PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 8, Pages 2199-2212 S 0002-9939(99)05183-7 Article electronically published on April 8, 1999

THE MOD 2 COHOMOLOGY OF THE LINEAR GROUPS OVER THE RING OF INTEGERS

DOMINIQUE ARLETTAZ, MAMORU MIMURA, KOJI NAKAHATA, AND NOBUAKI YAGITA

(Communicated by Ralph Cohen)

ABSTRACT. This paper completely determines the Hopf algebra structure of the mod 2 cohomology of the linear groups $GL(\mathbb{Z})$, $SL(\mathbb{Z})$ and $St(\mathbb{Z})$ as a module over the Steenrod algebra, and provides an explicit description of the generators.

1. INTRODUCTION

Recently, J. Rognes and C. Weibel deduced from V. Voevodsky's proof [V] of the Milnor conjecture the complete calculation of the 2-torsion of the algebraic Ktheory of the ring of integers \mathbb{Z} (see Table 1 of [W] and Theorem 0.6 of [RW]). Of course, this has immediate consequences on the mod 2 cohomology of the infinite general linear group $GL(\mathbb{Z})$ and more generally on the understanding of the space $BGL(\mathbb{Z})^+$.

In [Bok], M. Bökstedt tried to construct a 2-adic model for the space $BGL(\mathbb{Z})^+$: he considered any prime number $p \equiv 3$ or 5 mod 8 and introduced a space J(p)which is defined by the pull-back diagram

$$\begin{array}{c} J(p) \xrightarrow{h'} BO \\ \downarrow f'_p & \downarrow c \\ F\Psi^p \xrightarrow{b} BU , \end{array}$$

where $F\Psi^p$ is the fiber of $(\Psi^p - 1) : BU \to BU$ (recall that $F\Psi^p \simeq BGL(\mathbb{F}_p)^+$ by Theorem 7 of [Q2]), b is the Brauer lifting and c is the complexification. The fibers of the horizontal maps are homotopy equivalent to the unitary group U. He was actually more precisely interested in the covering space $JK(\mathbb{Z}, p)$ of J(p)corresponding to the cyclic subgroup of order 2 of $\pi_1 J(p) \cong \mathbb{Z} \oplus \mathbb{Z}/2$. Bökstedt's definition of the space $JK(\mathbb{Z}, p)$ (see [Bok], Definition 1.7 and the proof of Lemma 2.1) is based on the Adams conjecture and on the calculation of the 2-primary part of the homotopy groups of $(F\Psi^p)_2$ which is the same, in dimensions $\equiv 3 \mod 4$, for

©1999 American Mathematical Society

Received by the editors September 15, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 20G10; Secondary 19D55, 20J05, 55R40, 55S10.

We would like to thank Christian Ausoni for his helpful comments on Bökstedt's work [Bok] and the referee for his interesting suggestions. The third author thanks the Swiss National Science Foundation for financial support.

all primes $p \equiv 3$ or 5 mod 8 (this explains the choice of p; see Section 3 of [Au] for more details). Notice that the space $JK(\mathbb{Z}, p)$, in the case p = 3, appears also in Section 4 of [DF] and in [M]. After completion at the prime 2, Bökstedt constructed a map

$$\varphi: (BGL(\mathbb{Z})^+)_2^{\sim} \longrightarrow JK(\mathbb{Z},p)_2^{\sim}$$

which induces a split surjection on all homotopy groups (see [Bok], Diagram 1.9). Recall that the localization exact sequence in K-theory implies that

$$(BGL(\mathbb{Z}[\frac{1}{2}])^+)_2 \simeq (BGL(\mathbb{Z})^+)_2 \times (S^1)_2.$$

Therefore, φ provides a map

$$\widetilde{\varphi}: (BGL(\mathbb{Z}[\frac{1}{2}])^+)_2^{\widehat{}} \longrightarrow J(p)_2^{\widehat{}}$$

which also induces a split surjection on all homotopy groups. Bökstedt's idea was indeed excellent because now the 2-torsion of $K_*(\mathbb{Z})$ is known and turns out to be isomorphic to the 2-torsion of $\pi_*JK(\mathbb{Z},p)$ (according to Table 1 of [W] and Theorem 0.6 of [RW]); therefore, φ and $\tilde{\varphi}$ are actually homotopy equivalences. Observe in particular that the homotopy type of $(JK(\mathbb{Z},p))_2$ does not depend on p (for $p \equiv 3$ or 5 mod 8). Consequently, we obtain for all primes $p \equiv 3$ or 5 mod 8 the pull-back diagram (see also Corollary 8 of [W])

$$(BGL(\mathbb{Z})^{+})_{2}^{\hat{}} \times (S^{1})_{2}^{\hat{}} \xrightarrow{h'} BO_{2}^{\hat{}}$$

$$\downarrow^{f'_{p}} \qquad \qquad \downarrow^{c}$$

$$(F\Psi^{p})_{2}^{\hat{}} \xrightarrow{b} BU_{2}^{\hat{}}$$

and the commutative diagram (where both rows are fibrations)

(*)
$$SU_{2}^{2} \xrightarrow{\eta} (BGL(\mathbb{Z})^{+})_{2}^{2} \xrightarrow{h} BO_{2}^{2}$$
$$\downarrow^{\zeta} \qquad \qquad \downarrow^{f_{p}} \qquad \qquad \downarrow^{c}$$
$$U_{2}^{2} \xrightarrow{\theta} (F\Psi^{p})_{2}^{2} \xrightarrow{b} BU_{2}^{2},$$

in which f_p and h denote the composition of the inclusion

$$(BGL(\mathbb{Z})^+)_2^{\widehat{}} \hookrightarrow (BGL(\mathbb{Z})^+)_2^{\widehat{}} \times (S^1)_2^{\widehat{}}$$

with f'_p and h' respectively, and ζ the 2-completion of the inclusion $SU \hookrightarrow U \simeq SU \times S^1$. According to Section 2 of [Bok], the map h is induced by the inclusion $\mathbb{Z} \hookrightarrow \mathbb{R}$ and for all odd primes p, the diagram

where red_p is the map induced by the reduction mod $p : GL(\mathbb{Z}) \to GL(\mathbb{F}_p)$, is homotopy commutative. Thus, we may assume that the map f_p in the diagram (*) is induced by the reduction mod p. S. Mitchell computed the mod 2 homology of the space $JK(\mathbb{Z},3)$ in Theorem 4.3 of [M]; because of the above homotopy equivalence $(BGL(\mathbb{Z})^+)_2 \simeq JK(\mathbb{Z},3)_2$, this provides the calculation of $H_*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)$ and by dualization the determination of the Hopf algebra structure of $H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)$ as a module over the Steenrod algebra \mathcal{A} (see [M], Remark 4.5). However, Mitchell's argument does not give explicit generators of $H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)$. The first goal of the present paper is to use the above commutative diagram (*) in order to get a direct proof of Michell's result.

Theorem. There is an isomorphism of Hopf algebras and of modules over the Steenrod algebra

$$\alpha: H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \cong H^*(BO; \mathbb{Z}/2) \otimes H^*(SU; \mathbb{Z}/2).$$

Recall that $H^*(BO; \mathbb{Z}/2) \cong \mathbb{Z}/2[w_1, w_2, \dots]$ and $H^*(SU; \mathbb{Z}/2) \cong \Lambda(v_3, v_5, \dots)$, where $\deg(w_j) = j$ and $\deg(v_{2k-1}) = 2k - 1$.

In fact, the main objective of this paper is to describe explicitly the generators of $H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)$. The generators of the polynomial part are the Stiefel-Whitney classes, also denoted by w_j , coming from $H^*(BO; \mathbb{Z}/2)$ via the homomorphism induced by h. On the other hand, we identify precisely (see Definitions 5 and 10 and Remark 14) the exterior generators u_{2k-1} of degree 2k - 1 in $H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)$, corresponding to $1 \otimes v_{2k-1}$ under the above isomorphism α , in terms of the image of the homomorphism

$$f_p^*: H^*(F\Psi^p; \mathbb{Z}/2) \cong H^*(BGL(\mathbb{F}_p)^+; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$$

induced by the reduction mod p for $p \equiv 5 \mod 8$ (they actually do not depend on the choice of p). We show that the classes u_{2k-1} are primitive cohomology classes and compute the action of the Steenrod squares on them. Therefore, we get an isomorphism of Hopf algebras and of modules over the Steenrod algebra

$$H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)\cong\mathbb{Z}/2[w_1,w_2,\ldots]\otimes\Lambda(u_3,u_5,\ldots)$$

and we deduce that the isomorphism α is unique (see Theorem 11). We also obtain an explicit formula relating the classes u_{2k-1} to the image of the homomorphism f_p^* for all primes $p \equiv 3 \mod 8$ (see Theorem 13).

This provides a complete description of the mod 2 cohomology of the infinite general linear group $GL(\mathbb{Z})$. In the remainder of the paper we compute the mod 2 cohomology of the infinite special linear group $SL(\mathbb{Z})$ and of the infinite Steinberg group $St(\mathbb{Z})$ (see Corollary 15, Theorem 17 and Remark 18).

2. The mod 2 cohomology of the linear groups $GL(\mathbb{Z})$ and $SL(\mathbb{Z})$

Theorem 1. There is an isomorphism of Hopf algebras and of modules over the Steenrod algebra

$$\alpha: H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \cong H^*(BO; \mathbb{Z}/2) \otimes H^*(SU; \mathbb{Z}/2).$$

Proof. As mentioned in the introduction, this follows indirectly from [M], Theorem 4.3 and Remark 4.5. Here is a direct argument. Let Q denote the subgroup of diagonal matrices in $GL(\mathbb{Z})$ and let $\lambda : BQ \to BGL(\mathbb{Z})^+$ be the map induced by the inclusion $Q \hookrightarrow GL(\mathbb{Z})$. It is known by Theorem 22.7 of [Bor] that the composition $h\lambda : BQ \to BO$ induces an injective homomorphism $\lambda^* h^* : H^*(BO; \mathbb{Z}/2) \cong \mathbb{Z}/2[w_1, w_2, \ldots] \to H^*(BQ; \mathbb{Z}/2) \cong \varprojlim m\mathbb{Z}/2[z_1, z_2, \ldots, z_m]$ (with $\deg(z_i) = 1$) and that $\lambda^* h^*(w_j) = \sigma_j$, where σ_j is the element of $H^j(BQ; \mathbb{Z}/2)$ whose restriction

to $\mathbb{Z}/2[z_1, z_2, \ldots, z_m]$ is the *j*-th elementary symmetric function in the *m* variables z_1, \ldots, z_m , for all $m \geq j$. This implies that the infinite loop map *h* induces an injective homomorphism $h^* : H^*(BO; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$. Therefore, Theorem 15.2 of [Bor] shows that the Serre spectral sequence of the fibration

$$SU_2 \xrightarrow{\eta} (BGL(\mathbb{Z})^+)_2 \xrightarrow{h} BO_2$$

collapses (see also Corollary 4.3 of [DF]) and we get additively the desired isomorphism. Since $(BGL(\mathbb{Z})^+)_2$ is an H-space, the maps λ and η produce an H-map

$$\psi: BQ \times SU_2^{\widehat{}} \longrightarrow (BGL(\mathbb{Z})^+)_2^{\widehat{}}$$

which induces an injective \mathcal{A} -module Hopf algebra homomorphism

$$\psi^*: H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \longrightarrow H^*(BQ; \mathbb{Z}/2) \otimes H^*(SU; \mathbb{Z}/2).$$

Moreover, the fact that $\lambda^* : H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \to H^*(BQ; \mathbb{Z}/2)$ also satisfies $\lambda^*(w_j) = \sigma_j$ (see Lemma 1.1 of [Ar1]) implies that the image of ψ^* is isomorphic to $R \otimes H^*(SU; \mathbb{Z}/2)$, where R is the subalgebra of $H^*(BQ; \mathbb{Z}/2)$ generated by the elementary symmetric functions σ_j . On the other hand, the image of the injective \mathcal{A} -module Hopf algebra homomorphism

$$\lambda^* h^* \otimes 1 : H^*(BO; \mathbb{Z}/2) \otimes H^*(SU; \mathbb{Z}/2) \longrightarrow H^*(BQ; \mathbb{Z}/2) \otimes H^*(SU; \mathbb{Z}/2)$$

is also $R \otimes H^*(SU; \mathbb{Z}/2)$. This provides the statement of the theorem.

In order to get a more precise picture of $H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)$, let us identify its generators and understand the action of the Steenrod algebra on them. For $j \geq 1$ let us write $w_j \in H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)$ for the image of the *j*-th universal Stiefel-Whitney class in $H^*(BO;\mathbb{Z}/2)$ under the homomorphism $h^*: H^*(BO;\mathbb{Z}/2) \to$ $H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)$. The action of the Steenrod algebra on the Stiefel-Whitney classes is known by Wu's formula (see for instance [MT], Part I, p. 141). It remains to identify the exterior generators of $H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)$. This will be done by using the homomorphism $f_p^*: H^*(F\Psi^p;\mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)$ induced by the map f_p .

Let us first recall some properties of $H^*(F\Psi^p; \mathbb{Z}/2) \cong H^*(BGL(\mathbb{F}_p)^+; \mathbb{Z}/2)$. According to Quillen's calculation and notation (see [Q2]), if p is a prime $\equiv 5 \mod 8$, then

$$H^*(F\Psi^p; \mathbb{Z}/2) \cong \mathbb{Z}/2[c_1, c_2, \dots] \otimes \Lambda(e_1, e_2, \dots),$$

where deg $c_j = 2j$ and deg $e_k = 2k-1$; if p is a prime $\equiv 3 \mod 8$, then $H^*(F\Psi^p; \mathbb{Z}/2)$ is also generated by the classes c_j and e_k $(j \ge 1, k \ge 1)$, but one has the relations

$$e_k^2 = c_{2k-1} + \sum_{j=1}^{k-1} c_j c_{2k-1-j}$$

for $k \geq 1$, and $H^*(F\Psi^p; \mathbb{Z}/2)$ is polynomial:

$$H^*(F\Psi^p; \mathbb{Z}/2) \cong \mathbb{Z}/2[e_1, e_2, \dots, c_2, c_4, \dots]$$

(see also Section IV.8 of [FP]). In both cases, c_j is the image under $b^* : H^*(BU; \mathbb{Z}/2) \to H^*(F\Psi^p; \mathbb{Z}/2)$ of the reduction mod 2 of the *j*-th universal Chern class in $H^{2j}(BU; \mathbb{Z})$ and a spectral sequence argument shows that

$$\theta^*: H^*(F\Psi^p; \mathbb{Z}/2) \to H^*(U; \mathbb{Z}/2) \cong \Lambda(v_1, v_2, \dots)$$

satisfies $\theta^*(e_k) = v_{2k-1}$ for $k \ge 1$. For a prime $p \equiv 3$ or 5 mod 8, consider the homomorphism $f_p^* : H^*(F\Psi^p; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ induced by f_p . For all $j \ge 1$, it is well known (see also Lemma 1.4 of [Ar1]) that

$$f_p^*(c_j) = w_j^2$$

and we established in [Ar2] for $k \ge 2$ the nonvanishing of the exterior class $f_p^*(e_k)$ if $p \equiv 5 \mod 8$, respectively of the exterior class

$$\gamma_k = f_p^*(e_k) + w_{2k-1} + \sum_{j=1}^{k-1} w_j w_{2k-j-1}$$

of degree 2k - 1 if $p \equiv 3 \mod 8$.

Let us mention the effect of the Steenrod squares on these cohomology classes.

Lemma 2. (a) In $H^*(SU; \mathbb{Z}/2)$, $Sq^{2i}v_{2k-1} = \binom{k-1}{i}v_{2k+2i-1}$ for $k \ge 2, 1 \le i < k$, and $Sq^{2i-1}v_{2k-1} = 0$ for $k \ge 2, 1 \le i \le k$.

(b) In $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$, for any odd prime p, for $k \ge 1$ and $1 \le i < k$,

$$Sq^{2i}f_p^*(e_k) = \binom{k-1}{i}f_p^*(e_{k+i}) + \sum_{j=1}^{i}\binom{k-j-1}{i-j}(w_j^2f_p^*(e_{k+i-j}) + w_{k+i-j}^2f_p^*(e_j)).$$

(c) In $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$, for $k \ge 1$ and $1 \le i \le k$,

$$Sq^{2i-1}f_p^*(e_k) = \begin{cases} 0, & \text{if } p \equiv 1 \mod 4 \text{ or if } p \equiv 3 \mod 4 \text{ and } k-i \text{ is odd,} \\ \sum_{j=0}^{i-1} {k-j-1 \choose i-j-1} w_j^2 w_{k+i-j-1}^2, & \text{if } p \equiv 3 \mod 4 \text{ and } k-i \text{ is even.} \end{cases}$$

(d) In $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$, for any prime $p \equiv 3 \mod 8$ and for $k \ge 1$,

$$Sq^{2i}\gamma_{k} = {\binom{k-1}{i}}\gamma_{k+i} + \sum_{j=1}^{i} {\binom{k-j-1}{i-j}} \left(w_{j}^{2}\gamma_{k+i-j} + w_{k+i-j}^{2}\gamma_{j}\right)$$

for $1 \le i < k$ and $Sq^{2i-1}\gamma_k = 0$ for $1 \le i \le k$.

Proof. Lemma 4 of [Ar2] gives the following information on the action of the Steenrod squares on the classes $e_k \in H^*(F\Psi^p; \mathbb{Z}/2)$ for $k \ge 1$: for any odd prime p and for $1 \le i < k$,

$$Sq^{2i}e_{k} = \binom{k-1}{i}e_{k+i} + \sum_{j=1}^{i}\binom{k-j-1}{i-j}(c_{j}e_{k+i-j} + c_{k+i-j}e_{j}),$$

and for $1 \leq i \leq k$,

$$Sq^{2i-1}e_k = \begin{cases} 0, & \text{if } p \equiv 1 \mod 4 \text{ or if } p \equiv 3 \mod 4 \text{ and } k-i \text{ is odd,} \\ \sum_{j=0}^{i-1} \binom{k-j-1}{i-j-1} c_j c_{k+i-j-1}, & \text{if } p \equiv 3 \mod 4 \text{ and } k-i \text{ is even.} \end{cases}$$

The formula (a) is well known but can be deduced from the previous equalities because the composition $\zeta^* \theta^* : H^*(F\Psi^p; \mathbb{Z}/2) \to H^*(SU; \mathbb{Z}/2)$ satisfies $\zeta^* \theta^*(e_k) = v_{2k-1}$ for $k \geq 2$ and $\zeta^* \theta^*(c_j) = 0$ for $j \geq 1$. The statements (b) and (c) follow directly since $Sq^{2i}f_p^*(e_k) = f_p^*(Sq^{2i}e_k)$ and $f_p^*(c_j) = w_j^2$ for $j \geq 1$. In order to get (d), let us consider again the homomorphism $\lambda^* : H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \to$ $H^*(BQ; \mathbb{Z}/2)$ which is injective on $\mathbb{Z}/2[w_1, w_2, ...]$ and trivial on exterior classes because $H^*(BQ; \mathbb{Z}/2)$ is polynomial. If $p \equiv 3 \mod 8$, one has by the definition of γ_k

$$Sq^{2i}\gamma_k = Sq^{2i}f_p^*(e_k) + Sq^{2i}w_{2k-1} + \sum_{j=1}^{k-1}Sq^{2i}(w_jw_{2k-j-1})$$

for $1 \le i < k$. According to (b),

$$Sq^{2i}\gamma_{k} = {\binom{k-1}{i}} f_{p}^{*}(e_{k+i}) + \sum_{j=1}^{i} {\binom{k-j-1}{i-j}} (w_{j}^{2}f_{p}^{*}(e_{k+i-j}) + w_{k+i-j}^{2}f_{p}^{*}(e_{j})) + (\text{element of } \mathbb{Z}/2[w_{1}, w_{2}, \dots])$$

and consequently,

2204

$$Sq^{2i}\gamma_{k} = {\binom{k-1}{i}}\gamma_{k+i} + \sum_{j=1}^{i} {\binom{k-j-1}{i-j}} (w_{j}^{2}\gamma_{k+i-j} + w_{k+i-j}^{2}\gamma_{j}) + (\text{element of } \mathbb{Z}/2[w_{1}, w_{2}, \dots]).$$

Since the classes γ_k are exterior, they belong to the kernel of λ^* and $\lambda^*(Sq^{2i}\gamma_k) = 0$. However, the injectivity of λ^* on Stiefel-Whitney classes implies that the element of $\mathbb{Z}/2[w_1, w_2, \ldots]$ in the last formula vanishes. The assertion (c) shows that $Sq^{2i-1}\gamma_k$ is an element of $\mathbb{Z}/2[w_1, w_2, \ldots]$ and one deduces similarly that $Sq^{2i-1}\gamma_k = 0$. \Box

Our argument will be based on the understanding of the homomorphism

$$\mu^* : H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+ \times BGL(\mathbb{Z})^+; \mathbb{Z}/2)$$
$$\cong H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \otimes H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$$

induced by the H-space structure μ of $BGL(\mathbb{Z})^+$.

Lemma 3. (a) For any $j \ge 1$,

$$\mu^*(w_j) = \sum_{s=0}^j w_s \otimes w_{j-s} \,.$$

(b) For any prime $p \equiv 5 \mod 8$ and any integer $k \geq 2$,

$$\mu^*(f_p^*(e_k)) = f_p^*(e_k) \otimes 1 + 1 \otimes f_p^*(e_k) + \sum_{\ell=1}^{k-2} \left(w_\ell^2 \otimes f_p^*(e_{k-\ell}) + f_p^*(e_{k-\ell}) \otimes w_\ell^2 \right).$$

(c) For any prime $p \equiv 3 \mod 8$ and any integer $k \geq 2$,

$$\mu^*(\gamma_k) = \gamma_k \otimes 1 + 1 \otimes \gamma_k + \sum_{\ell=1}^{k-2} \left(w_\ell^2 \otimes \gamma_{k-\ell} + \gamma_{k-\ell} \otimes w_\ell^2 \right).$$

Proof. Assertion (a) is known (see for instance [MT], Part I, p. 140). If ν denotes the H-space structure of $F\Psi^p$, Proposition 2 of [Q2] implies that

$$\mu^*(f_p^*(e_k)) = f_p^*(\nu^*(e_k)) = f_p^*\left(\sum_{\ell=0}^k (c_\ell \otimes e_{k-\ell} + e_{k-\ell} \otimes c_\ell)\right)$$
$$= \sum_{\ell=0}^k (w_\ell^2 \otimes f_p^*(e_{k-\ell}) + f_p^*(e_{k-\ell}) \otimes w_\ell^2)$$

for any odd prime p. If $p \equiv 5 \mod 8$, $f_p^*(e_1)$ vanishes since e_1 is exterior and one gets immediately (b). If $p \equiv 3 \mod 8$, the definition of γ_k ,

$$\gamma_k = f_p^*(e_k) + w_{2k-1} + \sum_{j=1}^{k-1} w_j w_{2k-j-1},$$

shows that

$$\mu^*(\gamma_k) = \sum_{\ell=0}^k \left(w_{\ell}^2 \otimes f_p^*(e_{k-\ell}) + f_p^*(e_{k-\ell}) \otimes w_{\ell}^2 \right) + (\text{element of } \mathbb{Z}/2[w_1, w_2, \dots]).$$

Since $p \equiv 3 \mod 8$, it turns out that $f_p^*(e_1) = w_1$ and consequently that

$$\mu^*(\gamma_k) = \gamma_k \otimes 1 + 1 \otimes \gamma_k + \sum_{\ell=1}^{k-2} (w_\ell^2 \otimes \gamma_{k-\ell} + \gamma_{k-\ell} \otimes w_\ell^2) + (\text{element of } \mathbb{Z}/2[w_1, w_2, \dots]).$$

However, the element of $\mathbb{Z}/2[w_1, w_2, \dots]$ in that formula must be trivial since $\mu^*(\gamma_k)$ is exterior. This implies the last assertion.

Now, let p be a prime $\equiv 5 \mod 8$ and k an integer ≥ 2 . Consider an integer $m \geq k$, C the cyclic group of order p-1 and

$$H^*(BC^m; \mathbb{Z}/2) \cong \mathbb{Z}/2[x_1, x_2, \dots, x_m] \otimes \Lambda(y_1, y_2, \dots, y_m)$$

with $\deg(x_i) = 2$ and $\deg(y_i) = 1$ for $1 \le i \le m$, endowed with the differential d defined by $d(x_i) = y_i$ and $d(y_i) = 0$. Then, look at the homomorphism ρ : $H^*(F\Psi^p; \mathbb{Z}/2) \to H^*(BC^m; \mathbb{Z}/2)$, introduced in [Q2], p. 563–565, which is injective in dimensions $\le 2m$ (and in particular in dimensions $\le 2k$) since its kernel is the ideal generated by the elements c_j and e_j for j > m, and which fulfills $\rho(c_j) = s_j$ and $\rho(e_j) = d(s_j)$ for $1 \le j \le m$, where s_j denotes the *j*-th elementary symmetric function in x_1, x_2, \ldots, x_m . For $k \ge 1$, define the exterior class

$$\xi_k = \sum_{j=1}^m x_j^{k-1} y_j \in H^{2k-1}(BC^m; \mathbb{Z}/2) \,.$$

Since $s_k = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1} x_{i_2} \cdots x_{i_k}$, one has

$$d(s_k) = \sum_{i_1 < i_2 < \dots < i_k} \sum_{\ell} x_{i_1} \cdots \widehat{x_{i_\ell}} \cdots x_{i_k} y_{i_\ell}.$$

Then, consider the difference

$$d(s_k) - s_{k-1}\xi_1 = \sum_{i_1 < i_2 < \dots < i_k} \sum_{\ell} x_{i_1} \cdots \widehat{x_{i_\ell}} \cdots x_{i_k} y_{i_\ell}$$
$$- \sum_{i_1 < i_2 < \dots < i_{k-1}} x_{i_1} x_{i_2} \cdots x_{i_{k-1}} \sum_i y_i$$
$$= \sum_{i_1 < i_2 < \dots < i_{k-1}} \sum_{\ell} x_{i_1} x_{i_2} \cdots x_{i_\ell} \cdots x_{i_{k-1}} y_{i_\ell}$$
$$= \sum_{i_1 < i_2 < \dots < i_{k-1}} \sum_{\ell} x_{i_1} x_{i_2} \cdots \widehat{x_{i_\ell}} \cdots x_{i_{k-1}} x_{i_\ell} y_{i_\ell}$$

From this formula, one may compute the difference

$$d(s_k) - s_{k-1}\xi_1 - s_{k-2}\xi_2 = \sum_{i_1 < i_2 < \dots < i_{k-2}} \sum_{\ell} x_{i_1}x_{i_2} \cdots \widehat{x_{i_\ell}} \cdots x_{i_{k-2}}x_{i_\ell}^2 y_{i_\ell}$$

and obtain by induction

$$d(s_k) = \xi_k + \sum_{j=1}^{k-1} s_j \xi_{k-j}$$

for $k \ge 2$. Since $\rho(e_k) = d(s_k)$ and $\rho(c_j) = s_j$, we get

$$\rho(e_k) = \xi_k + \sum_{j=1}^{k-1} \rho(c_j) \xi_{k-j}.$$

This implies inductively that the exterior class ξ_k belongs to the image of ρ and the injectivity of ρ in dimensions $\leq 2k$ produces the following lemma.

Lemma 4. For $p \equiv 5 \mod 8$ and for any $k \geq 2$, the class $e_k \in H^{2k-1}(F\Psi^p; \mathbb{Z}/2)$ satisfies

$$e_k = \rho^{-1}(\xi_k) + \sum_{j=1}^{k-1} c_j \rho^{-1}(\xi_{k-j}).$$

Definition 5. Let p be a prime $\equiv 5 \mod 8$. For all integers $k \geq 2$, let us define the exterior class $u_{2k-1}(p) = f_p^*(\rho^{-1}(\xi_k)) \in H^{2k-1}(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$, where f_p^* denotes the homomorphism $H^*(F\Psi^p; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ induced by f_p . Observe that this definition does not depend on the choice of $m \geq k$. Notice also that $f_p^*(\rho^{-1}(\xi_1)) = f_p^*(e_1) = 0$.

Proposition 6. For any prime $p \equiv 5 \mod 8$ and for $k \geq 2$, one has:

(a)
$$u_{2k-1}(p) = f_p^*(e_k) + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}(p),$$

(b) the homomorphism η^* : $H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2) \to H^*(SU;\mathbb{Z}/2)$ fulfills $\eta^*(u_{2k-1}(p)) = v_{2k-1}$.

Proof. Lemma 4 implies that

$$f_p^*(e_k) = u_{2k-1}(p) + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}(p)$$

since $f_p^*(\rho^{-1}(\xi_1)) = 0$. Consequently, (b) follows directly from the commutativity of the following diagram induced by the diagram (*) of the introduction

$$H^{*}(SU; \mathbb{Z}/2) \xleftarrow{\eta^{*}} H^{*}(BGL(\mathbb{Z})^{+}; \mathbb{Z}/2) \xleftarrow{h^{*}} H^{*}(BO; \mathbb{Z}/2)$$

$$\uparrow^{\zeta^{*}} \qquad \uparrow^{f_{p}^{*}} \qquad \uparrow^{c^{*}}$$

$$H^{*}(U; \mathbb{Z}/2) \xleftarrow{\theta^{*}} H^{*}(F\Psi^{p}; \mathbb{Z}/2) \xleftarrow{b^{*}} H^{*}(BU; \mathbb{Z}/2),$$

because $\eta^* f_p^*(e_k) = \zeta^* \theta^*(e_k) = v_{2k-1}$ and $\eta^*(w_j) = 0$ for all $k \ge 2, j \ge 1$.

Proposition 7. For any prime $p \equiv 5 \mod 8$ and for any integer $k \geq 2$, the element $u_{2k-1}(p)$ is a primitive cohomology class in $H^{2k-1}(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$.

Proof. We must show that the homomorphism

$$\mu^*: H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+ \times BGL(\mathbb{Z})^+; \mathbb{Z}/2)$$

satisfies $\mu^*(u_{2k-1}(p)) = u_{2k-1}(p) \otimes 1 + 1 \otimes u_{2k-1}(p)$. We proceed by induction on k. We just established in Proposition 6 that

$$u_{2k-1}(p) = f_p^*(e_k) + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}(p)$$

For instance, $u_3(p) = f_p^*(e_2)$ and it follows from Lemma 3 (b) that $\mu^*(u_3(p)) = u_3(p) \otimes 1 + 1 \otimes u_3(p)$. We then may deduce from Lemma 3 (a) and (b) and the induction hypothesis that

$$\mu^*(u_{2k-1}(p)) = f_p^*(e_k) \otimes 1 + 1 \otimes f_p^*(e_k) + \sum_{\ell=1}^{k-2} \left(w_\ell^2 \otimes f_p^*(e_{k-\ell}) + f_p^*(e_{k-\ell}) \otimes w_\ell^2 \right) \\ + \sum_{j=1}^{k-2} \left(\sum_{s=0}^j w_s^2 \otimes w_{j-s}^2 \right) \left(u_{2k-2j-1}(p) \otimes 1 + 1 \otimes u_{2k-2j-1}(p) \right)$$

and therefore that

$$\begin{split} \mu^*(u_{2k-1}(p)) &= u_{2k-1}(p) \otimes 1 + 1 \otimes u_{2k-1}(p) \\ &+ \sum_{\ell=1}^{k-2} \left(w_\ell^2 \otimes u_{2k-2\ell-1}(p) + u_{2k-2\ell-1}(p) \otimes w_\ell^2 \right) \\ &+ \sum_{\ell=1}^{k-3} \sum_{t=1}^{k-\ell-2} \left(w_\ell^2 \otimes w_t^2 u_{2k-2\ell-2t-1}(p) + w_t^2 u_{2k-2\ell-2t-1}(p) \otimes w_\ell^2 \right) \\ &+ \sum_{j=1}^{k-2} \left(w_j^2 \otimes u_{2k-2j-1}(p) + u_{2k-2j-1}(p) \otimes w_j^2 \right) \\ &+ \sum_{j=1}^{k-2} \sum_{s=1}^{j-1} \left(w_s^2 u_{2k-2j-1}(p) \otimes w_{j-s}^2 + w_s^2 \otimes w_{j-s}^2 u_{2k-2j-1}(p) \right). \end{split}$$

The last sum can be written as follows:

$$\sum_{j=1}^{k-2} \sum_{s=1}^{j-1} \left(w_s^2 u_{2k-2j-1}(p) \otimes w_{j-s}^2 + w_s^2 \otimes w_{j-s}^2 u_{2k-2j-1}(p) \right)$$

=
$$\sum_{j=1}^{k-2} \sum_{s=1}^{j-1} \left(w_s^2 \otimes w_{j-s}^2 u_{2k-2j-1}(p) + w_{j-s}^2 u_{2k-2j-1}(p) \otimes w_s^2 \right)$$

=
$$\sum_{s=1}^{k-3} \sum_{t=1}^{k-s-1} \left(w_s^2 \otimes w_t^2 u_{2k-2s-2t-1}(p) + w_t^2 u_{2k-2s-2t-1}(p) \otimes w_s^2 \right).$$

Consequently, $\mu^*(u_{2k-1}(p)) = u_{2k-1}(p) \otimes 1 + 1 \otimes u_{2k-1}(p)$ and $u_{2k-1}(p)$ is primitive.

Remark 8. Since we know that the Hopf algebra structure of $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ by Theorem 1 (or [M], Theorem 4.3 and Remark 4.5), it is obvious that there is exactly one nontrivial primitive exterior class in each odd degree ≥ 3 of $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$. However, let us show it again by a computational argument.

2207

Lemma 9. Consider the homomorphism $\eta^* : H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \to H^*(SU; \mathbb{Z}/2)$. For $k \geq 2$, let u'_{2k-1} and u''_{2k-1} be primitive exterior classes of degree 2k - 1 in $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ such that $\eta^*(u'_{2k-1}) = \eta^*(u''_{2k-1}) = v_{2k-1}$. Then $u'_{2k-1} = u''_{2k-1}$.

Proof. Observe first that $u'_3 = u''_3$ since there is only one exterior class of degree 3 in $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$. Then, let us define $\tilde{u}_{2k-1} = u'_{2k-1} - u''_{2k-1}$ for all $k \geq 2$ and prove by induction on k that $\tilde{u}_{2k-1} = 0$. Since \tilde{u}_{2k-1} is exterior and belongs to the kernel of η^* , the induction hypothesis shows that one can write

$$\widetilde{u}_{2k-1} = \sum_{s=3}^{2k-2} u'(s)w(s) \,,$$

where u'(s) is an element of degree s in $\Lambda(u'_3, u'_5, \ldots, u'_{2k-3})$ and w(s) is an element of degree 2k - s - 1 in $\mathbb{Z}/2[w_1, w_2, \ldots]$. However, the primitivity of the classes u'_{2j-1} and Lemma 3 (a) provide an explicit computation of $\mu^*(\tilde{u}_{2k-1})$ which contradicts the primitivity of \tilde{u}_{2k-1} unless one has $\tilde{u}_{2k-1} = 0$.

Thus, we are finally able to define the exterior generators of $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ (see also Remark 14 below).

Definition 10. Because of Proposition 7 and Remark 8, we may conclude that the classes $u_{2k-1}(p)$ do not depend on p. Therefore, for $k \geq 2$, we can define $u_{2k-1} = u_{2k-1}(p) \in H^{2k-1}(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ for any prime $p \equiv 5 \mod 8$. Since the image of u_{2k-1} under η^* is v_{2k-1} , the classes u_{2k-1} are nontrivial algebraically independent exterior classes in $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$. See also Remark 14 for another definition of the classes u_{2k-1} .

The following consequence follows immediately from Proposition 6 (b) and Remark 8.

Theorem 11. The isomorphism α : $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \xrightarrow{\cong} H^*(BO; \mathbb{Z}/2) \otimes$ $H^*(SU; \mathbb{Z}/2)$ given by Theorem 1 is unique and satisfies $\alpha(u_{2k-1}) = 1 \otimes v_{2k-1}$ for $k \geq 2$. Therefore, there is an isomorphism of \mathcal{A} -module Hopf algebras

 $H^*(BGL(\mathbb{Z})^+;\mathbb{Z}/2)\cong \mathbb{Z}/2[w_1,w_2,\dots]\otimes \Lambda(u_3,u_5,\dots).$

It follows from Theorem 11 and Lemma 2 (a) that the action of the Steenrod algebra on the classes u_{2k-1} is described by the following Lemma 12. However, we mention here another proof, based on the definition of ξ_k , which provides an explicit computational argument for the existence of the isomorphism of \mathcal{A} -module Hopf algebras α .

Lemma 12. For all $k \ge 2$, $Sq^{2i}u_{2k-1} = \binom{k-1}{i}u_{2k+2i-1}$ for $1 \le i < k$ and $Sq^{2i-1}u_{2k-1} = 0$ for $1 \le i \le k$.

Proof. It is sufficient to prove the assertion for the classes $u_{2k-1}(p)$ where p is any prime $\equiv 5 \mod 8$. This follows from the injectivity of the map ρ which was explained just after the proof of Lemma 3 (if m is large enough) and from the computations $Sq^{2i-1}\xi_k = 0$ and

$$Sq^{2i}\xi_k = \sum_{j=1}^m Sq^{2i}x_j^{k-1}y_j = \sum_{j=1}^m {\binom{k-1}{i}x_j^{k+i-1}y_j} = {\binom{k-1}{i}\xi_{k+i}}.$$

2208

It is even possible to describe the classes u_{2k-1} in terms of the image of f_p^* for all primes $p \equiv 3$ or 5 mod 8.

Theorem 13. For $k \geq 2$, the classes $u_{2k-1} \in H^{2k-1}(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ satisfy

$$u_{2k-1} = \begin{cases} f_p^*(e_k) + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}, & \text{if } p \equiv 5 \mod 8, \\ \\ f_p^*(e_k) + w_{2k-1} + \sum_{j=1}^{k-1} w_j w_{2k-j-1} + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}, & \text{if } p \equiv 3 \mod 8, \end{cases}$$

where f_p^* denotes the homomorphism $H^*(F\Psi^p; \mathbb{Z}/2) \cong H^*(BGL(\mathbb{F}_p)^+; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ induced by the reduction mod $p: GL(\mathbb{Z}) \to GL(\mathbb{F}_p)$.

Proof. If $p \equiv 5 \mod 8$, the statement is given by Proposition 6 (a). Observe in particular that u_{2k-1} can be written as follows: $u_{2k-1} = F_k(f_p^*(e_2), f_p^*(e_3), \ldots, f_p^*(e_k))$, where F_k is a polynomial with coefficients in $\mathbb{Z}/2[w_1, w_2, \ldots]$. If $p \equiv 3 \mod 8$, consider again

$$\gamma_k = f_p^*(e_k) + w_{2k-1} + \sum_{j=1}^{k-1} w_j w_{2k-j-1}$$

and define $\hat{u}_{2k-1} = F_k(\gamma_2, \gamma_3, \dots, \gamma_k)$. It is obvious that \hat{u}_{2k-1} is an exterior class and easy to check as in the proof of Proposition 6 that $\eta^*(\hat{u}_{2k-1}) = v_{2k-1}$. Moreover, observe that the homomorphism

$$\mu^*: H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+ \times BGL(\mathbb{Z})^+; \mathbb{Z}/2)$$

acts on γ_k (for $p \equiv 3 \mod 8$) and on $f_p^*(e_k)$ (for $p \equiv 5 \mod 8$) exactly in the same way, according to Lemma 3 (b) and (c). Thus, the argument of the proof of Proposition 7 implies that \hat{u}_{2k-1} is also primitive if $p \equiv 3 \mod 8$. It finally follows from Remark 8 that

$$u_{2k-1} = \hat{u}_{2k-1} = F_k(\gamma_2, \gamma_3, \dots, \gamma_k) = \gamma_k + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}.$$

Remark 14. The formula provided by Theorem 13 can be used as an alternative recursive definition of the classes u_{2k-1} in $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$.

It is known that $BGL(\mathbb{Z})^+ \simeq BSL(\mathbb{Z})^+ \times B\mathbb{Z}/2$ and one deduces immediately the calculation of the mod 2 cohomology of the space $BSL(\mathbb{Z})^+$ (recall that $H^*(BSL(\mathbb{F}_p)^+;\mathbb{Z}/2)$ is obtained from $H^*(BGL(\mathbb{F}_p)^+;\mathbb{Z}/2)$ by dividing out e_1 and c_1):

Corollary 15. There is an isomorphism of A-module Hopf algebras

 $H^*(BSL(\mathbb{Z})^+;\mathbb{Z}/2)\cong\mathbb{Z}/2[w_2,w_3,\ldots]\otimes\Lambda(u_3,u_5,\ldots),$

where w_k and u_{2k-1} are also written for the image of w_k and u_{2k-1} under the homomorphism induced by the inclusion $SL(\mathbb{Z}) \hookrightarrow GL(\mathbb{Z})$. The formulas for u_{2k-1} given by Theorem 13 do still hold but observe that the first Stiefel-Whitney class of $SL(\mathbb{Z})$ is trivial. Remark 16. The results of this section determine also the mod 2 cohomology of the groups $GL(\mathbb{Z})$ and $SL(\mathbb{Z})$ because $H^*(BG^+; \mathbb{Z}/2) \cong H^*(G; \mathbb{Z}/2)$ for $G = GL(\mathbb{Z})$ or $SL(\mathbb{Z})$.

3. The mod 2 cohomology of the Steinberg group $St(\mathbb{Z})$

The goal of this last section is to compute $H^*(St(\mathbb{Z}); \mathbb{Z}/2)$ by looking at the universal central extension

$$\mathbb{Z}/2 \cong K_2(\mathbb{Z}) \rightarrowtail St(\mathbb{Z}) \xrightarrow{\pi} SL(\mathbb{Z})$$

and at the associated Serre spectral sequence

$$E_2^{*,*} \cong H^*(SL(\mathbb{Z}); \mathbb{Z}/2) \otimes H^*(\mathbb{Z}/2; \mathbb{Z}/2) \Longrightarrow H^*(St(\mathbb{Z}); \mathbb{Z}/2).$$

Let us use the notation $Q_0 = Sq^1$ and $Q_r = Sq^{2^r} Q_{r-1} + Q_{r-1} Sq^{2^r}$ and observe that $Q_r(w_2) = Sq^{2^r} Sq^{2^{r-1}} \cdots Sq^1 w_2$ because $Sq^{2^r} w_2 = 0$ for $r \ge 2$ and $Sq^1 Sq^2 w_2 = 0$.

Theorem 17. (a) There is an isomorphism of A-module Hopf algebras

$$H^*(St(\mathbb{Z});\mathbb{Z}/2) \cong \mathbb{Z}/2[\bar{w}_2,\bar{w}_3,\dots]/(\bar{w}_2,Q_r(\bar{w}_2),r\geq 0) \otimes \Lambda(\bar{u}_3,\bar{u}_5,\dots),$$

where \bar{w}_k and \bar{u}_{2k-1} denote the image of w_k and u_{2k-1} under $\pi^* : H^*(SL(\mathbb{Z}); \mathbb{Z}/2) \to H^*(St(\mathbb{Z}); \mathbb{Z}/2).$

(b) For $k \geq 2$,

2210

$$\bar{u}_{2k-1} = \begin{cases} f_p^*(e_k) + \sum_{j=4}^{k-2} \bar{w}_j^2 \bar{u}_{2k-2j-1}, & \text{if } p \equiv 5 \mod 8, \\ \\ f_p^*(e_k) + \bar{w}_{2k-1} + \sum_{j=4}^{k-1} \bar{w}_j \bar{w}_{2k-j-1} + \sum_{j=4}^{k-2} \bar{w}_j^2 \bar{u}_{2k-2j-1}, & \text{if } p \equiv 3 \mod 8, \end{cases}$$

where f_p^* is written here for the homomorphism $H^*(SL(\mathbb{F}_p); \mathbb{Z}/2) \to H^*(St(\mathbb{Z}); \mathbb{Z}/2)$ induced by the reduction mod $p: St(\mathbb{Z}) \to St(\mathbb{F}_p) \cong SL(\mathbb{F}_p)$.

Proof. Because $H^*(\mathbb{Z}/2; \mathbb{Z}/2) \cong \mathbb{Z}/2[z]$ with deg z = 1, one can compute the differentials in the above spectral sequence:

$$d_2(z) = w_2$$
, $d_3(z^2) = Sq^1d_2(z) = Sq^1w_2 = w_3$, $d_5(z^4) = Sq^2d_3(z^2) = Sq^2w_3$

and inductively, $d_{2^r+1}(z^{2^r}) = d_{2^r+1}(Q_{r-1}(z)) = Q_{r-1}(d_2(z)) = Q_{r-1}(w_2) = w_{2^r+1} + (\text{decomposable element of } \mathbb{Z}/2[w_2, w_3, \dots])$ by Wu's formula ([MT], Part I, p. 141). Therefore, the sequence $(w_2, Q_0(w_2), Q_1(w_2), \dots)$ is regular and we obtain $E_{\infty}^{s,t} = 0$ if t > 0 and $E_{\infty}^{*,0} \cong H^*(SL(\mathbb{Z});\mathbb{Z}/2)/(w_2, Q_r(w_2), r \ge 0)$. This gives the mod 2 cohomology of $St(\mathbb{Z})$ as described by statement (a) and assertion (b) follows directly from Theorem 13 and Corollary 15 since $\bar{w}_2 = \bar{w}_3 = 0$.

Remark 18. The above argument exhibits a surjective homomorphism from $H^*(BSL(\mathbb{Z})^+; \mathbb{Z}/2)$ to $H^*(BSt(\mathbb{Z})^+; \mathbb{Z}/2)$. However, it is actually possible to find a nice map from $BSt(\mathbb{Z})^+$ to the space BSpin inducing an injective homomorphism on mod 2 cohomology. More precisely, consider the map $\varepsilon : BSL(\mathbb{Z})^+ \to BSL(\mathbb{R})^+$ induced by the inclusion $\mathbb{Z} \hookrightarrow \mathbb{R}$ and the map $\kappa : BSL(\mathbb{R})^+ \to BSL(\mathbb{R})^{\text{top}} \simeq BSO$ induced by the obvious map $SL(\mathbb{R}) \to SL(\mathbb{R})^{\text{top}}$, where the first group $SL(\mathbb{R})$ is

endowed with the discrete topology and $SL(\mathbb{R})^{\text{top}}$ with the usual topology. Then, look at the commutative diagram

$$BSt(\mathbb{Z})^{+} \xrightarrow{\pi} BSL(\mathbb{Z})^{+} \xrightarrow{\beta} K(K_{2}(\mathbb{Z}), 2)$$

$$\downarrow \qquad \qquad \downarrow^{\varepsilon} \qquad \qquad \downarrow^{\overline{\varepsilon}}$$

$$BSt(\mathbb{R})^{+} \longrightarrow BSL(\mathbb{R})^{+} \xrightarrow{\beta'} K(K_{2}(\mathbb{R}), 2)$$

$$\downarrow \qquad \qquad \qquad \downarrow^{\kappa} \qquad \qquad \downarrow^{\overline{\kappa}}$$

$$BSpin \xrightarrow{\tau} BSO \xrightarrow{\beta''} K(\pi_{2}BSO, 2),$$

where the rows are fibrations in which the maps β , β' , β'' are the second Postnikov sections of the corresponding spaces (*BSpin* is the fiber of β''), the maps $\bar{\varepsilon}$ and $\bar{\kappa}$ are the second Postnikov sections of ε and κ , and the vertical maps on the left are the restrictions of ε and κ to the fibers. The composition $\bar{\kappa}\bar{\varepsilon}$ is a homotopy equivalence because $\bar{\kappa}_* \bar{\varepsilon}_* : K_2(\mathbb{Z}) \to \pi_2 BSO$ is an isomorphism (see Corollary 4.6 of [Br] or p. 25-26 of [Be]). Let us denote the composition $\kappa \varepsilon$ by χ and its restriction to $BSt(\mathbb{Z})^+$ by $\tilde{\chi} : BSt(\mathbb{Z})^+ \to BSpin$ (note that the 2-completion of χ is the universal cover of the map h defined in the introduction and that the fiber of the 2-completion of $\tilde{\chi}$ is SU_2 because of the diagram (*)). We get the commutative diagram

$$\begin{array}{cccc} B\mathbb{Z}/2 & \longrightarrow BSt(\mathbb{Z})^+ & \stackrel{\pi}{\longrightarrow} BSL(\mathbb{Z})^+ \\ & \downarrow \simeq & & \downarrow \tilde{\chi} & & \downarrow \chi \\ & B\mathbb{Z}/2 & \longrightarrow BSpin & \stackrel{\tau}{\longrightarrow} BSO \,. \end{array}$$

The ring structure of the mod 2 cohomology of BSpin is known by Proposition 6.5 of [Q1]:

$$H^*(BSpin; \mathbb{Z}/2) \cong \mathbb{Z}/2[\widetilde{w}_2, \widetilde{w}_3, \dots]/(\widetilde{w}_2, Q_r(\widetilde{w}_2), r \ge 0)$$

where the \widetilde{w}_k 's are written here for the image of the universal Stiefel-Whitney classes under the homomorphism τ^* : $H^*(BSO; \mathbb{Z}/2) \to H^*(BSpin; \mathbb{Z}/2)$. Since χ^* : $H^*(BSO; \mathbb{Z}/2) \to H^*(BSL(\mathbb{Z})^+; \mathbb{Z}/2)$ is injective, the map $\widetilde{\chi}$ induces an injective \mathcal{A} -module Hopf algebra homomorphism

$$\widetilde{\chi}^*: H^*(BSpin; \mathbb{Z}/2) \to H^*(BSt(\mathbb{Z})^+; \mathbb{Z}/2).$$

References

- [Ar1] D. Arlettaz: Torsion classes in the cohomology of congruence subgroups, Math. Proc. Cambridge Philos. Soc. 105 (1989), 241–248. MR 90j:20097
- [Ar2] D. Arlettaz: A note on the mod 2 cohomology of SL(ℤ), in: Algebraic Topology Poznań 1989, Proceedings, Lecture Notes in Math. 1474 (1991), 365–370. MR 93g:19005
- [Au] C. Ausoni: Propriétés homotopiques de la K-théorie algébrique des entiers, Ph.D. thesis, Université de Lausanne (1998).
- [Be] J. Berrick: An Approach to algebraic K-theory. (Pitman, 1982). MR 84g:18028
- [Bok] M. Bökstedt: The rational homotopy type of ΩWh^{Diff}(*), in: Algebraic Topology, Aarhus 1982, Lecture Notes in Math. 1051 (1984), 25–37. MR 86e:18011
- [Bor] A. Borel: Topics in the homology theory of fibre bundles, Lecture Notes in Math. 36 (1967). MR 36:4559
- [Br] W. Browder: Algebraic K-theory with coefficients Z/p, in: Geometric Applications of Homotopy Theory I, Evanston 1977, Lecture Notes in Math. 657 (1978), 40–84. MR 80b:18011

- [DF] W. Dwyer and E. Friedlander: Conjectural calculations of general linear group homology, in Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Boulder 1983, Contemp. Math. 55 Part I (1986), 135–147. MR 88f:18013
- [FP] Z. Fiedorowicz and S. Priddy: Homology of classical groups over finite fields and their associated infinite loop spaces, *Lecture Notes in Math.* 674 (1978). MR 80g:55018
- [M] S. Mitchell: On the plus construction for $BGL\mathbb{Z}[\frac{1}{2}]$ at the prime 2, *Math. Zeitschrift* **209** (1992), 205–222. MR **93b:**55021
- [MT] M. Mimura and H. Toda: Topology of Lie groups I and II, Translations of Math. Monographs 91 (AMS 1991). MR 92h:55001
- [Q1] D. Quillen: The mod 2 cohomology rings of extra-special 2-groups and spinor groups, Math. Ann. 194 (1971), 197–212. MR 44:7582
- [Q2] D. Quillen: On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), 552–586. MR 47:3565
- [RW] J. Rognes and C. Weibel: Two-primary algebraic K-theory of rings of integers in number fields, preprint (1997), http://math.uiuc.edu/K-theory/0220/.
- [V] V. Voevodsky: The Milnor conjecture, preprint (1996), http://math.uiuc.edu/Ktheory/0170/.
- [W] C. Weibel: The 2-torsion in the K-theory of the integers, C. R. Acad. Sci. Paris Sér. I 324 (1996), 615–620. MR 98h:19001

INSTITUT DE MATHÉMATIQUES, UNIVERSITÉ DE LAUSANNE, 1015 LAUSANNE, SWITZERLAND *E-mail address*: dominique.arlettaz@ima.unil.ch

Department of Mathematics, Faculty of Science, Okayama University, Okayama, Japan700

E-mail address: mimura@math.okayama-u.ac.jp

Institut de Mathématiques, Université de Lausanne, 1015 Lausanne, Switzerland E-mail address: koji.nakahata@ima.unil.ch

FACULTY OF EDUCATION, IBARAKI UNIVERSITY, MITO, IBARAKI, JAPAN *E-mail address*: yagita@mito.ipc.ibaraki.ac.jp