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To the Editor,

The Wnt signaling pathway has a key role in controlling numerous bio-

logical processes including cell proliferation, differentiation, apoptosis as

well as embryonic development (Augustin et al., 2012; Clevers

et al., 2014; Lu et al., 2011; Polioudakis et al., 2019). Upon stimulation

by Wnt proteins, beta-catenin is released from its repressive complex,

allowing it to translocate to the nucleus where it binds to transcription

factors, including TCF7L2 (Transcription Factor 7-Like 2), to initiate gene

expression (Castrop et al., 1992; Polakis, 2000; Yang et al., 2016).

Numerous genome-wide association studies have found robust associa-

tions between common intronic variants in the TFC7L2 gene and type-2

diabetes, suggesting a role of this gene in glucose metabolism (Cauchi

et al., 2006; Del Bosque-Plata et al., 2021; Del Bosque-Plata et al., 2022;

Grant et al., 2006; Tong et al., 2009). More recently, experiments on

murine models revealed a critical role of Tcf7l2 in neurogenesis and neu-

ral connectivity in the developing brain (Chodelkova et al., 2018; Lee

et al., 2017). In consistence with these findings, de novo TCF7L2 variants

were identified as a potential cause of neurodevelopmental phenotype

in large-scale exome sequencing studies (Iossifov et al., 2014; Lelieveld

et al., 2016). More recently, Dias et al. (2021) provided a phenotypic

description of a new neurodevelopmental disorder by reporting 11 indi-

viduals carrying de novo missense or truncating variants in the TCF7L2

gene. Soon after, the TCF7L2-related Neurodevelopmental Disorder net-

work (trndnetwork.org) was created to support patients and families, as

well as to promote research and collaborations.

We report here two sisters with a developmental phenotype car-

rying a novel TCF7L2 variant originating from maternal mosaicism. In

addition to the developmental delay typical of TCF7L2-related Neuro-

developmental Disorder, pyramidal signs of lower limbs compatible

with spastic paraparesis as well as periventricular white matter lesions

were noted in both of them, and the eldest one developed diabetes

mellitus type 1 at age 9 years.

The proband (II-3, Figure 1a) is a 7-year-old girl born at term to

healthy unrelated parents. Birth was uneventful and her neonatal

adaptation was good (Apgar score: 9/10/10). She had a mild global

developmental delay with severe speech and language disorder and

suspicion of childhood apraxia of speech. Toe walking was noticed as

soon as she started to walk independently at around 15 months of

age. The neurological assessment revealed pyramidal signs of the

lower limbs. Brain Magnetic resonance imaging (MRI) at age 4 showed

small periventricular white matter lesions (Figure 1c) as well as a thin

isthmus of the corpus callosum. At age 5, she was unable to pro-

nounce sounds and syllables accurately, resulting in unintelligible

speech, and she receives special education. A recent neuropsychologi-

cal assessment revealed a severe oral language impairment and child-

hood apraxia of speech with a preserved nonverbal intelligence.

Attention deficit, poor executive control, as well as weak graphomotor

performances were also reported (Wechsler Intelligence Scale for

Children V (WISC-V): Full-Scale intellectual quotient (IQ): 68, General

Ability Index (GAI): 76, Non Verbal Index (NVI): 78, Cognitive
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Proficiency Index (CPI): 73, Snijders-Oomen nonverbal intelligence

test (SON-R): reasoning 103). Ophthalmological examination at age

one revealed strabismus and myopia of �6 diopters in both eyes. The

proband currently still has �6 diopters in the left eye, and � 7.25 in

the right eye, as well as astigmatism in both eyes, +2.50 diopters at

3� and + 2.75 diopter at 10� in the left and right eye, respectively.

Clinical evaluation revealed distinctive facial features including a

prominent forehead, a wide-based nose with a wide nasal ridge and a

pointed chin (Figure 1b). The growth parameters were within normal

limits.

The older sister of the proband (II-1, Figure 1a) had been born at

term after a premature rupture of membranes, and her neonatal adap-

tation was good (Apgar score of 7/9/9). At age 2, a similar develop-

mental phenotype predominantly affecting expressive language was

noticed. A brain MRI at age 2 showed moderate posterior periventri-

cular hyperintensities with white matter thinning, first interpreted as

periventricular leukomalacia (Figure 1c). Regarding her motor

development, “stiffness” with limitation of hip abduction was noticed

soon after birth and she started to walk at age 18 months. Neurologic

evaluation revealed mild spastic diparesis that improved over time. At

7 years of age, she had brisk deep tendon reflexes and mild distal

hypertonia of lower limbs. The neuropsychological assessment at age

6½ years was suggestive of a moderate intellectual disability but the

cooperation of the child was considered suboptimal. Currently aged

14, she receives special education but has been making progress and

expresses herself clearly, using sentences. A subsequent neuropsy-

chological evaluation revealed a mild intellectual disability with poor

executive functioning and graphomotor skills, as well as learning disor-

ders (WISC-V: Total IQ 68, GAI: 74, NVI: 73, CPI: 60). She also devel-

oped moderate myopia as early as age one, and had surgery to correct

strabismus. The last ophthalmological evaluation revealed myopia of

�5 diopters and astigmatism of +5.25 at 3� in the right eye, and myo-

pia of �5.50 and astigmatism of +3.25 at 171� in the left eye. During

childhood, she also suffered from recurrent serous otitis media that

F IGURE 1 (a). Family pedigree. (b).
Face and profile pictures of the proband
II-3, her sister II-1, and their mother I-2.
(c). Brain MRI axial T2-weighted images.
On the left panel (II-1): punctate
periventricular hyperintensities. On the
right panel (II-3): mild periventricular
hyperintensities compatible with terminal
zones of myelination.
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were treated with tympanostomy tubes. At age 9, she developed dia-

betes mellitus type 1 with positive Islet Antigen 2 antibodies: 997 U/

mL (N < 15). No other family members suffer from glucose metabo-

lism disorder. Clinical evaluation revealed mild eversion of inferior

eyelids, a wide nasal ridge and tip with a prominent nasal bridge, as

well as a slightly low-hanging columella and a pointed chin (Figure 1b).

The proband's mother (I-2, Figure 1a,b) describes herself as hav-

ing some difficulties at school mainly due to absenteeism in the con-

text of chronic migraines, but no developmental delay or cognitive

disorders have been documented. She is known for myopia since age

6, and has currently �7 diopters in the right eye and �7.50 diopters

in the left with mild astigmatism in both eyes.

With appropriate informed consent of the parents, exome

sequencing was carried out on NextSeq 500 sequencing from Illumina

using the Comprehensible library from Twist Biosciences®, on geno-

mic DNA extracted from leukocytes of the proband and processed as

previously described (Royer-Bertrand et al., 2021). The targeted analy-

sis of virtual gene panels for neurodevelopmental disorders (1832

genes) and hereditary spastic paraplegia (147 genes) allowed the iden-

tification of the heterozygous variant c.565_566dup, p.-

Pro190Argfs*13, NM_030756.5, (chr10:114901022->CA, GRCh37) in

the Exon 5 of the TCF7L2 gene (Supplementary Figure S1), leading to

a frameshift and a truncation of the protein. The TCF7L2 variant is

absent from public databases of control cohort (gnomAD v2.1.1 data-

base; Karczewski et al., 2020), as well as from our in-house patient's

database (n = 1465). TCF7L2 is predicted to be associated with domi-

nant disorders (DOMINO score of 1; Quinodoz et al., 2017) and is also

predicted to be highly intolerant to loss-of-function, as calculated in

GnomAD constraint (pLI = 1). Familial segregation analysis was

performed by Sanger sequencing on DNA extracted from leukocytes.

It revealed that the proband's sister was also carrying the duplication

(Figure 2), while both parents were homozygous for the wild-type

allele. For these reasons, the p.Pro190Argfs*13 variant was classified

as “pathogenic” according to ACMG criteria, and considered causative

of the neurodevelopmental phenotype of the proband and her sister.

Because of the recurrence of a seemingly de novo mutation, parental

mosaicism was suspected. Sanger sequencing was performed on DNA

extracted from buccal swab from the parents, confirming this hypoth-

esis by showing a small signal for the TCF7L2 variant in the mother (I-

2; Figure 2). To better characterize the mosaicism, we performed an

additional analysis by exome sequencing on the mother's DNA. Con-

sistently with the result of the Sanger sequencing, the c.565_566dup

variant was present in the buccal swab's DNA with a fraction of 9.6%

(11 out of 115 reads) while it was undetectable in leucocytes, as

represented with Integrative Genomics Viewer in Supplementary

Figure S1 (Robinson et al., 2017).

Phenotypic descriptions of TCF7L2-related Neurodevelopmental

Disorder are limited to the 11 patients recently documented by Dias

et al. (2021). Here, we report two additional patients carrying an

undescribed truncating variant, further supporting a causative role of

TCF7L2 haploinsufficiency in this neurodevelopmental condition. The

proband and her sister's clinical features, in particular the develop-

mental delay with speech and language disorders, myopia, and strabis-

mus, correspond well to the previously documented patients

(Table 1). Dias et al. (2021) reported 2/11 patients with hypertonia,

but motor aspects of TCF7L2-related Neurodevelopmental Disorder

have otherwise not been well documented. Here, we describe a phe-

notype of spastic paraparesis in both patients and a specific brain MRI

F IGURE 2 Familial segregation by Sanger sequencing of the variant c.565_566dup in TCF7L2, confirming a heterozygous state in the
proband (II-3) and her sister (II-1) (DNA extracted from leukocytes), and revealing a mosaic pattern in the mother (I-2), the father (I-1) being
homozygous for the wild-type allele (DNA extracted from buccal swabs). V, variant c.565_566dup. WT, wild-type allele. The duplicated bases are
indicated in orange.
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TABLE 1 Clinical features of patients with pathogenic variants in TCF7L2.

SIS II-3 II-1 Dias et al. (2021) 11 cases

Variant (NM_030756.5) c.565_566dup, p.Pro190Argfs*13 c.565_566dup, p.Pro190Argfs*13

Inheritance From mosaic mother From mosaic mother De novo (11/11)

Gender (M[Male]/F

[Female])

F F M:8, F:3

Age at evaluation 5 y 11 y Mean 9 y (3–18 y)

Pregnancy Normal Normal Complications (2/10)

Delivery Term Term Term (10/10)

Perinatal complications No. Good neonatal adaptation (APGAR

score: 9–10-10)
Premature rupture of membranes, good

neonatal adaptation (APGAR score: 7–
9-9)

Yes (4/10)

Development

Global developmental

delay

Mild Mild Motor delay: 8/11. Speech

delay: 11/11

Age at walking 15 months 18 months Mean: 16 months (12 months

– 24 months)

Speech delay? Yes. Significant expressive language

disorder

Yes. Expressive language disorder 11/11

Intellectual disability Mild. FSIQ: 68. Normal nonverbal

intelligence.

Mild. FSIQ: 68 5/11 Mean IQ (when IQ

stated): 85

Craniofacial features

Craniofacial

dysmorphic features

Prominent forehead, wide-based nose

with a wide nasal ridge and tip, pointed

chin

Mild eversion of inferior eyelids, wide

nasal ridge and tip, prominent nasal

bridge, slightly low-hanging columella,

pointed chin

8/11

Skeletal /extremities

anomalies

No No 5/11

Growth at evaluation

Height 105 cm (25%–50%) 148 cm (50%–75%) Within normal rangea (9/9)

Weight 18 kg (50%–75%) 48 kg (75%–90%) Within normal rangea (8/10)

Head circumference 51.5 cm (75%) 54.5 cm (75%–90%) Within normal rangea (10/11)

Behavioral features

Autism spectrum

disorder

No No 4/11

ADHD Attention deficit without hyperactivity No 4/11

Neurological features

Tone abnormalities Pyramidal signs of the lower limbs Mild spastic diparesis Hypertonia (2/11)

Hypotonia in infancy (1/11)

Epilepsy No No 2/11

Ophthalmology findings Strabismus, myopia, astigmatism Strabismus, myopia, astigmatism Myopia (6/11), Strabismus

(3/11)

Otorhinolaryngology/

hearing

Recurrent otitis media Recurrent otitis media Ears infections (2/10)

Diabetes No Diabetes mellitus type 1 at age 9 y 0/7

Brain MRI Small periventricular white matter

lesions, thin isthmus of the corpus

callosum

Posterior periventricular hyperintensities

with white matter thinning

Abnormal (5/10)

Additional genetic

findings

Heterozygous carrier of c.2881C > T,

p.Arg961* in SACS (ClinVar ID:

640122)

N/A

aNormal range is defined as the central 95% of the population.

Abbreviations: %, percentile; ADHD, attention deficit hyperactivity disorder; IQ, intellectual quotient; cm, centimeters; FSIQ, full-scale intellectual quotient;

kg, kilograms; N/A, not available; y, year.
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pattern with periventricular hyperintensities in the T2-weighted

sequences. This association, together with strabismus and develop-

mental delay, led first to the misdiagnosis of cerebral palsy due to

periventricular leukomalacia in the proband's sister. The latter condi-

tion usually affects premature infants, which was not the case of the

two sisters (Schneider & Miller, 2019). Of note, this radiological phe-

notype has not been reported by Dias et al., except in one patient

with prominent ventricles and frontal periventricular leukomalacia,

who indeed suffered from perinatal asphyxia and was excluded from

the cohort for this reason. The study of larger series of patients will

help to determine whether the spasticity and brain MRI findings

indeed belong to the phenotypic features of TCF7L2-related Neurode-

velopmental Disorder. Interestingly, the proband's sister developed

diabetes type 1 at age 9. The causality between this phenotype and

TCF7L2 haploinsufficiency remains unclear. None of the 11 patients in

the cohort from Dias et al. (2021) developed diabetes, even if the

majority of the patients in that series are still very young. Moreover,

no association between the presence of diabetes type 1 and TCF7L2

variants was ever reported, albeit some single nucleotide polymor-

phisms were shown to be linked to certain characteristics of diabetes

type 1, including the level of C-peptide and the pattern of antibodies

(Ergur et al., 2022; Redondo, Geyer, et al., 2018; Redondo, Steck,

et al., 2018). All documented cases of TCF7L2-related Neurodevelop-

mental Disorder were described as occurring in a de novo manner

(Dias et al., 2021). The observation of two siblings carrying a TCF7L2

variant inherited from a mosaic mother adds to the list of neurodeve-

lopmental disorders in which mosaicism has been observed. Impor-

tantly, prenatal diagnosis should be an option offered to pregnant

mothers with a first affected child, even when due to an apparently

de novo variant in TCF7L2.
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