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Abstract 184 
In 1998, Bill Gray and colleagues showed that warm temperatures trigger Arabidopsis 185 
hypocotyl elongation in an auxin-dependent manner. This laid the foundation for a vibrant 186 
research discipline. With several active members of the ‘Thermomorphogenesis’ community, 187 
we here reflect on 25 years of elevated ambient temperature research and look to the future.  188 
 189 
 190 
The beginning 191 
In the early days of molecular genetics, temperature-sensitive mutants became a tool for 192 
dissecting molecular pathways. In the late 1970s, for example, essential genes regulating the 193 
budding yeast secretory pathway were identified in this manner [1]. Being trained as a yeast 194 
geneticist, Bill (William) Gray, a postdoc in Mark Estelle’s lab at Indiana University (USA), and 195 
colleagues used a similar approach in Arabidopsis thaliana (hereafter Arabidopsis). Bill aimed 196 
to identify temperature-sensitive alleles of TRANSPORT INHIBITOR RESPONSE 1 (TIR1), 197 
which was at the time an unknown auxin co-receptor. Although he was not successful at 198 
identifying such tir1 alleles, his observation that elevated temperature promotes auxin-199 
mediated hypocotyl elongation [2] would lay the foundation for a thriving research discipline 200 
known now as thermomorphogenesis. This year the engaged and active 201 
thermomorphogenesis community celebrates its 25th anniversary (Figure 1). 202 
 203 
The Gray study provided the basis for a molecular framework to understand the physiological 204 
responses to elevated ambient temperatures. Subsequently, work from the Franklin laboratory 205 
provided important insights into the potential benefits that plants obtain from 206 
thermomorphogenic growth patterns by showing that, in particular, petiole elongation and 207 
hyponastic growth are associated with increased transpiration and lower leaf temperatures 208 
(Figure 1A). This indicates that thermomorphogenesis stimulates leaf cooling by enhancing 209 
evaporation, suggesting a possible functional relevance to plants, at least under laboratory 210 
conditions [3]. However, in natural and agricultural settings the situation is undoubtedly more 211 
complex as plants have to deal with multiple environmental factors at the same time (see also 212 
below). 213 
 214 
Molecular signalling and thermosensing 215 
The publication of Gray’s seminal results [2] did not immediately spark follow-up studies. 216 
Indeed, it was not until 2009, when the Franklin lab identified the bHLH transcription factor 217 
PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) [4] as a key regulator of 218 
thermomorphogenic signalling, paving the way for subsequent discoveries, including the 219 
identification of the first thermosensors. In the same year, a second important study was 220 
published, describing gibberellins and brassinosteroids as phytohormones that, in addition to 221 
auxin, coordinate thermosensitive shoot growth [5], as we now know, downstream of PIF4. 222 
These two papers [4,5], together with the finding that PIF4 directly regulates specific auxin 223 
biosynthesis genes, like YUCCA8 [6,7], inspired many scientists. More and more groups from 224 
related disciplines (photobiology, phytohormone biology, natural variation, flowering 225 
regulation, epigenetics, thermotolerance, cellular signalling, immunity, post-transcriptional 226 
regulation, microRNA biogenesis) stepped in and started to elucidate how plants respond to 227 
elevated ambient temperatures. Not least, the research interest was fueled by the emerging 228 
awareness of rapid global warming and the need to harness crops to safeguard food security. 229 
The prospect of contributing to climate change mitigation is still a major driver for many of the 230 
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authors of this paper to devote resources to gain fundamental knowledge of 231 
thermomorphogenesis regulation and understanding its functional consequences. 232 
 233 
Studying warm temperature signalling is not a trivial task because temperature, being 234 
essentially molecular motion, is a versatile signal and has no ligand properties nor distinct 235 
physical features. For many years, it therefore remained unclear whether or not specific 236 
thermosensors had evolved in plants. Finding bona fide thermosensors has been, and still 237 
remains a major goal. Although not entailing a dedicated sensor, a warm temperature relay 238 
cascade was uncovered by the Wigge lab in 2010, showing that eviction of non-canonical 239 
histone H2A.Z from chromatin of temperature-inducible genes is required for 240 
thermomorphogenic responses [8]. Building on earlier work from the Whitelam, Schäfer and 241 
Halliday labs, the Wigge and Casal labs showed that phytochrome B (phyB) is a thermosensor 242 
using a combination of omics, biochemistry, spectroscopy and genetics, hence revealing that 243 
thermomorphogenesis requires a surveillance system directly linked to light responses [9,10]. 244 
Subsequently, temperature-dependent phase transition of EARLY FLOWERING 3 (ELF3) into 245 
biomolecular condensates and temperature-dependent conformational changes in PIF7 246 
mRNA structure, resulting in enhanced translation, were shown to also sense temperature 247 
changes [11,12]. Thus, various thermosensing mechanisms at the DNA, RNA and protein 248 
levels have been uncovered and more are expected to be found. 249 
 250 
 251 
Where do we go from here? 252 
Based on the early findings on the involvement of PIF4, auxin and other hormones [2,4,5-7], 253 
and by the identification of thermosensory mechanisms, thermomorphogenesis has become 254 
an established field in the plant sciences. However, many important points remain to be 255 
addressed. One major question is the spatial and temporal regulation of thermomorphogenic 256 
responses across organs and tissues, down to potential cell type specificities. Although a 257 
number of studies have specifically addressed this issue [e.g., 13], we are only now beginning 258 
to understand communication of temperature signals within the plant. Another challenge is to 259 
distinguish whether specific thermomorphogenic signalling events exist and to distinguish 260 
these from thermodynamic effects on several (if not all) signalling networks, given that 261 
temperature impacts every molecule and reaction in the plant, including enzyme activities. 262 
This also raises the question of how cold, ambient warm and heat (tolerance) responses are, 263 
if at all, connected. A gradient approach may reveal for example, whether cold regulators are 264 
involved in warm temperature responses and vice versa, and thus if there exists a generic 265 
response to temperature or whether distinct signalling branches deal with different 266 
temperature cues. Part of the answer may be obtained by taking an epigenetic approach, as 267 
regulation of different levels of histone H3 lysine 4 methylation appears to be a signalling hub 268 
where diverse temperature cues converge [14]. 269 
 270 
At the organismal level, a potential pitfall of thermomorphogenesis research is that functional 271 
hypotheses are relatively easy to formulate when only temperature is considered. For 272 
example, temperature-induced root elongation may serve to reach deeper water to meet the 273 
demands of increased transpiration and hyponasty is likely to reduce heat flux on the leaves. 274 
However, the contribution of thermomorphogenesis and its component traits in natural 275 
environments is complex and currently not well understood. One avenue of future research 276 
should focus on understanding which thermomorphogenic responses actually contribute to 277 
plant performance in the wild and/or agricultural environments, what fitness costs are 278 
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associated, and which regulators of the canonical or peripheral pathways are targeted by 279 
natural selection to confer a selective advantage. While the community has so far gained 280 
understanding of thermomorphogenesis under highly controlled conditions, it is time to expand 281 
beyond the laboratory, to study thermomorphogenesis in wild species and in crops. It has been 282 
reported that thermomorphogenesis does occur in several crop species such as cabbage, 283 
tomato and wheat [15], yet the molecular mechanisms need to be further explored to be able 284 
to contribute to the generation of climate-resilient varieties (Figure 1B). Emphasis should be 285 
placed on the interaction with biotic signals and their potential trade-offs. Global warming will 286 
increase pathogen pressure, highlighting the importance of better understanding the 287 
interactions between temperature and the biotic environment, which may also apply vice versa 288 
to microorganisms that positively influence plant performance in symbiotic interactions. In 289 
addition, temperature will influence the way in which abiotic factors such as drought or salt 290 
stress are perceived and dealt with. For example, while warm temperature episodes often co-291 
occur with drought, there is an apparent conflict in their optimal responses, since drought-292 
induced stomatal closure may prevent leaf cooling facilitated through increased 293 
thermomorphogenesis-mediated transpiration. The cross-talk and potential priming role of 294 
thermomorphogenesis on thermotolerance (e.g., do thermomorphogenesis signalling and 295 
resulting phenotypes contribute to heat stress survival?) is another critical point that requires 296 
further investigation. 297 
 298 
Perhaps the greatest challenge for thermomorphogenesis research lies in translation: how do 299 
we exploit conceptual breakthroughs in understanding temperature signalling to engineer 300 
plant resilience in this era of unprecedented global warming? Despite excellent progress on 301 
understanding the mechanisms underlying individual thermomorphogenic responses over the 302 
last 25 years, we may have yet bigger discoveries to come. 303 
 304 
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 344 
 345 
 346 
Figure legend 347 
 348 
Figure 1. Milestones in 25 years of thermomorphogenesis research (A) Model 349 
thermomorphogenic phenotypes represented on a stylised plant; arrows indicate thermo-350 
induced directions of the corresponding phenotypes. (B) Roadmap of selected important 351 
research milestones, starting with the discovery that the auxin indole-3-acetic acid (IAA) 352 
mediates temperature-dependent hypocotyl elongation and leading towards the generation of 353 
future climate-resilient crops; colours of the centerline markings indicate the global 354 
temperature change relative to the 1971-2000 average, based on information from 355 
https://showyourstripes.info/c/globe with each stripe representing one year. Blue and red 356 
colours indicate below-average and above-average temperatures, respectively, with darker 357 
colours indicating greater deviations from the mean. 358 
 359 
 360 
 361 
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