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Abstract: Over the last few years, pacing of the conduction system (CSP) has emerged as the new
standard pacing modality for bradycardia indications, allowing a more physiological ventricular
activation compared to conventional right ventricular pacing. CSP has also emerged as an alter-
native modality to conventional biventricular pacing for the delivery of cardiac resynchronization
therapy (CRT) in heart failure patients. However, if the initial clinical data seem to support this
new physiological-based approach to CRT, the lack of large randomized studies confirming these
preliminary results prevents CSP from being used routinely in clinical practice. Furthermore, concerns
are still present regarding the long-term performance of pacing leads when employed for CSP, as well
as their extractability. In this review article, we provide the state-of-the-art of CSP as an alternative
to biventricular pacing for CRT delivery in heart failure patients. In particular, we describe the
physiological concepts supporting this approach and we discuss the future perspectives of CSP in
this context according to the implant techniques (His bundle pacing and left bundle branch area
pacing) and the clinical data published so far.
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1. Introduction

Conduction system pacing (CSP) using His bundle or left bundle branch stimulation
has been associated with better clinical outcomes compared to conventional right ventricu-
lar pacing in patients implanted for bradycardia indications [1,2]. Indeed, stimulation at the
conduction system level provides a more physiological ventricular activation and reduces
the acute and long-term effects related to dyssynchronous right ventricular pacing [3].
Because of this clinical evidence and the improvements in implanting techniques, CSP has
become the new standard approach for conventional bradycardia indications and is gaining
consensus as an alternative or in addition to conventional biventricular (BiV) pacing to
deliver cardiac resynchronization therapy (CRT). However, despite promising preliminary
data [4–16], the lack of large randomized controlled trials prevents CSP from being used
routinely in clinical practice for CRT delivery.

This review article provides a state-of-the-art of CSP “in lieu” of conventional biventric-
ular pacing in heart failure patients. In particular, we describe the physiological concepts
supporting the rationale of CSP and the different CSP approaches to delivering CRT. Fur-
thermore, we discuss the results of the main clinical studies published so far and how
to translate this evidence into clinical practice to identify the optimal approach for CRT
delivery according to the patient’s characteristics on an individual basis.
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2. Conduction System Pacing to Deliver Cardiac Resynchronization Therapy
2.1. Rational and Techniques

The attempts to improve electro-mechanical synchronization in heart failure patients
with wide QRS complexes have historically been based on biventricular stimulation deliv-
ered by a conventional endocardial right ventricular lead and an additional lead implanted
on the epicardial left ventricular surface via the coronary venous system [17,18]. However,
pacing from the epicardium to the endocardium is not physiological and makes restoring
electrical ventricular synchronicity challenging, especially in patients with non-left bundle
branch block (LBBB) patterns and a relatively narrow QRS duration, despite targeting the
latest electro-mechanical implantation site for the left ventricular lead and programming
optimized atrioventricular and interventricular intervals in CRT devices.

The attractiveness of CSP is based on the concept that recruiting the intrinsic conduc-
tion pathways at the His bundle or at the left bundle branch level would allow a more
physiological activation of cardiac myocytes, leading to better mechanical synchronic-
ity [19]. In acute hemodynamic studies on unselected populations with standard CRT
indications, CSP delivered in the His bundle region [4,20] or in the left bundle branch
area [20,21] is associated with better left ventricular and biventricular synchronicity and
hemodynamics compared to biventricular pacing by significantly reducing left ventricular
and biventricular activation time and biventricular dyssynchrony index [21]. However,
these results seem to be attenuated by the presence of a septal scar [21], and left bundle
branch area pacing (LBBAP) may induce a delay in right ventricular activation compared
to His pacing [20].

The initial experiences using CSP for CRT delivery have been performed by pacing the
His bundle region. In the randomized His-Sync Pilot Trial [5], the His-CRT patients showed
a greater QRS narrowing and a trend towards a higher improvement in left ventricular
ejection fraction (LVEF) compared to the BiV-CRT patients, but the study was limited by
the high rates of crossover in the BiV-CRT group, mainly because of the inability to correct
the QRS owing to nonspecific intraventricular conduction delays. The His-Alternative
Trial [22] randomized patients with left bundle branch block and CRT indications to His vs.
biventricular pacing. His corrective pacing was achieved in 72% of the His-CRT patients.
At six-month follow-up, a similar increase in LVEF was observed in both groups, but
significantly higher pacing thresholds were documented in the His-CRT group. These
preliminary results on His pacing highlighted the concepts that patients with advanced
cardiomyopathy often present multiple electrical dyssynchronies to be treated and that
electrical resynchronization can be more effective by combining stimulation from the
specialized conduction system with conventional epicardial left ventricular stimulation
able to recruit myocardial areas with late electrical activation. In a feasibility study from
Vijayaraman et al. [8], a combined His-LV stimulation approach (His-Optimized CRT (HOT-
CRT)) was associated with a significant QRS narrowing compared to either His pacing or
BiV pacing alone and a significant improvement in LVEF at mid-term follow-up. However,
because of the observational nature of the study, the applicability of this approach in routine
clinical practice remains to be validated.

Despite preliminary encouraging results, technical difficulties in achieving the target
pacing site, unsatisfactory electrical lead parameters especially in terms of increase in pacing
thresholds over time [23,24], and the inability to correct infra-Hisian or more distal con-
duction diseases [25] limit the adoption of His pacing as the technique of choice to deliver
standard bradycardia pacing or as an alternative to conventional biventricular pacing.

Over the last few years, a new approach for CSP has been developed consisting of
pacing the left bundle branch area to recruit directly the pre-divisional portion of the left
bundle branch (LBB pacing “sensu stricto”) or, more distally, the left fascicular branches.
The left septal pacing is considered a part of the LBBAP, though it does not directly activate
the left conduction system [26]. Compared to His pacing, the advantages of LBBAP are
the possibility to correct infra-Hisian blocks, the stability of the pacing parameters over
time [2,27], and the higher implant success rate [28,29]. For all these reasons and the
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encouraging results obtained in bradycardia indications [2], LBBAP has been rapidly
introduced as a promising alternative to His pacing for CRT delivery. In a cohort of
325 patients with LVEF < 50% and CRT indication, LBBAP was successfully obtained in
85% of patients and associated with a significant reduction in QRS duration (from 152 ± 32
to 137 ± 22 ms, p < 0.01) and an improvement in LVEF at 6-month follow-up (33 ± 10% to
44 ± 11%, p < 0.01) [6]. In this study, the presence of an LBBB was an independent predictor
of echocardiographic response. However, as documented in a subsequent series from the
same study group [7], also patients showing a right bundle branch block (RBBB) pattern
may benefit from LBBAP and the mechanism leading to QRS narrowing in these specific
cases owes to a combination of non-selective LBB capture [30].

In terms of safety, the MELOS Study [29], the largest observational registry on LB-
BAP outcomes, describes an overall complication rate of 11.7%, including acute and late
complications, which is comparable with the data previously reported for BiV-CRT im-
plantations [31]. In particular, a total of 8.3% of complications were related to the LBBAP
lead, including 3.7% of acute left ventricular perforations, managed by lead repositioning
and not associated with adverse clinical consequences, and 1.5% of lead dislodgements.
More recently, cases of interventricular septal hematoma have also been reported as a
complication of LBBAP lead implantation [32–34]. All these observations highlight the fact
that refinements in the LBBAP delivery systems and dedicated LBBAP leads would sub-
stantially contribute to the reduction in the implantation complication rate and hopefully
they will be available in the near future.

The adjunct of conventional epicardial left ventricular stimulation to LBBAP has also
been proposed, like for the His-bundle pacing, to overcome the inability to correct distal
conduction disease in the His–Purkinje system or inside the myocardium. In a feasibil-
ity study from Jastrzębski et al. [9], LBBAP-optimized CRT (LOT-CRT) was attempted in
112 consecutive patients with standard CRT indications and eventually obtained in 81%.
LOT-CRT was associated with greater electrical resynchronization in terms of QRS narrow-
ing compared to BiV-CRT and LBBAP alone, as well as to a significant improvement in the
echocardiographic and clinical parameters at 3-month follow-up compared to baseline. In
this series, the complications rate was relatively low, accounting for five cases of early com-
plications (one LBBAP and one coronary sinus lead displacement; one septal perforation
with LBBAP lead; two pocket hematomas) and three complications that occurred during
follow-up (one infection; one increase in coronary sinus lead pacing threshold; one right
atrial lead dislodgement). Based on these preliminary results, LOT-CRT can be considered
an alternative to conventional biventricular pacing in cases of suboptimal electrical resyn-
chronization. However, larger randomized studies are still needed to support its use in
routine clinical practice.

Figure 1 illustrates the anatomical differences, advantages, and limitations of standard
biventricular pacing and conduction system pacing implant techniques.

Table 1 summarizes the results from the largest series evaluating the feasibility and
clinical outcomes of CSP techniques for CRT delivery.
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Figure 1. CRT implant techniques (standard biventricular pacing and conduction system pacing): anatomical differences, advantages, and limitations. Abbreviations:
AV: atrioventricular; BiV: biventricular; CRT: cardiac resynchronization therapy; CSP: conduction system pacing; HBP: His bundle pacing; HOT-CRT: His optimized-
cardiac resynchronization therapy; ICD: implantable cardioverter defibrillator; LA: left anterior; LBB: left bundle branch; LBBAP: left bundle branch area pacing;
LF: left fascicular; LS: left mid-septal; LOT-CRT: left bundle branch area pacing optimized-cardiac resynchronization therapy; LP: left posterior; LV: left ventricular;
LVS: left ventricular septal; RV: right ventricular; VV: interventricular.
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Table 1. Results from the largest series evaluating the feasibility and clinical outcomes of CSP techniques for CRT delivery.

Authors Year Study Design Total n. of
pts Study pts Intervention Follow-Up

(Months) Outcomes

His-CRT

Upadhyay GA
et al. [5] 2019 RCT 41

QRS > 120 ms,
LVEF ≤ 35%,
NYHA II–IV

His-CRT vs.
BiV-CRT 12.2 Greater QRS narrowing in

His-CRT pts vs. BiV-CRT pts

Vinther M et al.
[22] 2021 RCT 50 LBBB,

LVEF ≤ 35%,
His-CRT vs.

BiV-CRT 6 Similar clinical and physical
improvement in both groups

HOT-CRT Vijayaraman et al.
[8] 2019 Prospective,

observational 27

LBBB or IVCD,
QRS ≥140 ms,
LVEF ≤ 35%,
NYHA III–IV

Feasibility study 14 ± 10

Feasibility criteria met
Greater QRS narrowing in

HOT-CRT vs. BiV or His pacing
Significant increase in LVEF and

NYHA compared to baseline

LBBAP-CRT

Vijayaraman et al.
[6] 2021 Retrospective,

observational 325
LVEF < 50%, CRT

or pacing
indications

Feasibility study 6 ± 5

Feasibility and safety criteria met
Significant QRS narrowing

Significant increase in LVEF and
NYHA compared to baseline

Vijayaraman et al.
[7] 2022 Retrospective,

observational 121

RBBB,
LVEF < 50%, CRT

or pacing
indications

Feasibility study 13 ± 8

Feasibility criteria met
Significant QRS narrowing

Significant increase in LVEF and
NYHA compared to baseline

LOT-CRT Jastrzębski et al.
[9] 2022 Prospective,

observational 112
CRT indications or

non-response to
CRT

Feasibility study 7.8 ± 2.3

Feasibility and safety criteria met
Greater QRS narrowing in

LOT-CRT vs. BiV or LBBAP
Significant increase in LVEF and

NYHA and a significant
reduction in LVEDV and

NT-proBNP compared to baseline

Abbreviations: BiV: biventricular; His-CRT: His-cardiac resynchronization therapy; HOT-CRT: His optimized-cardiac resynchronization therapy; IVCD: intraventricular conduction
delay; LBBAP-CRT: left bundle branch area pacing-cardiac resynchronization therapy; LBBB: left bundle branch block; LVEF: left ventricular ejection fraction; LOT-CRT: left bundle
branch area pacing optimized-cardiac resynchronization therapy; NYHA: New York Heart Association functional class; LVEDV: left ventricular end-diastolic volume; NT-proBNP:
N-terminal prohormone of brain natriuretic peptide; pts: patients; RBBB: right bundle branch block; RCT: randomized controlled trial.
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2.2. LBBAP: Comparison with Biventricular Pacing and Implications in Clinical Practice

Data from relatively large observational studies [10,13,15] and small randomized
series [12,14] comparing CSP to conventional BiV pacing confirmed the preliminary obser-
vations attesting to the safety and clinical benefits of CSP for CRT delivery. In a retrospective
series of 477 patients undergoing CRT, the primary outcome of death or heart failure hospi-
talization was significantly lower in the CSP group (including His bundle pacing (n = 87)
and LBBAP (n = 171)) compared to the BiV group (28.3% vs. 38.4%; HR 1.52; 95% CI
1.082–2.087; p = 0.013) after a mean follow-up of 27 ± 12 months, and the extent of these
results was more prominent in patients showing an LBBB pattern at baseline [10]. Similar
results have been recently documented in a larger retrospective study of 1778 CRT patients
where LBBAP alone was compared to BiV CRT, showing a significant reduction in death
or heart failure hospitalization (20.8% vs. 28%; HR-1.495; CI 1.213–1.842; p < 0.001) after a
mean follow-up of 33 ± 16 months [13]. Importantly, the incidence of procedural complica-
tions in this series was significantly higher in the BiV group compared to the LBBAP group
(7.5% vs. 3.8%, p < 0.001). The LBBP has also been associated with a significant improve-
ment in LVEF at 6-month follow-up (mean difference: 5.6%; 95% CI: 0.3–10.9; p = 0.039)
in the LBBP-RESYNC Trial [12], where 40 patients with nonischemic cardiomyopathy and
CRT indications were randomized to LBBP-CRT vs. BiV-CRT.

According to these results, CSP could be considered an alternative to conventional
biventricular pacing for CRT candidates, especially when delivered as LBBAP, but the
lack of large randomized studies precludes spreading this approach in daily practice.
Indeed, according to the current guidelines [31,35,36], CSP may be offered only as a bail-out
option in CRT patients in whom coronary sinus lead implantation is unsuccessful or as
an alternative to standard BiV to maintain physiological ventricular activation in patients
with mild left ventricular dysfunction and expected to require a high burden of ventricular
pacing, or in patients with tachycardia-induced cardiomyopathy in the context of an “ablate
and pace” strategy. Therefore, to translate these recommendations into clinical practice, CSP
could be reasonably offered to elderly patients with low LVEF, several comorbidities, and
bradycardia indications for ventricular pacing as an alternative to conventional BiV pacing,
with the aim to reduce the complication rates related to conventional coronary sinus lead
implantation and the costs of sophisticated CRT devices, but also to CRT non-responders
or CRT candidates with non-LBBB patterns where there is evidence of a relatively proximal
His–Purkinje conduction disease.

Indeed, in a mechanistic study with simulated ventricular activation on 24 4-chamber
heart geometries, including His–Purkinje systems with proximal LBBB, Strocchi et al. [37]
documented that septal scar and severe left ventricular His–Purkinje conduction disease
attenuate the benefits of CSP, whereas BiV stimulation alone, in case of septal scar, or in
addition to CSP as HOT-CRT or LOT-CRT, in case of severe left ventricular His–Purkinje
conduction disease, would significantly improve biventricular activation time. These
experimental results support the importance of maintaining conventional epicardial left
ventricular stimulation as an option in specific conditions and highlight the concept of an in-
dividualized approach for CRT delivery based on the underlying electrical and myocardial
disease. Based on these observations provided by Strocchi et al. [37] and the evidence from
the clinical studies published so far [5–9,22,25], we might tentatively propose a decision
tree for CRT delivery in heart failure patients who are CRT candidates according to the
current recommendations [31,35], which is shown in Figure 2. In particular, BiV pacing
should be adopted in cases of septal scars to overcome distal blocks as the consequence of
a non-viable His–Purkinje system at the septal level that makes CSP ineffective. However,
it should be noted that in the case of a septal scar located at a basal level only, posterior
fascicular pacing can be attempted by targeting the mid and posterior septum, as previously
reported by Ponnusamy SS et al. [38]. Moreover, the location of the conduction block at the
His–Purkinje level is not completely predictable by the surface QRS morphology, as also
recently confirmed in a study by Upadhyay GA et al. [25], where the traditional 12-lead
ECG criteria for the LBBB pattern [39] were insufficient for predicting the response to His
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bundle pacing alone. Therefore, the site of the conduction block can be assessed precisely
by using intracardiac data only, and this evaluation should be performed intraoperatively
in order to choose between His bundle pacing or LBBAP. Finally, in the presence of distal
His–Purkinje disease (e.g., distal bundle branch block or Purkinje network disease), an
optimized CRT approach, such as HOT-CRT or LOT-CRT, should be attempted to achieve
a greater electrical resynchronization that could not be provided by CSP alone in these
specific conditions.
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in heart failure patients according to the patient’s clinical characteristics and the different implant
techniques. Abbreviations: BBB: bundle branch block; BiV: biventricular; CSP: conduction system
pacing; HF: heart failure; HBP: His bundle pacing; HOT-CRT: His optimized-cardiac resynchroniza-
tion therapy; IVCD: intraventricular conduction delay; LBBAP: left bundle branch area pacing; LBBB:
left bundle branch block; LVEF: left ventricular ejection fraction; LOT-CRT: left bundle branch area
pacing optimized-cardiac resynchronization therapy; RBBB: right bundle branch block; VP: ventricu-
lar pacing.
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2.3. Evidence Gaps and Practical Considerations

Long-term lead performance, lead extractability, and impact on the tricuspid valve
function represent the main concerns related to the CSP approach and the data available so
far are too scarce to draw conclusions on these matters.

In particular, the impact of septal kinetics on lead durability and therefore on the
evolution of the electrical parameters over time in the case of LBBAP is still not fully
defined, although lumenless pacing leads could be less affected compared to stylet-driven
pacing leads because of the smaller lead body and the high tensile strength.

Data on lead extractability are limited to single-center experiences and case
reports [40–43]. In a series of 30 patients with chronically implanted lumenless His bundle
leads (mean dwelling time 25 ± 18 months), the success rate of the extraction procedure
was >95%, and no procedure-related complications were observed. In most cases, the
leads were extracted by using simple traction, whereas mechanical extraction tools were
required only in a few cases [40]. Regarding the LBBP lead, the case reports published
so far showed the feasibility of the extraction procedure, describing that lumenless leads
implanted in septal position up to 3 years before were removed intact by gentle traction
without complications [41–43].

Finally, preliminary observations in LBBP patients documented a correlation between
the deterioration of the tricuspid valve regurgitation and the distance between the lead-
implanted site and the tricuspid valve annulus [44]. This highlights the importance of
refining the implant techniques to minimize the interactions of the lead with the septal
tricuspid leaflet and the subvalvular apparatus, ideally integrating imaging modalities like
intracardiac echocardiography to guide lead placement.

Delivering CSP could be a challenge for patients presenting with specific myocardial
diseases such as hypertrophic cardiomyopathy (HCM). The few case reports available so far
showed the feasibility of LBBP in HCM patients despite the technical issues related to the
amount of septal fibrosis potentially affecting the lead penetration and the pacing threshold
values [45,46]. However, more evidence on long-term efficacy and safety is required before
CSP can be validated as a standard approach in such complex conditions.

CSP has grown exponentially in clinical practice over the last few years. Additionally,
device manufacturers have rapidly developed dedicated implanting tools to reach the
target pacing areas more easily and improve the implant success rate. However, device
algorithms specifically designed for CRT delivery in CSP settings are still missing. In
particular, algorithms able to test and adjust pacing threshold and sensitivity (e.g., for the
His bundle pacing lead) as well as adapt atrioventricular conduction intervals to allow
fusion pacing in specific settings (e.g., in the case of selective LBBP to avoid a delayed right
ventricular activation) [47,48] would be desirable in the near future.

3. Future Directions for CRT Delivery

The individualization of CRT modalities based on the patient’s clinical characteristics
will hopefully become more and more the adopted strategy in the future in order to
maximize the clinical response to CRT and potentially reduce healthcare costs. Recently, the
MADURAI LBBP study [49] has shown that in patients with non-ischaemic cardiomyopathy,
LBBB, and <10% of scar burden at cardiac magnetic resonance, LBBP was associated
with a significant improvement in LVEF compared to patients with scar burden > 10%.
Furthermore, in patients with low scar burden, no major ventricular arrhythmic events
were reported during a mean follow-up of 21 ± 12 months. This preliminary evidence
supports the concept that selected heart failure patients can be treated safely with CRT only
without defibrillation therapy, potentially reducing the costs related to the implantation of
unnecessary devices. However, the development of dedicated tools to help match patient
profiles with optimal therapeutic strategies is essential. In this sense, the contribution of
artificial intelligence could be meaningful because of the heterogeneity of electrical patterns
and myocardial diseases encountered in heart failure patients.
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Finally, the miniaturization of technologies to deliver CSP as leadless LBBAP is under
development, and more data on safety and feasibility will probably be available over the
next few years [50].

4. Conclusions

CSP, especially as LBBAP, has progressively gained support as an alternative to con-
ventional BiV pacing to deliver CRT in heart failure patients. However, the lack of data from
large randomized studies discourages adopting this approach routinely in clinical practice.
Furthermore, conventional epicardial stimulation by a coronary sinus lead still maintains a
role, alone or in addition to His bundle pacing or to LBBAP, in specific conditions where
CSP seems to be ineffective in restoring electrical resynchronization. Therefore, an individ-
ualization of the implant strategy according to the patient’s characteristics appears to be the
approach to be adopted in the near future to treat candidates to CRT, aiming to optimize
the clinical benefits of this technology.
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