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Sensitive and frequent identification of high avidity
neo-epitope specific CD8+ T cells in
immunotherapy-naive ovarian cancer
Sara Bobisse1, Raphael Genolet1, Annalisa Roberti2, Janos L. Tanyi2, Julien Racle 1,3, Brian J. Stevenson3,

Christian Iseli3, Alexandra Michel1, Marie-Aude Le Bitoux1, Philippe Guillaume1, Julien Schmidt1,

Valentina Bianchi1, Denarda Dangaj1, Craig Fenwick4, Laurent Derré 5, Ioannis Xenarios3, Olivier Michielin1,3,

Pedro Romero1, Dimitri S. Monos6, Vincent Zoete1,3, David Gfeller1,3, Lana E. Kandalaft1,2,

George Coukos1 & Alexandre Harari 1

Immunotherapy directed against private tumor neo-antigens derived from non-synonymous

somatic mutations is a promising strategy of personalized cancer immunotherapy. However,

feasibility in low mutational load tumor types remains unknown. Comprehensive and deep

analysis of circulating and tumor-infiltrating lymphocytes (TILs) for neo-epitope specific

CD8+ T cells has allowed prompt identification of oligoclonal and polyfunctional such cells

from most immunotherapy-naive patients with advanced epithelial ovarian cancer studied.

Neo-epitope recognition is discordant between circulating T cells and TILs, and is more likely

to be found among TILs, which display higher functional avidity and unique TCRs with higher

predicted affinity than their blood counterparts. Our results imply that identification of neo-

epitope specific CD8+ T cells is achievable even in tumors with relatively low number of

somatic mutations, and neo-epitope validation in TILs extends opportunities for mutanome-

based personalized immunotherapies to such tumors.
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Immunogenic tumors can benefit from different immu-
notherapeutic interventions. Among them, adoptive cell
transfer (ACT) of autologous tumor-infiltrating lymphocytes

(TILs) is effective in mediating tumor regression, especially in
melanoma, where about half of patients can achieve an objective
response and one-fourth of them can expect complete and dur-
able tumor rejection1,2. Several clinical trials have explored the
potential of antigen-specific T-cell therapy infusing autologous
peripheral blood T cells engineered to express T-cell receptors
(TCR) or chimeric antigen receptors specific for known shared
tumor antigens3–6. Such advances have motivated widespread
investigation of tumor rejection antigens across different tumor
types and triggered the development of ACT approaches for the
therapy of cancers other than melanoma. Recent technological
advances have accelerated the identification of T-cell specificities
against so-called tumor neo-antigens, resulting from non-
synonymous somatic tumor mutations, and have shown their
successful implication in immune-mediated rejection of mela-
noma, lung cancer, leukemia, and gastrointestinal cancers7–12.
Several studies have also indicated that tumor neo-epitope
recognition underlies clinical response in patients receiving
immune checkpoint blockade therapy9,11,13–15 or ACT of auto-
logous TILs10,12,16–18, although no direct correlation has been
reported to date between the presence of documented neo-
epitopes and patient survival in such studies. Tumors are very
heterogeneous with regards to their mutational load19, and
immune recognition of neo-antigens in tumors with relatively low
mutational load is still considered unlikely20, thus limiting the
potential application of mutanome-targeted immunotherapy.

Epithelial ovarian cancer (EOC) is a tumor with not only
purportedly relatively low mutational load19,21, but also suscep-
tible to immune recognition22. Spontaneous anti-tumor respon-
ses, both as tumor-specific lymphocytes and antibodies, were
identified in about half of the patients with advanced EOC23, and
cytotoxic T cells have been isolated from patients’ tumor, ascites,
or peripheral blood22. Of note, the presence of CD8+ TILs has
been linked to better prognosis in late-stage EOC patients22,24.
Immunotherapy could thus be promising in EOC. However,
vaccination strategies have to date mainly encompassed shared
tumor-associated antigens and have been met with limited suc-
cess25. With the exception of two interesting studies21,26, the
landscape of spontaneous responses to tumor neo-epitope still
has not been investigated thoroughly.

We investigated spontaneous recognition of tumor neo-
epitopes in immunotherapy-naive, chemotherapy-pretreated
patients with recurrent advanced EOC. We report the identifi-
cation of neo-epitope specific CD8+ T cells in ~ 90% of patients
evaluated. Culture conditions for TIL generation markedly
influenced the sensitivity of detection and the frequency of neo-
epitope specific T cells. Unexpectedly, neo-epitope recognition
was largely discordant between circulating T lymphocytes and
TILs, and the latter displayed markedly higher functional avidity.
Of note, a deep molecular investigation of T cells sharing the
same neo-epitope specificity, isolated from the two compart-
ments, revealed distinct TCR repertoires, with higher affinity
among TILs relative to blood T cells. Our data demonstrate that
using sensitive methodologies, neo-epitope validation is achiev-
able in low mutational load tumors, which extends opportunities
for mutanome-based personalized immunotherapy for such
patients.

Results
Identification of Neo-epitope specific PBL. We evaluated the
neo-epitope landscape in 19 patients with recurrent advanced
EOC who were immunotherapy-naive, but heavily pretreated

with chemotherapy (Supplementary Table 1). Patients had no
underlying inflammatory condition at enrollment and were not
on steroids. We identified over 1300 non-synonymous somatic
mutations in total by exome sequencing, with a median of 69 and
a range of 10–129 mutations per patient. We used fetchGWI27 to
maximize calls of non-synonymous somatic mutations and
GATK to independently validate calls; fetchGWI calls overlapped
up to 96% with GATK calls (see Methods). Using the NetMHC
algorithm28, a total of 776 (9-mer or 10-mer) candidate neo-
epitopes were predicted in silico to bind with high affinity to
patients’ cognate HLA-I alleles, with a range of 1–133 neo-
epitopes predicted per patient (Supplementary Table 1). As
expected, the predicted neo-epitope load correlated with the
overall tumor non-synonymous mutational load (p= 0.002, lin-
ear regression).

To elucidate whether tumor neo-epitopes provided a basis for
tumor immune recognition, we stimulated CD8+ peripheral
blood lymphocytes (PBLs) with pools of predicted peptides for
12 days in vitro, followed by rechallenge with the same peptides
and analysis by IFNγ ELISpot. T-cell responses against neo-
epitopes were further validated by multimer staining and/or
polychromatic intracellular cytokine staining (ICS). We identified
PBLs recognizing HLA class-I neo-epitopes in one-third (i.e.,
6/19) of the patients (Fig. 1a–e and Supplementary Fig. 1). Neo-
epitope-specific CD8+ T cells did not recognize the counterpart
wild-type peptides (Fig. 1a, c and Supplementary Fig. 1), had a
broad range of frequencies (Fig. 1f) and were polyfunctional with
most cells co-expressing IFNγ, TNFα, and IL-2 in response to the
cognate neo-epitope (Fig. 1d, h). We validated a total of 10 non-
overlapping neo-epitopes in 19 patients, with a range of 1–3 neo-
epitopes validated per patient (Fig. 1g and Supplementary
Table 2). Of note, the specificity and privacy of detection of
neo-epitopes was validated in unrelated patients’ samples,
supporting the notion that T-cell responses identified with our
assay represented an expansion of pre-existing responses from
antigen-experienced T cells and not priming of naive cells,
although this cannot be formally excluded. In conclusion, T cells
recognizing tumor neo-antigens can be specifically identified
readily even in some patients with tumors harboring a relatively
low mutational load such as ovarian cancer.

We searched for possible associations between spontaneous
recognition of tumor neo-antigens and molecular signatures of
tumors in 16/19 patients with tumor available for RNAseq
analysis29,30. Tumors from patients in whom we could detect
PBLs recognizing neo-epitopes displayed gene signatures sig-
nificantly enriched for antigen processing and cross-presentation
pathways as well as programmed cell death-1 and interferon-
gamma (IFNγ) signaling, and negative enrichment for collagen
formation (Fig. 1i, j and Supplementary Fig. 2 and Table 3). Thus,
increased recognition of tumor neo-antigens by PBLs was
associated with immune activation and an attenuated stroma
signature at the tumor site. Interestingly, recognition of neo-
antigens by PBLs was significantly higher in four patients
harboring BRCA1/2 mutated tumors (p= 0.002, χ2, Supplemen-
tary Table 1), consistent with the higher mutational burden and
predicted neo-antigen load found in these patients31, although the
overall homologous recombination deficiency (HDR) status in
this population was not determined.

Identification of Neo-epitope specific TILs. We next asked what
was the prevalence of neo-epitope recognition by TILs in the
same patients. Tumor samples were available from 14 (out of 19)
patients and we successfully expanded TILs from all patients
using standard culture conditions (i.e., high-dose IL-2). TILs were
interrogated with the same set of all predicted peptides for each
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patient as above, and T-cell responses were evaluated by IFNγ
ELISpot and validated by ICS and/or multimer staining. Neo-
epitope-specific TILs were identified in about one-quarter (i.e., 4/
14) of patients (Fig. 2a–c and Supplementary Fig. 3). Like PBLs, a
large proportion of neo-epitope specific TILs was also polyfunc-
tional, i.e., able to produce IL-2, TNFα and IFNγ in response to
the cognate neo-epitope (Fig. 2b, d).

In total, we detected PBLs or TILs recognizing neo-epitopes in
two-thirds (9/14) of the patients, for a total of 14 distinct neo-
epitopes (Fig. 2e and Supplementary Table 2). However, neo-
epitope recognition was largely discordant between PBLs and
TILs. Indeed, out of the 14 documented responses to neo-
epitopes, only one was detected in both PBLs and TILs, whereas
the 13 remaining neo-epitopes were exclusively recognized by
either PBLs or TILs only (Fig. 2e).

We theorized that the discordance between detecting neo-
epitope specific T cells in TILs but not in blood could be owing to
a low frequency of neo-epitope specific T cells in blood. In a
representative patient, who exhibited neo-epitope specific T cells
exclusively in expanded TILs but not in PBLs, we sequenced the
TCRβ of sorted CD8+ TILs specific to the confirmed neo-epitope
(SEPT9R289H, Fig. 2f). As expected, neo-epitope specific CD8+

TILs were oligoclonal, and dominant TCRβ sequences were
identified (Fig. 2f). These TCR sequences were detected in tumor
tissue in addition to IL-2-expanded bulk TILs, but not among
PBLs (Fig. 2f). Of note, >75,000 distinct clonotypes were
identified among three millions reads obtained from 5 millions
unfractionated total PBMCs and the limit of detection (LOD) of
our assay was experimentally validated at 10 cells out of 1 million
cells (i.e., 0.001%), suggesting that undetectable TCR were at a
frequency below our LOD. To understand more the discordance
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Fig. 1 Identification of neo-epitope specific PBLs. a, b Representative example of peripheral blood CD8+ T lymphocytes (PBLs) response against the
HHATL75F neo-epitope in patient CTE-0013. a T-cell reactivity measured by IFNγ ELISpot against the neo-epitope (mut) from HHATL75F gene but not against
the wild-type (wt) peptide (PHA: phytohemagglutinin; No Ag: no peptide). Shown are the average of triplicate+ SD. b Representative example of validation
of neo-epitope specific CD8+ T cells using peptide-MHC multimers. c T-cell reactivity measured by IFNγ ELISpot against the neo-epitope from KIR2DS4I7S
gene but not against the wild-type peptide in patient CTE-0012 (PHA: phytohemagglutinin; No Ag: no peptide). Shown are the average of triplicate+ SD. d
Representative example of neo-epitope validation by polychromatic intracellular cytokine staining (ICS) in patient CTE-0012 without (No Ag) or after
stimulation with a cognate neo-epitope (KIR2DS4I7S). All other PBL neo-epitopes are described in Supplementary Fig. 1 and Table 2. e Proportion of EOC
patients with documented peripheral blood CD8+ T-cell (PBL) response against neo-epitopes. f Frequency and g number (mean ± SEM) of neo-epitope
specific CD8+ PBLs per patient, detected after one round of in vitro stimulation (Supplementary Table 2). h Cumulative analysis showing the cytokine
profiles of neo-epitope specific CD8+ PBLs. The SPICE analysis represents the functional composition of cytokine-producing neo-epitope specific CD8+

T cells (mean ± SEM). i Heatmap showing expression of all the genes from Reactome’s antigen processing and cross-presentation pathway53, 54. The
number of neo-epitopes recognized by PBL of each patient is shown on top of the heatmap. Genes from this pathway are ordered based on the differential
expression fold change between patients with or without PBL neo-epitope recognition. j Gene set enrichment analysis (GSEA39) curves for various
Reactome pathways significantly different between patients with or without PBL neo-epitope recognition. Vertical bars indicate the ranked positions of
each gene from the respective gene set. Statistical significance of these enrichments is reported by the FDR of the GSEA. Corresponding heatmaps for IFNγ
signaling, PD-1 signaling and collagen formation are reported in Supplementary Fig. 2
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of detecting neo-epitope specific T cells in blood but not in
expanded TILs, we studied a representative patient by sequencing
TCRβ of sorted CD8+ PBLs specific to the confirmed neo-epitope
(TRIM26G497W, Fig. 2g). Interestingly, the dominant TCRβ
specific to TRIM26G497W neo-epitope that we detected in sorted
PBLs, was also detected in whole tumor RNA, but was
undetectable among more than 1900 distinct clonotypes identi-
fied within 1 million reads obtained from five millions IL-2-
expanded TILs (Fig. 2g). Of note, the TRIM26G497W-specific TCR
was among the most frequent TCRs in tumor tissue, indicating
marked clonal expansion in tumor (Fig. 2g). Thus, neo-epitope
specific T cells detected in blood may infiltrate and expand in
tumors, but may fail to expand under standard TIL cultures, or at
least may not reach a frequency allowing their detection.

Cultures enrichment for neo-epitope specific TILs. Although
the conventional TIL expansion methods have served well

patients with melanoma, which typically express numerous neo-
epitopes, the above findings suggest that for tumors with low
average mutational load, optimization of TIL cultures will be
required to maximize the recovery of neo-epitope specific T-cell
clones. To this end, we sought to optimize the ovarian TIL
expansion to favor expansion of neo-epitope specific clones. We
expanded TILs from nine patients with available samples either in
high-dose IL-2 alone (conventional TIL generation) or also in the
presence of pools of synthetic 9- and 10-mer peptides of all
predicted class-I neo-antigens (neo-epitope primed TIL condi-
tion, Fig. 3a). The different culture conditions led to similar
expansion rates of bulk T cells and CD4+/CD8+ T-cell ratios.
However, compared with TILs cultured under conventional
conditions, neo-epitope primed TILs were enriched in neo-
epitope specific T cells, including markedly higher frequencies of
CD8+ T-cell clones recognizing either the same neo-epitope
(Fig. 3b, top panels) or new neo-epitopes that were undetectable
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under the conventional expansion protocol (Fig. 3b, bottom
panels and Supplementary Fig. 3).

Taken together, the primed TIL cultures were significantly
enriched in neo-epitope specific CD8+ T cells as compared with
conventional TILs generated from the same patients (χ2, Fig. 3c).
Furthermore, as a result of the primed culture condition, we were
able to identify neo-epitope specific TILs in a significantly higher
number of patients, and combining PBLs and TILs expanded with
the improved methodology, we detected T cells against neo-
epitopes in most patients (i.e., 8/9, Fig. 3d). The specificity of neo-
epitope detection was validated in cross-matching experiments.
These data show that with optimized culture methods, T cells
recognizing tumor neo-epitopes can be specifically identified in
most patients with ovarian cancer despite the relatively low
number of somatic mutations. Of note, even with the expanded
ability to identify T-cell responses against neo-epitopes, neo-
epitope recognition remained largely discordant between PBLs
and TILs. Indeed, only a quarter of neo-epitopes (i.e., 3/12) was
consistently recognized by both PBLs and TILs (Fig. 3e).

Higher avidity of neo-epitope specific TIL than PBL clones. We
investigated further the discordance between neo-epitope specific
PBLs and TILs by first focusing on two neo-epitopes that were
recognized by both PBLs and TILs, i.e., HHATL75F from CTE-

0013 and ZCCHC11P1265H from CTE-0015. We purified neo-
epitope reactive T cells from PBLs and TILs using multimers and
expanded several clones of each. We measured functional avidity
of 3–6 clones for each by measuring their sensitivity to cognate
neo-epitope, i.e., the peptide concentration sufficient to evoke
IFNγ response in 50% of cells. All TIL clones had significantly
higher functional avidity compared with PBL clones recognizing
the same neo-epitope in each case (t-test, Fig. 4a and Supple-
mentary Fig. 4), further confirmed by significantly higher TNFα
and IL-2 secretion (t-test, Fig. 4b and Supplementary Fig. 5) and
by higher cytolytic activity against T2 cells loaded with cognate
peptide (Fig. 4c). Multidimensional mass cytometry analyses were
performed on several clones to further characterize their phe-
notype. Consistent with the above, TILs exhibited significantly
higher phosphorylation of ERK1/2 and S6 (and similar phos-
phorylation of ZAP70, SLP76, and CREB) than PBLs in response
to peptide recognition (t-test, Fig. 4d and Supplementary Fig. 6).
Further characterization of these clones showed a similar phe-
notype with regard to markers of differentiation, activation,
exhaustion, or tropism (Fig. 4e), and expressed a similar pattern
of cytokines following CD3/CD28 costimulation (Supplementary
Fig. 7).

To further understand the differences in avidity between TIL
and PBL clones, we sequenced the TCRβ of all bulk-specific cells
sorted from blood or TILs against the neo-epitope HHATL75F in
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CTE-0013 and ZCCHC11P1265H in CTE-0015. We found
oligoclonal repertoires in both PBLs and TILs, but no common
TCRβ sequences between TILs and PBLs directed against the
same epitope in both cases analyzed (Fig. 4f and Supplementary
Fig. 4). We then asked whether the different avidity between PBL
and TIL clones could be potentially attributed to different TCR
affinities. Having the cognate TCRα and β chain sequences for
PBL and TIL clones (two α and one β chain were identified for
each, see Supplementary Fig. 8 and Table 4) as well as the cognate
peptide and HLA sequence available, we used homology

modeling to predict molecular interactions between the dominant
TCRs in PBLs or TILs with the pMHC complex formed by the
HHATL75F neo-epitope and HLA-A*0206. These molecular
interactions are expected to correlate qualitatively with the
affinities of these TCRs for the pMHC32. The predicted molecular
interactions between the HHATL75F peptide and HLA-A*0206
were similar for all four TCR-pMHC complexes analyzed
(Supplementary Fig. 9 and Table 5). Of note, peptide residues
Lys1, Leu4, Val5, and Phe8 were predicted to be exposed to the
TCR surface (Fig. 4g and Supplementary Fig. 9). Predicted
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interactions between each of the four TCRs studied and the
peptide/HLA-A*0206 complex are listed in Supplementary
Table 6. According to these predictions, the CDR3α and CDR3β
loops of the TIL TCRs lead to more numerous favorable
molecular interactions with the peptide residues (i.e., eight and
six) than the PBL TCRs (i.e., one and four). In addition, the
CDR1α, CDR2α, CDR1β, and CDR2β of the PBL TCRs make a
total of five and eight interactions with the peptide, compared
with 11 between the TILs TCRs and the peptide. Finally, the PBL
TCRs were predicted to make a total of 15 and 18 favorable
interactions with the MHC, compared with 20 and 23 interac-
tions for the TIL TCRs (Supplementary Table 6). In summary,
TIL TCRs were predicted to make qualitatively more numerous
favorable interactions with the pMHC than PBL TCRs, which is
expected to correlate with a higher affinity of the TIL TCRs for
this pMHC. Taken together the above data indicate that TILs
exhibit markedly higher functional avidity against neo-epitopes,
and this can be attributed to the accumulation of distinct clones
with predicted higher affinity TCRs although we cannot formally
exclude that other parameters such as peptide affinity and T-cell
exhaustion may also contribute to this effect.

Finally, we analyzed the functional avidity of PBL and TIL
clones specific to the remaining neo-epitopes. We found that TIL
clones displayed on average a significantly higher functional
avidity than PBLs (t-test, Fig. 5a, b and Supplementary Fig. 10),
with the median avidity of TILs being almost one order of
magnitude higher than that of PBLs (Fig. 5b). Finally, we asked
whether the ex vivo functional avidity of TILs correlated with
their frequency in tumors. We therefore purified and sequenced
the TCRβ of the highest avidity TIL clone from CTE-0015
recognizing the ZCCHC11P1265H neo-epitope and the lowest
avidity TIL clone against SEPT9R289H from CTE-0011 and
searched for the specific TCR sequences within the tumors of
origin (Fig. 5c). As shown already (Fig. 2f, g), neo-epitope specific
CD8 T cells were oligoclonal although dominant TCRβ sequences
could be identified. Of interest, we found that the high-avidity
ZCCHC11P1265H-specific TIL dominant clone was markedly more
expanded in tumor (1% of all tumor TCRs) than the low-avidity
SEPT9R289H-specific TIL clone (0.001% of all tumor TCRs,
Fig. 5c). Thus, neo-epitope specific TILs exhibit in general higher
avidity for cognate neo-antigens relative to PBLs and can be
found in the tumor at relatively high frequency.

Discussion
We analyzed neo-epitope recognition in a cohort of
immunotherapy-naive patients with epithelial ovarian cancer.
Although this is a tumor type with relatively low mutational load

in agreement with prior reports19,21, we identified T cells recog-
nizing neo-epitopes in the majority of patients, consistent with
prior evidence that ovarian cancers are susceptible to immune
recognition22. Through blood analysis we identified circulating T-
cell precursors recognizing neo-epitopes in one-third of the
patients, whereas the identification of these cells was more fre-
quent using TILs. Indeed, using an optimized methodology for
TIL expansion that enriched for neo-epitope specific T cells, these
could be identified in virtually all patients with available blood
and tumor to isolate T cells. Of note, our findings have likely
underestimated the prevalence of neo-epitope specific T cells in
blood and tumors as our discovery approach was restricted to
CD8+ T cells, therefore missing a potentially significant CD4+ T-
cell response7,12. Also, we were unable to generate autologous
tumor cell lines, so we could not confirm that the neo-antigen-
reactive T cells recognize autologous tumor.

It is interesting that circulating neo-epitope specific T cells
were identified only in a proportion of patients, specifically those
whose tumors exhibited molecular evidence of immune activation
and BRCA1/2 deficiency. This is in agreement with prior evidence
that tumor-specific T-cell precursors can be identified only in a
subset of patients with ovarian cancer23, and suggests that the
frequency of these precursors is higher in patients in whom
proper antigen presentation and a rejection response occur in
tumors. On the other hand, our data suggest that antigen
recognition may occur and neo-epitope specific T cells can
accumulate in all tumors, even in those where a bona fide
rejection response cannot be detected. Such cells could in the
future be used for developing ACT.

We provide novel evidence that the repertoire of neo-epitope
recognizing T cells can be largely discordant between blood and
TILs. Importantly, neo-epitope specific TILs exhibited on average
higher functional avidity than their blood counterparts. This was
confirmed when we compared T cells from blood and tumor
recognizing the same neo-epitopes: TILs exhibited much higher
functional avidity and cytolytic activity than their blood coun-
terparts, which was attributed to the presence of different clones
in the two compartments with different TCR affinities. These
findings have important implication for understanding tumor
immunobiology but also for developing adoptive T-cell therapy.
Importantly, neo-epitope specific clones exhibited suitable sig-
naling in response to cognate antigen, and following CD3/CD28
costimulation their phenotype was quite similar to peripheral
blood T cells, rendering them therefore a preferred source for
isolating neo-epitope specific clones for ACT, which our data
show can be feasible even in tumors with relatively low number of

Fig. 4 Functional analyses of neo-epitope specific PBLs and TILs. a Higher functional avidity of HHATL75F-specific TIL and PBL clones. Shown are the relative
frequencies of IFNγ-producing CD8+ T cells (mean ± SD). b Higher functional avidity (mean ± SEM) of HHATL75F-specific TILs compared with PBL clones
based on TNFα and IL-2 release (Supplementary Fig. 5 shows raw data). c Higher cytolytic capacity of HHATL75F-specific TILs compared with PBLs. Data
show the percentage of lysis of T2 cells pulsed with different concentrations of the cognate neo-epitope. d Mass cytometry analysis showing the relative
phosphorylation of ERK1/2 and S6 proteins involved in TCR-signaling pathways following CD3 stimulation of PBL and TIL clones. Graphs represent mean ±
SEM. Supplementary Fig. 6 shows raw data. e Mass cytometry analysis showing the relative expression of different markers on neo-epitope specific PBLs
and TILs. Naive and memory bulk peripheral blood CD8+ T cells are shown for comparison. f Analysis of the repertoire of the T-cell receptor β (TCRβ) V-J
segment recombination of HHATL75F-specific CD8+ T cells isolated from either PBLs (top) or TILs (bottom) after FACS sorting using multimers. V and J
segments are represented according to chromosomal location on the x and y-axis, respectively. Arrows identify dominant TCRβ sequences that were
associated to TCRα sequences shown in Supplementary Fig. 8. g Calculated TCR/pMHC complexes for PBL and TIL-related TCRs: HHATL75F-PBL-
hTRAV05+ hTRAJ34/hTRBV11-2+ hTRBJ02-7 on the top, and HHATL75F-TIL-hTRAV38-2+ hTRAJ33/hTRBV12-3+ hTRBJ02-3 at the bottom. The
peptide is shown in ball and stick, colored according to the atom types. MHC ribbon is colored in brown, with residues displayed in thick lines and colored
according to the atom types, with carbon colored in brown. TCRα ribbon is colored in light blue, with residues displayed in thick lines and colored according
to the atom types, with carbon colored in light blue. TCRβ ribbon is colored in pink, with residues displayed in thick lines and colored according to the atom
types, with carbon colored in pink. Hydrogen bonds and ionic interactions are shown as thin blue lines. Dotted blue lines indicate hydrogen bonds
accessible through thermal fluctuations. Residues are labeled in brown, black, blue, and pink, for MHC, peptide, TCRα, and TCRβ, respectively
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somatic mutations, extending opportunities for mutanome-based
personalized immunotherapies.

Methods
Human subjects. Patients with recurrent ovarian, fallopian tube, or primary
peritoneal grade 2 and 3 cancer who had received several lines of chemotherapy
(Supplementary Table 1) were enrolled under protocols approved by the respective
institutional regulatory committees at the University of Pennsylvania (Penn), USA,
and Lausanne university hospital (CHUV), Switzerland. In particular, none of the
subjects had any underlying infection or inflammatory condition at the time of
study enrollment. Informed consent was obtained from all patients. All immune
analyses were conducted at the Lausanne Branch of the Ludwig Institute for Cancer
Research (LLB).

Identification of non-synonymous tumor mutations. Genomic DNA from
cryopreserved tumor tissue and matched PBMC was isolated using DNeasy kit
(Qiagen) and subjected to whole-exome capture and paired-end sequencing using
the HiSeq2500 Illumina platform. Data analysis was performed at the Vital-IT
Systems Biology Division, Swiss Institute of Bioinformatics (SIB), Lausanne.
Somatic variants were called from the exome reads and the reference human
genome hg19 by using a software pipeline composed of a genome mapping tool,
fetchGWI27, followed by a detailed sequence alignment tool, align0. Non-
deterministic predictors of any kind were avoided and the route of minimizing false
negative was prioritized and a cross-comparison with GATK as consensual variant
detection/prediction method reached over 96% agreement. Variations present in
the tumor samples and absent from the corresponding blood samples were
assumed to be somatic.

Neo-epitope prediction. Binding predictions to class-I HLA alleles for all candi-
date peptides incorporating somatic non-synonymous mutations were performed
using the netMHC algorithm v3.428. Candidate neo-epitope peptides (i.e., mutant
9-mer and 10-mer peptide sequences containing the somatically altered residue at
each possible position) with a predicted binding affinity of ≤ 500 nM, and their
wild-type native predicted peptides were synthesized (at > 90% HPLC purity) at the
Protein and Peptide Chemistry Facility (PPCF), University of Lausanne.

Identification of circulating neo-epitope specific T cells. CD8+ T cells (106 mL−1)
isolated (Dynabeads, Invitrogen) from cryopreserved PBMC were co-incubated with
autologous irradiated CD8+- and CD4+-depleted PBMCs and peptides (1 µgmL−1,
single peptide, or pools of≤ 50 peptides) in RPMI supplemented with 8% human
serum and IL-2 (20 IUmL−1 for 48 h and then 100 IUmL−1). IFNγ Enzyme-Linked
ImmunoSpot (ELISpot), peptide-MHC multimer complexes staining and ICS assays
were performed at day 12. T-cell reactivity for every neo-epitopes was validated by≥ 2
independent experiments.

ELISpot assays were performed using pre-coated 96-well ELISpot plates
(Mabtech) and counted with Bioreader-6000-E (BioSys)33. We considered as
positive conditions those with an average number of spots higher than the counts
of the negative control (No Ag) plus 3 times the standard deviation of the negative.
For ICS, T cells were plated with CD4+ blasts in a 1:1 ratio and brefeldinA (BD
biosciences, USA). After 16–18 h, cells were harvested and stained with anti-CD3,
anti-CD8, anti-CD4, anti-IL-2, anti-TNFα, anti-IFNγ (BD biosciences) and with
viability dye (Life technologies), acquired on a four-lasers Fortessa (BD
biosciences), and analyzed with FlowJo X (TreeStar) and SPICE 4.2.334. The
number of lymphocyte-gated events ranged between 105 and 106.

TILs expansion and interrogation. TILs were generated from tumor enzymatic
digestion by plating total dissociated tumor in p24-well plates at a density of 1 ×
106 cells per well in RMPI supplemented with 8% human serum and hrIL-2 (6000
IUmL−1) without (conventional) or with (primed) 1 µg mL−1 of predicted pep-
tides (in pools of ≤ 50 peptides). After 2–4 weeks, TILs were collected and a fraction
of the cultures underwent a rapid expansion (REP) for 14 days. T-cell reactivity
against predicted neo-antigens was tested by IFNγ ELISpot on pre-REP TILs when
available and post-REP TILs as described above. Positivity was confirmed in ≥ 2
independent experiments.

Isolation and expansion of neo-epitope specific T cells. Circulating and tumor-
infiltrating neo-epitope specific CD8+ T cells were FACS sorted using in-house
reversible multimers (NTAmers35), and were either used for TCR sequencing (see
below) or expanded or cloned by limiting dilution. To this end, cells were plated in
p96-well plates and stimulated with irradiated feeder cells (PBMC from two
donors) in RPMI supplemented with 8% human serum, phytohemagglutinin (1 μg
mL−1) and IL-2 (150 UmL−1). At the end of the REP, multimer-positive cells were
> 95% pure.

Functional avidity. Functional avidity of neo-epitope specific CD8+ T-cell
responses was assessed by performing limiting peptide dilutions (ranging from 30
µg mL−1 to 0.3 pg mL−1) in in vitro IFNγ ELISpot assays or Meso Scale Discovery
(MSD) platform (see below). The peptide concentration required to achieve a half-
maximal cytokine response (EC50) was determined36.

Mass cytometry (CyTOF) analyses. Cryopreserved PBL and TIL clones were
thawed, rested, and then stained using metal-conjugated antibodies according to
the CyTOF manufacturer’s instructions (Fluidigm, San Francisco, CA). Samples
were pooled and stained using a cocktail of antibodies for cell surface markers,
washed with cell staining media (CSM) and phosphate-buffered saline (PBS), fixed
with 2.4% formaldehyde, washed with CSM-S, and stained for intracellular targets.
All antibodies are described in Supplementary Methods. After intracellular stain-
ing, cells were resuspended in DNA-intercalation solution (PBS, 1 μM Ir-Inter-
calator, 1% formaldehyde, 0.3% saponin) and stored at 4 °C until analysis. For
intracellular cytokine stainings, cells were mixed with beads coated with αCD3 and
αCD28 antibodies and incubated overnight in presence of brefeldinA (BD). Cells
were then washed, and stained as discussed above. TCR signaling studies were
performed by pre-incubating PBL or TIL clones with 1 μg mL−1 αCD3 for 5 min at
37 °C followed by the addition of avidin to initiate T-cell activation. Aliquots of
cells were removed at the indicated times and the cellular phosphorylation states
were preserved by fixing the cells with 2% formaldehyde in PBS at 4 °C. Cells were
permeabilized with ice cold 90% methanol and individual timepoints were stained
with isothiocyanobenzyl-ethylenediaminetetraacetic acid loaded with one of five
palladium isotopes (104, 105, 106, 108, 110 u obtained from Trace Sciences,
Canada). Palladium-labeled cells were washed with CSM and all samples were
pooled prior to cell staining with a cocktail of antibodies for cell surface and
intracellular phosphoproteins, described in Supplementary Methods. DNA staining
and cell preparation were performed as discussed above. For CyTOF analysis, cells
were washed three times with MilliQ water and resuspended at 0.5 × 10E6 cells mL−1

in 0.1% EQ Four Element Calibration Beads solution (Fluidigm). Samples were
acquired on an upgraded CyTOF using a syringe pump at 45 μL per min. FCS files
were concatenated and normalized using the cytobank concatenation tool and
matlab normalizer, respectively. Data were processed and analyzed with cytobank
and R using the OpenCyto and cytofkit packages.
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Cytokines measurement. Cytokines measurement of culture supernatants was
performed using the human TH1/TH2 10-Plex tissue culture kit from MSD plat-
form. Supernatants of 96-well culture plates of stimulated and unstimulated lym-
phocytes were analyzed using standard multiplex plates as per the manufacturer’s
instructions.

In vitro killing assay. Peptide-loaded, 51Cr labeled target T2 cells were co-
incubated for 4 h at 37 °C with T cells (neo-epitope specific PBLs and TILs sorted
and expanded as above) at a ratio of 1:10. At the end of the co-culture, supernatant
was collected and analyzed for radio-reactivity using Topcount Instrument (Perkin
Elmer). The percentage of specific lysis was calculated as: 100 × [(experimental
−spontaneous release)/(total−spontaneous release)].

TCRα and TCRβ sequencing. Total RNA was isolated using the RNeasy Micro Kit
(Qiagen) and mRNA was then amplified using the MessageAmp II aRNA
Amplification Kit (Ambion) with the following modifications: 500 ng of total RNA
was used as starting material. The in vitro transcription was performed at 37 °C for
16 h. First-strand complementary DNA was synthesized using the Superscript III
(Thermofisher) and a collection of TRAV/TRBV-specific primers. TCRs were then
amplified by PCR (20 cycles with the Phusion from NEB) with a single primer pair
binding to the constant region and the adapter linked to the TRAV/TRBV primers
added during the reverse transcription. A second round of PCR (25 cycles with the
Phusion from NEB) was performed to add the Illumina adapters containing the
different indexes. The TCR products were purified with AMPure XP beads
(Beckman Coulter), quantified and loaded on the MiniSeq instrument (Illumina)
for deep sequencing of the TCRα/TCRβ chain. The TCR sequences were further
processed using ad hoc Perl scripts to: (i) pool all TCR sequences coding for the
same protein sequence; (ii) filter out all out-frame sequences; (iii) determine the
abundance of each distinct TCR sequence. TCR with a single read were not con-
sidered for the analysis.

Gene expression analysis. High quality RNA (1 μg) was subjected to paired-end
sequencing using the HiSeq2500 Illumina platform. Complementary DNA libraries
were constructed using mRNA-Seq Sample Prep Kit based on the Illumina guide.
Library size distribution was validated using Agilent Technologies 2100 Bioana-
lyzer and quantified by quantitative PCR (KAPA Library Quant Kits, KAPA bio-
system). Four normalized sample libraries were pooled together and loaded to a
single lane of an Illumina flow cell. Data analysis was performed at the Vital-IT
Systems Biology Division, SIB, Lausanne, and at the Lausanne Branch of the
Ludwig Institute for Cancer Research. Differential gene expression between groups
was performed with DESeq237 in R. The genes were ranked based on the fold
change between patients with or without PBL neo-epitope recognition and this
ranked gene list was inputted into GSEA38 to perform gene set enrichment analysis.
For this analysis, the enrichment for all the “Canonical pathways” gene sets (ver-
sion 5.1) from the “Molecular Signature Database”39 was tested (some results are
highlighted in Fig. 1i,j and Supplementary Fig. 2; all results with an FDR below 0.05
are reported in Supplementary Table 3).

TCR-pMHC structure modeling. The protocol used to model the TCR-p-MHC
complexes was adapted from our TCRep 3D approach32. Starting from V and J
segment identifiers and from the CDR3 sequences, the full sequence of the constant
and variable domains of TCRα and TCRβ were reconstituted based on IMGT/
GENE-DB reference sequences40. Homology models of the TCR-p-MHC com-
plexes were obtained using the Modeller41,42 program, version 9. Template
experimental structures were taken from the Protein Data Bank43, and selected
based on the sequence similarity to the different components of the complexes, i.e.,
peptide, MHC, β-microglobulin, TCRα, and TCRβ (Supplementary Table 4).
Sequence alignments between the target and template proteins were obtained using
the MUSCLE44,45 program. A total of 500 models were produced for each TCR-p-
MHC complex, and ranked according to the Modeller Objective Function. The best
ranked model was selected for CDR loop refinement. The later was performed by
creating 4 × 500 alternative loop conformations using the “loop modeling” module
of Modeller. During this refinement, loops were treated by pairs, as follows: TCRα
CDR1 and CDR3 were optimized simultaneously by creating 500 loop con-
formations (whereas other CDR loops were held fixed), followed by TCRα CDR1
and CDR2, TCRβ CDR1 and CDR3 and finally TCRβ CDR1 and CDR2, in this
order. After each of these four loop refinement steps, all models were ranked
according to the Molecular Mechanics—Generalized Born Surface Area (MM-
GBSA) score we used previously to perform TCR engineering46–48. The total
energy of the system was calculated using the CHARMM2749 force field, and the
CHARMM v39 molecular mechanics package50. The electrostatic solvation free
energy was calculated using the GB-MV251 implicit solvent model, with a dielectric
of 1 and 80 for the protein and solvent, respectively, and no cutoff on the non-
bonded terms. The non-polar solvation energy was estimated by weighting the
solvent accessible surface area calculated analytically with CHARMM (with a probe
radius of 1.4 Å) by a 0.0072 kcal/mol/Å2 surface tension. After each step of loop
refinement, the model with the most favorable MM-GBSA energy was selected for
the next step. Molecular graphics and analyses were performed with the UCSF
Chimera package52.

Statistical analyses. Differences between averages of variables were compared
using two-tail t-test for variables with normal distribution or by using
Mann–Whitney non-parametric test for non-normal variables. Analyses of con-
tingency were performed by Fisher’s exact test using Graphpad PRISM 7.0.

Data availability. The exome and RNA sequencing data have been deposited in
the the European Genome-phenome Archive (EGA) database under the accession
code EGAS00001002803. The authors declare that all the other data supporting the
findings of this study are available within the article and its supplementary
information files and from the corresponding authors upon reasonable request.
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