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Abstract

Despite that a wealth of evidence links striatal dopamine to individuals reward learning performance in non-social
environments, the neurochemical underpinnings of such learning during social interaction are unknown. Here, we show
that the administration of 300 mg of the dopamine precursor L-DOPA to 200 healthy male subjects influences learning
about a partners’ prosocial preferences in a novel social interaction task, which is akin to a repeated trust game. We found
learning to be modulated by a well-established genetic marker of striatal dopamine levels, the 40-bp variable number
tandem repeats polymorphism of the dopamine transporter (DAT1 polymorphism). In particular, we found that L-DOPA
improves learning in 10/10R genoype subjects, who are assumed to have lower endogenous striatal dopamine levels and
impairs learning in 9/10R genotype subjects, who are assumed to have higher endogenous dopamine levels. These findings
provide first evidence for a critical role of dopamine in learning whether an interaction partner has a prosocial or a selfish
personality. The applied pharmacogenetic approach may open doors to new ways of studying psychiatric disorders such as
psychosis, which is characterized by distorted perceptions of others’ prosocial attitudes.
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Introduction

Finding generic prosocial interaction partners and distinguish-

ing them from selfish ones is of major importance in our social and

economic well-being. People learn about a partner’s prosocial

preferences by gathering information either through personal

interactions or by using information about the reputation of the

interaction partner [1]. When external information about some-

one’s prosocial preferences is not available, one has to learn this,

via trial and error, in repeated interactions with the partner [2].

However, strategic motives may overcast such learning, as they

create an incentive for selfish partners to appear prosocially in

order to be able to profit from future interactions.

Despite the fact that learning about a partners’ prosocial

preferences is a fundamental aspect of our everyday social lives,

little is yet known about the regional neurochemical systems that

influence learning in social contexts. So far, basic research in non-

human animals [3] and human neuroimaging studies using drug

challenges [4,5], as well as studies with individuals suffering from

Parkinson’s disease [6,7,8] have delineated the dopamine system

with a particular emphasis on the striatum as being a fundamental

basic neurocircuitry underlying probabilistic reward-learning in

humans. However, recent research has begun to probe the

involvement of the striatum in more complex behaviors typically

observed in repeated social interactions between two individuals.

For instance, human neuroimaging studies investigating the neural

correlates of repeated trust interactions have shown that positive

social feedback such as reciprocated trust activates an individual’s

striatum, whereas selfish, non-reciprocated trust leads to a

decrease in striatal activity [1,2], for a review see [9]. Furthermore,

activation in the striatum also predicts future trust decisions [10],

suggesting that striatal activity might signal the rewards of positive

social feedback and thereby guides future decisions. Thus, it

appears that reward learning based on social outcomes (e.g., social

approval, positive emotional responses and positive social feedback

in repeated interactions) is coded similarly in reward circuitry as if

feedback was based on non-social outcomes [11,12,13]. In sum,

there is much reason to believe that a pharmacological manipu-

lation of striatal dopamine modulates learning about others’

prosocial preferences by relying fundamentally on a basic

probabilistic reward-learning mechanism.

Striatal dopamine levels are dependent on the availability of the

dopamine transporter (DAT) protein, as it reuptakes dopamine

from the synaptic cleft into the pre-synaptic compartment after its

release. Therefore, DAT is an important regulator of dopamine

signaling, most primarily in the striatum, as it only occurs in low
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concentrations in other areas of the brain [14]. There is substantial

genetic variation in protein expression levels, and this variation is

assumed to affect endogenous striatal dopamine levels. The most

extensively studied gene variant in this context is the 40 base-pair

variable number tandem repeat polymorphism of the dopamine

transporter (DAT1 polymorphism) [15]. Basic neurobiological

research has shown that the 9-repeat (9R) variant of the DAT1

polymorphism is associated with lower transporter protein

expression than the 10R variant [16,17]. Neurochemical imaging

research in humans reported a lower density of dopamine

transporter in striatum of individuals who carry a 9/10R genotype

(heterozygotes) compared to those who carry the 10/10R

(homozygotes) genotype [18]. Hence, 9/10R genotype individuals

are expected to have higher extrasynaptic striatal dopamine levels

than 10/10R carriers [19,20,21,22]. Accordingly, functional

imaging studies have consistently reported that 9/10R genotype

carriers show greater activity in the striatum during processing of

rewards compared to 10/10R carriers [19,20,21]. Data stemming

from Parkinson’s disease patients who are treated with L-

dihydroxy-phenylalanine (L-DOPA, a biochemical precursor of

dopamine) suggest that the drug interacts with the DAT1

polymorphism in ways that are consistent with the above line of

arguments. Patients who carry the 9/10R genotype are more likely

to experience long term side-effects of L-DOPA treatment, which

can be linked to high levels of dopamine in the striatum, compared

to those who carry the 10/10R genotype [23].

Here we explore how L-DOPA induced increases in brain

dopamine levels interact with genetically determined individual

differences in endogenous striatal dopamine levels to influence

learning about a partners’ prosocial preferences. We administered

300 mg of L-DOPA to 205 subjects, who were all genotyped for

their DAT1 polymorphism (Materials S1). As L-DOPA is mainly

converted to dopamine in the striatum [24], endogenous striatal

dopamine levels might interact with exogenous administration of

L-DOPA to influence net dopamine levels [23]. Based on this line

of arguments, we test the hypothesis that the effects of L-DOPA

administration on learning about others’ prosociality depends on

an individual’s DAT1 polymorphism. A pharmacogenetic ap-

proach [25,26] allows a specific interpretation of the observed

effects, i.e. in the present context whether the DAT1 polymor-

phism is predictive of the direction of the effects of a pharmaco-

logical challenge on reward learning.

Materials and Methods

Subjects
205 healthy young Swiss males with mean (SD) age of 23.5 years

(3.6) took part in our double-blind, parallel group and placebo

controlled experiment. The study was performed in accordance

with the Declaration of Helsinki and approved by the Cantonal

Ethic Commission Zurich. Subjects had no significant general

psychiatric, medical, or neurological disorder based on the result

of structured interviews; they were included in the study after

having provided written informed consent. Three subjects were

excluded due to self-reported nausea, and two because they did

not understand the instructions.

Genotyping
The polymorphism for the DAT-1 was characterized using

PCR amplification procedure with the following primers:

DAT-1:

F59-TGTGGTGTAGGGAACGGCCTG-39.

R59-CTTCCTGGAGGTCACGGCTCA-39.

PCR reactions were performed using 5 ml Master Mix (Thermo

scientific), 2 ml primers (0.5 mM), 0.6 ml Mg/Cl2 (2.5 mM), 0.4 ml

DMSO 5% and 1 ml of water to total of 9 ml total volume and an

additional 1 ml of genomic DNA was added to the mixture. All

PCR reactions were employed on a Biometra T1 Thermocycler

(Biometra, Güttingem, Germany). PCR reaction conditions were

as follows:

Preheating step at 94.0̊C for 5 min, 34 cycles of denaturation at

94.0̊C for 30 s, reannealing at 55̊C for 30 s and extension at 72̊C

for 90 s. The reaction proceeded to a hold at 72̊C for 5 min. All

reaction mixtures were electrophoresed on a 3% agarose gel

(AMRESCO) with ethidium bromide to screen for genotype.

Subject Grouping According to DAT1 Polymorphism
The 9/10R and the 10/10R genotypes accounted for the

majority of the observed genotypes in our sample (48% and 44%,

respectively, Table 1), and we used these two genotypes

throughout the analyses. The system was in Hardy-Weinberg

equilibrium. The observed and expected heterozygosity were 0.88

and 0.79 respectively.

Experimental Procedure
Subjects were randomly assigned to receive either a single dose

of 300 mg of Madopar (consisting of 300 mg L-DOPA and 75 mg

benserazide, a peripheral dopa-decarboxylase inhibitor) or a

placebo. They then received a standardized meal and 100 ml of

water. On the evening before the experiment and 30 min before

L-DOPA administration, subjects were required to ingest 10 mg of

domperidone in order to avoid possible peripheral dopaminergic

side effects such as nausea and orthostatic hypotension. After

subjects had read the instructions, we checked whether they had

understood the rules of the game by providing control questions.

All but two of the subjects answered these control questions

correctly. Subjects performed the task 50 min after L-DOPA

intake. The task was implemented in z-Tree software and

presented on computer screens [27]. Subjects were also requested

to perform a mouthwash to collect buccal epithelial cells for the

preparation of DNA. All subjects received a flat fee of CHF 100

for participation in the experiment and an additional payment

according to the points earned in the task. Each point earned was

worth CHF 0.07. Each subject received payment in cash in private

at the end of the experiment, based on the points earned.

Experimental Design
In our paradigm, two players, player A and player B, begin with

an endowment of 10 monetary units (MUs). First, player A has to

decide how much of his endowment he wants to transfer to player

Table 1. DAT1 polymorphism allele frequencies in our
sample.

DAT1 polymorphism genotypes Placebo L-DOPA Total

10/10R 45 51 96

9/10R 46 42 88

9/9R 8 3 11

9/11R 1 2 3

7/10R 1 0 1

10/11R 0 1 1

Total 101 99 200

doi:10.1371/journal.pone.0067820.t001

Dopamine and Learning about Others’ Prosociality
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B, knowing that the transfer is tripled by the experimenter. The

transfer has an 80% probability of reaching player B. In this case,

B can choose to either make a repayment that equalizes payoffs, or

to retain the entire amount. The transfer is ‘‘lost’’ in the remaining

20% of the cases, so that player B receives nothing and cannot

make a repayment. Thus, in case of an omitted return, player A

does not know with 100% certainty whether this was player B’s

intention.

To be able to observe learning over time, we let our subjects in

the role of player A play several rounds of the task. Each player A

plays 20 rounds of the task paired with the same player B in all

rounds. Since an omitted return is an extremely powerful aversive

social signal, we implemented the ‘‘lost transfer’’ possibility to

avoid the problem that player As might immediately withhold

positive transfers after observing a single non-repayment. All our

subjects in the main experiment are in the role of player A. They

are paired with player Bs for whom repayment decisions were pre-

recorded, i.e. player Bs decided in how many of a total of 20

rounds they were going to make a repayment. Thus, player Bs

made decisions in line with their true prosocial preferences. Player

As were aware of the fact that they were paired with a player B

whose decisions had been pre-recorded and also about the

possibility that their transfers might get ‘‘lost’’ in 20% of the cases.

The use of pre-recorded player B decisions is necessary to avoid

an important confound. If player A would interact simultaneously

with a given player B they could vary transfers strategically to

influence player B’s future behavior [28]. Specifically, by

conditioning transfers on B’s previous repayments, A can generate

reputational incentives for B to repay [29]. Thus, in repeated

simultaneous interactions in this context a repayment is no longer

a clear signal of a player B’s prosocial preferences, because a

purely selfish player B may also repay due to reputational

incentives and hide his or her true type [30]. To investigate player

A’s pure learning process about a partners’ prosocial preferences

within a reinforcement-learning framework, we eliminated these

strategic elements by using pre-recorded decisions of player B.

Player A could infer that repayments from player B can be

interpreted as a pure signals of true prosocial preferences.

All player As in our main experiment were matched with one of

two types of player Bs: a prosocial one, from whom player As

received a repayment in 14 out of the 20 rounds, and a relatively

selfish one from whom player As received a repayment in only 6

out of 20 rounds. Player As were not aware of the fact that we

deliberately pre-selected a prosocial and a more selfish partner. All

transfer decisions had real monetary consequences for player As,

and they were told in the instructions that their decisions also have

an influence on player Bs’ payoff, which retains the social aspect if

this experimental setting. Furthermore, as player As do not have

any information about the social preferences of player Bs at the

outset, they have to rely on their everyday knowledge about how

people would behave in such a social interaction situation. They

can then use this information and learn, trial by trial, through

positive or negative social feedback about player Bs’ prosocial

preferences.

In sum, the fact that player As can not influence player Bs’

decisions allows us to exclude any strategic motives that might

confound reward-learning behavior and allows to test in an clean

way whether L-DOPA administration interacts with player As’

DAT1 polymorphism in modulating learning about a partner’s

prosocial preferences.

Pre-Recording of Player B Decisions
To pre-record the player Bs’ decisions, we conducted a session

involving the same task design (without drug administration)

several weeks before the main experiment. Each participant had to

indicate in how many of 20 rounds he, in the role of player B,

would make a repayment. After player B had decided how often

he wanted to repay, the computer randomly distributed the

repayment decisions across the 20 rounds of the experiment. This

procedure allowed us to collect a large number of player B

repayment decisions.

Optimal Transfer Decision
Player A can choose transfers x M [0,10]. Player B receives the

transfer with probability of 0.8. In this case he can decide to retain

all the money or to repay the amount of 2x to equalize payoffs.

Player A’s transfer is lost with a probability of 0.2, meaning that

player B cannot make a repayment. Player A’s optimal transfer x

depends on the probability p with which player B repays when he

receives the transfer. Player A’s expected profit E[p] is given as

follows:

E½p�~10{xzp:0:8:2x~10z(1:6p{1)x

The expected profit is strictly increasing in x as long as p.5/8.

Thus, if p is larger than 5/8, then player A profits most if he always

transfers his whole endowment (that is, 10 MUs). If p is smaller

than 5/8, then it is best to always transfer nothing (that is, 0 MUs).

If p equals 5/8, player A is indifferent, as all possible transfers yield

the same expected payoff. From this follows that profit-maximizing

player As who are matched with prosocial player B should transfer

their full endowment in each round, whereas player As who are

matched with a selfish player B should not transfer anything.

Measures of Drug Related Side Effects
Side effects were assessed using visual analog scales [31] and

were recorded prior to substance administration and before the

trust game was performed. Items in the scale were alert/drowsy,

calm/excited, strong/feeble, muzzy/clear-headed, well coordinat-

ed/clumsy, lethargic/energetic, contented–discontented, trou-

bled–tranquil, mentally slow/quick-witted, tense/relaxed, atten-

tive/dreamy, incompetent/proficient, happy/sad, antagonistic/

amicable, interested/bored and withdrawn/gregarious. These

dimensions were presented as 10 cm lines on a computer screen

and volunteers marked their current state on each line with a

mouse click. In line with previous research [32], the factors

‘‘alertness’’, ‘‘contentedness’’, and ‘‘calmness’’ were calculated

from these items.

Statistical Analysis
Our statistical analysis is based on analysis of variance, Mann-

Whitney tests and Spearman rank correlations. All tests are two-

tailed tests. We examined the impact of partner type [with a binary

indicator for partner type indicating whether the player A was

confronted with the pre-recorded decisions of a prosocial player B

( = 1) or a ore selfish player B ( = 0)], L-DOPA [with a binary

indicator for L-DOPA indicating whether the subject received L-

DOPA ( = 1) or placebo ( = 0)], genotype [(with a binary indicator

for subjects who carry a 9/10R genotype ( = 1) or a 10/10R

genotype ( = 0)], and interactions between these variables in a

univariate three-way ANOVA on the investor’s total earnings in

the task. Further analyses included the reinforcement learning

model parameters alpha and theta as dependent variables

(Materials S1).

Dopamine and Learning about Others’ Prosociality
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Results

Learning About a Partners Prosocial Preferences
We found that subjects (total n = 200) successfully learn over

time who is prosocial and who is not (Figure 1a). Average transfers

increase over time when interacting with a prosocial partner

(n = 101) and decrease with a selfish partner (n = 99). Analysis of

transfers (in MUs) as the dependent variable using partner type

(prosocial, selfish) as a between-subjects and rounds (1–20) as a

within-subject factor showed a significant interaction effect of

round6partner type (F(10.2,198)=10.20, p,0.001, partial eta-

square = 0.049). Transfers began to differ according to partner

type, on average, by the ninth trial (Figure 1a: prosocial vs selfish

type, Z = 3.00, p,0.003). Applying a standard reinforcement

learning model [33] to the transfers revealed that the model

adequately predicts player As’ learning behavior (Figure 1a,

Materials S1, Figure S2).

Dopaminergic Effects on Learning Performance
Having established that player As successfully learn about the

prosocial preferences of their partners, we looked at the overall

learning performance as measured by As’ total earnings in the

task. The repayment probability of the pre-selected prosocial type

ensured that transferring the full endowment (10 MUs) is the

strategy maximizing expected profits (total earnings of 280 MUs),

while the repayment probability of the pre-selected selfish type

implied that transferring nothing would have maximized expected

profits (total earnings of 200 MUs). We found that L-DOPA

effects on earnings depend on DAT1 genotype and on partner

type (interaction effect L-DOPA6DAT16partner type on total

earnings, F(1,176)= 4.65, p,0.032, partial eta-square = 0.026).

When subjects faced a prosocial partner, we found a significant

interaction effect of L-DOPA6DAT1 genotype on learning

performance (F(1,89) = 9.66, p,0.003, partial eta-square = 0.098).

Specifically, L-DOPA increased learning performance in subjects

carrying the 10/10R genotype, assumed to be associated with

lower endogenous striatal dopamine levels, with placebo subjects

earning an average of 260.2 MUs, while subjects on L-DOPA

earned 270.9 MUs (Figure 1b: placebo vs L-DOPA in 10/10R

genotype group, Z=2.022, p,0.043). Conversely, we found that

L-DOPA administration reversed this learning effect in those

subjects carrying the 9/10R genotype, which is assumed to be

Figure 1. Average player As’ transfers across rounds and resulting earnings. (a) Player As’ transfers in each round during interactions with a
prosocial (grey dots) respective selfish (black dots) player B over 20 rounds of the task. Player As increase their transfers over the 20 rounds when
paired with a prosocial player B and decrease their transfers while interacting with a selfish player B. The learning curves represent the predicted
transfers by the reinforcement learning model for interactions with a prosocial (grey line) and selfish (black line) partner. Hence, player As learn to
adapt their transfers according to player Bs’ prosocial preferences. (b/c) Dopaminergic modulation of learning performance defined as the total
earnings accumulated by player As. (b) When paired with a prosocial partner, player As who carry the 10/10R DAT1 genotype (lower striatal
dopamine levels, n = 50) improve their learning performance under the influence of L-DOPA (placebo: n = 22; L-DOPA: n = 28). Player As who carry the
9/10R DAT1 genotype (higher striatal dopamine levels, n = 43) show an impaired performance after L-DOPA administration (placebo: n = 27; L-DOPA:
n = 16). (c) Dopaminergic effects are absent when player As are paired with a selfish partner. Horizontal lines indicate average total earnings of player
As, separately for L-DOPA and placebo groups and the 9/10R (placebo: n = 19; L-DOPA: n = 26) and the 10/10R DAT1 (placebo: n = 23; L-DOPA: n = 23)
genotype carriers. Vertical lines indicate standard errors of the mean.
doi:10.1371/journal.pone.0067820.g001
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associated with higher endogenous striatal dopamine levels, with

placebo subjects earning 265.7 MUs and L-DOPA subjects

earning an average of 249.3 MUs (Figure 1b: placebo vs L-DOPA

in 9/10R genotype group, Z = 1.961, p,0.050). We found no

dopaminergic effects on learning performance when investors

faced a more selfish partner (Figure 1c: main and interaction

effects of two-way ANOVA, all p values .0.454).

Because the observed pharmacogenetic effect on earnings might

also result from player As level of prosociality before the task

started (that is, their baseline prosociality), we checked whether

there were differences across drug, player B type, and genotype in

player As transfers in the first round of the task, but found no

evidence for this (three-way ANOVAs, all p values .0. 202).

Finally, controlling for side effects of L-DOPA administration

using visual analogue scales, the reported interaction effect of L-

DOPA6DAT1 on player As’ learning performance about

interactions with a prosocial partner remains significant

(F(1,86) = 7.76, p,0.007, partial eta-square = 0.083).

Dopamergic Effects on Reinforcement Learning
Parameters

The total earnings in our task reflect an important outcome

variable of the player As’ learning process, but this measure says

little about how learning takes place. To this end, we modeled

player As’ learning within the framework of reinforcement

learning [33]. The model employed here (Materials S1), disen-

tangles two essential processes. The first process (captured by the

model’s learning rate parameter) determines how strongly a given

feedback from a player B (that is positive or no returns) changes

the subjective value of the available transfer options (0–10 MUs).

A low learning rate implies that the player Bs’ feedback has a

relatively small impact on player As’ decision in the next round,

whereas a high learning rate implies a relatively larger impact. The

second process is captured by the sensitivity parameter. This

parameter specifies the exploration-exploitation trade-off of

reinforcement learning [34]. A high sensitivity parameter implies

a strong focus on the transfer option with the highest subjective

value, whereas a low sensitivity parameter implies that all transfer

options will be chosen with substantial probability. For example, a

given player A may assign the highest subjective value to the

transfer of 10 MUs after a few interactions with a prosocial

partner. If he persists with transferring 10 MUs for the remaining

rounds, his sensitivity parameter would be high. If he continues by

exploring alternative options (0–9 MUs), his sensitivity parameter

would be low.

In analogy to previous findings on reinforcement learning in

non-social contexts [4], we did not observe any dopaminergic

effects on the learning rate parameter (all p values .0.316). In

contrast, we found a clear interaction of L-DOPA and player As’

DAT1 genotype on the sensitivity parameter (Figure 2:

F(1,89)=7.923, p,0.006, partial eta-square = 0.082). When ex-

pressing the sensitivity parameter for easier interpretation as the

probability of choosing the transfer with the highest expected value

(Figure S1), L-DOPA compared to placebo administration

decreases the probability of choosing the transfer with the highest

subjective value in 9/10R genotype carriers by 8.6 percentage

points. On the other hand, this probability increases by 13.3

percentage points for 10/10R individuals following L-DOPA

administration.

Discusssion

We show that a manipulation of the dopaminergic system

modulates learning about a partners’ prosocial preferences. In

particular, we found that L-DOPA administration improves this

learning process in carriers of the 10/10R genotype, which is

assumed to be linked to lower endogenous striatal dopamine levels,

but impairs learning in people who carry the 9/10R genotype,

which is assumed to be linked to higher endogenous dopamine

levels.

Our findings resemble an inverted-U shaped relationship

between dopamine levels and learning performance that is that

dopaminergic drugs such as L-DOPA might stimulate the

dopaminergic system to optimal or overdosed levels in individuals

with low vs. high baseline dopamine system functioning [35]. This

may be understood in the context of theoretical and empirical

accounts suggesting that optimal tuning of dopamine function in

the prefrontal cortex [36], and as demonstrated recently also in the

striatum [37], is vital for a variety of cognitive functions. In other

words, there seems to be a critical range of dopamine stimulation

for better behavioral performance, while behavioral performance

above or below this critical range of dopamine stimulation

deteriorates [38].

By modeling player As’ behavior within the framework of

reinforcement learning we found no evidence of a dopaminergic

modulation of the learning rate parameter, but found a clear

interaction of L-DOPA and player As’ DAT1 genotype on the

sensitivity parameter. Furthermore, the modeling results suggest

that administering L-DOPA to investors who carry a 9/10R

genotype confers lower earnings in the task by decreasing their

sensitivity for exploiting the subjectively best transfer. In other

words, it appears that the pharmacogenetic manipulation mostly

affects the degree to which appropriately learned prosocial values

of the other partner are used at the point of choice and not the

capacity to update expectations on the basis of novel feedback

during the learning phase. These results concur with recent

computational models which emphasize a role for striatal

dopamine in modulating the sensitivity parameter rather than

the learning rate [39] and is also empirically supported by the

finding that hyper-dopaminergic mice with a reduced expression

Figure 2. Pharmacogenetic effect on the sensitivity parameter.
Administration of L-DOPA increases the sensitivity for making transfers
that subjectively provide the largest expected return in player As who
carry the 10/10R DAT1 genotype (lower endogenous striatal dopamine
levels) (placebo: n = 22; L-DOPA: n= 28), but decreases this sensitivity in
those who carry the 9/10R DAT1 genotype (higher endogenous striatal
dopamine levels) (placebo: n = 27; L-DOPA: n= 16). Horizontal lines
indicate mean values of the sensitivity parameter, separately for L-DOPA
and placebo groups and the 9/10R and the 10/10R DAT1 genotype
carriers. Vertical lines indicate standard errors of the mean.
doi:10.1371/journal.pone.0067820.g002

Dopamine and Learning about Others’ Prosociality
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of striatal DAT (DAT knockdown mice) display a diminished

capacity to exploit learning opportunities, as represented by a

lower value of their sensitivity parameter [40].

Our finding that individuals with highest striatal dopamine

levels (9/10R carriers who received L-DOPA) benefit the least

from transfers to a prosocial partner is also intriguing from a

clinical perspective. Psychotic patients exhibiting paranoia show

pronounced distrust of others, even though they reside in a

conducive environment as part of their treatment regimen in the

clinic. Current theories hold that psychosis might result from a

disturbance in error-related updating of inferences and beliefs

about the world [41] caused by an overactive mesolimbic

dopaminergic system [42]. Indeed, a recent study found that

psychotic individuals exhibit reduced reciprocal trust in response

to positive feedback from a trustworthy trustee [43]. Thus,

although speculative, these findings generally support our claim.

Finally, our finding might have relevance for the pharmacological

treatment of Parkinson’s disease, as patients who carry the 9/10R

genotype are reported to face an increased risk of suffering from

psychosis in response to L-DOPA treatment, a finding which was

interpreted to result from overly high striatal dopamine levels [23].

The fact that we found no dopaminergic effects on learning

performance when player As’ faced a selfish partner adds novel

pharmacogenetic evidence on the ongoing debate over dopamine’s

role in appetitive and aversive instrumental learning [4,44]. While

the absence of repayment by player B following a high transfer is

associated with monetary loss and is thought to be an aversive

social stimulus for player A, positive returns are associated with a

monetary gain and are considered to be a rewarding social

stimulus [45]. We thus found evidence for a dopaminergic

modulation of learning from appetitive, but not from aversive

stimuli. This is again in line with dopaminergic drug challenge

studies showing a relative selectivity for processing appetitive

rather than aversive stimuli in probabilistic learning tasks both in

healthy subjects [4], and patients affected with Parkinsons disease

[6].

The probabilistic learning paradigms in non-social contexts

employed by research in Parkinsons disease patients and healthy

subjects have some commonality with our task in the sense that

investors are required to make stimulus-outcome associations

based on probabilistic feedback from the interaction partner.

Thus, the fact that the DAT occurs mostly in the striatum, but

only in low concentrations in other areas of the brain [14],

together with our finding that the DAT1 polymorphism modulates

L-DOPA effects on learning about a partners’ prosocial prefer-

ences might be an indication that there might also be a common

regional neurochemical process at work during reinforcement

learning based on social feedback as it is the case for non-social

feedback [13]. However, as player As in the current drug study

might still have tried to infer player Bs (past) intentions or attitudes

to predict repayments when making investments, these inferences

might have relied upon a cognitive mentalizing system on top of

neural systems such as the reward circuitry [46]. Hence, whether

our pharmacogenetic effect is uniquely related to social interac-

tions or rather reflects a relatively broad probabilistic learning

mechanism that guides behavior both in social and non-social

contexts is a topic for further studies.

Summary and Conclusions

In sum, while dopaminergic drugs have been shown to affect

human reward learning in non-social contexts via modulation of

striatal activity, imaging studies of social interactions have shown

that activation of the striatum tends to facilitate human

cooperative behaviors. Here we show a causal role of the

dopaminergic system in learning about others prosocial prefer-

ences. Exogenous dopamine improves learning performance in

subjects who carry the 10/10R genotype, assumed to be associated

with lower striatal dopamine levels, and impairs learning

performance in people with the 9/10R genotype, assumed to

confer higher striatal dopamine levels. These effects might not be

related to specifically social situations, but may rather result from a

dopaminergic modulation of a general reward learning mecha-

nism. Our findings are not only relevant for fundamental research,

but potentially constitute a stepping stone for new ways of

understanding psychiatric disorders that link the dopaminergic

system with distorted perceptions of others prosocial attitudes.
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