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Abstract: Let χn(t) = (
∑n
i=1X

2
i (t))1/2, t ≥ 0 be a chi-process with n degrees of freedom where Xi’s are independent

copies of some generic centred Gaussian process X. This paper derives the exact asymptotic behaviour of

P

{
sup
t∈[0,T ]

(
χn(t)− g(t)

)
> u

}
as u→∞,

where T is a given positive constant, and g(·) is some non-negative bounded measurable function. The case g(t) ≡ 0

has been investigated in numerous contributions by V.I. Piterbarg. Our novel asymptotic results, for both stationary

and non-stationary X, are referred to as Piterbarg theorems for chi-processes with trend.
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1 Introduction

Two fundamental results for the study of asymptotic behaviour of the supremum of non-smooth Gaussian processes

and Gaussian random fields are Pickands theorem and Piterbarg theorem, see Pickands (1969a,b), Piterbarg (1972,

1996), and Piterbarg and Prisyazhnyuk (1978). For any fixed T ∈ (0,∞), J. Pickands III obtained the exact tail

asymptotics of supt∈[0,T ]X(t) for a centered stationary Gaussian process {X(t), t ≥ 0} with a.s. continuous sample

paths and covariance function r(·) satisfying the following assumptions:

Assumption I: r(t) = 1− |t|α(1 + o(1)) as t→ 0, with α ∈ (0, 2];

Assumption II: r(t) < 1 for all t > 0.

More precisely, Pickands theorem states that

P

{
sup
t∈[0,T ]

X(t) > u

}
= HαT

1√
2π
u

2
α−1 exp

(
−u

2

2

)
(1 + o(1)) as u→∞, (1.1)

where Hα is the Pickands constant defined by

Hα = lim
S→∞

1

S
E

{
exp

(
sup
t∈[0,S]

(√
2Bα(t)− tα

))}
∈ (0,∞),

with {Bα(t), t ∈ R} a standard fractional Brownian motion (fBm) defined on R with Hurst index α/2 ∈ (0, 1]. J.

Pickands III proved (1.1) using the double sum method and the following asymptotics (set S ∈ (0,∞))

P

{
sup

t∈[0,u−2/αS]

X(t) > u

}
= Hα[0, S]

1√
2πu

exp

(
−u

2

2

)
(1 + o(1)) as u→∞, (1.2)

where

Hα[0, S] = E

{
exp

(
sup
t∈[0,S]

(√
2Bα(t)− tα

))}
∈ (0,∞).

Piterbarg (1972, 1996) obtained a similar result for non-stationary Gaussian processes, namely

P

{
sup

t∈[0,u−2/αS]

X(t)

1 + dtα
> u

}
= Pdα,α[0, S]

1√
2πu

exp

(
−u

2

2

)
(1 + o(1)) as u→∞, (1.3)
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where X is the centered stationary Gaussian process as above, d > 0, and

Pdα,β [0, S] = E

{
exp

(
sup
t∈[0,S]

(√
2Bα(t)− |t|α − d|t|β

))}
∈ (0,∞), d, β, S ∈ (0,∞).

For a centered non-stationary Gaussian process {X(t), t ≥ 0} with a.s. continuous sample paths the next two assump-

tions are crucial:

Assumption III: The standard deviation function σX(·) of X attains its maximum (assumed to be 1) over [0, T ] at

the unique point t = T . Further, there exist some positive constants ν ∈ (0, 2], µ,A,D such that

σX(t) = 1−A(T − t)µ + o((T − t)µ), t ↑ T, (1.4)

and

rX(s, t) = Corr(X(s), X(t)) = 1−D|t− s|ν + o(|t− s|ν), s, t ↑ T. (1.5)

Assumption IV: There exist positive constants G and γ such that

E
{

(X(t)−X(s))2
}
≤ G|t− s|γ (1.6)

holds for all s, t ∈ [0, T ].

For such a centered non-stationary Gaussian process {X(t), t ≥ 0} it is known that (see e.g., Dȩbicki and Sikora

(2011), Theorem D.3 in Piterbarg (1996) or Theorem 2.1 in Dȩbicki et al. (2014))

P

{
sup
t∈[0,T ]

X(t) > u

}
= Dν,µ

1√
2π
u

( 2
ν−

2
µ )

+
−1

exp

(
−u

2

2

)
(1 + o(1)) as u→∞,

where (x)+ = max(0, x), and Dν,µ is a positive constant, which, when µ = ν is commonly referred to as the Piterbarg

constant defined by

P
A
D
ν,ν = lim

S→∞
P
A
D
ν,ν [0, S] ∈ (0,∞).

It is worth pointing out that in Theorem D.3 in Piterbarg (1996) it is assumed that the unique maximum point of σX(·)
is attained at some inner point of (0, T ); in that case the Piterbarg constant is given by P̃

A
D
ν,ν = limS→∞ P

A
D
ν,ν [−S, S].

Let {χn(t), t ≥ 0} be a chi-process with n ∈ N degrees of freedom defined by

χn(t) =

√√√√ n∑
i=1

X2
i (t), t ≥ 0,

where {Xi(t), t ≥ 0}, 1 ≤ i ≤ n, are independent copies of a centered Gaussian process {X(t), t ≥ 0} with a.s.

continuous sample paths. The investigation of

P

{
sup
t∈[0,T ]

χn(t) > u

}
as u→∞ (1.7)

was initiated by an envelope of a Gaussian process over a high level, see e.g., Belyaev and Nosko (1969), Lindgren

(1980a,b, 1989). The tail asymptotic behaviour of chi-processes is crucial for numerous statistical applications, see

e.g., Aronowich and Adler (1985), Albin and Jarušková (2003), Jarušková (2010), Jarušková and Piterbarg (2011),

and the references therein. We mention in passing that the limit behaviour of maximum of chi-processes is the same

as that for Gaussian processes (Kabluchko (2011), Hashorva et al. (2012)); in the limit the Brown-Resnick process

appears.

Albin (1990) studied the exact asymptotics of (1.7) for a centered stationary generalized chi-process using Berman’s
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approach (see Berman (1992) and Albin (1998) for self-similar chi-processes), whereas Piterbarg (1994a) obtained a

generalization of Albin’s result by resorting to the double sum method. In Piterbarg (1994b), the author investigated

the exact asymptotics of (1.7) for a centered non-stationary generalized chi-process where the generic Gaussian process

is differentiable and with variance attaining its global maximum at only one inner point of the interval [0, T ]. Through-

out the paper, a chi-process generated by centered (non-)stationary Gaussian processes is called a (non-)stationary

chi-process.

Let g(·) be a non-negative bounded measurable function satisfying one of the following two conditions:

Assumption V: g(·) attains its minimum 0 over [0, T ] at the unique point 0, and further there exist some positive

constants c, β such that

g(t) = ctβ(1 + o(1)), t→ 0;

Assumption VI: There exist some constants c̃ ∈ R and β̃ > 0 such that

g(t) = g(T )− c̃(T − t)β̃(1 + o(1)), t→ T.

In this paper, we derive the exact asymptotics of

P

{
sup
t∈[0,T ]

(
χn(t)− g(t)

)
> u

}
as u→∞ (1.8)

for i) stationary chi-processes with a trend function g(·) satisfying Assumption V; ii) non-stationary chi-processes with

a trend function g(·) satisfying Assumption VI.

The investigation of the tail asymptotics of the maximum of chi-processes with trend is motivated by the problem

of the exit of a vector Gaussian load process in engineering sciences, see, e.g., Lindgren (1980a) and the references

therein. More precisely, let X(t) = (X1(t), · · · , Xn(t)), t ≥ 0 be a vector Gaussian load process. Of interest is the

probability of exit

P {X(t) 6∈ Su(t), for some t ∈ [0, T ]} ,

with a time-dependent safety region

Su(t) =

{
(x1, · · · , xn) ∈ Rn :

√√√√ n∑
i=1

x2
i ≤ h(t, u)

}
.

The model where h(t, u) ≡ u was considered extensively in the literature as mentioned above; the model where

h(t, u) = u × d(t), with d(·) a positive measurable function, was mentioned in Kozachenko and Moklyachuk (1999)

where the authors mainly focused on the exit problem of a class of square-Gaussian processes. In this paper we shall

consider a tractable case that h(t, u) = u+ g(t), with g(·) defined as above. The obtained results might also be useful

in reliability theory and mathematical statistics applications. The analysis of (1.8) is based on a tailored double sum

method for chi-processes. Surprisingly, a generalized Piterbarg constant Pdα,β , with α ∈ (0, 2], β = α/2, d > 0, defined

by

Pdα,β = lim
S→∞

Pdα,β [0, S] ∈ (0,∞)

appears in the asymptotics of the stationary chi-process with trend (we do not observe a generalized Pickands constant

as in Dȩbicki (2002)).

Organization of the paper: The main results for the stationary and non-stationary chi-processes with trend are given

in Section 2. The proofs are relegated to Section 3 which is followed then by an Appendix.
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2 Main Results

In order to avoid repetitions we shall consider below a chi-process {χn(t), t ≥ 0} as defined above by taking independent

copies of a generic centered Gaussian processes X with a.s. continuous sample paths. Our asymptotic results will

thus depend on the properties of the Gaussian process X. As expected, the stationary case is completely different

compared with the non-stationary one. Throughout this paper denote

Υn(u) :=
2(2−n)/2

Γ(n/2)
un−2 exp

(
−u

2

2

)
,

which is the asymptotic expansion of the survival function of χn(0) i.e.,

P {χn(0) > u} = Υn(u)(1 + o(1)) as u→∞,

provided that X(0) is standard normal (i.e., an N(0, 1) random variable).

We first present two preliminary results on the tail asymptotics of the maximum of stationary chi-processes without

trend. The next result can be found in Corollary 7.3 in Piterbarg (1996).

Proposition 2.1 Let {X(t), t ≥ 0} be a stationary Gaussian process with covariance function r(·) satisfying Assump-

tion I and Assumption II with α ∈ (0, 2]. Then, for any constant T ∈ (0,∞)

P

{
sup
t∈[0,T ]

χn(t) > u

}
= THαu

2
αΥn(u)(1 + o(1)) (2.9)

holds as u→∞.

An implication of is the following proposition which will play an important role in the proof of our main results; it

can be derived by examining the arguments in Piterbarg (1996).

Proposition 2.2 Let f(·) be a positive function defined in [0,∞) such that limu→∞ f(u)/u = 1 and let S ∈ (0,∞) be

a constant. Under the assumptions of Proposition 2.1 we have that

P

{
sup

t∈[0,u−2/αS]

χn(t) > f(u)

}
= Hα[0, S]Υn(f(u))(1 + o(1)) (2.10)

holds as u→∞.

It is worth mentioning that Propositions 2.1 and 2.2 are parallel results of Pickands for chi-processes; see (1.1) and

(1.2).

Next, we give our first result concerning the exact tail asymptotics of the supremum of stationary chi-processes with

trend.

Theorem 2.3 Suppose that the covariance function r(·) of the centered stationary Gaussian process {X(t), t ≥ 0}
satisfies Assumption I and Assumption II with α ∈ (0, 2]. Assume further that g(·) satisfies Assumption V with the

parameters therein. Then

P

{
sup
t∈[0,T ]

(
χn(t)− g(t)

)
> u

}
=Mc

α,βu
( 2
α−

1
β )+Υn(u)(1 + o(1)) (2.11)

as u→∞, where

Mc
α,β =


c−1/βΓ(1/β + 1)Hα, if α < 2β,

Pcα,α/2, if α = 2β,

1 if α > 2β.
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Remarks 2.4 a) For any d > 0

Pd2,1 =
1√
2π

∫ d√
2

−∞
e−

x2

2 dx+
1

d
√
π
e
d2

4 −1.

In general Pdα,α/2 is an unknown positive constant which can be eventually calculated by simulations. We mention in

passing the paper of Dieker and Yakir (2013) where a new approach is introduced for estimating the Pickands constants.

b) We see from the proof of last theorem that the minimum of the trend function g(·) taking on [0, T ] plays a crucial

role. If we assume that t0 = argmint∈[0,T ]g(t) ∈ (0, T ) which is unique and further there exist some positive constants

c, β such that

g(t) = g(t0) + c|t− t0|β(1 + o(1)), t→ t0,

then (2.11) still holds with u replaced by u+ g(t0), Γ(·) replaced by 2Γ(·), and Pcα,α/2 replaced by

P̃cα,α/2 := limS→∞ Pcα,α/2[−S, S].

c) In view of our proofs and the key results of Piterbarg (1994a) it is possible to obtain additional results for generalized

chi-processes. For instance, if {χn(t), t ≥ 0} is a generalized stationary chi-process defined by

χn(t) =

√√√√ n∑
i=1

b2iX
2
i (t), t ≥ 0,

with 1 = b1 = · · · = bk > bk+1 ≥ bk+2 ≥ · · · ≥ bn, for some 1 ≤ k < n, then under assumptions of Theorem 2.3

P

{
sup
t∈[0,T ]

(
χn(t)− g(t)

)
> u

}
=

n∏
i=k+1

(1− b2i )−1/2Mc
α,βu

( 2
α−

1
β )+Υk(u)(1 + o(1))

as u→∞. In order to keep a suitable length of the paper and to avoid extra notation we do not consider here general

chi-processes.

Examples of X: Numerous important Gaussian processes satisfy the assumptions of Theorem 2.3. We present next

two interesting cases:

Fractional Gaussian noise: Consider X to be the fractional Gaussian noise, i.e.,

X(t) = Bα(t+ 1)−Bα(t), t ≥ 0,

with Bα a fBm with Hurst index α/2 ∈ (0, 1). For α = 1, X is also known as Slepian process. Clearly X is stationary

for any α ∈ (0, 2) and further the covariance function satisfies

r(t) = 1− |t|α(1 + o(1)), t→ 0; and r(t) < 1 for all t > 0.

Lamperti transformation of fBm: Define the Gaussian process X via Lamperti transform of a fBm, i.e., X(t) =

e−α/2tBα(et), which is again a stationary Gaussian process. For the covariance function we have

r(t) = 1− 1

2
|t|α(1 + o(1)), t→ 0; and r(t) < 1 for all t > 0.

Next, we deal with a large class of non-stationary chi-processes presenting first the result for chi-processes without

trend.

Theorem 2.5 Assume that the centered Gaussian process {X(t), t ≥ 0} satisfies Assumption III and Assumption IV

with the constants therein. Then, for any T1 ∈ [0, T ) we have

P

{
sup

t∈[T1,T ]

χn(t) > u

}
= Mν,µu

( 2
ν−

2
µ )

+Υn(u)(1 + o(1)) (2.12)
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as u→∞, where

Mν,µ =


D1/ν Γ(1/µ+1)

A1/µ Hν , if ν < µ,

P
A
D
ν,ν , if ν = µ,

1 if ν > µ.

We state below an extension of the Piterbarg theorem allowing the non-stationary chi-processes to have a non-zero

trend.

Theorem 2.6 Assume that g(·) is a positive bounded measurable function satisfying Assumption VI. Under the as-

sumptions of Theorem 2.5, if µ ≤ β̃, then (set u∗ := u+ g(T ))

P

{
sup
t∈[0,T ]

(
χn(t)− g(t)

)
> u

}
=Mν,µu

( 2
ν−

2
µ )

+
∗ Υn (u∗) (1 + o(1)) (2.13)

as u→∞.

Remarks 2.7 a) As it can be seen from the last two theorems that the only difference between the cases with and

without trend is g(T ) in u∗.

b) We conclude from the proof of Theorem 2.5 that the Assumption IV can be relaxed where it can be assumed that

there is some T0 ∈ (T1, T ) such that (1.6) holds for all s, t ∈ [T0, T ].

Examples of X: Several important Gaussian processes satisfy the assumptions of Theorems 2.5 and 2.6. We present

below three interesting Gaussian processes (discussed in Houdré and Villa (2003), Bojdecki et al. (2004) and Dȩbicki

and Tabís (2011), respectively).

Bi-fractional Brownian motion: Consider BK,H with K,H ∈ (0, 1) to be a bi-fBm, i.e., a self-similar Gaussian process

with covariance function given by

Cov(BK,H(t), BK,H(s)) =
1

2K
(
(t2H + s2H)K − |t− s|2KH

)
, t, s ≥ 0.

It follows that the standard deviation σ of BK,H attaints its maximum over [0, T ] at the unique point T and

σ(t) = TKH −KHTKH−1(T − t)(1 + o(1)), t→ T.

Further

1− Corr(BK,H(t), BK,H(s)) =
1

2KT 2KH
|t− s|2KH(1 + o(1)), t, s→ T

and for all s, t ∈ [0, T ] there exists some constant G > 0 such that

E
{

(BK,H(t)−BK,H(s))2
}
≤ G|t− s|2KH .

Sub-fractional Brownian motion: The sub-fBm SH with H ∈ (0, 1) is a self-similar Gaussian process with covariance

given by

Cov(SH(t), SH(s)) = t2H + s2H − 1

2

(
(s+ t)2H + |t− s|2H

)
, t, s ≥ 0.

The standard deviation σ of SH attaints its maximum over [0, T ] at the unique point T and

σ(t) =
√

2− 22H−1TH −
√

2− 22H−1HTH−1(T − t)(1 + o(1)), t→ T.

Moreover

1− Corr(SH(t), SH(s)) =
1

2(2− 22H−1)T 2H
|t− s|2H(1 + o(1)), t, s→ T

and, for all s, t ∈ [0, T ], there exists some constant G > 0, such that

E
{

(SH(t)− SH(s))2
}
≤ G|t− s|H/2.
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Mean integrated fBm: Consider a Gaussian process XH given by

XH(t) =

{ √
2H + 2 1

t

∫ t
0
B2H(s)ds, t > 0,

0, t = 0,

with H ∈ (0, 1). In view of Dȩbicki and Tabís (2011), we conclude that the standard deviation σ of XH attaints its

maximum over [0, T ] at the unique point T and

σ(t) = TH −HTH−1(T − t)(1 + o(1)), t→ T.

Further

1− Corr(XH(t), XH(s)) =
1

2T 2
(1−H2)|t− s|2(1 + o(1)), t, s→ T

and, for all s, t ∈ [δ, T ] with some δ ∈ (0, T ), there exists some constant G > 0, such that

E
{

(XH(t)−XH(s))2
}
≤ Gδ−2|t− s|.

3 Further Results and Proofs

In what follows, we give proofs of all the theorems in this paper. Hereafter the positive constant Q may be different

from line to line.

Let {ξu(t,v), t ≥ 0,v ∈ Rn−1}, u ≥ 0 be a family of centered stationary Gaussian random fields with a.s. continuous

sample paths, and covariance function rξu(t,v) given by

rξu(t,v) = exp

(
−u−2D0t

α0 −
n−1∑
i=1

Di|vi|αi
)
, t ≥ 0,v ∈ Rn−1

for some positive constants Di, 0 ≤ i ≤ n− 1, and αi ∈ (0, 2], 0 ≤ i ≤ n− 1.

Theorem 3.1 Let f(·) be a positive function defined in [0,∞) such that limu→∞ f(u)/u = 1. For any c, β, S1, S2 > 0

we have

P

 sup
t∈[0,S1]

v∈
∏n−1
i=1 [0,u−2/αiS2]

ξu(t,v)

1 + ctβu−2
> f(u)

 = PcD
− β
α0

0

α0,β

[
0, D

1
α0
0 S1

] n−1∏
i=1

Hαi
[
0, D

1
αi
i S2

]

× 1√
2πf(u)

exp

(
− (f(u))2

2

)
(1 + o(1))

as u→∞.

Proof of Theorem 3.1 Set ζu(t,v) = ξu(t, u−2/α1v1, · · · , u−2/αn−1vn−1), t ≥ 0,v ∈ Rn−1, u > 0 with covariance

function

rζu(t,v) = exp

(
−u−2D0t

α0 − u−2
n−1∑
i=1

Di|vi|αi
)
, t ≥ 0,v ∈ Rn−1, u > 0.

Denote further

Rζu(t,v, t′,v′) := Cov

(
ζu(t,v)

1 + ctβu−2
,
ζu(t′,v′)

1 + ct′βu−2

)
=

rζu(|t− t′|,v − v′)

(1 + ctβu−2)(1 + ct′βu−2)
, t, t′ ≥ 0,v,v′ ∈ Rn−1.

Using the classical approach (see e.g., Lemma 6.1 in Piterbarg (1996)) we have (set 0 = (0, . . . , 0) ∈ Rn−1)

P

 sup
t∈[0,S1]

v∈
∏n−1
i=1 [0,u−2/αiS2]

ξu(t,v)

1 + ctβu−2
> f(u)

 =
1√

2πf(u)
exp

(
− (f(u))2

2

)
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×
∫ ∞
−∞

e
w− w2

2(f(u))2 P

{
sup

t∈[0,S1],v∈[0,S2]n−1

ζu(t,v)

1 + ctβu−2
> f(u)

∣∣∣ζu(0,0) = f(u)− w

f(u)

}
dw. (3.14)

Further, it follows that{
ζu(t,v)

1 + ctβu−2

∣∣∣(ζu(0,0) = f(u)− w

f(u)

)
, t ∈ [0, S1],v ∈ [0, S2]

n−1

}
has the same distribution as{

ζu(t,v)

1 + ctβu−2
−Rζu(t,v, 0,0)ζu(0,0) +Rζu(t,v, 0,0)

(
f(u)− w

f(u)

)
, t ∈ [0, S1],v ∈ [0, S2]

n−1

}
.

Thus, the integrand in (3.14) can be rewritten as

P

{
sup

t∈[0,S1],v∈[0,S2]n−1

ζu(t,v)

1 + ctβu−2
−Rζu(t,v, 0,0)ζu(0,0) +Rζu(t,v, 0,0)

(
f(u)− w

f(u)

)
> f(u)

}

= P

{
sup

t∈[0,S1],v∈[0,S2]n−1

ςu(t,v)− (f(u))2(1−Rζu(t,v, 0,0)) + w(1−Rζu(t,v, 0,0)) > w

}
,

where

ςu(t,v) = f(u)

(
ζu(t,v)

1 + ctβu−2
−Rζu(t,v, 0,0)ζu(0,0)

)
, t ≥ 0,v ∈ Rn−1, u > 0.

Next, the following convergence

(f(u))2(1−Rζu(t,v, 0,0))− w(1−Rζu(t,v, 0,0))→ ctβ +D0t
α0 +

n−1∑
i=1

Div
αi
i , u→∞

holds for any w ∈ R uniformly with respect to t ∈ [0, S1],v ∈ [0, S2]
n−1

. Furthermore,

E
{(

ςu(t,v)− ςu(t′,v′)
)2
}
→ 2D0|t− t′|α0 + 2

n−1∑
i=1

Di|vi − v′i|αi , u→∞

holds uniformly with respect to t, t′ ∈ [0, S1],v,v′ ∈ [0, S2]
n−1

. It follows thus that

E
{(

ςu(t,v)− ςu(t′,v′)
)2
}
≤ Q

(
|t− t′|α0 +

n−1∑
i=1

|vi − v′i|αi
)

holds for all u sufficiently large and (t,v), (t′,v′) in any bounded subset of [0,∞)×Rn−1. Therefore, the family of the

random fields {ςu(t,v), t ∈ [0, S1],v ∈ [0, S2]
n−1}, u > 0 is tight, and thus it converges weakly to {

√
2Bα0

(D
1/α0

0 t) +
√

2
∑n−1
i=1 Bαi(D

1/αi
i vi), t ∈ [0, S1],v ∈ [0, S2]

n−1} as u → ∞, where Bαi , i = 0, · · · , n − 1 are independent fBm’s

with Hurst indexes αi/2, respectively. Further using similar arguments as in Lemma 6.1 of Piterbarg (1996) (see also

Michna (2009)) we can show that the limit (letting u→∞) can be passed under the integral sign in (3.14), and thus

the proof is complete. �

Hereafter the diameter of a set A ⊂ Rn, n ∈ N is defined by

diam(A) = sup
t,s∈A

||t− s||,

where || · || is the Euclidean norm in Rn. We write Vn(A) for the n-dimensional volume of A.

Theorem 3.2 Assume that the conditions of Theorem 3.1 are satisfied. Then there exists some small δ0 > 0 such

that for any A ⊂ Rn−1, n ≥ 2, with positive volume Vn−1(A)

P

{
sup

t∈[0,S1],v∈A

ξu(t,v)

1 + ctβu−2
> u

}
= Vn−1(A)PcD

− β
α0

0

α0,β

[
0, D

1
α0
0 S1

] n−1∏
i=1

HαiD
1
αi
i

× 1√
2π
u
∑n−1
i=1

2
αi
−1

exp

(
−u

2

2

)
(1 + o(1))

holds as u→∞.
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Proof of Theorem 3.2 The proof follows by similar arguments as in the proof of Lemma 7.1 in Piterbarg (1996)

or Lemma 6 in Piterbarg (1994b). It is mainly based on the double sum method by splitting the set A into rectangles

and then using Bonferroni’s inequality with the aid of Theorem 3.1. Since it is lengthy and somehow classical, we

shall omit the details. �

3.1 Proof of Theorem 2.3

Set in the following δ(u) =
(
p lnu
u

)1/β

, u > 0, with some p > max(1/(cβ), 2/(cα)). First note that, for any sufficiently

small ε > 0

π0(u) := P

{
sup

t∈[δ(u),T ]

(
χn(t)− g(t)

)
> u

}

≤ P

{
sup
t∈[0,T ]

χn(t) > u+ (c− ε)p lnu

u

}

= o

(
un−2+(2/α−1/β)+ exp

(
−u

2

2

))
as u→∞, where the last equality follows from (2) and the Assumption V. Next, we analyze

P

{
sup

t∈[0,δ(u)]

(
χn(t)− g(t)

)
> u

}
, u→∞.

Since limu→∞ δ(u) = 0 and we are focusing on the asymptotics, by Assumption V the above is asymptotically equivalent

with

π1(u) := P

{
sup

t∈[0,δ(u)]

(χn(t)− ctβ) > u

}
, u→∞.

It follows from our results below that π0(u) = o(π1(u)) as u → ∞. The proof is then established by showing further

that π1(u) is asymptotically the same as the right-hand side of (2.11). To this end, we need to analyze three cases,

namely

i) α < 2β, ii) α = 2β, iii) α > 2β.

Case i) α < 2β: Since α < 2β, for any positive constant S1, we can divide the interval [0, δ(u)] into several sub-intervals

of length S1u
−2/α. Specifically, let for fixed u > 0

40 = u−2/α[0, S1], 4k = u−2/α[kS1, (k + 1)S1], k ∈ N.

It follows from Bonferroni’s inequality that (set h(u) =
⌊
p1/β(lnu)1/βu2/α

S1u1/β

⌋
+ 1)

π1(u) ≤
h(u)∑
k=0

P

{
sup
t∈4k

(χn(t)− ctβ) > u

}

≤
h(u)∑
k=0

P

{
sup
t∈4k

χn(t) > u+ c(kS1u
−2/α)β

}

=

h(u)∑
k=0

P

{
sup
t∈40

χn(t) > u+ c(kS1u
−2/α)β

}
=: π2(u).

In view of (2.10)

π2(u) =
2(2−n)/2

Γ(n/2)
Hα[0, S1]

h(u)∑
k=0

(u+ c(kS1u
−2/α)β)n−2 exp

(
− (u+ c(kS1u

−2/α)β)2

2

)
(1 + o(1))
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=
2(2−n)/2

Γ(n/2)

Hα[0, S1]

S1
u2/α−1/β+n−2 exp

(
−u

2

2

)∫ ∞
0

exp(−cxβ) dx(1 + o(1))

=
Γ(1/β + 1)

c1/β
Hα[0, S1]

S1
u2/α−1/βΥn(u)(1 + o(1)) (3.15)

as u→∞, where in the second equality we used the fact that

lim
u→∞

h(u)∑
k=0

exp
(
−c(kS1u

1/β−2/α)β
)

(S1u
1/β−2/α) =

∫ ∞
0

exp(−cxβ) dx.

Similarly, using Bonferroni’s inequality we obtain

π1(u) ≥
h(u)−1∑
k=0

P

{
sup
t∈4k

(χn(t)− ctβ) > u

}
− Σχ(u),

where

Σχ(u) :=
∑

0≤k<j≤h(u)−1

P

{
sup
t∈4k

(χn(t)− ctβ) > u, sup
t∈4j

(χn(t)− ctβ) > u

}
.

Along the lines of the proof of (3.15), we obtain

h(u)−1∑
k=0

P

{
sup
t∈4k

(χn(t)− ctβ) > u

}
≥ Γ(1/β + 1)

c1/β
Hα[0, S1]

S1
u2/α−1/βΥn(u)(1 + o(1)) (3.16)

as u→∞. Furthermore, we have

lim sup
S1→∞

lim sup
u→∞

Σχ(u)

A2(u)
= 0, with A2(u) := u2/α−1/β+n−2 exp

(
−u

2

2

)
, u > 0. (3.17)

Consequently, the claim for the case α < 2β follows from (3.15)-(3.17). Since the rigorous proof of (3.17) is lengthy,

we display it in Appendix.

Case ii) α = 2β: Clearly, Siu
−2/α < δ(u) for Si > 0, i = 1, 2, when u is sufficiently large. Hence, we have that

P

{
sup

t∈[0,S2u−2/α]

(χn(t)− ctβ) > u

}
≤ π1(u) ≤ P

{
sup
t∈40

(χn(t)− ctβ) > u

}
+

h(u)∑
k=1

P

{
sup
t∈4k

(χn(t)− ctβ) > u

}
.

We give next a technical lemma.

Lemma 3.3 Assume that α = 2β. We have

P

{
sup
t∈40

(χn(t)− ctβ) > u

}
= Pcα,β [0, S1] Υn(u)(1 + o(1))

as u→∞.

Proof of Lemma 3.3 Since α = 2β, by a time scaling we see that for u > 0

P

{
sup
t∈40

(χn(t)− ctβ) > u

}
= P

{
sup

t∈[0,S1]

(
χn(tu−2/α)− ctβu−1 > u

)}

= P

{
sup

t∈[0,S1]

χn(tu−2/α)

1 + ctβu−2
> u

}
. (3.18)

Introduce the Gaussian random field

Y (t, s) =

n∑
i=1

siXi(t), t ≥ 0, s = (s1, · · · , sn) ∈ Rn.
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In the light of Piterbarg (1996) (see page 155 or page 139)

sup
t∈[0,S1]

χn(t) = sup
(t,s)∈GS1

Y (t, s),

where GS1 = [0, S1]× Sn−1, with Sn−1 being the unit sphere (with respect to L2-norm) in Rn. Therefore, continuing

(3.18) for u > 0 we have

P

{
sup
t∈40

(χn(t)− ctβ) > u

}
= P

{
sup

(t,s)∈GS1
ηu(t, s) > u

}
, (3.19)

where

ηu(t, s) :=
Y (tu−2/α, s)

1 + ctβu−2
, t ≥ 0, s ∈ Rn.

Further, it follows that

V ar(ηu(t, s)) =

(
1

1 + ctβu−2

)2

, t ≥ 0, s ∈ Sn−1, u > 0

and, for t, t′ ≥ 0, s, s′ ∈ Sn−1

Corr(ηu(t, s), ηu(t′, s′)) = 1− (1− r(u−2/α|t− t′|))− 1

2
r(u−2/α|t− t′|)||s− s′||2.

We split the sphere Sn−1 into sets of small diameters {∂Oi, 0 ≤ i ≤ Q}, where

Q = ]{∂Oi} <∞.

Note that when n = 1 the sphere S0 consists of two points {1,−1}, and thus in this case the partition {∂Oi, 0 ≤ i ≤ 1}
consists of two single points. The assertions below are valid for this case as well. We have by Bonferroni’s inequality

∑
0≤i≤Q

P

{
sup

t∈[0,S1],s∈∂Oi
ηu(t, s) > u

}
≥ P

{
sup

(t,s)∈GS1
ηu(t, s) > u

}

≥
∑

0≤i≤Q

P

{
sup

t∈[0,S1],s∈∂Oi
ηu(t, s) > u

}
−

∑
0≤i<l≤Q

P

{
sup

t∈[0,S1],s∈∂Oi
ηu(t, s) > u, sup

t∈[0,S1],s∈∂Ol
ηu(t, s) > u

}
.

We focus next on ∂O0 which includes (1, 0, · · · , 0). When diam(∂O0) is small enough, we can find a one-to-one

projection g from ∂O0 to the corresponding points where the first component is 1, i.e., gv = (1, v2, · · · , vn) for all

v = (v1, v2, · · · , vn) ∈ ∂O0. Thus

P

{
sup

t∈[0,S1],s∈∂O0

ηu(t, s) > u

}
= P

{
sup

t∈[0,S1],v∈g∂O0

ηu(t,v) > u

}
.

Further, in the light of Lemma 10 of Piterbarg (1994b) we have that, for any ε > 0 small enough there exist positive

constants δ, u0 such that, for diam(∂O0) < δ and u > u0

1−
(

1− ε

2

)
u−2|t− t′|α −

(
1

2
− ε

4

) n∑
i=2

|si − s′i|2 ≥ Corr(ηu(t, s), ηu(t′, s′))

≥ 1−
(

1 +
ε

2

)
u−2|t− t′|α −

(
1

2
+
ε

4

) n∑
i=2

|si − s′i|2

uniformly in t, t′ ≥ 0, s, s′ ∈ ∂O0. Define two centered stationary Gaussian processes {ξ±u (t,v), t ≥ 0,v ∈ Rn−1} with

covariance functions given by (set ε± = 1± ε)

rξ±u (t,v) = exp

(
−ε±u−2tα − ε±

2

n−1∑
i=1

v2
i

)
, t ≥ 0,v ∈ Rn−1,
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respectively. In view of Slepian’s Lemma (see e.g., Falk et al. (2010)) we have

P

{
sup

t∈[0,S1],v∈g∂O0

ξ−u (t,v)

1 + ctβu−2
> u

}
≤ P

{
sup

t∈[0,S1],v∈g∂O0

ηu(t,v) > u

}
≤ P

{
sup

t∈[0,S1],v∈g∂O0

ξ+
u (t,v)

1 + ctβu−2
> u

}
.

Recall at this point that Vn(A) denotes the n-dimensional volume of A⊂Rn. Applying Theorem 3.2 to both sides of

the last inequality we conclude that

Vn−1(g∂O0)Pc(ε−)−
β
α

α,β

[
0, (ε−)

1
αS1

]
ε
n−1
2
−

1

(2π)n/2
un−2 exp

(
−u

2

2

)
(1 + o(1)) ≤ P

{
sup

t∈[0,S1],v∈g∂O0

ηu(t,v) > u

}

≤ Vn−1(g∂O0)Pc(ε+)−
β
α

α,β

[
0, (ε+)

1
αS1

]
ε
n−1
2

+

1

(2π)n/2
un−2 exp

(
−u

2

2

)
(1 + o(1))

as u → ∞, where we used the fact that H2 = 1/
√
π. Note that for any sufficiently small positive ε1, when

min0≤i≤Q diam(∂Oi) is chosen sufficiently small, we have

Vn−1(g∂Oi)(1− ε1) ≤ Vn−1(∂Oi) ≤ Vn−1(g∂Oi)(1 + ε1)

for any 0 ≤ i ≤ Q. Consequently, by the stationarity in s of the process {ηu(t, s), (t, s) ∈ GS1
}, and then letting

ε, ε1 → 0, we conclude that

∑
0≤i≤Q

P

{
sup

t∈[0,S1],s∈∂Oi
ηu(t, s) > u

}
= Vn−1(Sn−1)Pcα,β [0, S1]

1

(2π)n/2
un−2 exp

(
−u

2

2

)
(1 + o(1))

as u→∞. Moreover, using similar argumentations as in Appendix we show that

∑
0≤i<l≤Q

P

{
sup

t∈[0,S1],s∈∂Oi
ηu(t, s) > u, sup

t∈[0,S1],s∈∂Ol
ηu(t, s) > u

}
= o

(
un−2 exp

(
−u

2

2

))

as u→∞, and S1 →∞. Since Vn−1(Sn−1) = 2πn/2/Γ(n/2) the proof is complete. �

Furthermore, we obtain the following asymptotic upper bound

h(u)∑
k=1

P

{
sup
t∈4k

(χn(t)− ctβ) > u

}
≤

∞∑
k=1

P

{
sup
t∈4k

χn(t) > u+ c(kS1u
−2/α)β

}
(2.10)

≤ Q S1u
n−2 exp

(
−u

2

2

) ∞∑
k=1

e−c(kS1)β (1 + o(1)) (3.20)

as u→∞, which together with Lemma 3.3 yields that, for S2 > 0

Pcα,β [0, S2] ≤ lim inf
u→∞

π1(u)

Υn(u)

≤ lim sup
u→∞

π1(u)

Υn(u)
≤ Pcα,β [0, S1] + QS1

∞∑
k=1

e−c(kS1)β . (3.21)

Letting S2 → ∞, we have the finiteness of the generalized Piterbarg constant, i.e., Pcα,α/2 < ∞. Similarly, letting

S1 →∞ we obtain Pcα,α/2 > 0. Consequently, the claim for the case α = 2β follows by letting S1, S2 →∞.

Case iii) α > 2β: The lower bound follows immediately since

π1(u) ≥ P {χn(0) > u} = Υn(u)(1 + o(1)).

In view of Lemma 3.3 we derive an upper bound as follows

lim sup
u→∞

P
{

supt∈[0,δ(u)](χn(t)− ctβ) > u
}

Υn(u)
≤ lim sup

u→∞

P
{

supt∈40
(χn(t)− ctβ) > u

}
Υn(u)

= Pcα,α2 [0, S1] .

The proof is completed by letting S1 → 0.
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3.2 Proof of Theorem 2.5

In this subsection, we give the skeleton of the proof of Theorem 2.5 which is based on the double sum method. Again,

we introduce a Gaussian random field

Y (t, s) =

n∑
i=1

siXi(t), t ≥ 0, s = (s1, · · · , sn) ∈ Rn.

Since

sup
t∈[T1,T ]

χn(t) = sup
(t,s)∈[T1,T ]×Sn−1

Y (t, s)

for any T1 ∈ [0, T ). For t, s ≥ 0,v,w ∈ Sn−1

V ar(Y (t,v)) = σ2
X(t), and Corr(Y (t,v), Y (s,w)) = rX(s, t)− 1

2
rX(s, t)||v −w||2.

Consequently, by (1.4)–(1.6) there is some δ ∈ (0, T ) close to T such that

V ar(Y (t,v)) ≤ 1−Aqµ(u), with q(u) =

(
lnu

u

)2/µ

holds for all t ∈ [δ, T − q(u)] and v ∈ Sn−1 when u is sufficiently large, and further for t, s ∈ [δ, T ] and v,w ∈ Sn−1

E
{

(Y (t,v)− Y (s,w))2
}
≤ Q

(
|t− s|γ + ||v −w||2

)
.

Therefore, by Piterbarg inequality (cf. Theorem 8.1 of Piterbarg (1996) or Theorem 8.1 in the seminal paper Piterbarg

(2001))

Π1(u) := P

{
sup

t∈[δ,T−q(u)]

χn(t) > u

}
≤ Q u2/γ+n−1 exp

(
−u2

2 (1−Aqµ(u))

)
. (3.22)

Furthermore, we have from the Borell-TIS inequality (e.g., Theorem 2.1.1 in Adler and Taylor (2007))

Π2(u) := P

{
sup

t∈[T1,δ]

χn(t) > u

}
≤ P

{
sup

(t,v)∈Gδ
Y (t,v) > u

}

≤ exp

(
− (u− C)2

2σ2
X(δ)

)
. (3.23)

Next, we focus on the asymptotics of

Π3(u) := P

{
sup

t∈[T−q(u),T ]

χn(t) > u

}
= P

{
sup

t∈[0,q(u)]

χ̃n(t) > u

}
, u→∞,

where χ̃n(t) = χn(T − t), for t ∈ [0, q(u)] . From the results below we conclude that

Π1(u) = o (Π3(u)) , Π2(u) = o (Π3(u)) (3.24)

as u→∞. The proof is thus established by showing further that Π3(u) is asymptotically the same as the right-hand

side of (2.12).

Similar to the proof of Theorem 2.3 we need to distinguish between the following three cases:

i) ν < µ, ii) ν = µ, iii) ν > µ.

Let, for S1 > 0

40 = u−2/ν [0, S1], 4k = u−2/ν [kS1, (k + 1)S1], k ∈ N,

and define θ(u) =
⌊

(lnu)2/µu2/ν

S1u2/µ

⌋
+ 1.
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Case i) ν < µ: Since ν < µ, using Bonferroni’s inequality, we have

θ(u)∑
k=0

P

{
sup

(t,v)∈4k×Sn−1

Z(t,v) > u

}
=

θ(u)∑
k=0

P

{
sup
t∈4k

χ̃n(t) > u

}

≥ P

{
sup

t∈[0,q(u)]

χ̃n(t) > u

}

≥
θ(u)−1∑
k=0

P

{
sup
t∈4k

χ̃n(t) > u

}
− Σχ̃n(u),

where Z(t,v) = Y (T − t,v), for (t,v) ∈ [0, q(u)]× Sn−1, and

Σχ̃n(u) :=
∑

0≤k<j≤θ(u)−1

P

{
sup
t∈4k

χ̃n(t) > u, sup
t∈4j

χ̃n(t) > u

}
.

For any ε ∈ (0, 1) and all u large

1−A(1− ε)tµ > V ar(Z(t,v))1/2 > 1−A(1 + ε)tµ

and

2D(1− ε)|t− s|ν + (1− ε)||v −w||2 ≤ E
{

(Z(t,v)− Z(s,w))2
}

≤ 2D(1 + ε)|t− s|ν + (1 + ε)||v −w||2.

Next we introduce a centered stationary Gaussian process {ξ(t), t ≥ 0} with covariance function

rξ(t) = exp (−Dtν) , t ≥ 0

and set

Z2(t,v) =

n∑
i=1

viξi(t), t ≥ 0, v ∈ Rn,

with {ξi(t), t ≥ 0}, 1 ≤ i ≤ n, being independent copies of {ξ(t), t ≥ 0}. Thus for (t,v) ∈ [0, q(u)] × Sn−1 and all u

large

2D(1− ε)|t− s|ν + (1− ε)||v −w||2 ≤ E
{

(Z2(t,v)− Z2(s,w))2
}

≤ 2D(1 + ε)|t− s|ν + (1 + ε)||v −w||2.

Since ε can be arbitrary small, using Slepian’s Lemma we conclude that

P

{
sup

(t,v)∈4k×Sn−1

Z(t,v) > u

}
= P

{
sup

(t,v)∈4k×Sn−1

Z2(t,v)(1−Atµ) > u

}
(1 + o(1)) (3.25)

as u→∞. Consequently, as u→∞

θ(u)∑
k=0

P

{
sup
t∈4k

χ̃n(t) > u

}
≤

θ(u)∑
k=0

P

{
sup

(t,v)∈4k×Sn−1

Z2(t,v) >
u

1−A(kS1u−2/ν)µ

}
(1 + o(1)) =: π3(u).

Utilising further (2.10), we obtain

π3(u) =
2(2−n)/2

Γ(n/2)
Hν [0, D1/νS1]

θ(u)∑
k=0

(
u

1−A(kS1u−2/ν)µ

)n−2

exp

(
−
u2
(
1 +A(kS1u

−2/ν)µ
)2

2

)
(1 + o(1))

=
Hν [0, D1/νS1]

S1
u2/ν−2/µΥn (u)

∫ ∞
0

exp (−Axµ) dx(1 + o(1))
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= D1/ν Γ(1/µ+ 1)

A1/µ

Hν [0, D1/νS1]

D1/νS1
u2/ν−2/µΥn (u) (1 + o(1)) (3.26)

as u→∞. Using the same argumentations as (3.26) the following asymptotic lower bound

θ(u)−1∑
k=0

P

{
sup
t∈4k

χ̃n(t) > u

}
≥ D1/ν Γ(1/µ+ 1)

A1/µ

Hν [0, D1/νS1]

D1/νS1
u2/ν−2/µΥn (u) (1 + o(1)) (3.27)

holds as u→∞. Furthermore, we have

lim sup
S1→∞

lim sup
u→∞

Σχ̃n(u)

A3(u)
= 0, with A3(u) := u2/ν−2/µ+n−2 exp

(
−u

2

2

)
, u > 0 (3.28)

the proof of which is omitted since it is similar to (3.17). Consequently, the claim for the case ν < µ follows from

(3.26)-(3.28).

Case ii) ν = µ: Since Siu
−2/ν < q(u) =

(
lnu
u

)2/µ
for Si > 0, i = 1, 2, when u is sufficiently large. Hence, we have that

P

{
sup

t∈[0,S2u−2/ν ]

χ̃n(t) > u

}
≤ π1(u) ≤ P

{
sup
t∈40

χ̃n(t) > u

}
+

θ(u)∑
k=1

P

{
sup
t∈4k

χ̃n(t) > u

}
.

From (3.25) we obtain further

P

{
sup
t∈40

χ̃n(t) > u

}
= P

{
sup

(t,v)∈40×Sn−1

Z2(t,v)(1−Atµ) > u

}
(1 + o(1))

= P

{
sup

(t,v)∈40×Sn−1

Z2(t,v)

(1 +Atµ)
> u

}
(1 + o(1))

as u→∞. In view of Theorem 3.1 and Theorem 3.2, and the derivation of the case α = 2β in the last subsection, we

conclude that

P

{
sup
t∈40

χ̃n(t) > u

}
= PAD

−1

ν,µ [0, D
1
ν S1]Υn (u) (1 + o(1)) (3.29)

as u→∞. Now, the claim follows using the same argumentation as (3.21).

Case iii) ν > µ: By (3.29) the upper bound is derived as

lim sup
u→∞

P
{

supt∈[0,q(u)] χ̃n(t) > u
}

Υn (u)
≤ lim sup

u→∞

P
{

supt∈40
χ̃n(t) > u

}
Υn (u)

≤ PAD
−1

ν,ν [0, D
1
ν S1].

Since further

P

{
sup

t∈[0,q(u)]

χ̃n(t) > u

}
≥ P {χ̃n(0) > u} = Υn (u) (1 + o(1))

the proof of this case is established by letting S1 → 0. Consequently, it follows that (3.24) is valid, and thus the proof

is complete. �

3.3 Proof of Theorem 2.6

For δ ∈ (0, T ), set

Π(u) := P

{
sup
t∈[δ,T ]

(
χn(t)− g(t)

)
> u

}
.

Thus for any u ≥ 0

Π(u) ≤ P

{
sup
t∈[0,T ]

(
χn(t)− g(t)

)
> u

}
≤ P

{
sup
t∈[0,δ]

(
χn(t)− g(t)

)
> u

}
+ Π(u). (3.30)
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It follows that

Π(u) = P

{
sup
t∈[δ,T ]

χn(t)

u+ g(t)
> 1

}

= P

{
sup
t∈[δ,T ]

χn(t)

σX(t)

mu(T )

mu(t)
> mu(T )

}
, with mu(t) :=

u+ g(t)

σX(t)
, t ≥ 0.

For any t ∈ [0, T ]

1− mu(T )

mu(t)
=
σX(T )− σX(t)

σX(T )
+
σX(t)(g(t)− g(T ))

(u+ g(t))σX(T )
.

Further, in view of (1.4) and Assumption VI, and noting that µ ≤ β̃, δ can be chosen close enough to T such that

|g(T )− g(t)| ≤ Q (σX(T )− σX(t))

for all t ∈ [δ, T ]. Hence for any ε ∈ (0, 1), when u is sufficiently large, we have, uniformly in [δ, T ]

1− (1 + ε)
σX(T )− σX(t)

σX(T )
≤ mu(T )

mu(t)
≤ 1− (1− ε)σX(T )− σX(t)

σX(T )
. (3.31)

Therefore, for u sufficiently large

π+ε(u) := P

{
sup
t∈[δ,T ]

Y+ε(t) > mu(T )

}
≤ Π(u) ≤ π−ε(u) := P

{
sup
t∈[δ,T ]

Y−ε(t) > mu(T )

}
,

where

Y±ε(t) =

√√√√ n∑
i=1

Y 2
±ε,i(t), t ≥ 0,

with

Y±ε,i(t) :=
Xi(t)

σX(t)

(
1− (1± ε)σX(T )− σX(t)

σX(T )

)
, t ≥ 0, 1 ≤ i ≤ n.

Since the analysis of π+ε(u) and π−ε(u) are the same, next we only discuss π+ε(u) for fixed ε ∈ (0, 1). The variance

function σY (t) of Y+ε,1(t) attains its maximum over [δ, T ] at the unique point T with

σY (t) = 1−A(1 + ε)(T − t)µ(1 + o(1)), as t→ T.

Further, by (1.5)

rY (s, t) = Corr(Y+ε,1(s), Y+ε,1(t)) = 1−D|t− s|ν + o(|t− s|ν), t, s ↑ T . (3.32)

Moreover, in view of Assumption IV for s, t ∈ [δ, T ]

E
{

(Y+ε,1(t)− Y+ε,1(s))2
}
≤ Q |s− t|γ .

Consequently, by Theorem 2.5

π+ε(u) =Wε
ν,µ (mu(T ))

(2/ν−2/µ)+ Υn (mu(T )) (1 + o(1)), u→∞,

where

Wε
ν,µ =


D1/ν Γ(1/µ+1)

((1+ε)A)1/µ
Hν , if ν < µ,

PA(1+ε)D−1

ν,µ , if ν = µ,

1 if ν > µ.

Letting ε→ 0, we conclude that

Π(u) =W0
ν,µ (mu(T ))

(2/ν−2/µ)+ Υn (mu(T )) (1 + o(1))
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as u→∞. In addition, by the Borell-TIS inequality, for u sufficiently large

P

{
sup
t∈[0,δ]

(
χn(t)− g(t)

)
> u

}
≤ P

{
sup
t∈[0,δ]

χn(t) > u

}

= P

{
sup

(t,v)∈Gδ
Y (t,v) > u

}

≤ exp

(
− (u− C)2

2σ2
X(δ)

)
and thus the claim follows from the last two formulas. �

4 Appendix

This section is dedicated to the proof of (3.17). Let

B(k, S1, u) = u+ c(kS1u
−2/α)β , k ∈ N, S1 > 0, u > 0.

The double sum Σχ(u) can be divided into two parts, i.e.,

Σχ(u) =
∑

0≤k<j≤h(u)−1

P

{
sup
t∈4k

(χn(t)− ctβ) > u, sup
t∈4j

(χn(t)− ctβ) > u

}
=: Σχ,1(u) + Σχ,2(u),

where Σχ,1(u) is the sum for j = k + 1, and Σχ,2(u) is the sum for j > k + 1. We first give the estimation of the first

sum. It follows that

Σχ,1(u) ≤
h(u)∑
k=0

P

{
sup
t∈4k

χn(t) > B(k, S1, u), sup
t∈4k+1

χn(t) > B(k, S1, u)

}
. (4.33)

Further, we have that

P

{
sup
t∈4k

χn(t) > B(k, S1, u), sup
t∈4k+1

χn(t) > B(k, S1, u)

}

= P

{
sup
t∈4k

χn(t) > B(k, S1, u)

}
+ P

{
sup

t∈4k+1

χn(t) > B(k, S1, u)

}

−P

{
sup

t∈4k∪4k+1

χn(t) > B(k, S1, u)

}
,

which in view of (3.15) implies

lim
S1→∞

lim sup
u→∞

Σχ,1(u)

A2(u)
≤ Q lim

S1→∞

2Hα[0, S1]−Hα[0, 2S1]

S1
= 0.

In order to estimate Σχ,2(u), we introduce a Gaussian random field

Y (t,v) =

n∑
i=1

viXi(t), t ≥ 0, v = (v1, · · · , vn) ∈ Rn.

In the light of Piterbarg (1996)

sup
t∈[0,S1]

χn(t) = sup
(t,v)∈GS1

Y (t,v),

where GS1
= [0, S1]× Sn−1, with Sn−1 being the unit sphere in Rn. Consequently,

Σχ,2(u) ≤
h(u)−1∑
k=0

h(u)−1∑
j=k+2

P

{
sup

(t,v)∈4k×Sn−1

Y (t,v) > B(k, S1, u), sup
(t,v)∈4j×Sn−1

Y (t,v) > B(k, S1, u)

}
. (4.34)



18

We split the sphere Sn−1 into sets of small diameters {∂Si, 0 ≤ i ≤ N∗}, where

N∗ = ]{∂Si} <∞.

Further, we see that the summand on the right-hand side of (4.34) is not greater than Θk,j
1 (u) + Θk,j

2 (u), with

Θk,j
1 (u) =

∑
0≤i,l≤N∗
∂Si∩∂Sl=∅

P

{
sup

(t,v)∈4k×∂Si
Y (t,v) > B(k, S1, u), sup

(t,v)∈4j×∂Sl
Y (t,v) > B(k, S1, u)

}

Θk,j
2 (u) =

∑
0≤i,l≤N∗
∂Si∩∂Sl 6=∅

P

{
sup

(t,v)∈4k×∂Si
Y (t,v) > B(k, S1, u), sup

(t,v)∈4j×∂Sl
Y (t,v) > B(k, S1, u)

}
,

where ∂Si ∩ ∂Sl 6= ∅ means ∂Si, ∂Sl are identical or adjacent, and ∂Si ∩ ∂Sl = ∅ means ∂Si, ∂Sl are neither identical

nor adjacent. Denote the distance of two sets A,B ∈ Rn, n ∈ N, as

ρ(A,B) = inf
x∈A,y∈B

||x− y||.

If ∂Si ∩ ∂Sl = ∅ then there exists some small positive constant ρ0 (independent of i, l) such that ρ(∂Si, ∂Sl) > ρ0.

Next, we estimate Θk,j
1 (u). For any u ≥ 0

P

{
sup

(t,v)∈4k×∂Si
Y (t,v) > B(k, S1, u), sup

(t,v)∈4j×∂Sl
Y (t,v) > B(k, S1, u)

}

≤ P

 sup
(t,s)∈4k×4j
v∈∂Si,w∈∂Sl

Z(t,v, s,w) > 2u

 ,

where

Z(t,v, s,w) = Y (t,v) + Y (s,w), t, s ≥ 0, v,w ∈ Rn.

When u is sufficiently large for (t, s) ∈ 4k×4j ⊂ [0, 1]2,v ∈ ∂Si ⊂ [−2, 2]n,w ∈ ∂Sl ⊂ [−2, 2]n, with ρ(∂Si, ∂Sl) > ρ0

we have

V ar(Z(t,v, s,w)) = 4−
(
2(1− r(s− t)) + r(s− t)||v −w||2

)
≤ 4(1− δ0),

for some δ0 > 0. Therefore, it follows from the Borell-TIS inequality (see e.g., Adler and Taylor (2007)) that

Θk,j
1 (u) ≤ QN∗ exp

(
− (u− a)2

2(1− δ0)

)
, with a = E

 sup
(t,s)∈[0,1]2

(v,w)∈[−2,2]2n

Z(t,v, s,w)

 <∞.

Consequently,

lim sup
u→∞

∑h(u)−1
k=0

∑h(u)−1
j=k+2 Θk,j

1 (u)

A2(u)
= 0. (4.35)

Next, we estimate
∑h(u)−1
k=0

∑∞
j=k+2 Θk,j

2 (u). The stationarity of {Y (t,v), t ≥ 0,v ∈ Sn−1} implies

h(u)−1∑
k=0

∑
j≥k+2

Θk,j
2 (u) ≤ Q

h(u)−1∑
k=0

∑
j≥2

P

{
sup

(t,v)∈40×∂Si
Y (t,v) > B(k, S1, u), sup

(t,v)∈4j×∂Sl
Y (t,v) > B(k, S1, u)

}

for some fixed ∂Si, ∂Sl satisfying ∂Si ∩ ∂Sl 6= ∅. Additionally, diam(∂Si ∪ ∂Sl) can be chosen sufficiently small such

that ∂Si, ∂Sl are in ∂O0, which is a subset of Sn−1 and includes (1, 0, · · · , 0), and further on ∂O0 we can find a
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one-to-one projection g from it to the corresponding points where the first component is 1, i.e., gv = (1, v2, · · · , vn)

for all v = (v1, v2, · · · , vn) ∈ ∂O0.

Let

4̃0 =

[
0,
S2

u

]n−1

∩ g∂O0, 4̃k =

n−1∏
i=1

[
ki
S2

u
, (ki + 1)

S2

u

]
∩ g∂O0, k ∈ Zn−1

and

Ki = {k : 4̃k ∩ g∂Si 6= ∅}, Kl = {k : 4̃k ∩ g∂Sl 6= ∅}.

With these notation, we have that

h(u)−1∑
k=0

∑
j≥k+2

Θk,j
2 (u) ≤ Q

h(u)−1∑
k=0

∑
j≥2

∑
i∈Ki

∑
l∈Kl

P

{
sup

(t,v)∈40×4̃i

Y (t,v) > B(k, S1, u), sup
(t,v)∈4j×4̃l

Y (t,v) > B(k, S1, u)

}
.

The last sums on the right-hand side can be divided into two terms Ii(u), i = 1, 2, according to whether 4̃i ∩ 4̃l 6= ∅
or not. We derive that

P

{
sup

(t,v)∈40×4̃i

Y (t,v) > B(k, S1, u), sup
(t,v)∈4j×4̃l

Y (t,v) > B(k, S1, u)

}

≤ P

 sup
(t,s)∈40×4j
v∈4̃i,w∈4̃l

Z(t,v, s,w) > 2B(k, S1, u)

 ,

where

Z(t,v, s,w) = Y (t,v) + Y (s,w), t, s ≥ 0, v,w ∈ Rn−1.

It follows that, for (t, s) ∈ 40 ×4j , v ∈ 4̃i,w ∈ 4̃l, diam(∂O0) sufficiently small, and u sufficiently large

2 ≤ V ar(Z(t,v, s,w)) ≤ 4

(
1− 1

4
((j − 1)S1)αu−2

)
. (4.36)

Further, set Z(t,v, s,w) = Z(t,v, s,w)/
√
V ar(Z(t,v, s,w)). Borrowing the arguments of the proof of Lemma 6.3 in

Piterbarg (1996) we show that

E
{

(Z(t,v, s,w)− Z(t′,v′, s′,w′)2
}
≤ 4
(
E
{

(Y (t,v)− Y (t′,v′))2
}

+ E
{

(Y (s,w)− Y (s′,w′)2
})
.

Moreover, as in Lemma 10 of Piterbarg (1994b), for diam(∂O0) sufficiently small, and all u large

E
{

(Y (t,v)− Y (t′,v′)2
}
≤ 4|t− t′|α + 2

n∑
i=2

(vi − v′i)2.

Therefore

E
{

(Z(t,v, s,w)− Z(t′,v′, s′,w′))2
}
≤ 16|t− t′|α + 16|s− s′|α + 8

n∑
i=2

(vi − v′i)2 + 8

n∑
i=2

(wi − w′i)2

≤ 2(1− rζ(|t− t′|, |s− s′|,v − v′,w −w′)), (4.37)

where

rζ(t, s,v,w) = exp

(
−9tα − 9sα − 5

n∑
i=2

v2
i − 5

n∑
i=2

w2
i

)
, t, s ≥ 0,v,w ∈ Rn−1
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is the covariance function of a stationary Gaussian random field {ζ(t, s,v,w), t, s ≥ 0,v,w ∈ Rn−1}. Consequently,

in view of (4.36) and (4.37), and thanks to Slepian’s Lemma, we obtain

P

{
sup

(t,v)∈40×4̃i

Y (t,v) > B(k, S1, u), sup
(t,v)∈4j×4̃l

Y (t,v) > B(k, S1, u)

}

≤ P

 sup
(t,s)∈40×4j
v∈4̃i,w∈4̃l

ζ(t, s,v,w) >
2B(k, S1, u)√

4− ((j − 1)S1)αu−2

 .

Since, for any cube 4̃i in Rn−1 there are 3n−1 cubes having non-empty intersection with it, we have

I1(u) ≤
h(u)−1∑
k=0

∑
j≥2

∑
i∈Ki

∑
l∈Kl

4̃i∩4̃l 6=∅

P

 sup
(t,s)∈40×4j
v∈4̃i,w∈4̃l

ζ(t, s,v,w) >
2B(k, S1, u)√

4− ((j − 1)S1)αu−2


≤ 3n−1

h(u)−1∑
k=0

∑
j≥2

∑
i∈Ki

P

 sup
(t,s)∈40×4j
v∈4̃i,w∈4̃l

ζ(t, s,v,w) >
2B(k, S1, u)√

4− ((j − 1)S1)αu−2

 , (4.38)

with some 4̃l adjacent or identical with 4̃i. It follows further from Theorem 3.1 that

P

 sup
(t,s)∈40×4j
v∈4̃i,w∈4̃l

ζ(t, s,v,w) >
2B(k, S1, u)√

4− ((j − 1)S1)αu−2

 ≤
(
Hα[0, 9

1
αS1]

)2 (
H2[0,

√
5S2]

)2(n−1)

1√
2πu

exp

(
− 4B(k, S1, u)2

2 (4− ((j − 1)S1)αu−2)

)
(1 + o(1))

as u→∞. Inserting the last formula into (4.38) and noting that

]{Ki} = Vn−1(g∂Si)S−(n−1)
2 un−1(1 + o(1)), as u→∞

we derive that

I1(u) ≤ QS2
1S

n−1
2

h(u)−1∑
k=0

∑
j≥2

1√
2π
un−2 exp

(
−u

2

2
− c(kS1u

1
β−

2
α )β − 1

8
((j − 1)S1)α

)
.

Thus, in the light of the reasoning of (3.15), we conclude that

lim sup
S1→∞

lim sup
u→∞

I1(u)

A2(u)
≤ Q lim sup

S1→∞
S1S

n−1
2 exp

(
−1

8
Sα1

)
= 0. (4.39)

Moreover, in view of the reasoning of (4.36), when 4̃i ∩ 4̃l = ∅, we obtain

2 ≤ V ar(Z(t,v, s,w)) ≤ 4− ((j − 1)S1)αu−2 − ||l− i||2S2
2u
−2

and thus

I2(u) ≤
h(u)−1∑
k=0

∑
j≥2

∑
i∈Ki

∑
l∈Kl

4̃i∩4̃l=∅

P

 sup
(t,s)∈40×4j
v∈4̃i,w∈4̃l

ζ(t, s,v,w) >
2B(k, S1, u)√

4− ((j − 1)S1)αu−2 − ||i− l||2S2
2u
−2


≤

h(u)−1∑
k=0

∑
j≥2

∑
i∈Ki

∑
l∈Rn−1

l 6=0

P

 sup
(t,s)∈40×4j
v∈4̃0,w∈4̃l

ζ(t, s,v,w) >
2B(k, S1, u)√

4− ((j − 1)S1)αu−2 − ||l||2S2
2u
−2

 .
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Similar to (4.39), we conclude that

lim sup
S1→∞

lim sup
u→∞

I2(u)

A2(u)
= 0,

hence (3.17) follows.
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[10] Dȩbicki, K., Hashorva, E., and Ji, L., Tail asymptotics of supremum of certain Gaussian processes over threshold dependent

random intervals. Extremes (2014), in press.
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