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ABSTRACT 

We studied the influence of signal variability on human and model observer performances for a detection task with 
mammographic backgrounds and computer generated clustered lumpy backgrounds (CLB). We used synthetic yet 
realistic masses and backgrounds that have been validated by radiologists during previous studies, ensuring conditions 
close to the clinical situation. Four trained non-physician observers participated in two-alternative forced-choice (2-AFC) 
experiments. They were asked to detect synthetic masses superimposed on real mammographic backgrounds or CLB. 
Separate experiments were conducted with sets of benign and malignant masses. Results under the signal-known-exactly 
(SKE) paradigm were compared with signal-known-statistically (SKS) experiments. In the latter case, the signal was 
chosen randomly for each of the 1,400 2-AFC trials (image pairs) among a set of 50 masses with similar dimensions, and 
the observers did not know which signal was present. Human observers' results were then compared with model 
observers (channelized Hotelling with Difference-of-Gaussian and Gabor channels) in the same experimental conditions. 
Results show that the performance of the human observers does not differ significantly when benign masses are 
superimposed on real images or on CLB with locally matched gray level mean and standard deviation. For both benign 
and malignant masses, the performance does not differ significantly between SKE and SKS experiments, when the 
signals' dimensions do not vary throughout the experiment. However, there is a performance drop when the SKS signals' 
dimensions vary from 5.5 to 9.5 mm in the same experiment. Noise level in the model observers can be adjusted to 
reproduce human observers' proportion of correct answers in the 2-AFC task within 5% accuracy for most conditions. 
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1. INTRODUCTION 
Detection tasks are foundational to many medical imaging applications. In radiology, these tasks involve first 
determining whether a signal is present in the image, then determining its specifications like exact location, size, shape,  
and malignancy. While modeling the full detection process is still out of the scope of current psychophysical studies, 
numerous authors have reported results and models in order to better understand the processes behind various detection 
tasks. Most of the time, these experiments only approximate the clinical reality, using statistically or exactly known 
backgrounds, signals, or signal localizations, in order to facilitate the data collection and the robustness of the analysis.  

When studying mass detection in a typical radiological task, use of real backgrounds and masses is an option for getting 
closer to reality, but the collection of hundreds or thousands of similar images can be difficult and time-consuming. 
Therefore, mammographic non-stationary backgrounds are most of the time replaced by white noise [1,2], power-law 
filtered white noise [3-5], or lumpy backgrounds [6-9]. Similarly, masses are generally approximated by disks [2,3,10], 
phantoms elements [9], Gaussian or Gabor functions [11-13]. Signal location uncertainty in the clinical task can be 
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simplified by controlling the number and the location of the signals under the M-alternative forced-choice (M-AFC) 
paradigm, or receiver operating characteristic (ROC) studies [14,15]. For such controlled signal conditions, Brettle [16] 
recently showed that trained naïve (non-physician) observers' performance was very close to that of radiologists. 

In order to get closer to clinical tasks, recent developments have focused on producing synthetic yet realistic 
backgrounds and signals that mimic medical images while preserving data collection and computational efficiency. 
Lumpy backgrounds, initially developed by Rolland and Barrett [6], have been extended to clustered lumpy backgrounds 
(CLB) [7]. Later, they have been further optimized [8] in order to synthesize second-generation CLB reproducing visual 
and statistical properties of mammograms. On the other hand, Saunders et al. [17,18] recently developed an algorithm 
capable of generating benign or malignant breast masses signals, based on the analysis of real masses characteristics. In 
this study, we merged the two approaches to generate fully synthetic images containing breast masses. 

Another aspect of clinical relevance that was introduced in our study is the signal uncertainty. While most studies 
concentrated on Signal-Known-Exactly (SKE) tasks, where the signal presented to the observers is known and do not 
vary throughout the entire experiment, little is known about more realistic conditions. In the latter case, the signal should 
be different for each realization, or at least should not be known exactly by the observer. In order to model experiments 
involving various signals, Signal-Known-Exactly but Varying (SKEV) and Signal-Known-Statistically (SKS) paradigms 
have been introduced [19-22] in M-AFC tasks. In the first case, a pool of signals is used throughout the detection 
experiment. The observer knows exactly which signal is present at one of the M possible locations, but the signal itself is 
different from one trial (presentation of M images) to the next. This prevents the observer to adapt his strategy 
specifically to a given signal, while keeping further analysis and comparison with model observers simple. In SKS tasks, 
the signal is also chosen for each trial out of a pool of different candidates, but the observer does not get any information 
about which one is used. This situation is the closest to a real radiological task, but it complicates the results analysis, 
compared to SKE or SKEV. 

In order to reproduce or predict human performance in detection tasks, model observers have been developed and 
successfully adapted to SKE experiments [14,16,23] Later, models have been adapted to SKS tasks [19] and Eckstein 
[20,21] and Zhang [22] showed a good correlation with human results for SKS experiments with x-ray coronary 
angiograms. However, very little is known about the ability of SKS-adapted model observers to accurately predict 
human performance in mammography for SKS conditions, much closer to clinical tasks than "simple" SKE tasks. 

The purpose of the present study was to use real and realistic [8] mammographic backgrounds, and benign and malignant 
mass signals [18] in 2-AFC experiments, for comparing SKE and SKS performance of human observers. We wanted to 
test the hypothesis that the detection performance is the same with CLB and real images when local statistics are 
matched, and the effects of signal size and shape uncertainty on the observers. Additionally, we wanted to compare the 
performances of linear model observers to humans', and determine if they could predict human results in the same 
experimental conditions. 

2. MATERIAL AND METHODS 
2.1 2-AFC setup 

Four non-physician observers participated in this study. All had experience with 2-AFC experiments, since they had 
participated in a previous SKE study with mammographic backgrounds and CLB [9]. For each of the 13 background and 
signal combinations described in Fig. 1, the observers were presented 1,400 image pairs, or trials. The signal was 
randomly embedded in one of the two images of each trial. Signal-present images were constructed with a distinct set of 
backgrounds than signal-absent images, in order to avoid potential bias (same image presented with and without signal in 
a given trial, or in consecutive trials, for example). 

The observers had to determine which image was the most likely to contain the signal. Fiduciary cues were provided in 
order to precisely locate the two possible signal locations, one per image. There was no time limit and feedback was 
provided after each trial (correct or incorrect answer), and after every 25 trials. 

The images were displayed in a dark room on a Siemens SMM 21140 P high-contrast gray-scale monitor (Siemens, 
Karlsruhe, Germany) calibrated to the DICOM Grayscale Display Function and TG18 standards [24]. Pixel size of the 
display screen was 0.25 mm. Observers' performance was given by the proportion of correct answers Pc, computed from 
the NT=1,400 trial outcomes oi as: 



 
 

 
 

  

Fig. 1. Backgrounds, mass type, and signal conditions for the 13 psychophysical experiments. B= benign masses, M = 
malignant masses. Here, SKE stands for an experiment with a single signal of given shape and size, and SKS an 
experiment with a signal with variable shape but a given size, except for the last experiment where both shape and size 
were variable. 
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where oi = 1 if the answer to trial i was correct, and 0 if it was incorrect. Standard error for Pc was derived by computing 
Pc for 28 mutually disjoints subsets of 50 consecutive trials. 

 

 
2.2 Backgrounds 

We used two kinds of backgrounds: real regions of interest (ROIs) extracted from digital mammograms, and synthetic 
second-generation CLB. For the real images, we used a database of 88 disease-free patients who underwent screening 
exams on a GE Senograph 2000D full-field digital detector (pixel size: 0.1 by 0.1 mm) [26,27]. 2,800 256 by 256 pixels 
square ROIs were manually selected, and resampled to 154 by 154 pixels, in order to emulate a magnification factor of 
1.5 on the display screen, reproducing typical clinical settings [9]. The CLB had been designed in order to mimic digital 
mammograms ROIs, and their statistical and visual properties assessed by radiologists in a previous study [8]. 

In order to obtain as comparable conditions as possible between these two image types, and because of the prominent 
importance of local statistics [9], we matched the first two moments of the gray level distributions of real and CLB 
images over the 40 by 40 pixels central area of the displayed images. This corresponds to the area covered by the 
fiduciary cues, over which the human observers focused. Over this area, the mean gray level was set to 128, and the 
standard deviation to 20, ensuring that the rescaled images lied in the middle of the display screen dynamic range.  

2.3 Signals 

The signals were synthetic masses developed by Saunders et al. [18]. Based on the analysis of real breast masses 
properties, they provided excellent signals for conducting experiments with highly realistic masses. We chose to use two 
kind of simulated breast masses: benign, oval circumscribed masses, and malignant masses with an irregular shape and 
ill-defined borders [25]. During the 2-AFC experiments, these masses were embedded in real time in the different 
backgrounds, real or synthetic, resulting in controlled signal-present images.  

The masses were added linearly to the backgrounds. The amplitude of the signal, defined as the maximum intensity of 
the mass, was set after preliminary experiments by one of the authors, in order to obtain a Pc between .70 and .85 for 
each condition. For benign masses, this resulted in an amplitude of 10 gray levels (GL), whereas a higher amplitude of 
15 GL had to be used for malignant masses, which tend to be less conspicuous due to smoother borders. At the beginning 
of each of the 13 different experimental conditions presented in Fig. 1, the observers were trained with sets of 25 trials 
with decreasing signal amplitudes, until they had reached a Pc of at least .70 for the actual experimental contrast 
conditions. Depending on the observers and series conditions, this training phase lasted from 100 to about 500 trials. 

 



 
 

 
 

 
  

     
Fig. 2 (a) Example of CLB with a digitally embedded benign mass. (b) Real mammogram ROI with a digitally embedded 

malignant mass. Signal contrast has been highly increased for printing purpose. 

For SKE experiments, the signal was identical during the whole experiment, including high-contrast and low-contrast 
training phases. The observers were aware that they were trained with the same signal that would be presented during the 
actual experiment. For SKS, the signal was chosen randomly for each trial among a pool of 50 similar candidates from 
the same mass type (benign or malignant) and with the same size: the actual signal to be detected thus changed from trial 
to trial, and was not known by the observer. As for SKE experiments, the 50 similar signals used for the SKS conditions 
were the same during the training phase and the following experiment. Finally, a last experiment was conducted with 
CLB and benign masses having sizes of 5.5, 6.5, 7.5, 8.5, and 9.5 mm: 10 masses per size constituted the pool of SKS 
signals. The aim was to compare SKS results when the mass size was kept constant and its shape and orientation only 
changed, and when the sizes covered the range of interest in screening mammography. 

Examples of displayed images, including fiduciary cues, are shown in Fig. 2.  

 

2.4 Model observers 

Known SKE model observers were implemented and tested against human results: Channelized Hotelling (CH) observer 
[14,15,28] with dense Difference-of-Gaussian (DDOG) channels and Gabor functions channels [9,29]. These models 
have been already extensively described in the literature, and will only be briefly reviewed here.  

The Hotelling observer is a linear observer whose response λ to an image g  is given by : 

 λ = wHot
T g, (2) 

where both wHot, the model template, and the image g are seen as 1-D vectors. The template itself is derived from the 
covariance matrix of the backgrounds Kb as: 

 wHot = Kb
-1[<gs>-<gn>], (3) 

where <gs> and <gn> are respectively the means of the images containing the signal, and the background-only images. 
The covariance matrix inversion in Eq. (3) is often impractical to implement, since for N by N pixels images, the size of 
this matrix is N2 by N2. Moreover, the large number of independent images needed for getting a non-singular estimate of 
the covariance matrix is rarely reached in a typical experimental study. In order to overcome these computational issues, 
the Hotelling observer may be approximated by reducing the images to a small set of variable responses channels 
[5,14,15,28,29]. The CH observer template is then given by: 

 wCH = (Kb,c + Kεεεε)-1 s (4) 

In Eq. 4, Kb,c is the channelized covariance matrix, which is computed from the background images as Kb,c= <(Ttgn-
<Ttgn>)(Ttgn-<Ttgn>)t>, where the column vectors of the matrix T each represent the spatial profile of a channel. The 
noiseless covariance matrices Kb,c were estimated by sampling, using the 1,400 signal-absent images of the 2-AFC 
experiments. s is the expectation of the signal seen through the channels: s=Tt[<gs>-<gn>]. Kεεεε is the covariance matrix of 
the internal noise. In this work, internal noise was assumed to be zero mean, independent in each channel, with variance 
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proportional to the variance of the background noise in each channel, with a proportionality factor β. The noisy 
channelized background covariance matrix Kb,c,n could thus be computed as: 
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The two kinds of channels used for this study are the DDOG channels as described by Abbey and Barrett [29], and 
channels using Gabor functions. The Gabor channels were constructed as: 
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In Eq. 6, Λ is the wavelength in pixels, ϕ is equal to 0 for odd phase channels and π/2 for even phase channels, σ = 
0.56Λ for a bandwidth of one octave, x' = xcosθ + ysinθ, and y' = -xcosθ + y cosθ. We used a total five orientations, 8 
wavelengths and two phases (odd and even), making a total of 80 channels. The wavelengths were chosen according to 
the DDOG channels peak frequencies, with values ranging from Λmin = 18 pixels to Λmax=192 pixels in discrete steps 
spaced by a multiplicative factor of 1.4. 

These models were also adapted to the SKS task using the sum of likelihood rule [30]. This involved computing one 
template per possible signal, and the distributions of the response λ for each template and with the 1,400 signal-present 
and 1,400 signal-absent images used in the experiments. Details of the whole procedure can be found in the paper by 
Zhang et al. [30]. 

The performance of these models were estimated by the direct use of the corresponding templates in 2-AFC experiments, 
using the same backgrounds and signals as the human observers. The obtained Pc's were then compared to human 
observers performance. 

3. RESULTS 
3.1 Robustness of the results 

Potential sources of bias in the human observers results were statistically tested for each of the 13 experiments. At a 5% 
confidence level, there was no significant deviation from an equal proportion of left versus right image choice for any 
observer.  

Possible learning effect was also tested, by comparing the proportion of correct answers of the first and last 200 trials to 
Pc for the whole 1,400 trial for each experiment and observer. Again, no significant deviation from random differences 
between the beginning, the end, and the experiment as a whole was shown for any observer, suggesting that they had 
effectively stabilized their performance after the training phases, and were performing consistently during the actual 
detection experiments. 

Finally, potential correlation between decision time (time used to give an answer for a given trial) and Pc was also tested. 
For each condition, the 1,400 trials were divided into 28 mutually disjoint subsets of 50 trials. The mean decision time 
and Pc were then computed for each subset, and the correlation coefficient between these quantities assessed using a 2-
sided t-test [31]. The correlation coefficient was not significantly different from 0 for any observer. This means that for a 
given observer and conditions, no improvement or degradation of the performance resulting from an increased decision 
time t could be statistically demonstrated. However, it is of interest to note that while Pc did not change significantly 
during a given experiment, t generally decreased by 30 to 50% for each observer between the first trials and the last ones. 
Absolute mean values for t ranged from 1 to 4 seconds, depending on the observer and the conditions. 

3.2 Human observers results 

3.2.1 Benign masses 
Pc values averaged over the four human observers for each of the 13 experimental conditions described in Fig. 1 are 
given in Table 1 in section 3.3. As an example of typical individual experimental results, human observers' Pc for the 6.5 
mm benign masses are given in Fig. 3(a) for SKE tasks, and (b) for SKS. For SKE experiments, Pc averaged over the 



 
 

 
 

four observers was 77.7±0.5% for the real backgrounds, and 78.3±0.6% for the CLB (p=.43). For the SKS tasks, the 
difference between real images (Pc=79.0±0.5%) and CLB (77.4±0.7%) was statistically significant (p=.04), but this 
effect is only due to Obs. #3 results, while the others performed similarly with the two background types. 

 
Fig. 3. (a) Human observers' proportions of correct answers (Pc) for the SKE tasks with the 6.5 mm benign masses. The 

rightmost values for each figure were obtained by pooling all observers data. The error bars represent the standard error 
(b) Same for the SKS tasks. 

When comparing SKE and SKS tasks for the 6.5 mm masses, there is no significant difference neither for real 
backgrounds (p=.09) nor CLB (p=.24). 

In the experiments with fixed signal size, the 6.5 mm masses were better detected than the 9.5 mm masses. The 
difference is especially visible in the SKE experiment (difference of 4.7% in Pc's, p<10-4), but smaller in the SKS task 
(1.8%, p=.026). This trend is also visible in the size uncertainty experiment with signal size ranging from 5.5 to 9.5 mm 
(Fig. 4). In this case again, ANOVA analysis, performed with the pooled human observer data, indicated that the mass 
size dependence was significant (F=2.46, df=4, p=.04).  

 
Fig. 4. Pooled observers results in the size uncertainty experiment (open circles). For comparison, the performance in the 

SKS experiments with fixed size signals are shown (black squares). 

3.2.2 Malignant masses 

 
Fig. 5. (a) Human observers results for the SKE tasks with the 6.5 mm malignant masses. The rightmost values for each 

figure were obtained by pooling all observers data. (b) Same for the SKS tasks. 



 
 

 
 

Human observers' Pc's for the 6.5 mm malignant masses are shown in Fig. 5 (a) (SKE) and (b) (SKS). For these masses,  
pooled Pc is significantly higher with the real images than with the CLB for both SKE (4.6%, p<10-4), and SKS tasks 
(6.7%, p<10-4). 

As for benign masses, the performance is very close between SKE and SKS tasks for both real backgrounds (1%, p=.21) 
and CLB (0.9%, p=.92). 

The mass size effect is different than for benign masses. 9.5 mm malignant masses are significantly better detected than 
6.5 mm masses: the difference is clear in both SKE (3.5%, p=.003) and SKS (4.8%, p<10-4) tasks. 

 

3.3 Model observers 

Table 1 presents Pc values obtained with the model observers in the same 2-AFC conditions as human observers. Bold 
values indicate deviations from human observer results smaller than 5% in units of Pc. 

Table 1. Comparison of human and model observers performances for the different experimental conditions. Bold values 
indicate absolute differences between human and model results smaller than 5% in units of Pc. 

 

 

Malignant Conditions Human DDOG GABOR 
masses Real,SKE,6.5 76.3% 79.7% 78.0% 
 CLB,SKE,6.5 71.7% 78.0% 75.2% 
 Real,SKS,6.5 77.3% 79.6% 77.0% 
 CLB,SKS,6.5 71.6% 78.6% 74.0% 
 CLB,SKE,9.5 74.2% 72.9% 77.6% 
 CLB,SKS,9.5 76.4% 73.5% 78.0% 

 

CH observer with DDOG channels was implemented without adding internal noise, whereas β factor in Eq. 5 was set 
empirically to 2 (benign masses) and 20 (malignant masses) for the CH observer with Gabor channels. This way, these 
two models fit human results within 5% accuracy in most experimental conditions. 

Both models are good predictors for human response to most experimental conditions. For benign masses, the models 
Pc's do not differ by more than 1% when the only change in conditions is real backgrounds versus CLB, and by 1.5% 
between SKE and SKS tasks. The decrease in performance with larger masses is reproduced by the CH observer with 
DDOG channels, whereas the performance of CH observer with Gabor channels increases with the size of the signal. For 
this reason, results for the experiment with benign masses ranging from 5.5 to 9.5 are less precisely reproduced by the 
latter. For malignant masses, the performance drop between real and CLB images is predicted by both models, although 
less strongly than for human observers. Again differences between SKE and SKS tasks are less than 1.5% in units of Pc. 

4. DISCUSSION 
4.1 Influence of the background and the local statistics 

In a previous study [9], we had shown that human strategy was similar between real mammographic and second-
generation CLB, for a SKE detection experiment with a mass signal extracted from a mammographic phantom. 
However, we also observed a dissociation in performance for human and model observers between the two background 
types, and argued that matching the first two orders statistics over the backgrounds as a whole was not sufficient for 
ensuring comparable conditions. For this reason, we tried to follow a more local approach in the current study, and 
matched the statistics specifically on the central part of the images, where the observers focused. 

Benign Conditions Human DDOG GABOR 
masses Real,SKE,6.5 77.7% 81.1% 79.1% 
 CLB,SKE,6.5 78.3% 81.4% 78.3% 
 Real,SKS,6.5 79.0% 81.1% 77.5% 
 CLB,SKS,6.5 77.4% 80.8% 76.3% 
 CLB,SKE,9.5 73.6% 75.9% 88.4% 
 CLB,SKS,9.5 75.6% 75.9% 89.3% 
 CLB,SKS,5.5-9.5 73.8% 71.6% 78.1% 



 
 

 
 

For benign masses, human observers achieved very close performance for both backgrounds. Individual observers' 
differences in Pc did not exceed ±2.6%, except for one observer in the SKS task (Obs. #3, 5%). For these signals with 
sharp edges, comparable to the one used in the previous study [9], matching local statistics resulted in backgrounds that 
are comparable in terms of detection performance. For malignant masses, however, the significant performance 
difference between real images and CLB could indicate that a different strategy involving more complex properties than 
first two orders statistics is used by the human observers: The systematically lower performance with CLB suggests that 
their random, stationary nature is more likely to hide signals with smooth edges than nonstationary images, in a way 
similar to Zhang et al. [32] findings with highly nonstationary backgrounds. Since the malignant masses look like blobs, 
they might have been more difficult to detect on the CLB, which contain clusters of blobs by construction. 

Finally, as in the previous study, the best performance with CLB images was generally obtained by Obs. #2, one of the 
co-authors (CC). However, this observer was regularly outperformed by one or several others in the experiments with 
real images. This distinctive knowledge of CLB could have been an unconscious help for this observer when performing 
the experiments. 

4.2 Influence of the signal shape uncertainty 

Quite surprisingly, human observers performed as well for the SKS tasks as for the corresponding SKE tasks, when the 
signal size was constant over the experiment and the only uncertainty was its shape. This shows that, although after 
being trained with high contrast versions of the same signals as in the actual experiments, human observers were not able 
to develop and use a better strategy for the SKE task than for the SKS. Zhang et al. [22] had reached somewhat different 
conclusions when comparing SKS to the a priori easier SKEV task: In their 4-AFC experiments with x-ray coronary 
angiograms, a high contrast copy of the actual signal used for the given trial was shown to the observer. Both signal 
shape and size varied from one trial to the next, and human observers performed better in the SKEV than in SKS tasks. 
This difference may arise from the fact that in our study, SKS experiments were performed with a constant signal size, 
whereas Zhang et al. used projected ellipsoid signals ranging from 1x1 to 7.5x3 mm, introducing important  size 
uncertainty. Furthermore, our last experiment with signal size ranging from 5.5 to 9.5 mm confirmed that introducing 
size uncertainty lowered the detection performance of the observers, compared to the SKS experiments with fixed size 
(comparison points in Fig. 4, p=.25 for 6.5 mm masses, p=.02 for 9.5mm). When mass sizes are mixed, the lower-
bending performance curve for the largest masses is similar to the results of Judy et al. [10] with disks signals on 
correlated noise, or to more general findings with contrast-detail experiments with power-law noise approximating 
mammograms [4,5]. Judy [10] also compared SKE with SKS experiments and showed that size uncertainty degraded 
human observer performance mainly for the largest disks with diameters larger than 1 cm, which seems consistent with 
our findings in Fig. 4, as far as the two studies can be compared. Judy et al. indeed used different contrasts for the 
different signal sizes, in order to maintain a constant non-prewhitening matched filter observer performance, whereas we 
used a fixed signal contrast for all mass sizes. 

In our study, the effect of signal shape uncertainty has been investigated with CLB and real images, while the size 
uncertainty experiment was only performed with the CLB. However, results from the previous section with benign 
masses suggest that size uncertainty experiments with real backgrounds should lead to the same conclusions, since the 
detection performance for SKE and SKS tasks with benign masses was very similar between both background types. 

Our findings suggest that human observers are much more sensitive to signal size uncertainty than signal shape 
uncertainty. Following this idea, assessing human observer detection performance for such non-trivial signals as benign 
or malignant masses would already be possible with a limited set of signals covering the size range of interest: There 
would be no need to use sets with large numbers of signals covering the possible orientations and shapes.  

4.3 Model observers versus human observers 

Excellent agreement between model and human observers results for nearly all conditions (Table 1) indicate that CH 
observer with 10 DDOG channels, or more sophisticated CH observer with 80 Gabor channels are good predictors of the 
effect of size and shape uncertainty over human detection performance. It is remarkable to note that circularly symmetric 
DDOG channels lead to such good results, even with signals that are as highly non-symmetric in the spatial domain as 
malignant masses. The single effect that is only partly predicted by this model observer is the human performance 
difference between real backgrounds and CLB with malignant masses. Otherwise, all other human results fit within 3.5% 
accuracy in units of Pc: SKE versus SKS performance, 6.5 versus 9.5 mm signals, experiment with signal size 
uncertainty. 



 
 

 
 

The noiseless CH observer with 80 Gabor channels was close to a perfect observer, since its Pc ranged from 95 to 100% 
for all different conditions. However, as our aim was to reproduce human observer results, it was necessary to degrade its 
performance by adding internal noise. A good match with human results was obtained with channel internal noise [29], 
which is consistent with a recent study that compared channel internal noise to variable decision noise for this model 
observer [33]. The values for the noise proportionality constant β (see Eq. 5) are empirical, and were chosen in order to 
fit most human results for benign and malignant masses. Since human observers' precise strategies for detecting these 
two different kinds of signals are still unclear, it might be questionable whether introducing two different noise levels 
(β=2 for benign masses, β=20 for malignant masses) is appropriate, but it was the only way to fit human results for both 
signal types. This way, and as for CH observer with DDOG channels, human observers results and trends are remarkably 
well fitted by the CH observer with Gabor channels. The only exception is for the large benign masses, where this model 
outperforms human observers. This is the source of the difference for the size uncertainty experiment. 

5. CONCLUSIONS 
By conducting detection experiments with realistic benign and malignant breast masses superimposed on real 
mammographic backgrounds and realistic, second-generation CLB, we were able to study the influence of signal 
variations and uncertainty on human observers detection performance. We showed that human observers did not differ 
significantly between SKE and SKS experiments, when the signal size was kept constant. However, human observers 
were sensitive to signal size uncertainty, and failed maintaining their performance between fixed-size and size-varying 
experiments. 

Human observers performed similarly with real backgrounds and CLB for detecting benign masses. However, malignant 
masses were more difficult to detect on CLB than on real images. This difference, and the strategies used for detecting 
the two mass types on the two different backgrounds will be further investigated, using Human Linear Template [9,34-
37]. Among other goals, we hope to be able to determine if the strategies used for benign and malignant masses are 
based on the same approach, or if human observers change their strategies between sharp-edged benign masses and 
malignant masses with smoother edges. 

Excellent agreement with human observers was obtained for CH observers using circularly symmetric DDOG channels, 
or Gabor channels with an appropriate internal noise level. They provide a very good way to reproduce or predict human 
observers results in the same experimental conditions, and objectively optimize image quality. 

Finally, one has to keep in mind that the SKS approach (or SKEV, since both have been proven to lead to correlated 
results [19,21,22]) is still far from the actual clinical world. Many other factors influence the radiologists' ability to 
correctly detect masses on mammograms: much wider search space, signal location uncertainty, and extremely low 
prevalence on the order of 7 per 1000 cases [38,39], for example. Moreover, real clinical strategies also include 
comparison with the other breast and global breast architecture analysis. However, introducing all these elements in 
psychophysical experiments would lead to overly hard to interpret results, correlated in many ways. For this reason, the 
limitations of the current study (square regions of interest instead of whole breast, 2-AFC, controlled signal location) are 
still necessary to investigate human observers detection strategy and performance. 
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