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Abstract 

 There has been broad concern that arsenic in the environment exerts neurotoxicity. To determine 

the mechanism by which arsenic disrupts the neuronal development, primary cultured neurons 

obtained from the cerebral cortex of mouse embryos were exposed to sodium arsenite (NaAsO2) 

at concentrations between 0 and 2 M from day 2 to 4 in vitro and cell survival, neurite outgrowth 

and expression of glutamate AMPA receptor subunits were assessed at day 4 in vitro. Cell survival 

was significantly decreased by exposure to the  NaAsO2 concentration, whereas the 0.5  

of NaAsO2 increased cell survival instead. The assessment of neurite outgrowth showed that total 

neurite length was significantly suppressed by 1  and 2  NaAsO2, indicating that the lower 

concentration of NaAsO2 impairs neuritogenesis before inducing cell death. Immunoblot analysis 

of AMPA receptor subunit expression showed that the protein level of GluA1, a specific subunit 

of the AMPA receptor, was significantly decreased by 1 M and 2 M NaAsO2. When 

immunocytochemistry was used to confirm this effect by staining for GluA1 expression in 

neuropeptide Y neurons, most of which contain GluA1, GluA1 expression in neuropeptide Y 

neurons was found to be significantly suppressed by 1 µM and 2 µM NaAsO2 but to be increased 

at the 0.5  concentration. Finally, to determine whether neurons could be rescued from the 

NaAsO2-induced impairment of neuritogenesis by compensatory overexpression of GluA1, we 

used primary cultures of neurons transfected with a plasmid vector to overexpress GluA1, and the 

results showed that GluA1 overexpression protected against the deleterious effects of NaAsO2 on 

neurite outgrowth. These results suggest that, 1) the toxic concentrations of NaAsO2 in regard to 

cell survival, neurite outgrowth and GluA1 expression differ, 2) the NaAsO2 concentration that 

induces neurite suppression is lower than the concentration that induces cell death and is almost 

the same as the concentration that suppresses GluA1 expression, and 3) the suppression of GluA1 

expression by NaAsO2 is at least partly responsible for neurite suppression induced by NaAsO2. 
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1. Introduction 

 The developing brain is vulnerable to toxic chemical compounds during gestation and early 

childhood, and exposure to them permanently affects brain functions (Costa et al., 2004; 

Grandjean and Landrigan, 2006). Heavy metals and persistent organic pollutants have been 

shown to be toxic to the developing brain epidemiologically and empirically (Winneke, 2011). 

Two heavy metals, inorganic lead and methylmercury are notorious causative agents that are 

responsible for the increased prevalence of mental retardation,! cerebral palsy, autism, and 

attention-deficit hyperactivity disorder (ADHD) in children (Goulet et al., 2003; Costa et al., 

2004; Farina et al., 2011; Winneke, 2011). Another metal, arsenic may also have neurotoxic 

effects on development. Follow-up studies of the victims of arsenic poisoning in the Morinaga 

milk incident in Japan have shown that the oral exposure to arsenic during infancy increases the 

prevalence of brain disorders, including mental retardation and epilepsy (Dakeishi et al. 2006). 

Additional evidence of the arsenic neurotoxicity was obtained in an epidemiological study of 

Mexican children living near a smelter demonstrated an inverse correlation between the 

rinary arsenic levels and their verbal intelligence quotients. (Calderón J et al., 2001). 

Epidemiological studies from Bangladesh, China and Taiwan have shown that chronic exposure 

to drinking water containing arsenic decreased the cognitive performance of children (Wang et al., 

2007; Hamadani et al., 2011; Wasserman et al., 2004, 2007; Tsai et al., 2003), suggesting that 

arsenic has toxic effects on the central nervous system not only in the form of an industrial 

pollutant but also as an environmental contaminant of drinking water and food.  

Empirical studies have been performed on experimental animals to determine how arsenic 

exposure impairs normal brain development. Rats and mice exposed to arsenic during gestation 

and early childhood exhibit behavioral deficits such as changes in locomotor activity, learning, 

memory, depression-like behavior and neuromotor reflex (Rodríguez et al., 2002, Xi et al., 2009, 

Martinez-Finley et al. 2009). The behavioral changes caused by arsenic seem to be accompanied 

by neurochemical abnormalities and loss of nerve fibers (Nagaraja and Desiraju, 1993; Martinez 

et al. 2008; Ríos et al., 2009). The inhibitory effects of arsenic on neuritogenesis have been 

monitored in in vitro experiments, and the results have been consistent with the results observed 

in animals in vivo. Studies conducted on immortalized cell lines have shown that arsenic impairs 

neurite outgrowth and complexity (Frankel et al., 2009). Arsenic is known to exert its neurotoxic 

effects by inducing apoptotic cell death as well as the inhibition of neuritogenesis (Koike-Kuroda 

et al., 2010). We recently reported finding that neurite elongation in the Neuro2A cell line was 

suppressed by sodium arsenite at a lower concentration than the concentration that induced 



! %!

apoptosis (Aung et al., 2013). Thus, neuritogenesis would seem to be more sensitive to arsenic 

toxicity than cell viability is. Arsenic may exert its toxic effect through several different 

mechanisms, including at least the different mechanisms that are responsible for the suppression 

of neurite growth and for the induction of apoptosis, but the mechanisms are not completely 

understood. 

  Glutamate transmission plays essential roles in a variety of brain functions and in the 

development. AMPA receptors, a major subtype of glutamate receptors, are composed of four 

types of different subunits, i.e., GluA1, 2, 3 and 4, and play a critical role in excitatory glutamate 

transmission (Kumar and Mayer, 2012). AMPA receptors are also involved in the formation of 

neuronal networks and connectivity. Pharmacological potentiation of AMPA receptors and 

overexpression of either AMPA receptor subunit GluA1 or GluA2 by transient transfection 

promotes neurite outgrowth (Voss et al., 2007; Prithviraj et al., 2008; Chen et al., 2009). These 

results suggest that modifications of AMPA receptor subunit expression and subsequent increases 

in excitability due to enhanced glutamate transmission are closely related to the regulation of 

neuritogenesis.  

 In the present study, we investigated the effects of arsenic on AMPA receptors in primary 

cultures of mouse cortical neurons to determine the mechanism by which arsenic exposure 

suppresses neuritogenesis. Immunoblot and immunocytochemistry analyses showed that arsenic 

suppressed the level of GluA1 expression in parallel with the suppression of neurite outgrowth. 

We also transfected GluA1 into primary neurons with plasmid vectors to determine whether 

overexpression of AMPA receptors would rescue the neurite outgrowth suppressed by arsenic. 

 

2. Materials and Methods 

!"#$%&'($

 Male and female C57BL/6J mice were purchased from CLEA Japan (Tokyo, Japan) and were 

bred in National Institute for Environmental Studies. They were acclimatized to the environment 

for about 1 week prior to use. Throughout the experiment, animals were maintained in a 

controlled environment at a temperature of 24 ± 1 oC and humidity of 50 ± 10% and under a 12/12 

h light/dark cycle (light, ZT0 12; dark, ZT12 24). Food (CE-2, CLEA) and water were available 

ad libitum unless otherwise indicated. Adult males and females were kept in couples to obtain 

pregnant females. Vaginal plug was checked each day to estimate the gestational age. 
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!For the experiment focusing on neuropeptide Y (NPY) neurons, NPY-hrGFP transgenic mice 

produced by Prof. Bradford B. Lowell (Beth Israel Deaconess Medical Center) were purchased 

from the Jackson Laboratory (B6.FVB-Tg(Npy-hrGFP)1Lowl/J, Stock#006417, Bar Harbor, 

ME) (van den Pol et al., 2009). Adult males and females were genotyped by multiplex PCR of 

tail-derived DNA using the following three different primers: TAT GTG GAC GGG GCA GAA 

GAT CCA GG, CCC AGC TCA CAT ATT TAT CTA GAG, and GGT GCG GTT GCC GTA CTG 

GA. The PCR was performed using KOD dash (Toyobo, Tokyo, Japan) according to the 

ns were performed using the following cycle 

conditions: 1) 94 °C for 3 min, 2) 35 cycles of 94 °C for 30 s, 58.5 °C for 5 s, and 74 °C for 30 s, 

and 3) 74 °C for 7 min. PCR products were subjected to electrophoresis on a 1.5 % agarose gel 

and the insertion of transgene was determined by the appearance of band sizes (transgene, 400 bp, 

and internal positive control, 500 bp). For culture of primary NPY-hrGFP neurons, the brain at 

embryonic day 17 was obtained and the green fluorescence in the cerebral cortex observed with 

either IX70 fluorescence microscope (Olympus, Tokyo, Japan) or BioRevo BZ-9000 (Keyence, 

Osaka, Japan).  

 

2.2 Ethics Statement 

Mice were handled in a humane manner in accordance with the National Institute for 

Environmental Studies guidelines. 

 

2.3 Primary culture of neurons and transfection of plasmids 

 Primary cultures of mouse cortical neurons were prepared following the method described 

previously (Chenal and Pellerin, 2007) with slight modifications. Briefly, the pregnant mouse at 

embryonic day 17 was sacrificed by decapitation and the cerebral cortices of embryos were 

collected under dissection microscope. The cortices were washed with 10 mM HEPES-buffered 

Krebs-Ringer bicarbonate buffer (HKRB) containing 10 mM glucose. They were incubated in 

HKRB supplemented with 20 U/ml papain (Sigma Chemical Co., St. Louis, MO), 0.015 mg/ml 

deoxyribonuclease (Sigma), 0.75 mg/ml bovine serum albumin (Sigma) and 1 mM cysteine 

(Sigma) for 10 min at 37 °C in a shaking water bath, followed by gentle mechanical trituration. 

The subsequent cell suspension was centrifuged at 100 ! g for 5 min and the cell pellet collected. 

In the case that transfection of plasmids was required, we used the Amaxa Nucleofector with 

mouse neuron nucleofector® kit (#VPG-1001, Lonza, Basel, Switzerland) following 

s, we used the pmStrawberry plasmid expressing 
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red fluorescent protein mStrawberry under the control of CMV promoter (Maekawa et al. 2009) 

in Fig. 1 B-I, Fig. 4, and Supplementary Fig.1. For overexpressions of GluA1 and 2, we used 

pGFP-GluA1 expressing GFP-fused GluA1 under the control of CMV promoter (kindly provided 

by Dr. Jeremy M. Henley, University of Bristol) and pVenus-GluA2 expressing GluA2-fused with 

Venus, a GFP variant, under the control of CMV promoter. Correct band sizes and surface 

expressions of fused proteins in primary cultures of neurons have been already determined 

previously (Perestenko and Henley, 2003; Maekawa et al., 2009). We used pEGFP (Clontech, 

Takara, Japan) expressing GFP as a control instead of pGFP-GluA1 and pVenus-GluA2. Cells 

undergoing or not transfection were resuspended in Neurobasal medium (Invitrogen, Carlsbad, 

CA) containing B-27 supplement (50!, Invitrogen), 0.5 mM L-glutamine (Invitrogen) and 

antibiotics (Pen/Strep, #15140-148, 100!, Invitrogen).!Cells were seeded onto poly-L-ornithine 

(15 mg/L)-precoated coverslips (12 mm, Matsunami glass, Osaka, Japan) in 24 wells cell culture 

plates (Falcon, Becton Dickinson AG, Basel, Switzerland). Sodium arsenite (NaAsO2) was added 

on the 2nd day in vitro (DIV2) and maintained up to DIV4 at different concentrations. 

 

2.4 Cell survival assay 

 The effect of NaAsO2 on cell survival of neurons was determined using a colorimetric assay 

based on the reduction of tetrazolium salt to formazan by mitochondrial dehydrogenase activity. 

Ten microliters of Tetrazolium reagent WST-1 (Roche, Switzerland) was then reacted with the 

cells at DIV4 for 1 h at 37 °C, and absorbance at 450 nm was then measured using a reference 

wavelength of 650 nm. The absorbance at 650 nm was subtracted from the absorbance at 450 nm, 

and this value was then expressed as a percentage of the value obtained for the neurons without 

NaAsO2 exposure, whose viability was set at 100%. 

 

2.5 Quantification of neurite outgrowth 

 At DIV4, cells were fixed with ice-cold 4% paraformaldehyde-phosphate buffered saline (PBS) 

for 30 min and washed with PBS. Coverslips were mounted with Vectashield Hard set with DAPI 

(H-1500, Vector Laboratories, Burlingame, CA). Images were taken with a Leica TCS SP5 

AOBS!filter free spectral confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany). 

In Fig. 1 B-I, Fig. 4 and Supplementary Fig. 1, to trace neurites, the fluorescence of pmStrawberry 

was detected according to a previous report (Maekawa et al, 2009). Concerning the NPY-hrGFP 

neurons in Fig. 3 D-H, the fluorescence of hrGFP was detected following the setting of GFP 

(Maekawa et al, 2009). Full optical sections of cells were made by capturing Z-series with one 
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micrometer steps. The integrated image constructed from optical sections in order to define the 

details of neurites was made with Leica Application Suite-Advanced Fluorescence (LAS-AF, 

Version 1.8.2 build 1465, Leica). The images of either red or green channel from the integrated 

image were extracted to visualize either pmStrawberry or hrGFP, respectively, and was converted 

to gray scale to further assessment. The total length of neurites and the number of branches were 

examined by using the software NeuronJ (Meijering et al., 2004) which is a plug-in of ImageJ 

(NIH, Bethesda, MD). N are neurites directly 

extending from cell body or are all neurites except 

. The number of branches was counted following this categorization. For representative 

presentations in figures, the images inverted black with white were used for legibility. 

 

2.6 Glutamate assay 

 To detect glutamate in culture medium, the glutamate research ELISA kit (#BA E-2300, LDN, 

amount 

of proteins in each culture well was determined with a BCA protein assay kit (Thermo Fisher 

Scientific, Yokohama, Japan) and glutamate levels corrected for protein level in each well. 

 

2.7 Western blotting 

 Western blotting was carried out as described previously (Maekawa et al. 2009) with a minor 

modification. Briefly, cells were lysed in 0.5% Triton X-100 lysis buffer (50mM Tris-HCl, 150 

mM NaCl, 5mM EDTA) containing proteinase inhibitors (1.9 mg/ml aprotinin, 10 mg/ml 

leupeptin, 100 mM sodium orthovanadate and 200 mM phenylmethylsulfonyl fluoride). The 

protein concentration of lysate was determined with a BCA protein assay kit and the value was 

used for equilibrating the protein level of each lane for SDS-PAGE. After boiling with SDS 

sample buffer (50mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 100mM DTT, 0.001% 

bromphenol blue), the samples were subjected to SDS-PAGE and then transferred to PVDF 

membranes (Hybond-P, Thermo Fisher Scientific). The membranes were blocked by 1% 

casein-PBS for 1 hr and allowed to react with anti-GluA1 (1:1,000, AB1504, Millipore), 

anti-GluA2/3 (1:1,000, AB1506, Millipore), and anti-GluA4 (1:1,000, AB1508, Millipore), and 

anti- -actin (1:5,000, Sigma-Aldrich) overnight at 4 °C, washed, and then allowed to react with 

horseradish peroxidase-conjugated secondary antibody (anti-rabbit IgG or anti-mouse IgG1) for 1 

hr at room temperature. After washing, membranes were developed using the ECL Plus Western 
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Blotting Detection System (Thermo Fisher Scientific). Band density of each well was determined 

with ImageJ. 

 

2.8 Immunocytochemistry and assessment of relative intensity of fluorescence 

 After fixating with ice-cold 4% paraformaldehyde-PBS and rinsing in PBS, cells were incubated 

with 1% casein-PBS for 1 hr at room temperature in order to block non-specific binding of 

antibody. Next, cells were incubated with rabbit anti-GluA1 (1:100), anti-GluA2/3 (1:100), and 

anti-GluA4 (1:100) in 1% casein-PBS for 24 hrs. After further washing with PBS, cells were 

incubated with AlexaFluor 594-labeled donkey anti-rabbit IgG (1:200, A21207, Invitrogen) for 2 

hrs at 37 °C. After washing again with PBS, cells were examined with confocal microscope. The 

number of GluA1-positive neurons among NPY-hrGFP neurons was manually counted by using 

the integrated images of neurons without treatment with NaAsO2. Relative intensity of GluA1 

immunofluorescence was calculated in the area delineating the cell body of NPY-hrGFP neurons 

with or without treatment with NaAsO2 by using LAS-AF. 

 

2.9 Statistical analyses 

 Data are expressed as mean ± S.E.M. Replicates are indicated in parentheses. All data except Fig. 

2E were analyzed by one- post-hoc least significant difference 

using R (The R Foundation for Statistical Computing, Vienna, Austria). Data in Fig. 2E were 

analyzed by Student  t-test with Microsoft Excel 2008 for Mac (Microsoft, Redmond, WA). 

Differences were considered significant for p< 0.05. 

 

3. Results 

3.1 Effect of NaAsO2 on cell viability and neurite outgrowth 

 To determine the concentrations of NaAsO2 that affect the survival of primary cultured neurons, 

we exposed them to NaAsO2 concentrations of 0, 0.125, 0.25, 0.5, 1, and 2 M from DIV2 to 4. 

As shown with the cell survival assay using WST-1 on DIV4 neurons, NaAsO2 significantly 

reduced cell viability at the 2 M concentration (Fig. 1A). However, no significant decrease in 

cell viability was observed at concentrations up to 1 M (Fig. 1A). In contrast to the effect of the 

2 M concentration of NaAsO2, the 0.5 M concentration significantly increased the survival of 

primary neurons and the tendency to increase cell survival was also found at the 0.125 M and 

0.25 M concentrations.  

 Analysis of the computer-assisted neurite tracings showed a significant reduction in total neurite 
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length per cell at the 1  and 2 concentrations of NaAsO2 (Fig. 1F), and the degree of the 

reduction was greater at 2 M (Fig. 1F). At 0.5  NaAsO2 tended to increase total neurite length, 

but the difference between the effects of the 0  and 0.5  concentrations was not significant. 

 We also counted the number of total, primary, and secondary and higher order branches per cell. 

Although total number of branches tended to decrease as the concentration increased (1.0 M vs 0 

and 0.5 M, p=0.09), there were no significant differences between the effects of the different 

concentrations on total number of branches or on the number of primary branches (Fig. 1G and H). 

The number of secondary and higher order branches in the group exposed to 1 M or 2 µM 

NaAsO2 were smaller than they were in the control group, but differences were not  significant 

(Fig. 1I). 

 

3.2 Effect of NaAsO2 on extracellular glutamate levels and on the A MPA receptor 

expression  

 Since excitotoxicity induced by increases in extracellular glutamate levels is known to be 

involved in neurodegenerative diseases (Lau and Tymianski, 2010), we therefore suspected that 

NaAsO2 elicits excitotoxicity by increasing extracellular glutamate levels. Extracellular 

glutamate levels were measured by collecting the culture medium of primary neurons that had 

been exposed to NaAsO2 at concentrations of 0, 0.125, 0.25, 0.5, and 1 M from DIV2 to 4 (Fig. 

2A). However, no significant differences in glutamate levels were detected, suggesting that 

NaAsO2 does not affect glutamate release by primary cultured cortical neurons. Next, we 

performed an immunoblot analysis to assess the levels of expression of AMPA receptor subunits. 

Cultured neurons were exposed to NaAsO2 at concentrations of 0, 0.5, 1, and 2 M from DIV2 to 

DIV4, and cell lysates were obtained at DIV4. Immunoblotting with anti-GluA1 antibody showed 

decreased expression of GluA1 in neurons exposed to 1 µM or 2 µM NaAsO2 in comparison with 

neurons exposed to the 0 M and 0.5 M concentrations (Fig. 2B), but there were no significant 

difference in -actin protein levels (Fig. 2B). Quantification of the GluA1/ -actin intensity ratio 

with the ImageJ software program revealed that exposure to NaAsO2 at 1 M or 2 M 

significantly reduced GluA1 expression (Fig. 2C). As far as other AMPA receptor subunits are 

concerned, a comparison between neurons exposed to NaAsO2 at concentrations of 0 M and 1 

M was performed (Fig. 2D). In this experiment, we first confirmed the decreased GluA1 

expression by the exposure to 1 M NaAsO2. Immunoblotting with anti-GluA2/3 and anti-GluA4 

antibodies revealed no changes in GluA2/3 and GluA4 levels as a result of exposure to 1 M 

NaAsO2, suggesting that NaAsO2 affects the expression of glutamate AMPA receptors in a 
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subunit-specific manner. Since we previously showed that NaAsO2 has no significant effect on 

the mRNA levels of microtubule associated protein-2 (MAP2) and -actin (Aung et al., 2013), we 

measured the protein levels of MAP2 and -actin as negative controls in this study. As expected, 

there was no difference in their expression according to whether the cells had been exposed to 1 

µM NaAsO2 or not (Fig. 2D). Quantification of band density confirmed that exposure to 1 M 

NaAsO2 significantly reduces of GluA1 expression but does not reduce expression of any of the 

other subunits (Fig. 2E). 

 

3.3 Effect of NaAsO2 on GluA1 expression in primary cultured NPY-hr G FP neurons 

To confirm the results of the immunoblot analyses showing that NaAsO2 suppresses the GluA1 

level by a different approach, we used primary cultures prepared from transgenic mice that 

express a humanized Renilla green fluorescence protein under the control of a neuropeptide Y 

gene promoter (NPY-hrGFP). The cerebral cortex emitting green fluorescence could be observed 

in the macroview of the mouse brain at embryonic day 17 by using BioRevo BZ-9000 (Fig. 3A). 

We easily identified NPY-hrGFP neurons in primary cultures of cortical neurons, because their 

cell bodies and neurites emitted green fluorescence (Fig. 3B). Immunofluorescence staining with 

anti-GluA1 antibody revealed that at DIV4 98.5% of the NPY-hrGFP neurons were 

GluA1-positive under our culture conditions (Fig. 3B and 3C). Before examining GluA1 levels, 

we checked to see whether neurite outgrowth of NPY-hrGFP neurons could be suppressed in a 

similar manner as that shown in Fig. 1. The results of exposure to NaAsO2 concentrations of 0, 

0.5, 1 and 2 M showed that neurite elongation was reduced when exposed to the 1 M 

concentration and that the reduction became greater at the 2 M concentration (Fig. 3D-H), 

indicating that the NaAsO2 concentrations that reduced neurite outgrowth by NPY-hrGFP 

neurons were the same as those presented in Fig. 1F. Using the same paradigm of NaAsO2 

treatment, we measured the immunoflurescent intensity of GluA1 and GluA4 in NPY-hrGFP 

neurons. The relative intensity of fluorescence using anti-GluA1 antibody was significantly 

higher in neurons exposed to 0.5 M NaAsO2 than to other concentrations (Fig. 3I). By contrast, 

1 M NaAsO2 reduced the intensity of the GluA1-immunofluorescent signal and 2 M NaAsO2 

reduced its intensity even more. These results suggested the existence of a relation between the 

reduction in GluA1 expression level and neurite suppression. On the other hand, the intensity of 

the GluA4-immunofluorescent signal increased with the concentration of NaAsO2 (Fig. 3J), 

confirming that NaAsO2 specifically reduces GluA1 expression and does not reduce GluA4 

expression. We also investigated the effects of NaAsO2 on GluA2/3 by immunofluorescent 
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staining with an anti-GluA2/3 antibody, but the immunofluorescent signal for GluA2/3 was weak 

at DIV4, and there was no marked difference in GluA2/3 immunofluorescent intensity according 

to whether the cells had been exposed to NaAsO2 or not (data not shown).  

 

3.4 Effects of G luA1 and GluA2 overexpression on impaired neurite outgrowth 

  To determine whether overexpression of exogenous AMPA receptor subunits could compensate 

for the decreased GluA1 expression induced by NaAsO2 and rescue the inhibitory effect of 

NaAsO2 on neurite outgrowth, primary cultured neurons prepared from mouse cerebral cortex 

were transfected with a plasmid vector to express GFP-fused GluA1 (pGFP-GluA1) or 

Venus-fused GluA2 (pVenus-GluA2) under the control of a CMV promoter in combination with 

pmStrawberry and then exposed to 2 M NaAsO2 from DIV2 to DIV4 (Fig. 4A-D). A pEGFP 

plasmid vector was used to express GFP was used instead of the GluA1 and GluA2 expression 

vectors. Neurite outgrowth by the neurons transfected with the control vector expressing GFP was 

strongly inhibited by 2 M NaAsO2 (Fig. 4C), whereas neurite outgrowth was stimulated by 

GluA1 overexpression (Fig. 4B), and its overexpression mitigated the inhibitory effect of 

NaAsO2 on neurite outgrowth (Fig. 4D). Quantification of total neurite length also demonstrated 

that 2 M NaAsO2 significantly reduced the total neurite length of neurites in neurons in the 

absence of GluA1 overexpression and that the inhibition of neuritogenesis by NaAsO2 was 

prevented by GluA1 overexpression (Fig. 4E). Exposure to 2 M NaAsO2 significantly reduced 

the total number of branches in both the presence and absence of GluA1 overexpression (Fig. 4F). 

In contrast to its rescuing effect on total neurite length, overexpression of GluA1 did not 

overcome the significant effect of NaAsO2 on total branch number (Fig. 4F). No significant 

differences were observed in number of primary branches (Fig. 4G). The numbers of secondary 

and higher order branches were significantly increased by GluA1 overexpression in the absence 

of NaAsO2 exposure (Fig. 4H), but their numbers remained low after exposure to NaAsO2 even 

though GluA1 was overexpressed (Fig. 4H).  

 GluA2 overexpression had effects on neurite length and the number of branches that were 

similar to the effects of GluA1 overexpression (Supplementary Fig. S1A-H). The results of 

GluA2 overexpression are shown in detail in the supplementary text. 
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4. Discussion 

 Neuritogenesis in our primary culture of mouse cortical neurons was impaired by exposure to 

NaAsO2 concentrations of 1 M or above, and NaAsO2 exposure to the same concentrations also 

decreased their GluA1 levels. GluA1 overexpression blocked the inhibition of neurite elongation 

by NaAsO2. These results indicate that the suppression of neurite outgrowth by NaAsO2 may at 

least be partially attributable to reduced glutamate AMPA receptor expression. On the other hand, 

exposure to 0.5 M NaAsO2, a lower concentration than the concentration that induced neurite 

suppression, increased cell survival and the GluA1 levels according to the immunocytochemistry 

findings.  

 

4.1 A rsenic-induced suppression of neurite outgrowth and reduction of GluA1 expression 

 In this study, 1 M NaAsO2 did not affect cell viability, but strikingly suppressed neurite 

outgrowth. In a previous study we found that lower concentrations of NaAsO2 affected 

neuritogenesis before inducing apoptotic and necrotic cell death (Aung et al., 2013). Studies by 

other groups have shown that neurite damage is a cue for the induction of cell death (Berliocchi et 

al., 2005, Volbracht et al., 2001). Thus, the suppression of neurite outgrowth may be a primary 

step in the developmental neurotoxicity of arsenic. 

 Several hypotheses have been proposed to explain how arsenic suppresses neurite outgrowth. 

Excitotoxicity is caused by excess levels of neurotransmitters, such as glutamate and other 

excitatory transmitters, and has been reported to lead to several neurodegenerative diseases (Lau 

and Tymianski 2010). Since we suspected that excitotoxicity mediates the arsenic-induced neurite 

suppression, we measured the glutamate concentration in culture medium after NaAsO2 exposure. 

Surprisingly, the glutamate concentration in the culture medium was unaltered by NaAsO2 (Fig. 

2A) and thus excitotoxicity may not be the cause of the neurite suppression in our culture system. 

A decrease in the number of glutamate receptor(s) is another possible cause of neurodegenerative 

diseases, because changes in cerebral AMPA receptor expression have been reported in 

neurodegenerative diseases (Optiz et al.,!2000), and AMPA receptor knockdown itself is a cause 

and an aggravating factor of neurodegeneration (Oguro et al., 1999). We performed two 

experiments to test the hypothesis that NaAsO2 suppresses AMPA receptor expression. In the first 

experiment, AMPA receptor protein levels in total cell lysates were measured by immunoblot. 

The results showed that NaAsO2 at concentrations of 1 M and above reduced the GluA1 levels 

and that the reductions paralleled the suppression of neurite elongation. In the second experiment, 

we performed immunocytochemistry on NPY-hrGFP neurons to verify the result of the first 
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experiment. NPY neurons localized mainly in layer II/III and VI of the cerebral cortex (van den 

Pol et al., 2009) are known to be involved in neurological diseases such as epilepsy, schizophrenia, 

depression and ADHD (Lesch et al.,!2011; Brothers and Wahlestedt, 2010; Connor et al., 2011). 

NPY neurons have been reported to function as inhibitory interneurons (Gelman et al., 2011). 

NPY-hrGFP neurons have a great advantage of allow examination of the detailed morphology of 

NPY neurons through green fluorescence without specific staining. Since neurites of NPY-hrGFP 

neurons were as vulnerable to NaAsO2 as the neurites of neurons transfected with pmStrawberry 

(Fig. 3D-H), we concluded that NPY-hrGFP neurons could be used as a typical example of 

cortical neurons in regard to sensitivity to NaAsO2. It is also advantageous to utilize NPY-hrGFP 

neurons when evaluating GluA1 levels, because most NPY-hrGFP neurons exhibited 

GluA1-immunoreactivity in our culture system (Fig.3C). The immunocytochemistry analysis of 

GluA1 in NPY-hrGFP neurons confirmed that NaAsO2 at concentrations of 1 M and above 

reduced GluA1 expression. Based on the consistent results obtained in these two experiments, we 

speculated that reduced GluA1 expression is a factor that links NaAsO2 exposure to impaired 

neurite outgrowth. Since exposing rats to arsenic has been reported to increase the glutamate 

content of their brain (Nagaraja and Desiraju, 1993), the possibility remains that excitotoxicity 

still occurs following arsenic exposure in in vivo. Further study will be necessary to determine 

whether arsenic affects glutamate release and/or glutamate AMPA receptor expression in vivo.  

 Some etiological causes explaining how NaAsO2 reduces GluA1 levels can be proposed. 

Arsenic is known to induce oxidative stress, and oxidative stress leads to the suppression of 

neurite outgrowth and changes in cytoskeletal proteins expression (DeFuria and Shea, 2007; 

Wang et al., 2010). We recently demonstrated that NaAsO2 specifically changed the gene 

expression of cytoskeletal proteins in Neuro2A cells (Aung et al., 2013). Exposure to NaAsO2 

dose-dependently reduced the mRNA levels of tau and tubulin in Neuro2A cells but increased the 

mRNA levels of the light and medium subunits of neurofilaments. Since the intracellular transport, 

synaptic insertion and recycling of GluA1 have been reported to be controlled by cytoskeletal 

proteins (Anggono and Huganir, 2012; Perestenko and Henley, 2003), reduced GluA1 levels may 

be caused by cytoskeletal dysfunction in response to oxidative stress induced by NaAsO2. Apart 

from cytoskeletal dysfunction, epigenetic regulation of GluA1 may be responsible for the 

arsenic-induced suppression of neurite outgrowth. It has been reported that expression of HDAC2, 

a subtype of histone deacetylase sensitive to neurotoxic insults, was found to increase in response 

to oxidative stress and neurotoxic accumulation of -amyloid, and that the increase reduced gene 

expression of proteins related to synaptic plasticity including GluA1, as a result of deacetylation 
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of histones localized at their promoters (Gräff et al. 2012). Given that arsenic affects HDAC2 

expression through eliciting oxidative stress, GluA1 expression may be reduced by the activity of 

HDAC2. These hypotheses should be tested in future studies. 

 

4.2 Rescue f rom arsenic-induced suppression of neurite outgrowth by overexpression of 

G luA 

 Compensatory overexpression of GluA1 partially reversed the neurite suppression induced by 

2 M NaAsO2 in this study (Fig. 4), thereby indicating that the impaired neurite outgrowth is at 

least partly due to the reduction of the GluA1 expression level. AMPA receptors composed of any 

tetrameric combination of GluA1-4 subunits are permeable to Na+ after glutamate binds to them, 

whereas Ca2+ permeability depends on their subunit composition. AMPA receptors lacking 

GluA2 are Ca2+-permeable, whereas AMPA receptors containing GluA2 are Ca2+-impermeable 

(Hume et al., 1991; Verdoorn et al., 1991). Since overexpression of GluA1 and GluA2 has been 

reported to increase total neurite length by increasing neuronal excitability (Prithviraj et al., 2008, 

Chen et al., 2009), both GluA1 and GluA2 may be associated with neuritogenesis despite the 

difference in Ca2+ permeability. In our case, overexpression of GluA2 as well as GluA1 partly 

reversed the impaired neurite outgrowth (Fig.4 and Supplementary Fig. 1). Therefore, the 

recovery from impaired neurite outgrowth caused by NaAsO2 is likely to be related to the 

increase in neuronal excitability as a result of Na+ entry rather than due to Ca2+ entry. 

 The observation that GluA overexpression rescues neurons from arsenic neurotoxicity implies 

that GluA stimulation by certain drugs may have a therapeutic effect on neurodegeneration 

induced by arsenic. AMPA receptor agonists and modulators, such as ampakines, might be 

candidate drugs for the prevention and/or treatment of arsenic-induced neurodegeneration. 

 

4.3 Effect of low arsenic concentrations on neurons 

 Although exposure to NaAsO2 concentrations of 1 M and above reduced cell survival, the 0.5 

M concentration of NaAsO2 had the opposite effect and at rather significantly increased cell 

survival, and immunocytochemistry measurements showed that it tended to increase neurite 

outgrowth and significantly increased GluA1 levels when measured by immunocytochemistry. 

Exposure to arsenic concentrations below the concentration that causes cell death has been 

reported to stimulate keratinocyte proliferation and vascular cell proliferation through 

overexpression of growth factors and activation of tyrosine phosphorylation, respectively 

(Germolec et al., 1996; Barchowsky et al., 1999). We have not yet identified the pathway by 
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which arsenic increases cell survival and GluA1 levels in neurons at concentrations below the 

concentration that suppresses neurite growth. It should be identified in a future study. 

 The occurrence of neurodevelopmental disorders such as autism and ADHD have been 

suspected of being associated with exposure to environmental chemicals, including arsenic 

(Grandjean et al., 2006). Increases in the size of some brain regions and decreases in the size of 

others have been reported in neurodevelopmental disease (Seidman et al. 2011; Bauman and 

Kemper, 2005), and these anomalies might  cognitive dysfunction. If 

arsenic affects the brain differently depending on its concentration, since great differences in 

arsenic distribution among brain regions have been reported after exposure to arsenic, reduction 

and stimulation of cell survival and/or neurite outgrowth may occur simultaneously in different 

brain regions (Sánchez-Peña et al., 2010). Therefore, not only a decrease but also an increase in 

cell number and/or neurite outgrowth might be taken into account as a feature of arsenic adverse 

effects. The hypothesis that arsenic exerts its toxic effects through mechanisms that differ 

according to the brain regions will need to be tested in experimental animals in the future. 

 

5. Conclusions 

 In conclusion, exposure to arsenic at concentrations below the concentration that caused cell 

death in primary cultures of cortical neurons impaired neuritogenesis and we speculate that 

impaired neuritogenesis is partly due to reduction of GluA1 expression. By contrast, cell survival 

and GluA1 expression both increased when exposed to NaAsO2 concentrations below the 

concentrations that impaired neurite outgrowth. Future studies will be required to determine 

whether these findings in culture systems also occur in experimental animals in vivo. 
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F igure L egends 

F ig. 1. Effects of NaAsO2 on cell viability and neurite outgrowth in primary cultures of 

neurons. A . Cell viability was assessed using the WST-1 assay. Cell viability was significantly 

reduced by exposure to 2 M NaAsO2 (b, p<0.01 vs 0, 0.125, 0.25, 0.5, 1 M). No significant 

decrease of cell viability was found between the exposures to 0 M and 1 M NaAsO2. The 

exposure to 0.5 M NaAsO2 rather increased cell viability when compared to 0, 1 and 2 M (a, 

p<0.01). B-E . Confocal images of neurons exposed to 0, 0.5, 1 and 2 M NaAsO2 from DIV2 to 

4. F. Total neurite length of neurons exposed to 0, 0.5, 1 and 2 M NaAsO2 from DIV2 to 4. A 

significant reduction of total neurite length per cell (a, p<0.05 vs 0 M and 

p<0.01 vs 0.5 M) and the degree of reduction was more severe at 2 M (b, p<0.01 vs 0 and 0.5 

M). G . Total number of branches. H . Number of primary branches. I . The number of secondary 

and higher order branches. The number of secondary and higher order branches was significantly 

decreased in groups exposed to 1 M or 2 µM NaAsO2 when compared to the group exposed to 

0.5 M NaAsO2 (a, p<0.01 vs 1.0 and 2.0 M), but there was no significant difference when 

compared to the group at 0 µM. 

 

F ig. 2. Effects of NaAsO2 on extracellular glutamate levels and expression of A MPA 

receptors. A . The concentration of glutamate in the culture medium of primary neurons had been 

exposed to NaAsO2 at concentrations of 0, 0.125, 0.25, 0.5, and 1 M from DIV2 to DIV4. There 

was no difference in the concentrations of glutamate among groups. B . Immunoblot analyses of 

GluA1 and control -actin expression levels. C . Quantification of optical density (O.D.) of bands 

revealed that GluA1 expression was significantly decreased by the exposure to 1 M NaAsO2 (a, 

p<0.01 vs 0 M and p<0.05 vs 0.5 M) and the decrease became more severe by the exposure to 

2 M NaAsO2 (b, p<0.01 vs 0 and 0.5 M and p<0.05 vs 1.0 M). D . Immunoblot analyses of 

AMPA receptors GluA1, 2/3 and 4 at the concentrations of 0 and 1 M NaAsO2. MAP2 

and -actin were used as controls. E . GluA1 levels were significantly decreased by the exposure 

to 1 M NaAsO2 (a, p<0.01 vs 0 M). GluA2/3 and GluA4 levels were unchanged. 

 

F ig. 3. Effect of NaAsO2 on GluA1 expression in primary-cultured NPY-hr G FP neurons. A . 

Macroscopic view of the cerebral cortex emitting green fluorescence from the transgenic mouse 

expressing a humanized Renilla green fluorescence protein (hrGFP) under the regulation of the 

neuropeptide Y (NPY) gene promoter (NPY-hrGFP). B . Immunocytochemistry of GluA1 in 

NPY-hrGFP neurons. Green indicates hrGFP-tagged NPY neuron. Red indicates 
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GluA1-immunoreactivity. Blue indicates 4',6-diamidino-2-phenylindole (DAPI) which reflects 

the nuclei. Arrows indicate the NPY-hrGFP and GluA1-double positive cells and arrowheads 

indicate GluA1-single positive cells. Most of NPY-hrGFP neurons shown here exhibited 

GluA1-immunoreactivity. C . Percentage of GluA1-positive neurons compared to total 

NPY-hrGFP neuron. 98.5% of NPY-hrGFP neurons were GluA1-positive D-G . Morphology of 

NPY-hrGFP neurons exposed to NaAsO2 at concentrations of 0, 0.5, 1 and 2 M. H . Total neurite 

length of NPY-hrGFP neurons exposed to 0, 0.5, 1 and 2 M NaAsO2 from DIV2 to DIV4. The 

length of neurites was significantly decreased at the exposure to 1 M NaAsO2 (a, p<0.01 vs 1 

and 2 M; b, p<0.05 vs 0 and 2 M ; c, p< 0.01 vs 0 M) and the decrease became more severe at 

2 M NaAsO2. I . Effect of NaAsO2 on relative intensity of GluA1 immunoreactivity in 

NPY-hrGFP neuron. Relative intensity became significantly higher by the exposure to 0.5 M 

NaAsO2 (a, p<0.01 vs 0, 1 and 2 M). By contrast, the exposure to 1 M NaAsO2 significantly 

reduced the relative intensity (b, p<0.01 vs 0 and 2 M; c, p<0.01 vs 0 M) and the exposure to 2 

M NaAsO2 induced more important reduction. J. Effect of NaAsO2 on the relative intensity of 

GluA4 immunoreactivity in NPY-hrGFP neurons. Relative intensity of GluA4 immunoreactivity 

rather increased with the concentrations of NaAsO2 (a, p<0.01 vs 0 and 2 M, p<0.05 vs 1 M; b, 

p<0.01 vs 0 M, p<0.05 vs 2 M; c, p<0.01 vs 0 M).  

 

F ig. 4. Effects of G luA1 overexpression on impaired neurite outgrowth induced by NaAsO2 

A-D . Effect of the combination of GluA1 overexpression and NaAsO2 treatment on neurite 

NaAsO2 the exposure to 2 M NaAsO2 from DIV2 to DIV4 and 

NaAsO2(-  no such exposure. GluA1(+  indicates neurons transfected with 

pGFP- -  neurons transfected with control pEGFP. E . Changes in 

total neurite length induced by the combination of GluA1 overexpression and NaAsO2 treatment. 

GluA1 overexpression significantly increased total neurite length of neurons with no NaAsO2 

treatment (a, p<0.01 vs other groups). The exposure to NaAsO2 significantly reduced total neurite 

length (b, p<0.05 vs NaAsO2(-)-GluA1(-) group) but GluA1 overexpression alleviated the 

inhibitory effects of NaAsO2 on neurite length (c, p<0.01 vs NaAsO2(-)-GluA1(+) and 

NaAsO2(+)-GluA1(-) groups). F. Total number of neurite branches. The treatment with NaAsO2 

significantly reduced the total number of branches and GluA1 overexpression tended to increase 

the total number of branches but the overexpression could not overcome the effect of NaAsO2 (a, 

p<0.01 vs NaAsO2 (+)-GluA1(-) group, p<0.05 vs NaAsO2 (+)GluA1(+) group; b, p<0.05 vs 

NaAsO2(-)-GluA1(-) group). G . The number of primary branches. No difference was found 
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among groups. H . The number of secondary and higher order branches. GluA1 overexpression 

increased the number in NaAsO2-untreated groups (a, p<0.01 vs other groups) but it could not 

overcome the effect of NaAsO2 treatment.  
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