H, | r,M',7)  =x Pr(r | H,,M")
Pr(Hy | r,M',w) ~ (1 —m) Pr(r | Hy, M")

T _ Pr(H, | s,M, )

= U-m = Pr(H, |5, M,7)
_ Pr(H, | r,M', )
Pr(Hy | r,M', 1)
_w  Pr(r| H,M)
(1 —m) Pr(r | Hy, M")
. Pr(r | H,, M)
Pr(r | Hy, M)’

(from Equation 5)

1. Probability has a central role in the measurement of uncertainty.

2. The Bayes factor is a coherent and logical measure to assess the value of evidence; it
therefore plays an important role in the evaluation and interpretation processes.

3. Simplification of complexity and consideration of masses of evidence are much aided
with the use of BNs.

4. Subjective probability can be helpful in a discussion about thresholds for the standard of
proof.

5. Probabilistic reasoning can be presented in a way that is compatible with how factfinders
evaluate and reason with evidence.

6. A resolution of the conjunction problem is achieved with consideration of relative
probabilities rather than absolute probabilities.

7. Evidence is best evaluated and interpreted with a single number rather than an interval
of numbers.

8. Calibration is an assessment of the performance of a statistical procedure for evaluation,
not a part of the procedure.
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