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Abstract	
	
The	advent	of	magnetic	resonance	(MR)	 imaging	has	brought	to	the	field	of	neurosciences	
the	stupendous	ability	of	in-vivo	study	of	the	human	brain’s	tissular	properties.	More	recent	
developments	in	the	field	of	computational	anatomy	have	led	to	automated	approaches	of	
volumetric	assessment	of	the	brain	in	voxel-based	morphometry	(VBM).	VBM	has	provided	
significant	understanding	about	physiopathology	of	brain	diseases,	including	psychiatric	and	
neurodegenerative	 diseases	 (NDDs).	 VBM	 performs	 tissue	 classification	 using	 algorithms	
that	 rely	 on	 contrast	 between	 tissues	 and	 probabilistic	maps,	 termed	 tissue	 priors.	 These	
algorithms	 have	 provided	 accurate	 and	 satisfying	 study	 of	 the	 human	 cortex.	 However,	
tissue	 classification	 of	 deep	 gray	 matter	 such	 as	 the	 basal	 ganglia	 has	 been	 found	 to	 be	
largely	unreliable.	Conventional	T1-weighted	MR	 imaging	provides	 lower	contrast	 for	deep	
gray	matter	than	the	cortical	gray	matter.	The	main	reason	for	this	contrast	bias	is	the	higher	
iron	 concentration	 in	 those	 structures.	 Moreover,	 iron	 deposits	 increase	 in	 the	 normal	
ageing	 adult	 and	 reach	 pathological	 concentrations	 in	 a	 wide	 number	 of	 neurological	
disorders	including	NDDs.	Accurate	assessment	is	thus	challenged	for	subcortical	structures	
in	both	health	and	disease.	
Recently,	 quantitative	 MR	 imaging	 (qMRI)	 has	 been	 developed	 to	 allow	 quantitative	
assessment	 of	 tissular	 microstructure	 of	 the	 brain.	 Those	 new	 sequences,	 such	 as	
magnetization	 transfer	 saturation	 (MT)	 and	 effective	 transverse	 relaxation	 rate	 (R2*)	
parameter	maps,	 provide	 better	 contrast	 by	 displaying	 quantitative	 surrogates	 for	myelin	
and	 iron	 respectively.	 MT	 parameter	 maps	 have	 shown	 to	 overcome	 high	 iron	 content	
sensitivity	and	to	be	highly	suitable	for	automated	delineation	of	the	basal	ganglia.	Although	
MT	parameter	maps	provide	sufficient	contrast,	current	tissue	priors	remain	 insufficient	to	
provide	 satisfying	 tissue	classification.	 In	 this	work,	we	created	 robust	and	accurate	 tissue	
priors	for	deep	gray	matter.	
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Introduction	
Background	

Basal	ganglia	:	anatomy,	function	and	associated	diseases	

Anatomy	of	basal	ganglia	
The	human	central	nervous	system	(CNS)	is	composed	of	the	brain	and	the	spinal	cord.	The	
CNS	is	divided	in	two	major	tissue	types	:	the	gray	matter	(GM)	and	the	white	matter	(WM).	
The	main	difference	is	that	GM	is	formed	of	cell	bodies	of	neurons	and	axonal	projections	of	
neurons	 as	 of	WM	 only	 contains	 axons	 without	 neuronal	 cell	 bodies.	 Brain	 GM	 is	 either	
located	at	 the	 surface	of	 the	brain	 as	 an	outer	 layer	over	 the	brain	WM	and	 is	 called	 the	
cortex,	or	arranged	in	nuclei	within	the	WM	and	is	called	the	deep	gray	matter.		
Deep	gray	matter	pertaining	to	the	telencephalon	is	termed	the	basal	ganglia.	Namely,	the	
basal	 ganglia	 are	 composed	 of	 the	 caudate	 nucleus	 (CN),	 the	 putamen	 and	 the	 globus	
pallidus	(GP)	that	is	subdivided	into	external	and	internal	segments	(figure	1).	The	putamen	
and	the	CN	form	the	same	functional	unit	called	the	striatum.	The	putamen	and	the	GP	are	
morphologically	 closely	 related	and	 form	together	 the	 lenticular	nucleus.	The	diencephalic	
deep	gray	matter	is	mainly	composed	of	the	thalamus.	The	mesencephalon	(upper	division	
of	 brain	 stem)	 contains	 deep	 gray	 matter	 that	 is	 closely	 connected	 to	 the	 previously	
described	structures	:	the	subthalamic	nucleus	(STN),	the	substantia	nigra	(SN)	and	the	red	
nucleus	(RN	;	not	illustrated,	behind	SN)	(figure	1).	

	
	

	
	

Figure	 1	 :	 Illustration	 of	 deep	 gray	 matter	 structures	 :	 the	 basal	 ganglia	
(telencephalon),	the	thalamus	(diencephalon),	STN	and	SN	(mesencephalon).	

Adapted	illustration	used	with	permission	of	Huntington’s	Disease	Outreach	Project	for	
Education	at	Stanford	(HOPES),	http://hopes.stanford.edu	
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Function	of	basal	ganglia	
The	 basal	 ganglia	 and	 their	 projections	 involve	 three	 primary	 functions	 :	 motor	 control,	
cognition	and	motivation	(reward	system).		
Basal	ganglia	stock	and	mobilize	complex	learned	motor	tasks,	such	as	writing,	and	provide	
motor	 initiation,	 integration	 and	 adjustment	 to	 the	motor	 cortex	 to	 produce	 appropriate	
motor	 output	 to	 the	 muscles.	 Subcortical	 motor	 processing	 permits	 precise,	 fast	 and	
adapted	movements.		
The	 two	 latter	 functions	 –	 cognition	 and	 motivation	 –	 are	 essential	 to	 higher	 behavioral	
functioning.	The	high	connectivity	between	the	basal	ganglia	and	with	the	other	subcortical	
structures	as	well	as	with	the	cortex	makes	those	nuclei	the	key	structures	for	appropriate	
goal-directed	 and	 adaptive	 behaviors,	 habit	 formation	 and	 long-term	 planning.	 These	
require	 a	 high	 and	 complex	 integration	 of	 emotions,	 memory,	 cognitive	 planning	 and	
motivation	with	 adaptive	 learning	 faculty	 to	 respond	 to	 internal	 and	 environmental	 cues.	
Therefore	 the	 basal	 ganglia	 play	 a	 crucial	 role	 for	 adapted	motor	 and	 behavioral	 controls	
thus	elaboration	and	execution	of	action	plans	(for	review,	see	Haber,	2014)	(1–3).	

Diseases	involving	the	basal	ganglia	
The	diseases	implying	the	basal	ganglia	exhibit	a	spectrum	of	disorders	of	various	motor	and	
neuropsychiatric	 features.	 Conditions	 such	 as	 essential	 tremor	 (ET)	 and	 dystonia	 are	
primarily	motor	disorders	that	arise	from	dysfunction	of	the	basal	ganglia.	Conversely,	other	
disorders	 involve	 principally	 neuropsychiatric	 characteristics	 as	 addiction,	 schizophrenia,	
borderline	personality	disorder	and	depression.	However	a	lot	of	diseases	implying	the	basal	
ganglia	incorporate	both	dimensions	in	various	degrees	:	Huntington	disease	(HD),	Tourette	
syndrome,	 Parkinson	 disease	 (PD)	 and	 atypical	 parkinsonian	 syndromes	 (PSs),	 obsessive-
compulsive	disorder	(OCD),	stuttering,	restless-legs	syndrome	and	narcolepsy	(3–5).		
Overall	 these	 disorders	 affect	 a	 significant	 part	 of	 the	 population	 and	 account	 for	 high	
burden	of	disease.	In	vivo	study	of	basal	ganglia	through	magnetic	resonance	(MR)	imaging	
has	 brought	 significant	 understanding	of	 physiopathology	 and	 led	 to	 therapeutic	methods	
such	as	deep	brain	stimulation	(DBS),	a	neurosurgical	procedure	that	 implants	an	electrical	
stimulator	on	a	specific	brain	target.	DBS	has	shown	to	be	an	effective	treatment	method	for	
PD,	ET,	dystonia,	refractory	and	severe	depression	and	OCD	with	possible	expansion	to	other	
basal	ganglia-related	diseases	(6–8).			
Therefore	 further	 study	 of	 function	 in	 health	 and	 disease	 along	 with	 improvement	 of	
subcortical	gray	matter	imaging	is	essential	to	improve	and	create	new	innovative	diagnostic	
and	treatment	methods.	

Commonly	used	tissue	classification	methods	in	magnetic	resonance	imaging	
MR	imaging	allowed	considerable	progress	in	the	field	of	neuroscience	and	enabled	the	 in-
vivo	study	of	the	human	brain	in	both	health	and	disease.	
Voxel-based	 morphometry	 (VBM)	 has	 been	 the	 first	 technique	 to	 provide	 quantitative	
morphometric	assessment	of	brain	structure	from	MR	images.	Regions	of	interest	(ROI)	were	
initially	 delineated	 manually	 or	 semi-manually	 to	 compute	 the	 volume	 of	 a	 particular	
structure.	Laborious	work	of	manual	delineation	and	limitation	of	study	to	selected	ROI	led	
to	new	automated	approaches	(9).		
VBM	classifies	brain	 images	 into	different	 tissue	classes	 :	GM,	WM	and	cerebrospinal	 fluid	
(CSF).	This	process	relies,	firstly,	on	voxel	(volume	element,	three-dimensional	pixel)	intensity	
and	secondly	on	Bayesian	probabilistic	analysis	of	voxel	location.	A	procedure	termed	image	
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registration	is	applied	to	an	individual	brain	to	compare	population	of	subjects.	An	image	is	
registered	into	a	normalized	stereotaxic	template.	The	Montreal	Neurological	Institute	(MNI)	
atlas	is	the	most	commonly	used	stereotaxic	space	in	brain	normalization.		
Probabilistic	 tissue	 classification	 uses	 a	 tissue	 probability	 map	 (TPM)	 on	 normalized	
individual	data.	A	TPM	is	a	bundle	of	pre-established	maps	in	normalized	space,	called	tissue	
priors	that	individually	indicate	spatial	probability	to	pertain	to	a	certain	tissue	class.	A	TPM	
has	classically	tissue	priors	for	4	tissue	classes	:	GM,	WM,	CSF	and	“other”	(figure	2).	Tissue	
priors	express	 tissue-belonging	probability	 for	every	voxel	based	on	gray-intensity	 scale	 so	
that	sum	of	tissue	priors	is	1	(white)	in	every	voxel.	Appropriate	tissue	priors	are	generated	
from	healthy	population	with	comparable	representation	of	genders	and	wide	age	span	 in	
adults,	and	are	based	on	the	best	to-date	tissue	segmentation	model.		
A	TPM	is	applied	to	the	registered	data	of	an	individual	brain	using	a	classification	algorithm,	
such	 as	 statistical	 parametric	 mapping	 (SPM)	 (Wellcome	 Trust	 Centre	 for	 Neuroimaging,	
London,	 UK	 ;	 http://www.fil.ion.ucl.ac.uk/spm).	 Application	 of	 TPM	 on	 the	 subject’s	
normalized	 data	 gives	 posterior	 tissue	 probability	 at	 each	 location	 of	 the	 subject’s	 brain	
image.	The	image	is	then	un-normalized	into	native	space.	Subsequent	volumetric	study	of	
each	tissue	class	can	be	applied	(for	review,	consult	Ashburner	and	Friston,	2005)	(10).	
	

 
Figure	2	:	Tissue	probability	map	for	GM,	WM,	CSF	and	“other”	(10).	

Basal	ganglia’s	morphological	assessment	limitations	in	computational	anatomy		

Low	reliability	of	common	VBM	techniques	of	subcortical	structures	
Although	MRI-derived	morphometry	 of	 cortical	 gray	matter	 is	 highly	 reliable,	 visualization	
and	 tissue	 classification	 of	 subcortical	 structures	 remain	 challenging	 due	 to	 poor	 tissue	
contrast	and	lack	of	accurate	priors	in	tissue	classification.		
In	T1-based	imaging,	deep	gray	matter	provides	lower	intensity	than	cortical	gray	matter	by	
both	 intrinsic	 tissue	signal	properties	as	well	as	 the	contrast	with	surrounding	tissue	types	
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lowering	contrast-to-noise	ratio	(CNR	;	contrast	quality	between	GM	and	WM).	Reliability	of	
tissue	classification	measures	varies	greatly	by	structure.	GP,	RN,	SN	and	STN	appear	to	be	
the	 least	 reliable	 subcortical	 structures	 for	 segmentation.	The	difference	of	 intrinsic	 tissue	
signal	quality	between	cortical	and	subcortical	gray	matter	relies,	firstly,	on	high	iron	content	
of	deep	gray	matter	that	interferes	with	relaxation	time	during	signal	acquisition.	Secondly,	
the	 nature	 of	 the	 microstructure	 of	 nuclei	 is	 composed	 of	 intertwined	 axonal	 tracts	 and	
neuronal	 bodies	 –	 rather	 than	 layered	 structure	 in	 cortex	 –	 	 and	 is	 below	 the	 resolution	
limits	 of	 standard	 T1w	 imaging	 (∼1	mm)	 thus	 further	 reducing	 contrast	 by	 partial	 volume	
averaging	(11–13).	Problems	regarding	tissue	priors	are	explored	in	details	further.	

Brain	metallic	ions	and	magnetic	susceptibility	
The	main	reason	of	poor	quality	imaging	of	deep	gray	matter	in	VBM	is	presence	of	higher	
iron	tissue	concentration.		
The	 most	 common	 metallic	 ions	 essential	 to	 brain	 function	 such	 as	 sodium,	 potassium,	
calcium,	magnesium	are	paramagnetic	or	diamagnetic	 for	 zinc	and	have	no	 impact	on	MR	
images	because	of	their	low	magnetic	susceptibility	(degree	of	magnetization	of	a	material	in	
response	 of	 an	 applied	 magnetic	 field	 and,	 thereby,	 the	 ability	 to	 distort	 the	 applied	
magnetic	field).	However	ions	of	the	transition	group	such	as	iron,	manganese,	and	copper	
exhibit	 significant	 magnetic	 moments	 and	 have	 the	 potential	 of	 affecting	 MR	 contrast.	
Manganese	 and	 copper	 are	 paramagnetic	 but	 have	 high	magnetic	 susceptibility,	 however	
nonpathological	 concentrations	 of	 copper	 and	 manganese	 are	 too	 low	 to	 produce	
detectable	MR	 contrast	 bias.	 Iron	 is	 ferromagnetic	 and	have	 consequently	 extremely	 high	
magnetic	susceptibility	that	is	capable	to	produce	significant	distortions	of	the	magnetic	field	
in	physiological	concentrations	(14–16).		

Brain	iron	
There	are	two	categories	of	 iron	forms	in	the	brain	:	heme	iron	(iron	contained	in	a	hemic	
molecule	 found	mainly	 hemoglobin	 but	 also	 enzymes	 as	 peroxidases)	 and	 nonheme	 iron	
consisting	chiefly	of	iron-storing	proteins	such	as	ferritin	and	hemosiderin,	iron-transporting	
proteins	such	as	transferrin	and	ionic	iron	(ferrous	iron,	Fe2+	and	ferric	iron,	Fe3+).	Both	heme	
and	 nonheme	 iron	 plays	 an	 important	 role	 in	 physiology	 as	 an	 essential	 cofactor	 for	 a	
number	 of	 cellular	 processes	 such	 as	 gene	 expression,	 neuronal	 development,	 enzymatic	
reactions,	dopamine,	 iron-sulfur	cluster	synthesis,	and	electron	transport	to	provide	usable	
chemical	potential	energy	 in	the	form	adenosine	triphosphate	 (ATP)	 in	cellular	respiration.	
This	 process	 is	 crucial	 to	 survival	 and	 function	 to	 any	 cell	 in	 aerobic	 organisms	 but	 is	
remarkably	important	in	neurons	due	to	their	extreme	metabolic	activity	(17).		
Iron	content	 in	healthy	and	pathologic	brain	drew	significant	attention	from	researchers	 in	
the	 previous	 century.	 Numerous	 studies	 in	 the	 field	 of	 neurobiology	 and	
neurohistopathology	 provided	 detailed	 accounts	 on	 various	 iron	 molecular	 forms,		
topographic	iron	accumulation	in	both	healthy	and	diseased	brains.	
In	 a	 nutshell,	 biochemical	 studies	 indicates	 that	 overall	 iron	 content	 is	 similar	 in	WM	and	
cortical	GM	(18).	Postmortem	studies	demonstrated	that	relative	to	the	basal	ganglia	there	
is	much	less	stainable	iron	in	the	cerebral	hemispheric	white	matter	and	cortex	(19).	Several	
biochemical	 assays	 revealed	 the	 highest	 iron	 concentration	 in	 GP,	 RN,	 SN	 and	 putamen	
regions	(for	review,	see	Haacke	et	al,	2005)	 (20).	Ferritin	distribution	closely	matches	 ionic	
iron	distribution	with	similar	 levels	 in	WM	and	cortical	GM,	and	with	concentrations	in	the	
basal	ganglia	two	to	three	times	greater	than	in	the	cerebral	cortex.	Transferrin	appears	to	
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be	more	evenly	distributed	in	GM,	compared	to	ferritin	and	ionic	iron,	with	similar	levels	in	
the	cortex	and	basal	ganglia.	However,	transferrin	concentrations	are	typically	between	10	
and	50	times	lower	than	ferritin	concentrations	and	binds	only	2	molecules	of	iron	compared	
to	thousands	for	ferritin	(18,20).	On	a	cellular	level,	oligodendrocytes	(myelin-building	cells)	
account	 for	 the	 majority	 of	 iron	 deposit	 throughout	 the	 brain	 in	 the	 form	 of	 ionic	 iron,	
ferritin	and	transferrin.	Basal	ganglia	appeared	to	have	more	iron-rich	oligodendrocytes	and	
ferritin-positive	astrocytes	(20,21).		
In	 the	 healthy	 brain,	 iron	 concentration	 is	 age-dependent	 and	 shows	 significant	 increase	
after	the	age	of	40	years	old,	particularly	for	putamen,	CN,	and	GP	and	pulvinar	(22).		
Furthermore,	 pathologically	 high	 iron	 concentration	 in	 brain	 is	 observed	 in	 many	
neurodegenerative	 diseases	 (NDDs)	 :	 PD	 and	 PSs,	Alzheimer	 disease	 (AD),	 HD,	Friedreich	
ataxia	 and	 amyotrophic	 lateral	 sclerosis.	 The	 basal	 ganglia	 are	 the	 primary	 sites	 of	 iron	
deposits	in	most	NDDs	:	substantia	nigra	pars	compacta	(SNpc)	and	GP	in	PD	;	GP,	putamen	
and	CN	in	AD	;	putamen,	CN,	and	GP	in	HD.	Brain	iron	is	also	known	to	increase	in	the	basal	
ganglia	under	ischemic	conditions	(17,20).		

Iron	in	magnetic	resonance	imaging	
Ferritin	and	hemosiderin	are	 considered	 to	be	 the	only	 forms	of	nonheme	 iron	present	 in	
sufficient	quantities	to	affect	MR	contrast	in	the	human	brain.		
All	magnetic	materials	present	in	tissues	reduce	both	T1	and	T2	relaxation	times.	Shorter	T1	
relaxation	time	will	appear	brighter	while	short	T2	appear	darker.	The	major	effect	of	brain	
iron,	 by	 ferritin	 and	 hemosiderin,	 on	 MR	 images	 is	 a	 reduction	 in	 T2	 with	 smaller	 but	
significant	effect	on	T1	(12,14).	VBM	commonly	relies	on	T1w	imaging.	Brain	iron	appears	to	
lower	signal-to-noise	ratio	(SNR	;	signal	 intensity	of	GM),	resulting	 in	degraded	T1	contrast	
(CNR)	leading	to	GM	volume	assessment	bias.	(12,23)	
Consequently,	T1w-related	VBM	for	analysis	of	 subcortical	 structures	 is	 skewed	and	needs	
other	MRI	protocols	to	overcome	iron-related	bias.	

Novel	quantitative	study	methods	in	computational	anatomy	
During	the	last	decade,	quantitative	MRI	(qMRI),	a	whole-brain	quantitative	high-resolution	
imaging	 method	 has	 been	 developed	 with	 the	 purpose	 to	 allow	 microstructure	 tissue	
assessment.	 qMRI	 sequences	 are	 termed	 parameter	 maps.	 A	 parameter	 map	 provides	 a	
neuroimaging	biomarker	 for	brain	compounds	such	as	water,	myelin	or	 iron	with	absolute	
measures	 whereas	 weighted-imaging	 has	 arbitrary	 units.	 Those	 measures	 are	 thus	
comparable	through	time	and	between	imaging	centers.	More	recently,	multiple	parameter	
mapping	 (MPM)	 protocols	 permit	 generation	 of	 the	 different	 parameter	 maps	 in	 one	
acquisition	 in	 clinically	 feasible	 duration.	 Analysis	 of	 parameter	 maps	 with	 voxel-based	
quantification	 (VBQ)	 provides	 quantitative	 data	 enabling	 interindividual	 comparison	 or	
intraindividual	 comparison	 over	 time.	 Common	 parameter	 maps	 are	 longitudinal	
relaxometry	 rate	 R1	 (1/T1)	 and	 effective	 transverse	 relaxation	 rate	 R2*	 (1/T2*),	 effective	
proton	density	PD*	and	magnetization	transfer	saturation	MT	(figure	3).	R2*	is	a	surrogate	
marker	for	iron,	MT	for	myelin	and	PD*	for	water	(24,25).	Postmortem	validation	has	shown	
high	correspondence	between	R2*	and	 iron	content	and	between	MT	and	myelin	 content	
(26–29).	
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Figure	3	:	Parameter	maps	of	effective	proton	density	PD*,	 longitudinal	relaxometry	rate	
R1,	magnetization	transfer	saturation	MT	and	effective	transverse	relaxation	rate	R2*	(26).	
	
This	 quantitative	 approach	 has	 been	 introduced	 for	 basal	 ganglia	 by	 Helms	 et	 al.	 using	
parameter	maps	based	on	magnetization	transfer	(MT)	 imaging	and	has	proved	to	provide	
excellent	CNR	and	no	contrast	interference	due	to	iron	(12,30).	
Magnetization	transfer	(MT)	saturation	imaging	is	a	technique	that	relies	on	the	transfer	of	
energy	 from	 very	 mobile	 protons	 of	 free	 water	 to	 highly	 bound	 protons	 within	
macromolecules	such	as	myelin.	This	energy	transfer	content	 is	done	by	application	of	off-
resonant	 radiofrequency	 (RF)	 pulses	 prior	 to	 excitation	 and	 leads	 to	 magnetization	
saturation	of	macromolecular	protons.	In	voxels	with	a	higher	macromolecular	content,	the	
mobile	water	will	experience	a	greater	percentage	loss	of	signal.	Consequently,	measures	of	
MT	 provide	 information	 about	 the	 macromolecular	 content	 of	 the	 microstructural	
environment	and	reliable	myelin	surrogate	marker	(24,27,31,32).		

Why	are	novel	methods	not	extensively	used	in	clinical	practice	?	
Automated	segmentation	relies	on	adequate	and	accurate	TPMs	(33).	Currently,	such	TPMs	
are	 T1-based	 and	 do	 not	 provide	 sufficient	 accuracy	 for	 deep	 gray	 matter	 (34).	 Recent	
attempts	to	improve	tissue	priors	according	to	new	MRI	protocols	have	been	made	but	fail	
to	offer	adequate	data	due	to	low	number	of	subjects,	restraint	age-span,	gender	restriction	
(35–37).	 Thus	 clinical	 application	 of	 state	 of	 the	 art	MPM-derived	morphometry	 for	 basal	
ganglia	is	not	achievable	in	absence	robust	and	accurate	TPMs.	

Aim	
The	aim	of	this	work	is	to	create	an	accurate	TPM	with	new	tissue	priors	for	the	basal	ganglia	
and	the	main	subcortical	structures	based	on	MT	and	R2*	parameter	maps	to	obtain	the	full	
range	 of	 useful	microstructural	 information	 they	 provide,	 biomarkers	 for	myelin	 and	 iron	
respectively,	 and	 optimal	 contrast	 for	 these	 nuclei	without	 iron-related	 bias	 of	 usual	MRI	
protocols.	 To	 build	 robust	 tissue	 priors,	 we	 used	 a	 manual	 delineation	 technique	 with	
different	 raters	 on	 a	 cohort	 of	 a	 large	 number	 of	 healthy	 subjects	 with	 comparable	
representation	 of	 gender	 and	wide	 adult	 age-span.	 To	 provide	 extensive	 subcortical	 TPM,	
tissue	 priors	 included	 the	 CN,	 putamen,	 GP,	 thalamus,	 STN,	 SN,	 RN	 and	 the	 cerebellar	
dentate	nucleus	(DN).		
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To	 assess	 the	 results	 of	 our	 study,	 we	 evaluated	 manual	 delineation	 reliability	 between	
raters	 and	 tested	accuracy	of	newly	established	TPM	by	 comparing	 it	 to	 the	used	TPM	 to	
date.	We	further	studied	age-related	microstructural	changes	with	the	aid	of	the	new	TPM.	

Hypothesis	
The	new	TPM	will	provide	more	anatomically	plausible	tissue	classification	of	basal	ganglia	
than	 the	 previous	 ones,	 especially	 in	 context	 of	 age-related	 microstructural	 changes	
involving	increase	of	subcortical	iron	concentration.		
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Materials	&	Methods	
Materials	

Demographics	
Human	 in	vivo	whole-brain	images	were	obtain	from	a	cohort	of	96	healthy	adults	with	40	
males	with	an	age	ranging	from	27	to	74	years	old	(mean	55	±	15)	;	56	females	with	an	age	
from	21	to	88	years	old,	(mean	57	±	19).	All	subjects	gave	written	informed	consent	for	use	
of	 their	 anonymized	 data	 in	 studies	 led	 by	 the	 responsible	 investigator.	 The	 local	 ethics	
committees	approved	all	experimental	protocols.	Subjects	with	macroscopic	abnormalities,	
cerebrovascular	 lesions,	 significant	 age-related	WM	 hyperintensities	 (grade	 2	 or	more	 on	
Scheltens’	 scale	 (38))	 and	major	 brain	 atrophy	 (measured	with	 the	 brain	 volume	 fraction	
(39))	have	been	previously	excluded	from	the	cohort.	

MRI	protocol	
We	performed	qMRI	with	 a	3T	 scanner,	 in	order	 to	 get	 for	 each	 subject,	MT,	R1	and	R2*	
maps	with	1	mm3	isotropic	 resolution,	corrected	 for	B0	and	B1	 inhomogeneities.	The	 total	
acquisition	time	was	24	minutes.	
To	test	our	new	TPM	on	T1w	images,	we	used	a	second	set	of	images,	previously	used	in	the	
study	 of	 Helms	 et	 al,	 2009	 (12).	 The	 dataset	 used	 Modified	 Driven	 Equilibrium	 Fourier	
Transform	(MDEFT),	an	optimized	T1w	MRI	protocol	for	VBM,	on	a	cohort	of	20	women	with	
an	age	range	22-85	years	old	(mean	age	37	±13)	and	13	men	with	an	age	range	18-73	years	
old	(mean	age	47	±19).	The	images	have	1	mm3	isotropic	resolution	and	an	acquisition	time	
13	minutes.	

Methods	

Manual	delineation	on	atlas-based	labeling	
Manual	delineation	was	performed	on	an	online	web	browser-based	tool	that	displayed	the	
subjects’	images	in	native	space	with	MT	and	R2*	parameter	maps	and	the	three	anatomical	
planes.	Binary	segmentation	masks	for	the	CN,	putamen,	GP,	thalamus,	STN,	SN,	RN	and	DN	
have	been	retrieved	from	reference	atlases	 (40–44)	and	warped	from	normalized	space	to	
each	 subject’s	 native	 space.	 Four	 raters,	 consisting	 of	 master	 medical	 student	 and	 PhD	
students	 in	 neuroscience,	 adjusted	 manually	 each	 mask	 to	 the	 subject’s	 anatomy	 using	
either	 parameter	 map	 that	 offered	 best	 anatomical	 visualization.	 Refined	 masks	 were	
assessed	 by	 a	 neuroimaging	 specialized	 neurologist	 (B.D.)	 and	 neurosciences	 doctoral	
student	with	extensive	brain	anatomy	expertise	(S.L.).	
Evaluation	 of	 manual	 delineation	 reliability	 between	 raters	 was	 performed	 using	 two	
statistical	 coefficients	 :	Dice	 index	and	Cohen’s	kappa	coefficient.	Dice	 index	 is	a	 similarity	
coefficient	that	provides	the	ratio	of	agreement	between	two	samples	(45).	Cohen’s	kappa	
coefficient	 is	an	 inter-rater	agreement	coefficient	and	provides	more	robust	measure	than	
simple	percent	agreement	calculation,	since	 it	 takes	 into	account	the	agreement	occurring	
by	chance	(46).	
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Creation	of	TPM	
Manually	 adjusted	 masks	 by	 raters	 were	 registered	 in	 normalized	 MNI	 space.	 Then	 the	
normalized	 masks	 from	 the	 different	 raters	 for	 each	 structure	 were	 averaged	 and	
smoothened	to	obtain	probability	maps	for	their	corresponding	structure.	Those	probability	
maps	were	registered	into	SPM12,	unified	and	combined	with	conventional	TPM	to	provide	
the	 new	whole-brain	 TPM	with	 updated	 tissue	 priors	 (GM,	WM,	CSF	 and	 “other”)	 for	 the	
subcortical	structures.	

Assessment	and	validation	of	new	TPM	

Validation	of	new	TPM	
To	assess	the	anatomical	reliability	of	the	new	TPM	in	comparison	of	the	old	one	we	used	
two	statistical	analyses.	The	first	one	compares	GM	volumes	of	each	structure	on	MT	maps	
using	the	new	and	old	TPM.	The	second	one	compares	agreement	of	manual	segmentation	
of	each	structure	with	the	applied	new	and	old	TPM.	
The	GM	volume	comparison	was	carried	out	with	a	leave-one-out	cross	validation.	For	this	
statistical	 analysis,	 the	 new	 TPM	 was	 elaborated	 with	 the	 results	 of	 manual	 delineation	
except	for	one	that	was	not	included.	Both	the	resulting	new	TPM	and	old	TPM	were	then	
applied	to	the	excluded	MT	map	for	tissue	classification	 in	SPM12.	GM	volumes	were	next	
calculated	 with	 a	 minimal	 0,2	 GM	 probability	 threshold	 for	 every	 voxel	 that	 have	 been	
previously	selected	by	all	raters.	This	process	has	been	repeated	excluding	all	the	different	
MT	maps.	 GM	 volume	 for	 each	 structure	 is	 given	with	 the	mean	 of	 all	 the	 obtained	 GM	
volumes.	The	GM	volume	comparison	between	the	new	and	old	TPM	was	realized	using	a	
paired	t-test	in	SPSS22.	
The	agreement	assessment	between	manual	delineation	and	both	TPMs	has	been	realized	
using	the	Dice	index.	Once	again,	only	the	voxels	labeled	by	all	raters	in	manual	delineation	
for	each	structure	have	been	taken	into	account.	Voxels	for	the	old	and	new	TPM	have	been	
selected	 using	 two	 different	 minimal	 GM	 probability	 thresholds	 of	 0,2	 and	 0,5	 in	 each	
structure	in	SPM12.	Dice	indexes	have	been	calculated	for	both	thresholds,	for	both	TPMs,	in	
relation	 to	 the	manual	delineation.	Next	we	used	a	paired	 t-test	 to	 compare	 the	mean	of	
Dice	indexes	for	each	structure	in	SPSS22.		
We	further	identified	structures	that	had	volume	loss	as	a	result	of	misclassification,	due	to	
age-related	 loss	 of	 contrast,	 by	 the	 old	 TPM	 rather	 than	 mere	 overall	 age-independent	
decreased	 CNR	 between	 MT	 and	 T1w	 maps.	 We	 compared	 the	 Dice	 index	 differences,	
between	 the	 old	 and	 new	 TPM	 and	 for	 each	 structure,	 and	 age	 using	 paired	 t-tests.	We	
retained	only	the	t-values	with	a	p<0,05	statistical	significance	level.	

Validation	of	robustness	of	new	TPM	in	age-related	microstructural	changes	
To	 assess	 robustness	 of	 the	 new	 TPM	 against	 age-related	 loss	 of	 contrast	 caused	 by	 iron	
concentration	increase,	we	used	two	voxel-based	regressions	with	SPM12	in	the	structures	
where	paired	t-tests	have	shown	significant	differential	age-related	volume	loss	between	old	
and	new	TPM	on	MT	images.	First,	we	performed	a	linear	regression	analysis	between	GM	
volume	loss	and	R2*	parameter	map	to	identify	misclassified	areas	due	to	iron	concentration	
increase.	T-values	of	voxel-based	regressors	have	been	determined	to	provide	visual	scaling.		
Then,	a	regression	analysis	between	age	and	R2*	map	was	carried	out	to	distinguish	areas	
amongst	the	basal	ganglia	that	are	subject	to	iron	concentration	increase	with	age.	T-values	
of	voxels	with	positive	correlation	were	also	displayed	on	a	visual	scale.	
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Results	
Inter-rater	reliability	
The	 mean	 Dice	 index	 range	 was	 between	 0.65	 and	 0.87	 and	 the	 mean	 Cohen’s	 kappa	
coefficient	 between	 0.70	 and	 0.87.	 Overall,	 it	 is	 an	 excellent	 inter-rater	 agreement.	 The	
structures	 providing	 the	 best	 agreement	 were	 the	 CN,	 putamen,	 GB	 and	 thalamus	 with	
Cohen’s	 kappa	 coefficients	mainly	 above	0.8.	 The	SN,	RN,	 STN	 showed	 smaller	 agreement	
and	dentate	with	coefficients	below	0.8	and	with	the	highest	percentages	of	disagreement	
(table	1).	
	

Structure	
Volume	(mm3)	 %	of	disagreement	

voxel	
Dice	index	 Cohen’s	kappa	

Mean	 SD	 Mean	 SD	 Mean	 SD	 Mean	 SD	

Caudate	
Left	 3421	 900	 17	 3	 0.83	 0.06	 0.85	 0.06	

Right	 3306	 700	 16	 3	 0.85	 0.06	 0.86	 0.06	

Putamen	 Left	 3906	 650	 19	 3	 0.80	 0.05	 0.8	 0.05	

Right	 3966	 690	 18	 4	 0.85	 0.03	 0.86	 0.03	

GP	 Left	 1319	 235	 20	 4	 0.79	 0.08	 0.8	 0.08	

Right	 1263	 201	 21	 5	 0.76	 0.09	 0.77	 0.09	

Thalamus	
Left	 5110	 1100	 16	 4	 0.86	 0.04	 0.86	 0.04	

Right	 5495	 1301	 15	 3	 0.87	 0.05	 0.87	 0.05	

SN	
Left	 330	 94	 25	 6	 0.70	 0.11	 0.74	 0.12	

Right	 330	 90	 23	 5	 0.76	 0.14	 0.77	 0.14	

RN	 Left	 220	 49	 29	 7	 0.68	 0.13	 0.71	 0.13	

Right	 220	 50	 28	 8	 0.69	 0.11	 0.77	 0.11	

STN	 Left	 86	 28	 33	 7	 0.65	 0.14	 0.70	 0.12	

Right	 85	 20	 31	 7	 0.70	 0.1	 0.73	 0.19	

Dentate	
Left	 1032	 215	 20	 5	 0.76	 0.11	 0.73	 0.11	

Right	 1013	 195	 23	 6	 0.77	 0.14	 0.76	 0.13	

Table	 1	:	 Inter-rater	 reliability.	 Mean	 volumes	 delineated	 by	 raters,	 percentage	 of	
disagreement	between	raters	and	agreement	coefficients.	
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Validation	of	new	TPM	
Application	 of	 the	 new	 TPM	 on	 MT	 images	 showed	 significantly	 greater	 volumes	 in	 all	
structures,	all	above	critical	t-values	(1,98	;	p	<0.05).	The	GP,	thalamus,	SN,	RN,	STN	and	DN	
showed	 the	 biggest	 volume	 improvements	 with	 t-values	 mainly	 above	 10.	 The	 CN	 and	
putamen	had	lower	volume	improvements	(table	2).	
The	 new	 TPM	was	 associated	with	 significantly	 better	 agreement	 than	 the	 old	 TPM	with	
manual	delineation	 for	all	 structures	and	both	0.2	and	0.5	GM	probability	 threshold	 (table	
2).	
Structures	associated	with	significant	volume	loss	as	a	result	of	misclassification	by	the	old	
TPM	due	to	age-related	contrast	bias	are	the	CN,	putamen	and	RN	(table	2).	

	
	
	
	
	
	
	
	

Structure	

Volume	in	
mm3	

new	TPM	
(Mean±SD)	

Volume	in	
mm3	

old	TPM	
(Mean±SD)	

T-value	
VolnewTPM	

>	
VololdTPM	

T-value	
DInewTPM	

>	
DIoldTPM	
Th	0.2	

T-value	
DInewTPM	

>	
DIoldTPM	

Th	0.5	

T-value	
ΔDI	vs	
age	

Th	0.2	

T-value	
ΔDI	vs	
age	

Th	0.5	

Caudate	 Left	 3482±310	 3181±396	 4	 10.8	 13.0	 6.8	 4.1	

Right	 3420±305	 2838±399	 5	 10.4	 4.9	 7	 4.37	

Putamen	
Left	 3372±401	 2879±470	 4.8	 14.1	 10.0	 5	 5.4	

Right	 3598±401	 2870±470	 4.3	 14.5	 9.4	 6	 5.82	

GP	
Left	 1032±203	 402±112	 17.8	 36.4	 32.6	 -	 -	

Right	 1195±211	 373±130	 18.2	 45.4	 35.7	 -	 -	

Thalamus	
Left	 4876±705	 3160±473	 14.1	 51.8	 49	 -	 -	

Right	 5077±837	 3791±547	 14.3	 39.8	 48.7	 -	 -	

SN	 Left	 293±52	 226±45	 10	 38.4	 38.4	 -	 -	

Right	 316±66	 242±61	 9.5	 32.9	 32.3	 -	 -	

RN	 Left	 50±10	 7±4	 12.7	 14.8	 10.2	 11.1	 5	

Right	 52±10	 6±4	 13.8	 14.3	 10.2	 11.7	 5.3	

STN	
Left	 32±7	 9±6	 8.5	 10.7	 9.6	 -	 -	

Right	 33±8	 9±4	 10.7	 12.3	 10.6	 -	 -	

Dentate	
Left	 977±140	 122±60	 16.8	 26.5	 21.8	 -	 -	

Right	 987±125	 106±50	 15.5	 20.5	 14	 -	 -	

Table	 2	:	 Validation	of	 new	TPM.	Comparison	of	GM	volumes	between	old	and	new	TPM	
(columns	 1,2,3).	 Comparison	 of	 agreement	 between	 old	 and	 new	 TPMs	 with	 manual	
segmentation	 (columns	 4,5).	 Structures	 with	 higher	 age-related	 GM	 volume	 loss	 with	 old	
TPM	(columns	6,7).	
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Validation	of	robustness	of	the	new	TPM	
We	 found	 a	 positive	 linear	 correlation	 of	 GM	 volume	 loss	 associated	 with	 age-related	
microstructural	changes	resulting	in	classification	bias	only	in	the	dorso-lateral	putamen	with	
the	old	TPM	compared	to	the	new	TPM.		
A	 positive	 correlation	 was	 also	 found	 between	 R2*	 and	 age	 in	 the	 entire	 putamen,	 CN,	
ventral	 GP,	 confirming	 iron	 concentration	 increase	 with	 age	 in	 those	 structures.	 R2*	
parameter	map	is	also	confirmed	to	suit	iron-rich	structure	detection	for	the	creation	of	the	
new	TPM.	
	
	

	
Figure	4	:	Top	figure	:	voxel	t-values	with	positive	correlation	between	R2*	(iron	biomarker)	
and	 higher	 age-related	 GM	 volume	 loss	 with	 conventional	 TPM.	Bottom	 figure	 :	 voxel	 t-
values	with	positive	correlation	between	R2*	and	age.	
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Discussion	and	conclusion	
We	created	new	tissue	priors	for	the	subcortical	structures	based	on	magnetization	transfer	
saturation	(MT)	and	effective	transverse	relaxation	rate	(R2*)	parameter	maps	proved	to	be	
more	accurate	than	currently	used	T1w-based	tissue	probability	maps	(TPMs).	The	new	TPM	
was	built	from	a	manual	delineation	technique	using	different	raters	on	a	cohort	with	a	large	
number	 of	 subjects	 with	 comparable	 representation	 gender	 and	 with	 a	 wide	 adult	 age	
range.	To	date,	no	other	 study	provided	 tissue	priors	based	on	a	 large	and	 representative	
sample	of	the	whole	adult	population	using	new	quantitative	approaches.	
The	inter-rater	agreement	and	reliability	of	the	manual	delineation	results	were	excellent	in	
regard	 of	 other	 studies	 (13,35,37).	 Structures	 such	 as	 the	 subthalamic	 nucleus,	 substantia	
nigra,	red	nucleus	and	cerebellar	dentate	nucleus	had	lower	inter-rater	agreement,	probably	
due	 to	 their	 smaller	 size,	 lower	 contrast	 than	 the	 basal	 ganglia	 and	 partial	 volume	 effect	
limiting	segmentation	accuracy.	
The	application	of	the	new	TPM	on	MT	parameter	maps	demonstrated	higher	accuracy	than	
the	 old	 TPM	with	 a	 significant	 improvement	 of	 volume	 detection	 amongst	 all	 subcortical	
structures.	Therefore,	automated	tissue	classification	has	been	optimized.	
Iron	 deposits	 in	 subcortical	 structures	 has	 been	 shown	 to	 be	 associated	 with	 poorer	
contrast-to-noise	 ratio	 in	weighted	MR	 imaging	 (11–13).	 Postmortem	biochemical	 analysis	
have	shown	iron	concentration	 increase	with	age,	degrading	GM	signal	resulting	 in	 further	
misclassification	 (19,22).	 Parameter	 maps	 used	 in	 quantitative	 MRI	 have	 shown	 to	 be	 a	
valuable	 asset	 to	overcome	 contrast	 bias	 and	provide	 surrogate	biomarkers	with	 absolute	
measures	for	various	compounds	of	the	brain,	 including	water,	myelin	and	 iron	(12,24,25).	
By	using	R2*	parameter	map,	we	were	able	not	only	to	obtain	better	segmentation	using	the	
iron	marker	 in	 iron-rich	 nuclei	 such	 as	 the	 substantia	 nigra,	 red	 nucleus	 and	 subthalamic	
nucleus	to	elaborate	the	new	TPM,	but	also	quantify	GM	volume	 loss	due	to	 iron	contrast	
bias	 in	 the	 old	 TPM	 and	 demonstrate	 specific	 areas	 in	 basal	 ganglia	 associated	 with	
increased	iron	deposition	in	the	aging	adult	–	namely	the	entire	putamen,	the	ventral	globus	
pallidus	and	caudate	nucleus.	Those	results	demonstrated	increased	robustness	of	the	new	
TPM	 against	 high	 iron-related	 contrast	 degradation	 in	 the	 elderly	 subject.	 The	 TPM	
robustness	is	explained	by	the	use	of	parameter	maps	in	the	creation	of	the	tissue	priors	and	
inclusion	of	old	subjects.	
In	conclusion,	the	new	TPM	is	suitable	to	 improve	VBM	of	the	basal	ganglia	and	the	other	
subcortical	nuclei,	and	opens	up	to	the	clinical	use	of	new	quantitative	approaches	for	the	
volumetric	assessment	of	the	brain.		
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