THE MOD 2 COHOMOLOGY OF THE LINEAR GROUPS OVER THE RING OF INTEGERS

DOMINIQUE ARLETTAZ, MAMORU MIMURA, KOJI NAKAHATA, AND NOBUAKI YAGITA

(Communicated by Ralph Cohen)

Abstract

This paper completely determines the Hopf algebra structure of the $\bmod 2$ cohomology of the linear groups $G L(\mathbb{Z}), S L(\mathbb{Z})$ and $S t(\mathbb{Z})$ as a module over the Steenrod algebra, and provides an explicit description of the generators.

1. Introduction

Recently, J. Rognes and C. Weibel deduced from V. Voevodsky's proof [V] of the Milnor conjecture the complete calculation of the 2-torsion of the algebraic Ktheory of the ring of integers \mathbb{Z} (see Table 1 of [W] and Theorem 0.6 of [RW]). Of course, this has immediate consequences on the mod 2 cohomology of the infinite general linear group $G L(\mathbb{Z})$ and more generally on the understanding of the space $B G L(\mathbb{Z})^{+}$.

In [Bok], M. Bökstedt tried to construct a 2-adic model for the space $B G L(\mathbb{Z})^{+}$: he considered any prime number $p \equiv 3$ or $5 \bmod 8$ and introduced a space $J(p)$ which is defined by the pull-back diagram

where $F \Psi^{p}$ is the fiber of $\left(\Psi^{p}-1\right): B U \rightarrow B U$ (recall that $F \Psi^{p} \simeq B G L\left(\mathbb{F}_{p}\right)^{+}$ by Theorem 7 of [Q2]), b is the Brauer lifting and c is the complexification. The fibers of the horizontal maps are homotopy equivalent to the unitary group U. He was actually more precisely interested in the covering space $J K(\mathbb{Z}, p)$ of $J(p)$ corresponding to the cyclic subgroup of order 2 of $\pi_{1} J(p) \cong \mathbb{Z} \oplus \mathbb{Z} / 2$. Bökstedt's definition of the space $J K(\mathbb{Z}, p)$ (see [Bok], Definition 1.7 and the proof of Lemma 2.1) is based on the Adams conjecture and on the calculation of the 2-primary part of the homotopy groups of $\left(F \Psi^{p}\right)_{2}$ which is the same, in dimensions $\equiv 3 \bmod 4$, for

[^0]all primes $p \equiv 3$ or $5 \bmod 8$ (this explains the choice of p; see Section 3 of $[\mathrm{Au}]$ for more details). Notice that the space $J K(\mathbb{Z}, p)$, in the case $p=3$, appears also in Section 4 of $[\mathrm{DF}]$ and in $[\mathrm{M}]$. After completion at the prime 2, Bökstedt constructed a map
$$
\varphi:\left(B G L(\mathbb{Z})^{+}\right)_{2} \longrightarrow J K(\mathbb{Z}, p) \hat{)_{2}}
$$
which induces a split surjection on all homotopy groups (see [Bok], Diagram 1.9). Recall that the localization exact sequence in K-theory implies that
$$
\left(B G L (\mathbb { Z } [\frac { 1 } { 2 }]) ^ { + } \hat {) _ { 2 } } \simeq \left(B G L(\mathbb{Z})^{+} \hat{)_{2}} \times\left(S^{1}\right) \hat{)_{2}}\right.\right.
$$

Therefore, φ provides a map

$$
\widetilde{\varphi}:\left(B G L\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)^{+}\right)_{2} \longrightarrow J(p) \hat{)_{2}}
$$

which also induces a split surjection on all homotopy groups. Bökstedt's idea was indeed excellent because now the 2-torsion of $K_{*}(\mathbb{Z})$ is known and turns out to be isomorphic to the 2-torsion of $\pi_{*} J K(\mathbb{Z}, p)$ (according to Table 1 of [W] and Theorem 0.6 of [RW]); therefore, φ and $\widetilde{\varphi}$ are actually homotopy equivalences. Observe in particular that the homotopy type of $(J K(\mathbb{Z}, p))_{2}$ does not depend on p (for $p \equiv 3$ or $5 \bmod 8$). Consequently, we obtain for all primes $p \equiv 3$ or $5 \bmod 8$ the pull-back diagram (see also Corollary 8 of [W])

and the commutative diagram (where both rows are fibrations)

in which f_{p} and h denote the composition of the inclusion

$$
\left(B G L(\mathbb{Z})^{+}\right)_{2} \hookrightarrow\left(B G L(\mathbb{Z})^{+}\right)_{2} \times\left(S^{1}\right)_{2}
$$

with f_{p}^{\prime} and h^{\prime} respectively, and ζ the 2-completion of the inclusion $S U \hookrightarrow U \simeq$ $S U \times S^{1}$. According to Section 2 of [Bok], the map h is induced by the inclusion $\mathbb{Z} \hookrightarrow \mathbb{R}$ and for all odd primes p, the diagram

where red_{p} is the map induced by the reduction $\bmod p: G L(\mathbb{Z}) \rightarrow G L\left(\mathbb{F}_{p}\right)$, is homotopy commutative. Thus, we may assume that the map f_{p} in the diagram (*) is induced by the reduction $\bmod p$.
S. Mitchell computed the mod 2 homology of the space $J K(\mathbb{Z}, 3)$ in Theorem 4.3 of $[\mathrm{M}]$; because of the above homotopy equivalence $\left(B G L(\mathbb{Z})^{+}\right)_{2} \simeq J K\left(\mathbb{Z}, 3 \hat{)_{2}}\right.$, this provides the calculation of $H_{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ and by dualization the determination of the Hopf algebra structure of $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ as a module over the Steenrod algebra \mathcal{A} (see $[\mathrm{M}]$, Remark 4.5). However, Mitchell's argument does not give explicit generators of $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$. The first goal of the present paper is to use the above commutative diagram $(*)$ in order to get a direct proof of Michell's result.

Theorem. There is an isomorphism of Hopf algebras and of modules over the Steenrod algebra

$$
\alpha: H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \cong H^{*}(B O ; \mathbb{Z} / 2) \otimes H^{*}(S U ; \mathbb{Z} / 2)
$$

Recall that $H^{*}(B O ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]$ and $H^{*}(S U ; \mathbb{Z} / 2) \cong \Lambda\left(v_{3}, v_{5}, \ldots\right)$, where $\operatorname{deg}\left(w_{j}\right)=j$ and $\operatorname{deg}\left(v_{2 k-1}\right)=2 k-1$.

In fact, the main objective of this paper is to describe explicitly the generators of $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$. The generators of the polynomial part are the Stiefel-Whitney classes, also denoted by w_{j}, coming from $H^{*}(B O ; \mathbb{Z} / 2)$ via the homomorphism induced by h. On the other hand, we identify precisely (see Definitions 5 and 10 and Remark 14) the exterior generators $u_{2 k-1}$ of degree $2 k-1$ in $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$, corresponding to $1 \otimes v_{2 k-1}$ under the above isomorphism α, in terms of the image of the homomorphism

$$
f_{p}^{*}: H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \cong H^{*}\left(B G L\left(\mathbb{F}_{p}\right)^{+} ; \mathbb{Z} / 2\right) \rightarrow H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)
$$

induced by the reduction $\bmod p$ for $p \equiv 5 \bmod 8$ (they actually do not depend on the choice of p). We show that the classes $u_{2 k-1}$ are primitive cohomology classes and compute the action of the Steenrod squares on them. Therefore, we get an isomorphism of Hopf algebras and of modules over the Steenrod algebra

$$
H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right] \otimes \Lambda\left(u_{3}, u_{5}, \ldots\right)
$$

and we deduce that the isomorphism α is unique (see Theorem 11). We also obtain an explicit formula relating the classes $u_{2 k-1}$ to the image of the homomorphism f_{p}^{*} for all primes $p \equiv 3 \bmod 8$ (see Theorem 13).

This provides a complete description of the mod 2 cohomology of the infinite general linear group $G L(\mathbb{Z})$. In the remainder of the paper we compute the mod 2 cohomology of the infinite special linear group $S L(\mathbb{Z})$ and of the infinite Steinberg group $S t(\mathbb{Z})$ (see Corollary 15, Theorem 17 and Remark 18).

2. The mod 2 cohomology of the linear groups $G L(\mathbb{Z})$ and $S L(\mathbb{Z})$

Theorem 1. There is an isomorphism of Hopf algebras and of modules over the Steenrod algebra

$$
\alpha: H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \cong H^{*}(B O ; \mathbb{Z} / 2) \otimes H^{*}(S U ; \mathbb{Z} / 2)
$$

Proof. As mentioned in the introduction, this follows indirectly from [M], Theorem 4.3 and Remark 4.5. Here is a direct argument. Let Q denote the subgroup of diagonal matrices in $G L(\mathbb{Z})$ and let $\lambda: B Q \rightarrow B G L(\mathbb{Z})^{+}$be the map induced by the inclusion $Q \hookrightarrow G L(\mathbb{Z})$. It is known by Theorem 22.7 of [Bor] that the composition $h \lambda: B Q \rightarrow B O$ induces an injective homomorphism $\lambda^{*} h^{*}: H^{*}(B O ; \mathbb{Z} / 2) \cong$ $\mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right] \rightarrow H^{*}(B Q ; \mathbb{Z} / 2) \cong \varliminf_{m} \mathbb{Z} / 2\left[z_{1}, z_{2}, \ldots, z_{m}\right] \quad\left(\right.$ with $\left.\operatorname{deg}\left(z_{i}\right)=1\right)$ and that $\lambda^{*} h^{*}\left(w_{j}\right)=\sigma_{j}$, where σ_{j} is the element of $H^{j}(B Q ; \mathbb{Z} / 2)$ whose restriction
to $\mathbb{Z} / 2\left[z_{1}, z_{2}, \ldots, z_{m}\right]$ is the j-th elementary symmetric function in the m variables z_{1}, \ldots, z_{m}, for all $m \geq j$. This implies that the infinite loop map h induces an injective homomorphism $h^{*}: H^{*}(B O ; \mathbb{Z} / 2) \rightarrow H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$. Therefore, Theorem 15.2 of [Bor] shows that the Serre spectral sequence of the fibration

$$
S \hat{U_{2}} \xrightarrow{\eta}\left(B G L(\mathbb{Z})^{+}\right) \hat{)_{2}} \xrightarrow{h} B \hat{O_{2}}
$$

collapses (see also Corollary 4.3 of [DF]) and we get additively the desired isomorphism. Since $\left(B G L(\mathbb{Z})^{+}\right)_{2}$ is an H-space, the maps λ and η produce an H-map

$$
\psi: B Q \times S \hat{U_{2}} \longrightarrow\left(B G L(\mathbb{Z})^{+}\right)_{2}
$$

which induces an injective \mathcal{A}-module Hopf algebra homomorphism

$$
\psi^{*}: H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \longrightarrow H^{*}(B Q ; \mathbb{Z} / 2) \otimes H^{*}(S U ; \mathbb{Z} / 2)
$$

Moreover, the fact that $\lambda^{*}: H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \rightarrow H^{*}(B Q ; \mathbb{Z} / 2)$ also satisfies $\lambda^{*}\left(w_{j}\right)=\sigma_{j}$ (see Lemma 1.1 of [Ar1]) implies that the image of ψ^{*} is isomorphic to $R \otimes H^{*}(S U ; \mathbb{Z} / 2)$, where R is the subalgebra of $H^{*}(B Q ; \mathbb{Z} / 2)$ generated by the elementary symmetric functions σ_{j}. On the other hand, the image of the injective \mathcal{A}-module Hopf algebra homomorphism

$$
\lambda^{*} h^{*} \otimes 1: H^{*}(B O ; \mathbb{Z} / 2) \otimes H^{*}(S U ; \mathbb{Z} / 2) \longrightarrow H^{*}(B Q ; \mathbb{Z} / 2) \otimes H^{*}(S U ; \mathbb{Z} / 2)
$$

is also $R \otimes H^{*}(S U ; \mathbb{Z} / 2)$. This provides the statement of the theorem.
In order to get a more precise picture of $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$, let us identify its generators and understand the action of the Steenrod algebra on them. For $j \geq 1$ let us write $w_{j} \in H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ for the image of the j-th universal StiefelWhitney class in $H^{*}(B O ; \mathbb{Z} / 2)$ under the homomorphism $h^{*}: H^{*}(B O ; \mathbb{Z} / 2) \rightarrow$ $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$. The action of the Steenrod algebra on the Stiefel-Whitney classes is known by Wu's formula (see for instance [MT], Part I, p. 141). It remains to identify the exterior generators of $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$. This will be done by using the homomorphism $f_{p}^{*}: H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \rightarrow H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ induced by the map f_{p}.

Let us first recall some properties of $H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \cong H^{*}\left(B G L\left(\mathbb{F}_{p}\right)^{+} ; \mathbb{Z} / 2\right)$. According to Quillen's calculation and notation (see [Q2]), if p is a prime $\equiv 5 \bmod 8$, then

$$
H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[c_{1}, c_{2}, \ldots\right] \otimes \Lambda\left(e_{1}, e_{2}, \ldots\right)
$$

where $\operatorname{deg} c_{j}=2 j$ and $\operatorname{deg} e_{k}=2 k-1$; if p is a prime $\equiv 3 \bmod 8$, then $H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right)$ is also generated by the classes c_{j} and $e_{k}(j \geq 1, k \geq 1)$, but one has the relations

$$
e_{k}^{2}=c_{2 k-1}+\sum_{j=1}^{k-1} c_{j} c_{2 k-1-j}
$$

for $k \geq 1$, and $H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right)$ is polynomial:

$$
H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[e_{1}, e_{2}, \ldots, c_{2}, c_{4}, \ldots\right]
$$

(see also Section IV. 8 of [FP]). In both cases, c_{j} is the image under $b^{*}: H^{*}(B U ; \mathbb{Z} / 2)$ $\rightarrow H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right)$ of the reduction $\bmod 2$ of the j-th universal Chern class in $H^{2 j}(B U ; \mathbb{Z})$ and a spectral sequence argument shows that

$$
\theta^{*}: H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \rightarrow H^{*}(U ; \mathbb{Z} / 2) \cong \Lambda\left(v_{1}, v_{2}, \ldots\right)
$$

satisfies $\theta^{*}\left(e_{k}\right)=v_{2 k-1}$ for $k \geq 1$. For a prime $p \equiv 3$ or $5 \bmod 8$, consider the homomorphism $f_{p}^{*}: H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \rightarrow H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ induced by f_{p}. For all $j \geq 1$, it is well known (see also Lemma 1.4 of [Ar1]) that

$$
f_{p}^{*}\left(c_{j}\right)=w_{j}^{2}
$$

and we established in [Ar2] for $k \geq 2$ the nonvanishing of the exterior class $f_{p}^{*}\left(e_{k}\right)$ if $p \equiv 5 \bmod 8$, respectively of the exterior class

$$
\gamma_{k}=f_{p}^{*}\left(e_{k}\right)+w_{2 k-1}+\sum_{j=1}^{k-1} w_{j} w_{2 k-j-1}
$$

of degree $2 k-1$ if $p \equiv 3 \bmod 8$.
Let us mention the effect of the Steenrod squares on these cohomology classes.
Lemma 2. (a) In $H^{*}(S U ; \mathbb{Z} / 2), S q^{2 i} v_{2 k-1}=\binom{k-1}{i} v_{2 k+2 i-1}$ for $k \geq 2,1 \leq i<k$, and $S q^{2 i-1} v_{2 k-1}=0$ for $k \geq 2,1 \leq i \leq k$.
(b) In $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$, for any odd prime p, for $k \geq 1$ and $1 \leq i<k$,

$$
S q^{2 i} f_{p}^{*}\left(e_{k}\right)=\binom{k-1}{i} f_{p}^{*}\left(e_{k+i}\right)+\sum_{j=1}^{i}\binom{k-j-1}{i-j}\left(w_{j}^{2} f_{p}^{*}\left(e_{k+i-j}\right)+w_{k+i-j}^{2} f_{p}^{*}\left(e_{j}\right)\right)
$$

(c) In $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$, for $k \geq 1$ and $1 \leq i \leq k$,
$S q^{2 i-1} f_{p}^{*}\left(e_{k}\right)=\left\{\begin{array}{l}0, \quad \text { if } p \equiv 1 \bmod 4 \text { or if } p \equiv 3 \bmod 4 \text { and } k-i \text { is odd, }, \\ \sum_{j=0}^{i-1}\binom{k-j-1}{i-j-1} w_{j}^{2} w_{k+i-j-1}^{2}, \quad \text { if } p \equiv 3 \bmod 4 \text { and } k-i \text { is even. }\end{array}\right.$
(d) In $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$, for any prime $p \equiv 3 \bmod 8$ and for $k \geq 1$,

$$
S q^{2 i} \gamma_{k}=\binom{k-1}{i} \gamma_{k+i}+\sum_{j=1}^{i}\binom{k-j-1}{i-j}\left(w_{j}^{2} \gamma_{k+i-j}+w_{k+i-j}^{2} \gamma_{j}\right)
$$

for $1 \leq i<k$ and $S q^{2 i-1} \gamma_{k}=0$ for $1 \leq i \leq k$.
Proof. Lemma 4 of [Ar2] gives the following information on the action of the Steenrod squares on the classes $e_{k} \in H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right)$ for $k \geq 1$: for any odd prime p and for $1 \leq i<k$,

$$
S q^{2 i} e_{k}=\binom{k-1}{i} e_{k+i}+\sum_{j=1}^{i}\binom{k-j-1}{i-j}\left(c_{j} e_{k+i-j}+c_{k+i-j} e_{j}\right)
$$

and for $1 \leq i \leq k$,

$$
S q^{2 i-1} e_{k}=\left\{\begin{array}{l}
0, \quad \text { if } p \equiv 1 \bmod 4 \text { or if } p \equiv 3 \bmod 4 \text { and } k-i \text { is odd } \\
\sum_{j=0}^{i-1}\binom{k-j-1}{i-j-1} c_{j} c_{k+i-j-1}, \quad \text { if } p \equiv 3 \bmod 4 \text { and } k-i \text { is even. }
\end{array}\right.
$$

The formula (a) is well known but can be deduced from the previous equalities because the composition $\zeta^{*} \theta^{*}: H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \rightarrow H^{*}(S U ; \mathbb{Z} / 2)$ satisfies $\zeta^{*} \theta^{*}\left(e_{k}\right)=$ $v_{2 k-1}$ for $k \geq 2$ and $\zeta^{*} \theta^{*}\left(c_{j}\right)=0$ for $j \geq 1$. The statements (b) and (c) follow directly since $S q^{2 i} f_{p}^{*}\left(e_{k}\right)=f_{p}^{*}\left(S q^{2 i} e_{k}\right)$ and $f_{p}^{*}\left(c_{j}\right)=w_{j}^{2}$ for $j \geq 1$. In order to get (d), let us consider again the homomorphism $\lambda^{*}: H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \rightarrow$
$H^{*}(B Q ; \mathbb{Z} / 2)$ which is injective on $\mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]$ and trivial on exterior classes because $H^{*}(B Q ; \mathbb{Z} / 2)$ is polynomial. If $p \equiv 3 \bmod 8$, one has by the definition of γ_{k}

$$
S q^{2 i} \gamma_{k}=S q^{2 i} f_{p}^{*}\left(e_{k}\right)+S q^{2 i} w_{2 k-1}+\sum_{j=1}^{k-1} S q^{2 i}\left(w_{j} w_{2 k-j-1}\right)
$$

for $1 \leq i<k$. According to (b),

$$
\begin{aligned}
S q^{2 i} \gamma_{k}= & \binom{k-1}{i} f_{p}^{*}\left(e_{k+i}\right)+\sum_{j=1}^{i}\binom{k-j-1}{i-j}\left(w_{j}^{2} f_{p}^{*}\left(e_{k+i-j}\right)+w_{k+i-j}^{2} f_{p}^{*}\left(e_{j}\right)\right) \\
& +\left(\text { element of } \mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]\right)
\end{aligned}
$$

and consequently,

$$
\begin{aligned}
S q^{2 i} \gamma_{k}= & \binom{k-1}{i} \gamma_{k+i}+\sum_{j=1}^{i}\binom{k-j-1}{i-j}\left(w_{j}^{2} \gamma_{k+i-j}+w_{k+i-j}^{2} \gamma_{j}\right) \\
& +\left(\text { element of } \mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]\right)
\end{aligned}
$$

Since the classes γ_{k} are exterior, they belong to the kernel of λ^{*} and $\lambda^{*}\left(S q^{2 i} \gamma_{k}\right)=0$. However, the injectivity of λ^{*} on Stiefel-Whitney classes implies that the element of $\mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]$ in the last formula vanishes. The assertion (c) shows that $S q^{2 i-1} \gamma_{k}$ is an element of $\mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]$ and one deduces similarly that $S q^{2 i-1} \gamma_{k}=0$.

Our argument will be based on the understanding of the homomorphism

$$
\begin{aligned}
\mu^{*}: & H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \rightarrow H^{*}\left(B G L(\mathbb{Z})^{+} \times B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \\
& \cong H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \otimes H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)
\end{aligned}
$$

induced by the H -space structure μ of $B G L(\mathbb{Z})^{+}$.
Lemma 3. (a) For any $j \geq 1$,

$$
\mu^{*}\left(w_{j}\right)=\sum_{s=0}^{j} w_{s} \otimes w_{j-s}
$$

(b) For any prime $p \equiv 5 \bmod 8$ and any integer $k \geq 2$,

$$
\mu^{*}\left(f_{p}^{*}\left(e_{k}\right)\right)=f_{p}^{*}\left(e_{k}\right) \otimes 1+1 \otimes f_{p}^{*}\left(e_{k}\right)+\sum_{\ell=1}^{k-2}\left(w_{\ell}^{2} \otimes f_{p}^{*}\left(e_{k-\ell}\right)+f_{p}^{*}\left(e_{k-\ell}\right) \otimes w_{\ell}^{2}\right)
$$

(c) For any prime $p \equiv 3 \bmod 8$ and any integer $k \geq 2$,

$$
\mu^{*}\left(\gamma_{k}\right)=\gamma_{k} \otimes 1+1 \otimes \gamma_{k}+\sum_{\ell=1}^{k-2}\left(w_{\ell}^{2} \otimes \gamma_{k-\ell}+\gamma_{k-\ell} \otimes w_{\ell}^{2}\right)
$$

Proof. Assertion (a) is known (see for instance [MT], Part I, p. 140). If ν denotes the H-space structure of $F \Psi^{p}$, Proposition 2 of [Q2] implies that

$$
\begin{aligned}
\mu^{*}\left(f_{p}^{*}\left(e_{k}\right)\right) & =f_{p}^{*}\left(\nu^{*}\left(e_{k}\right)\right)=f_{p}^{*}\left(\sum_{\ell=0}^{k}\left(c_{\ell} \otimes e_{k-\ell}+e_{k-\ell} \otimes c_{\ell}\right)\right) \\
& =\sum_{\ell=0}^{k}\left(w_{\ell}^{2} \otimes f_{p}^{*}\left(e_{k-\ell}\right)+f_{p}^{*}\left(e_{k-\ell}\right) \otimes w_{\ell}^{2}\right)
\end{aligned}
$$

for any odd prime p. If $p \equiv 5 \bmod 8, f_{p}^{*}\left(e_{1}\right)$ vanishes since e_{1} is exterior and one gets immediately (b). If $p \equiv 3 \bmod 8$, the definition of γ_{k},

$$
\gamma_{k}=f_{p}^{*}\left(e_{k}\right)+w_{2 k-1}+\sum_{j=1}^{k-1} w_{j} w_{2 k-j-1}
$$

shows that

$$
\mu^{*}\left(\gamma_{k}\right)=\sum_{\ell=0}^{k}\left(w_{\ell}^{2} \otimes f_{p}^{*}\left(e_{k-\ell}\right)+f_{p}^{*}\left(e_{k-\ell}\right) \otimes w_{\ell}^{2}\right)+\left(\text { element of } \mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]\right)
$$

Since $p \equiv 3 \bmod 8$, it turns out that $f_{p}^{*}\left(e_{1}\right)=w_{1}$ and consequently that

$$
\begin{gathered}
\mu^{*}\left(\gamma_{k}\right)=\gamma_{k} \otimes 1+1 \otimes \gamma_{k}+\sum_{\ell=1}^{k-2}\left(w_{\ell}^{2} \otimes \gamma_{k-\ell}+\gamma_{k-\ell} \otimes w_{\ell}^{2}\right) \\
+\left(\text { element of } \mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]\right)
\end{gathered}
$$

However, the element of $\mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]$ in that formula must be trivial since $\mu^{*}\left(\gamma_{k}\right)$ is exterior. This implies the last assertion.

Now, let p be a prime $\equiv 5 \bmod 8$ and k an integer ≥ 2. Consider an integer $m \geq k, C$ the cyclic group of order $p-1$ and

$$
H^{*}\left(B C^{m} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[x_{1}, x_{2}, \ldots, x_{m}\right] \otimes \Lambda\left(y_{1}, y_{2}, \ldots, y_{m}\right)
$$

with $\operatorname{deg}\left(x_{i}\right)=2$ and $\operatorname{deg}\left(y_{i}\right)=1$ for $1 \leq i \leq m$, endowed with the differential d defined by $d\left(x_{i}\right)=y_{i}$ and $d\left(y_{i}\right)=0$. Then, look at the homomorphism ρ : $H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \rightarrow H^{*}\left(B C^{m} ; \mathbb{Z} / 2\right)$, introduced in [Q2], p. 563-565, which is injective in dimensions $\leq 2 m$ (and in particular in dimensions $\leq 2 k$) since its kernel is the ideal generated by the elements c_{j} and e_{j} for $j>m$, and which fulfills $\rho\left(c_{j}\right)=s_{j}$ and $\rho\left(e_{j}\right)=d\left(s_{j}\right)$ for $1 \leq j \leq m$, where s_{j} denotes the j-th elementary symmetric function in $x_{1}, x_{2}, \ldots, x_{m}$. For $k \geq 1$, define the exterior class

$$
\xi_{k}=\sum_{j=1}^{m} x_{j}^{k-1} y_{j} \in H^{2 k-1}\left(B C^{m} ; \mathbb{Z} / 2\right)
$$

Since $s_{k}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$, one has

$$
d\left(s_{k}\right)=\sum_{i_{1}<i_{2}<\cdots<i_{k}} \sum_{\ell} x_{i_{1}} \cdots \widehat{x_{i_{\ell}}} \cdots x_{i_{k}} y_{i_{\ell}}
$$

Then, consider the difference

$$
\begin{aligned}
d\left(s_{k}\right)-s_{k-1} \xi_{1} & =\sum_{i_{1}<i_{2}<\cdots<i_{k}} \sum_{\ell} x_{i_{1}} \cdots \widehat{x_{\ell}} \cdots x_{i_{k}} y_{i_{\ell}} \\
& -\sum_{i_{1}<i_{2}<\cdots<i_{k-1}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k-1}} \sum_{i} y_{i} \\
& \sum_{i_{1}<i_{2}<\cdots<i_{k-1}} \sum_{\ell} x_{i_{1}} x_{i_{2}} \cdots x_{i_{\ell}} \cdots x_{i_{k-1}} y_{i_{\ell}} \\
& \sum_{i_{1}<i_{2}<\cdots<i_{k-1}} \sum_{\ell} x_{i_{1}} x_{i_{2}} \cdots \widehat{x_{i_{\ell}}} \cdots x_{i_{k-1}} x_{i_{\ell}} y_{i_{\ell}}
\end{aligned}
$$

From this formula, one may compute the difference

$$
d\left(s_{k}\right)-s_{k-1} \xi_{1}-s_{k-2} \xi_{2}=\sum_{i_{1}<i_{2}<\cdots<i_{k-2}} \sum_{\ell} x_{i_{1}} x_{i_{2}} \cdots \widehat{x_{\ell}} \cdots x_{i_{k-2}} x_{i_{\ell}}^{2} y_{i_{\ell}}
$$

and obtain by induction

$$
d\left(s_{k}\right)=\xi_{k}+\sum_{j=1}^{k-1} s_{j} \xi_{k-j}
$$

for $k \geq 2$. Since $\rho\left(e_{k}\right)=d\left(s_{k}\right)$ and $\rho\left(c_{j}\right)=s_{j}$, we get

$$
\rho\left(e_{k}\right)=\xi_{k}+\sum_{j=1}^{k-1} \rho\left(c_{j}\right) \xi_{k-j}
$$

This implies inductively that the exterior class ξ_{k} belongs to the image of ρ and the injectivity of ρ in dimensions $\leq 2 k$ produces the following lemma.

Lemma 4. For $p \equiv 5 \bmod 8$ and for any $k \geq 2$, the class $e_{k} \in H^{2 k-1}\left(F \Psi^{p} ; \mathbb{Z} / 2\right)$ satisfies

$$
e_{k}=\rho^{-1}\left(\xi_{k}\right)+\sum_{j=1}^{k-1} c_{j} \rho^{-1}\left(\xi_{k-j}\right)
$$

Definition 5. Let p be a prime $\equiv 5 \bmod 8$. For all integers $k \geq 2$, let us define the exterior class $u_{2 k-1}(p)=f_{p}^{*}\left(\rho^{-1}\left(\xi_{k}\right)\right) \in H^{2 k-1}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$, where f_{p}^{*} denotes the homomorphism $H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \rightarrow H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ induced by f_{p}. Observe that this definition does not depend on the choice of $m \geq k$. Notice also that $f_{p}^{*}\left(\rho^{-1}\left(\xi_{1}\right)\right)=f_{p}^{*}\left(e_{1}\right)=0$.
Proposition 6. For any prime $p \equiv 5 \bmod 8$ and for $k \geq 2$, one has:
(a) $u_{2 k-1}(p)=f_{p}^{*}\left(e_{k}\right)+\sum_{j=1}^{k-2} w_{j}^{2} u_{2 k-2 j-1}(p)$,
(b) the homomorphism $\eta^{*}: H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \rightarrow H^{*}(S U ; \mathbb{Z} / 2)$ fulfills $\eta^{*}\left(u_{2 k-1}(p)\right)=v_{2 k-1}$.

Proof. Lemma 4 implies that

$$
f_{p}^{*}\left(e_{k}\right)=u_{2 k-1}(p)+\sum_{j=1}^{k-2} w_{j}^{2} u_{2 k-2 j-1}(p)
$$

since $f_{p}^{*}\left(\rho^{-1}\left(\xi_{1}\right)\right)=0$. Consequently, (b) follows directly from the commutativity of the following diagram induced by the diagram $(*)$ of the introduction

because $\eta^{*} f_{p}^{*}\left(e_{k}\right)=\zeta^{*} \theta^{*}\left(e_{k}\right)=v_{2 k-1}$ and $\eta^{*}\left(w_{j}\right)=0$ for all $k \geq 2, j \geq 1$.
Proposition 7. For any prime $p \equiv 5 \bmod 8$ and for any integer $k \geq 2$, the element $u_{2 k-1}(p)$ is a primitive cohomology class in $H^{2 k-1}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$.

Proof. We must show that the homomorphism

$$
\mu^{*}: H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \rightarrow H^{*}\left(B G L(\mathbb{Z})^{+} \times B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)
$$

satisfies $\mu^{*}\left(u_{2 k-1}(p)\right)=u_{2 k-1}(p) \otimes 1+1 \otimes u_{2 k-1}(p)$. We proceed by induction on k. We just established in Proposition 6 that

$$
u_{2 k-1}(p)=f_{p}^{*}\left(e_{k}\right)+\sum_{j=1}^{k-2} w_{j}^{2} u_{2 k-2 j-1}(p) .
$$

For instance, $u_{3}(p)=f_{p}^{*}\left(e_{2}\right)$ and it follows from Lemma $3(\mathrm{~b})$ that $\mu^{*}\left(u_{3}(p)\right)=$ $u_{3}(p) \otimes 1+1 \otimes u_{3}(p)$. We then may deduce from Lemma 3 (a) and (b) and the induction hypothesis that

$$
\begin{array}{r}
\mu^{*}\left(u_{2 k-1}(p)\right)=f_{p}^{*}\left(e_{k}\right) \otimes 1+1 \otimes f_{p}^{*}\left(e_{k}\right)+\sum_{\ell=1}^{k-2}\left(w_{\ell}^{2} \otimes f_{p}^{*}\left(e_{k-\ell}\right)+f_{p}^{*}\left(e_{k-\ell}\right) \otimes w_{\ell}^{2}\right) \\
+ \\
+\sum_{j=1}^{k-2}\left(\sum_{s=0}^{j} w_{s}^{2} \otimes w_{j-s}^{2}\right)\left(u_{2 k-2 j-1}(p) \otimes 1+1 \otimes u_{2 k-2 j-1}(p)\right)
\end{array}
$$

and therefore that

$$
\begin{aligned}
\mu^{*}\left(u_{2 k-1}(p)\right)= & u_{2 k-1}(p) \otimes 1+1 \otimes u_{2 k-1}(p) \\
& +\sum_{\ell=1}^{k-2}\left(w_{\ell}^{2} \otimes u_{2 k-2 \ell-1}(p)+u_{2 k-2 \ell-1}(p) \otimes w_{\ell}^{2}\right) \\
& +\sum_{\ell=1}^{k-3} \sum_{t=1}^{k-\ell-2}\left(w_{\ell}^{2} \otimes w_{t}^{2} u_{2 k-2 \ell-2 t-1}(p)+w_{t}^{2} u_{2 k-2 \ell-2 t-1}(p) \otimes w_{\ell}^{2}\right) \\
& +\sum_{j=1}^{k-2}\left(w_{j}^{2} \otimes u_{2 k-2 j-1}(p)+u_{2 k-2 j-1}(p) \otimes w_{j}^{2}\right) \\
& +\sum_{j=1}^{k-2} \sum_{s=1}^{j-1}\left(w_{s}^{2} u_{2 k-2 j-1}(p) \otimes w_{j-s}^{2}+w_{s}^{2} \otimes w_{j-s}^{2} u_{2 k-2 j-1}(p)\right)
\end{aligned}
$$

The last sum can be written as follows:

$$
\begin{aligned}
& \sum_{j=1}^{k-2} \sum_{s=1}^{j-1}\left(w_{s}^{2} u_{2 k-2 j-1}(p) \otimes w_{j-s}^{2}+w_{s}^{2} \otimes w_{j-s}^{2} u_{2 k-2 j-1}(p)\right) \\
= & \sum_{j=1}^{k-2} \sum_{s=1}^{j-1}\left(w_{s}^{2} \otimes w_{j-s}^{2} u_{2 k-2 j-1}(p)+w_{j-s}^{2} u_{2 k-2 j-1}(p) \otimes w_{s}^{2}\right) \\
= & \sum_{s=1}^{k-3} \sum_{t=1}^{k-s-1}\left(w_{s}^{2} \otimes w_{t}^{2} u_{2 k-2 s-2 t-1}(p)+w_{t}^{2} u_{2 k-2 s-2 t-1}(p) \otimes w_{s}^{2}\right) .
\end{aligned}
$$

Consequently, $\mu^{*}\left(u_{2 k-1}(p)\right)=u_{2 k-1}(p) \otimes 1+1 \otimes u_{2 k-1}(p)$ and $u_{2 k-1}(p)$ is primitive.

Remark 8. Since we know that the Hopf algebra structure of $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ by Theorem 1 (or $[\mathrm{M}]$, Theorem 4.3 and Remark 4.5), it is obvious that there is exactly one nontrivial primitive exterior class in each odd degree ≥ 3 of $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$. However, let us show it again by a computational argument.

Lemma 9. Consider the homomorphism $\eta^{*}: H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \rightarrow H^{*}(S U ; \mathbb{Z} / 2)$. For $k \geq 2$, let $u_{2 k-1}^{\prime}$ and $u_{2 k-1}^{\prime \prime}$ be primitive exterior classes of degree $2 k-1$ in $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ such that $\eta^{*}\left(u_{2 k-1}^{\prime}\right)=\eta^{*}\left(u_{2 k-1}^{\prime \prime}\right)=v_{2 k-1}$. Then $u_{2 k-1}^{\prime}=$ $u_{2 k-1}^{\prime \prime}$.
Proof. Observe first that $u_{3}^{\prime}=u_{3}^{\prime \prime}$ since there is only one exterior class of degree 3 in $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$. Then, let us define $\widetilde{u}_{2 k-1}=u_{2 k-1}^{\prime}-u_{2 k-1}^{\prime \prime}$ for all $k \geq 2$ and prove by induction on k that $\widetilde{u}_{2 k-1}=0$. Since $\widetilde{u}_{2 k-1}$ is exterior and belongs to the kernel of η^{*}, the induction hypothesis shows that one can write

$$
\widetilde{u}_{2 k-1}=\sum_{s=3}^{2 k-2} u^{\prime}(s) w(s)
$$

where $u^{\prime}(s)$ is an element of degree s in $\Lambda\left(u_{3}^{\prime}, u_{5}^{\prime}, \ldots, u_{2 k-3}^{\prime}\right)$ and $w(s)$ is an element of degree $2 k-s-1$ in $\mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]$. However, the primitivity of the classes $u_{2 j-1}^{\prime}$ and Lemma 3 (a) provide an explicit computation of $\mu^{*}\left(\widetilde{u}_{2 k-1}\right)$ which contradicts the primitivity of $\widetilde{u}_{2 k-1}$ unless one has $\widetilde{u}_{2 k-1}=0$.

Thus, we are finally able to define the exterior generators of $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ (see also Remark 14 below).
Definition 10. Because of Proposition 7 and Remark 8, we may conclude that the classes $u_{2 k-1}(p)$ do not depend on p. Therefore, for $k \geq 2$, we can define $u_{2 k-1}=u_{2 k-1}(p) \in H^{2 k-1}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ for any prime $p \equiv 5 \bmod 8$. Since the image of $u_{2 k-1}$ under η^{*} is $v_{2 k-1}$, the classes $u_{2 k-1}$ are nontrivial algebraically independent exterior classes in $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$. See also Remark 14 for another definition of the classes $u_{2 k-1}$.

The following consequence follows immediately from Proposition 6 (b) and Remark 8 .
Theorem 11. The isomorphism $\alpha: H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \xrightarrow{\cong} H^{*}(B O ; \mathbb{Z} / 2) \otimes$ $H^{*}(S U ; \mathbb{Z} / 2)$ given by Theorem 1 is unique and satisfies $\alpha\left(u_{2 k-1}\right)=1 \otimes v_{2 k-1}$ for $k \geq 2$. Therefore, there is an isomorphism of \mathcal{A}-module Hopf algebras

$$
H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right] \otimes \Lambda\left(u_{3}, u_{5}, \ldots\right)
$$

It follows from Theorem 11 and Lemma 2 (a) that the action of the Steenrod algebra on the classes $u_{2 k-1}$ is described by the following Lemma 12. However, we mention here another proof, based on the definition of ξ_{k}, which provides an explicit computational argument for the existence of the isomorphism of \mathcal{A}-module Hopf algebras α.

Lemma 12. For all $k \geq 2$, $S q^{2 i} u_{2 k-1}=\binom{k-1}{i} u_{2 k+2 i-1}$ for $1 \leq i<k$ and $S q^{2 i-1} u_{2 k-1}=0$ for $1 \leq i \leq k$.

Proof. It is sufficient to prove the assertion for the classes $u_{2 k-1}(p)$ where p is any prime $\equiv 5 \bmod 8$. This follows from the injectivity of the map ρ which was explained just after the proof of Lemma 3 (if m is large enough) and from the computations $S q^{2 i-1} \xi_{k}=0$ and

$$
S q^{2 i} \xi_{k}=\sum_{j=1}^{m} S q^{2 i} x_{j}^{k-1} y_{j}=\sum_{j=1}^{m}\binom{k-1}{i} x_{j}^{k+i-1} y_{j}=\binom{k-1}{i} \xi_{k+i}
$$

It is even possible to describe the classes $u_{2 k-1}$ in terms of the image of f_{p}^{*} for all primes $p \equiv 3$ or $5 \bmod 8$.

Theorem 13. For $k \geq 2$, the classes $u_{2 k-1} \in H^{2 k-1}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ satisfy

$$
u_{2 k-1}= \begin{cases}f_{p}^{*}\left(e_{k}\right)+\sum_{j=1}^{k-2} w_{j}^{2} u_{2 k-2 j-1}, & \text { if } p \equiv 5 \bmod 8 \\ f_{p}^{*}\left(e_{k}\right)+w_{2 k-1}+\sum_{j=1}^{k-1} w_{j} w_{2 k-j-1}+\sum_{j=1}^{k-2} w_{j}^{2} u_{2 k-2 j-1}, & \text { if } p \equiv 3 \bmod 8\end{cases}
$$

where f_{p}^{*} denotes the homomorphism $H^{*}\left(F \Psi^{p} ; \mathbb{Z} / 2\right) \cong H^{*}\left(B G L\left(\mathbb{F}_{p}\right)^{+} ; \mathbb{Z} / 2\right) \rightarrow$ $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ induced by the reduction $\bmod p: G L(\mathbb{Z}) \rightarrow G L\left(\mathbb{F}_{p}\right)$.
Proof. If $p \equiv 5 \bmod 8$, the statement is given by Proposition 6 (a). Observe in particular that $u_{2 k-1}$ can be written as follows: $u_{2 k-1}=F_{k}\left(f_{p}^{*}\left(e_{2}\right), f_{p}^{*}\left(e_{3}\right), \ldots, f_{p}^{*}\left(e_{k}\right)\right)$, where F_{k} is a polynomial with coefficients in $\mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]$. If $p \equiv 3 \bmod 8$, consider again

$$
\gamma_{k}=f_{p}^{*}\left(e_{k}\right)+w_{2 k-1}+\sum_{j=1}^{k-1} w_{j} w_{2 k-j-1}
$$

and define $\widehat{u}_{2 k-1}=F_{k}\left(\gamma_{2}, \gamma_{3}, \ldots, \gamma_{k}\right)$. It is obvious that $\widehat{u}_{2 k-1}$ is an exterior class and easy to check as in the proof of Proposition 6 that $\eta^{*}\left(\widehat{u}_{2 k-1}\right)=v_{2 k-1}$. Moreover, observe that the homomorphism

$$
\mu^{*}: H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \rightarrow H^{*}\left(B G L(\mathbb{Z})^{+} \times B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)
$$

acts on $\gamma_{k}($ for $p \equiv 3 \bmod 8)$ and on $f_{p}^{*}\left(e_{k}\right)($ for $p \equiv 5 \bmod 8)$ exactly in the same way, according to Lemma 3 (b) and (c). Thus, the argument of the proof of Proposition 7 implies that $\widehat{u}_{2 k-1}$ is also primitive if $p \equiv 3 \bmod 8$. It finally follows from Remark 8 that

$$
u_{2 k-1}=\widehat{u}_{2 k-1}=F_{k}\left(\gamma_{2}, \gamma_{3}, \ldots, \gamma_{k}\right)=\gamma_{k}+\sum_{j=1}^{k-2} w_{j}^{2} u_{2 k-2 j-1}
$$

Remark 14. The formula provided by Theorem 13 can be used as an alternative recursive definition of the classes $u_{2 k-1}$ in $H^{*}\left(B G L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$.

It is known that $B G L(\mathbb{Z})^{+} \simeq B S L(\mathbb{Z})^{+} \times B \mathbb{Z} / 2$ and one deduces immediately the calculation of the $\bmod 2$ cohomology of the space $B S L(\mathbb{Z})^{+}$(recall that $H^{*}\left(B S L\left(\mathbb{F}_{p}\right)^{+} ; \mathbb{Z} / 2\right)$ is obtained from $H^{*}\left(B G L\left(\mathbb{F}_{p}\right)^{+} ; \mathbb{Z} / 2\right)$ by dividing out e_{1} and c_{1}):

Corollary 15. There is an isomorphism of \mathcal{A}-module Hopf algebras

$$
H^{*}\left(B S L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[w_{2}, w_{3}, \ldots\right] \otimes \Lambda\left(u_{3}, u_{5}, \ldots\right)
$$

where w_{k} and $u_{2 k-1}$ are also written for the image of w_{k} and $u_{2 k-1}$ under the homomorphism induced by the inclusion $S L(\mathbb{Z}) \hookrightarrow G L(\mathbb{Z})$. The formulas for $u_{2 k-1}$ given by Theorem 13 do still hold but observe that the first Stiefel-Whitney class of $S L(\mathbb{Z})$ is trivial.

Remark 16. The results of this section determine also the mod 2 cohomology of the groups $G L(\mathbb{Z})$ and $S L(\mathbb{Z})$ because $H^{*}\left(B G^{+} ; \mathbb{Z} / 2\right) \cong H^{*}(G ; \mathbb{Z} / 2)$ for $G=G L(\mathbb{Z})$ or $S L(\mathbb{Z})$.

3. The mod 2 cohomology of the Steinberg group $S t(\mathbb{Z})$

The goal of this last section is to compute $H^{*}(S t(\mathbb{Z}) ; \mathbb{Z} / 2)$ by looking at the universal central extension

$$
\mathbb{Z} / 2 \cong K_{2}(\mathbb{Z}) \succ S t(\mathbb{Z}) \xrightarrow{\pi} S L(\mathbb{Z})
$$

and at the associated Serre spectral sequence

$$
E_{2}^{*, *} \cong H^{*}(S L(\mathbb{Z}) ; \mathbb{Z} / 2) \otimes H^{*}(\mathbb{Z} / 2 ; \mathbb{Z} / 2) \Longrightarrow H^{*}(S t(\mathbb{Z}) ; \mathbb{Z} / 2)
$$

Let us use the notation $Q_{0}=S q^{1}$ and $Q_{r}=S q^{2^{r}} Q_{r-1}+Q_{r-1} S q^{2^{r}}$ and observe that $Q_{r}\left(w_{2}\right)=S q^{2^{r}} S q^{2^{r-1}} \cdots S q^{1} w_{2}$ because $S q^{2^{r}} w_{2}=0$ for $r \geq 2$ and $S q^{1} S q^{2} w_{2}=0$.

Theorem 17. (a) There is an isomorphism of \mathcal{A}-module Hopf algebras

$$
H^{*}(S t(\mathbb{Z}) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[\bar{w}_{2}, \bar{w}_{3}, \ldots\right] /\left(\bar{w}_{2}, Q_{r}\left(\bar{w}_{2}\right), r \geq 0\right) \otimes \Lambda\left(\bar{u}_{3}, \bar{u}_{5}, \ldots\right)
$$

where \bar{w}_{k} and $\bar{u}_{2 k-1}$ denote the image of w_{k} and $u_{2 k-1}$ under $\pi^{*}: H^{*}(S L(\mathbb{Z}) ; \mathbb{Z} / 2)$
$\rightarrow H^{*}(S t(\mathbb{Z}) ; \mathbb{Z} / 2)$.
(b) For $k \geq 2$,
$\bar{u}_{2 k-1}= \begin{cases}f_{p}^{*}\left(e_{k}\right)+\sum_{j=4}^{k-2} \bar{w}_{j}^{2} \bar{u}_{2 k-2 j-1}, & \text { if } p \equiv 5 \bmod 8, \\ f_{p}^{*}\left(e_{k}\right)+\bar{w}_{2 k-1}+\sum_{j=4}^{k-1} \bar{w}_{j} \bar{w}_{2 k-j-1}+\sum_{j=4}^{k-2} \bar{w}_{j}^{2} \bar{u}_{2 k-2 j-1}, & \text { if } p \equiv 3 \bmod 8,\end{cases}$
where f_{p}^{*} is written here for the homomorphism $H^{*}\left(S L\left(\mathbb{F}_{p}\right) ; \mathbb{Z} / 2\right) \rightarrow H^{*}(S t(\mathbb{Z}) ; \mathbb{Z} / 2)$ induced by the reduction $\bmod p: S t(\mathbb{Z}) \rightarrow S t\left(\mathbb{F}_{p}\right) \cong S L\left(\mathbb{F}_{p}\right)$.

Proof. Because $H^{*}(\mathbb{Z} / 2 ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2[z]$ with $\operatorname{deg} z=1$, one can compute the differentials in the above spectral sequence:

$$
d_{2}(z)=w_{2}, \quad d_{3}\left(z^{2}\right)=S q^{1} d_{2}(z)=S q^{1} w_{2}=w_{3}, \quad d_{5}\left(z^{4}\right)=S q^{2} d_{3}\left(z^{2}\right)=S q^{2} w_{3}
$$

and inductively, $d_{2^{r}+1}\left(z^{2^{r}}\right)=d_{2^{r}+1}\left(Q_{r-1}(z)\right)=Q_{r-1}\left(d_{2}(z)\right)=Q_{r-1}\left(w_{2}\right)=w_{2^{r}+1}$ + (decomposable element of $\mathbb{Z} / 2\left[w_{2}, w_{3}, \ldots\right]$) by Wu's formula ([MT], Part I, p. 141). Therefore, the sequence $\left(w_{2}, Q_{0}\left(w_{2}\right), Q_{1}\left(w_{2}\right), \ldots\right)$ is regular and we obtain $E_{\infty}^{s, t}=0$ if $t>0$ and $E_{\infty}^{*, 0} \cong H^{*}(S L(\mathbb{Z}) ; \mathbb{Z} / 2) /\left(w_{2}, Q_{r}\left(w_{2}\right), r \geq 0\right)$. This gives the $\bmod 2$ cohomology of $S t(\mathbb{Z})$ as described by statement (a) and assertion (b) follows directly from Theorem 13 and Corollary 15 since $\bar{w}_{2}=\bar{w}_{3}=0$.

Remark 18. The above argument exhibits a surjective homomorphism from $H^{*}\left(B S L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ to $H^{*}\left(B S t(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$. However, it is actually possible to find a nice map from $B S t(\mathbb{Z})^{+}$to the space BSpin inducing an injective homomorphism on $\bmod 2$ cohomology. More precisely, consider the map $\varepsilon: B S L(\mathbb{Z})^{+} \rightarrow B S L(\mathbb{R})^{+}$ induced by the inclusion $\mathbb{Z} \hookrightarrow \mathbb{R}$ and the map $\kappa: B S L(\mathbb{R})^{+} \rightarrow B S L(\mathbb{R})^{\text {top }} \simeq B S O$ induced by the obvious map $S L(\mathbb{R}) \rightarrow S L(\mathbb{R})^{\text {top }}$, where the first group $S L(\mathbb{R})$ is
endowed with the discrete topology and $S L(\mathbb{R})^{\text {top }}$ with the usual topology. Then, look at the commutative diagram

where the rows are fibrations in which the maps $\beta, \beta^{\prime}, \beta^{\prime \prime}$ are the second Postnikov sections of the corresponding spaces (BSpin is the fiber of $\beta^{\prime \prime}$), the maps $\bar{\varepsilon}$ and $\bar{\kappa}$ are the second Postnikov sections of ε and κ, and the vertical maps on the left are the restrictions of ε and κ to the fibers. The composition $\bar{\kappa} \bar{\varepsilon}$ is a homotopy equivalence because $\bar{\kappa}_{*} \bar{\varepsilon}_{*}: K_{2}(\mathbb{Z}) \rightarrow \pi_{2} B S O$ is an isomorphism (see Corollary 4.6 of $[\mathrm{Br}]$ or $\mathrm{p} .25-26$ of $[\mathrm{Be}])$. Let us denote the composition $\kappa \varepsilon$ by χ and its restriction to $B S t(\mathbb{Z})^{+}$by $\widetilde{\chi}: B S t(\mathbb{Z})^{+} \rightarrow B S$ pin (note that the 2 -completion of χ is the universal cover of the map h defined in the introduction and that the fiber of the 2-completion of $\widetilde{\chi}$ is $S \hat{U_{2}}$ because of the diagram $\left.(*)\right)$. We get the commutative diagram

The ring structure of the $\bmod 2$ cohomology of $B S$ pin is known by Proposition 6.5 of [Q1]:

$$
H^{*}(B S p i n ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[\widetilde{w}_{2}, \widetilde{w}_{3}, \ldots\right] /\left(\widetilde{w}_{2}, Q_{r}\left(\widetilde{w}_{2}\right), r \geq 0\right),
$$

where the \widetilde{w}_{k} 's are written here for the image of the universal Stiefel-Whitney classes under the homomorphism $\tau^{*}: H^{*}(B S O ; \mathbb{Z} / 2) \rightarrow H^{*}(B S p i n ; \mathbb{Z} / 2)$. Since χ^{*} : $H^{*}(B S O ; \mathbb{Z} / 2) \rightarrow H^{*}\left(B S L(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)$ is injective, the map $\widetilde{\chi}$ induces an injective \mathcal{A}-module Hopf algebra homomorphism

$$
\widetilde{\chi}^{*}: H^{*}(B S p i n ; \mathbb{Z} / 2) \rightarrow H^{*}\left(B S t(\mathbb{Z})^{+} ; \mathbb{Z} / 2\right)
$$

References

[Ar1] D. Arlettaz: Torsion classes in the cohomology of congruence subgroups, Math. Proc. Cambridge Philos. Soc. 105 (1989), 241-248. MR 90j:20097
[Ar2] D. Arlettaz: A note on the mod 2 cohomology of $S L(\mathbb{Z})$, in: Algebraic Topology Poznań 1989, Proceedings, Lecture Notes in Math. 1474 (1991), 365-370. MR 93g: 19005
[Au] C. Ausoni: Propriétés homotopiques de la K-théorie algébrique des entiers, Ph.D. thesis, Université de Lausanne (1998).
[Be] J. Berrick: An Approach to algebraic K-theory. (Pitman, 1982). MR 84g: 18028
[Bok] M. Bökstedt: The rational homotopy type of $\Omega \mathrm{Wh}^{\text {Diff }}(*)$, in: Algebraic Topology, Aarhus 1982, Lecture Notes in Math. 1051 (1984), 25-37. MR 86e:18011
[Bor] A. Borel: Topics in the homology theory of fibre bundles, Lecture Notes in Math. $\mathbf{3 6}$ (1967). MR 36:4559
[Br] W. Browder: Algebraic K-theory with coefficients \mathbb{Z} / p, in: Geometric Applications of Homotopy Theory I, Evanston 1977, Lecture Notes in Math. 657 (1978), 40-84. MR 80b:18011
[DF] W. Dwyer and E. Friedlander: Conjectural calculations of general linear group homology, in Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Boulder 1983, Contemp. Math. 55 Part I (1986), 135-147. MR 88f: 18013
[FP] Z. Fiedorowicz and S. Priddy: Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Math. 674 (1978). MR 80g:55018
[M] S. Mitchell: On the plus construction for $B G L \mathbb{Z}\left[\frac{1}{2}\right]$ at the prime 2, Math. Zeitschrift 209 (1992), 205-222. MR 93b:55021
[MT] M. Mimura and H. Toda: Topology of Lie groups I and II, Translations of Math. Monographs 91 (AMS 1991). MR 92h:55001
[Q1] D. Quillen: The mod 2 cohomology rings of extra-special 2-groups and spinor groups, Math. Ann. 194 (1971), 197-212. MR 44:7582
[Q2] D. Quillen: On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), 552-586. MR 47:3565
[RW] J. Rognes and C. Weibel: Two-primary algebraic K-theory of rings of integers in number fields, preprint (1997), http://math.uiuc.edu/K-theory/0220/.
[V] V. Voevodsky: The Milnor conjecture, preprint (1996), http://math.uiuc.edu/Ktheory/0170/.
[W] C. Weibel: The 2-torsion in the K-theory of the integers, C. R. Acad. Sci. Paris Sér. I $\mathbf{3 2 4}$ (1996), 615-620. MR 98h:19001

Institut de Mathématiques, Université de Lausanne, 1015 Lausanne, Switzerland
E-mail address: dominique.arlettaz@ima.unil.ch
Department of Mathematics, Faculty of Science, Okayama University, Okayama, Japan 700

E-mail address: mimura@math.okayama-u.ac.jp
Institut de Mathématiques, Université de Lausanne, 1015 Lausanne, Switzerland
E-mail address: koji.nakahata@ima.unil.ch
Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan
E-mail address: yagita@mito.ipc.ibaraki.ac.jp

[^0]: Received by the editors September 15, 1997.
 1991 Mathematics Subject Classification. Primary 20G10; Secondary 19D55, 20J05, 55R40, 55S10.

 We would like to thank Christian Ausoni for his helpful comments on Bökstedt's work [Bok] and the referee for his interesting suggestions. The third author thanks the Swiss National Science Foundation for financial support.

