Prédiction de l'efficacité des orthèses d'avancement mandibulaire par un test de stimulation électromagnétique des nerfs phréniques

Etudiant
Samuel Staubli

Tuteur
Dr. Raphaël Heinzer

Expert
Dr. Martin Broome

Lausanne, le 15.01.2017
Abstract

Contexte : Le syndrome d’apnée obstructive du sommeil (SAOS) est une maladie causée par les obstructions répétitives des voies respiratoires supérieures suite à un collapsus du pharynx durant le sommeil. Le traitement de choix proposé aujourd'hui est la ventilation par pression positive (CPAP - Continuous positive airway pressure), cependant son côté « contraignant » peut diminuer la compliance du patient à utiliser cette machine. Pour cette raison, d'autres options thérapeutiques ont été développées telles que l'orthèse d'avancement mandibulaire (OAM). Il s'agit d'un dispositif composé de deux gouttières dentaires qui permettent de garder la mandibule en avant pendant le sommeil. Le fait d'avancer la mandibule permet de tirer la langue vers l'avant et de diminuer ainsi le risque d'obstruction pharyngée nocturne. Les OAM ne se montrent toutefois efficaces que chez certains patients et il est actuellement impossible de prédire le succès de ce traitement avant de l'avoir fait confectionner sur mesure. Dès lors, il serait important de pouvoir bénéficier d'un test qui permettrait de prédire l'efficacité de ce traitement.

Par ailleurs, il a été montré que la stimulation électromagnétique des nerfs phréniques durant l'éveil pouvait reproduire une obstruction du pharynx en dissociant l'activité des muscles inspiratoires et celle des muscles dilatateurs des voies aériennes supérieures.

But : Nous proposons de déterminer l'amélioration du flux d'air inspiratoire avec avancement mandibulaire lors d'une stimulation phrénique pendant l'éveil. Un test plus simple d'atténuation du ronflement avec avancement volontaire de la mandibule serait également effectué.

Matériel et méthodes : Nous avons recruté 15 patients ayant été équipés d'une OAM pour un SAOS. L'efficacité du traitement a été évaluée par deux polygraphies respiratoires nocturnes avec et sans le port de l'OAM. Parallèlement, nous avons effectué une évaluation diurne à l'aide de deux tests : une inspiration involontaire par stimulation électromagnétique des nerfs phréniques avec et sans avancement mandibulaire afin de déterminer l'amélioration du flux d'air en fonction de la position mandibulaire. Un deuxième test évaluant la diminution de l'intensité du ronflement volontaire avec l'avancement de la mandibule a également été effectué.

Résultats : Le test de stimulation électromagnétique des nerfs phréniques n’a pas été capable de prédire l'efficacité des orthèses d'avancement dans le traitement du SAOS. L’intensité du ronflement n’a pas démontré de variation significative avec avancement mandibulaire.

Conclusion : Un suivi plus intensif des patients bénéficiant d’une OAM et de nouvelles études à la recherche d'autres prédicteurs de l'efficacité des OAM nous paraissent nécessaire pour augmenter la probabilité de réussite de ce traitement.

Département/Service : Centre d’Investigation et de Recherche sur le Sommeil (CIRS)

Discipline d’études : Recherche clinique
Table des matières

1. Nomenclature .. 5
2. Introduction .. 6
 2.1. Contexte .. 6
 2.2. Classification .. 6
 2.3. Conséquences ... 7
 2.4. Traitements .. 8
3. Matériel et méthode .. 9
 3.1. Introduction .. 9
 3.2. Recrutement des sujets ... 9
 3.3. Enregistrement du sommeil ... 9
 3.4. Matériel ... 10
 3.5. Calibration du pneumotachographe .. 10
 3.6. Stimulation des nerfs phréniques ... 11
 3.7. Déroulement des tests au CIRS ... 11
 3.8. Questionnaire ... 13
 3.9. Lecture des données .. 13
 3.9.1. Logiciel RemLogic ... 13
 3.9.2. Méthode d’analyse avec RemLogic ... 13
 3.9.2.1. Sniff test ... 13
 3.9.2.2. Snore test ... 14
 3.9.2.3. Stimulation test .. 14
 3.10. Analyse des résultats .. 15
 3.10.1. Analyse des polysomnographies .. 15
 3.10.2. Analyse des tests effectués au CIRS ... 15
4. Résultats .. 16
 4.1. Groupes répondeurs et non-répondeurs ... 16
 4.2. Questionnaire .. 16
 4.3. Calculs statistiques ... 17
 4.3.1. Calculs statistiques des différents tests .. 17
 4.3.1.1. T-test : Comparaison des différentes mesures durant les tests entre
 répondeurs et non répondeurs ... 18
 4.3.1.2. Mann Whitney test : Comparaison des différentes mesures durant les tests
 entre répondeurs et non répondeurs .. 19
4.3.2. Calculs statistiques des polysomnographies .. 20
 4.3.2.1. Données PSG avec et sans PAM ... 21
 4.3.2.2. T test : Comparaison des différences entre répondeurs et non répondeurs
 (données PSG sans PAM – données PSG avec PAM) 21
 4.3.2.3. Mann Whitney test : Comparaison des différences entre répondeurs et non
 répondeurs (données PSG sans PAM – données PSG avec PAM) 22

5. Discussion .. 23
 5.1. Mesure du ronflement par sonomètre .. 23
 5.2. Questionnaire .. 23
 5.3. Tests prédictifs d'efficacité ... 24
 5.4. Polysomnographies .. 25
 5.5. Limites de l'étude ... 25

6. Conclusion .. 26

7. Remerciements ... 27

8. Bibliographie ... 28
1. **Nomenclature**

SAOS : Syndrome d'apnées obstructives du sommeil
AHI : Index d'apnée/hypopnée (mesuré événements/heures)
REM : Rapid eye movement
OAM : Orthèse d’avancement mandibulaire
CPAP : Continuous positive airway pressure
PSG : Polysomnographie
CIRS : Centre d’investigation et de recherche sur le sommeil
S1% : Pourcentage de sommeil de stade 1
S2% : Pourcentage de sommeil de stade 2
SWS% : Pourcentage de sommeil de stade 3 (slow waves sleep)
REM% : Pourcentage de REM (rapid eye movement)
TST : Temps total de sommeil (total sleep time)
TST supine : Temps total de sommeil sur le dos
Sleep Efficiency : Efficacité du sommeil (pourcentage de temps durant lequel le patient a dormi avec la PSG)
Total arousal index : Index de réveils totaux
WASO : Temps d'éveil après le premier endormissement (WASO)
PLMSI : Index de mouvement périodique des jambes durant le sommeil (PLMSI)
CAI : Index d’apnées centrales
OAI : Index d’apnées obstructives
MAI : Index d’apnées mixtes
HI : Index d’hypopnées
2. Introduction

2.1. Contexte
Le syndrome d’apnée obstructive du sommeil (SAOS) est une pathologie fréquente dans les sociétés modernes et l’estimation de sa prévalence à tendance à évoluer. En effet, il y a quelques années, on estimait la prévalence du SAOS à 2% chez les femmes et 4% chez les hommes (1) mais récemment, de nouvelles données inquiétantes suggèrent qu’environ ¼ des femmes et ½ des hommes présentent un SAOS de degrés modéré à sévère (2) (>15 apnée-hypopnée/heures). Malheureusement, seule une partie des patients sont actuellement sous traitement. En effet, une étude a montré qu’environ 75% des cas sévères de SAOS (>30 apnée-hypopnée/heures) ne sont pas diagnostiqués (3). Ceci est lié au fait que les médecins et le grand public ne sont pas assez sensibilisés à ce problème de santé (4).

Le syndrome d’apnée obstructive du sommeil est une pathologie causée par les obstructions répétitives des voies aériennes supérieures (VAS) suite à un collapsus partiel ou total du pharynx durant le sommeil (5). Ce collapsus engendre une augmentation des résistances au flux d’air et par conséquent, du travail inspiratoire. Ainsi, le SAOS se manifeste par une multitude d’épisodes d’interruptions respiratoires (apnée) ou de diminution de l’amplitude respiratoire (hypopnée) engendrées par la fermeture intermittente des VAS.

L’apnée est définie par une interruption complète du débit aérien pendant au moins 10 secondes, l’hypopnée est définie par une diminution de plus de 30% du flux d’air pendant au moins 10 secondes ou à une diminution du débit aérien associé à une baisse de 3% de la saturation en oxygène ou à un réveil objectivable à l’EEG. On évalue la sévérité du SAOS en comptant le nombre d’apnées centrales + le nombre d’apnées obstructives + le nombre d’hypopnées par heure de sommeil. Le résultat de cette mesure se nomme l’Index Apnées-Hypopnées (IAH).

2.2. Classification
2.3. Conséquences

Les nombreux épisodes d’apnées/hypopnées perturbent sévèrement le sommeil en provoquant des asphyxies répétées (désaturation) et de nombreux micro-réveils afin de permettre la réouverture des VAS. Ces petits éveils, dont le patient n’a, la plupart du temps, aucun souvenir, provoquent une destructuration du sommeil qui se caractérise par une diminution voire une absence de sommeil profond (stade III et IV non-REM) et du sommeil paradoxal (REM). Le patient n’est pas conscient de ses problèmes respiratoires nocturnes qui se manifestent principalement par une somnolence diurne excessive et invalidante dans les activités de la vie quotidienne comme par exemple la conduite automobile (7). En effet, le risque de s’endormir au volant n’est pas négligeable car le taux d’accident impliquant une personne avec SOAS serait 7x plus élevé par rapport à la population générale (8).

D’autres symptômes comme une fatigue généralisée, des céphalées matinales, une dépression ou encore un reflux gastro-œsophagien peuvent toucher les patients apnéiques. Du fait de cette symptomatologie insidieuse, le SAOS est souvent sous-diagnostiqué par les cliniciens.

Les conséquences du SAOS ne se résument pas à une fatigue ou une somnolence diurne.

On observe en effet aussi des répercussions cardiovasculaires : le risque de développer une HTA est 3x plus élevé (9,9–11) chez les patients apnéiques. Ceci est lié aux nombreux épisodes d’apnée qui engendrent une stimulation excessive du système nerveux sympathique qui se traduit par des variations cycliques de la pression artérielle et par le développement d’une hypertension diurne (12). Le risque de développer une insuffisance cardiaque ou un AVC est respectivement de 2,4 (13) et 2x (14) plus élevé que chez la population sans trouble du sommeil.

Par ailleurs les patients apnéiques peuvent aussi avoir des conséquences neurologiques : Chez certains patients, l’apnée du sommeil est associée à des hypoxémies intermittentes qui provoquent un stress oxydatif qui peut engendrer une détérioration des fonctions cognitives (15,16) par des déficits structuraux au niveau cortical (17). Les auteurs de ces études ont aussi montré qu’un traitement précoce et efficace permettait de corriger certains des effets négatifs neurologiques (17).

Finalement certaines études récentes ont montré un risque au niveau métabolique sous forme d’une association entre le SAOS et le développement d’une intolérance au glucose et d’une résistance à l’insuline indépendamment des facteurs de risques tel que l’obésité, l’âge, le sexe et le tour de taille. Ces conséquences métaboliques pourraient favoriser le développement d’un diabète de type 2 (18).
2.4. Traitements

Actuellement, le traitement de choix proposé est la CPAP (Continuous Positive Airway Pressure). En effet, la CPAP diminue de manière très efficace les perturbations respiratoires induites par le sommeil. Elle fonctionne en maintenant une pression positive à l’intérieur du pharynx lors de l’inspiration et de lexpiration. Ainsi, les VAS du patient restent ouvertes malgré le relâchement musculaire lié au sommeil. Cependant, la nature encombrante de la CPAP diminue la compliance de certains patients et a motivé le développement d’autres options thérapeutiques comme l’orthèse d’avancement mandibulaire (OAM). Il s’agit d’un dispositif composé de deux gouttières dentaires qui empêche la mâchoire inférieure de se déplacer en arrière (appareil de protrusion) durant le sommeil. Le fait d’avancer la mandibule permet de tirer la langue vers l’avant et de diminuer ainsi le risque d’obstruction pharyngée nocturne.

Le site où a lieu le collapsus semble être un paramètre important. En effet, les patients qui présentent une obstruction au niveau de la langue sont plus susceptibles de bénéficier du traitement que ceux qui ont une obstruction plus haute (au niveau du voile du palais). De part ce fait, l’OAM ne s’est révélée efficace que pour les certains patients apnéiques mais il est difficile de déterminer le niveau de cette obstruction par des examens cliniques pendant l’éveil. En conséquence, il est actuellement impossible de prédire l’efficacité d’une OAM avant de l’avoir confectionnée pour le patient. Il serait donc très avantageux de pouvoir sélectionner les patients qui sont susceptibles de répondre à ce traitement, afin de diriger les patients vers le traitement plus adéquat et pour diminuer les coûts.

Il a été montré que la stimulation électromagnétique des nerfs phréniques durant l’éveil pouvait reproduire une obstruction du pharynx en dissociant l’activité des muscles inspiratoires et celle des muscles dilatateurs des voies aériennes supérieures (19). Nous avons utilisé cette technique afin de reproduire au mieux ce qu’il se passe durant le sommeil du participant et ainsi confirmer l’efficacité de son OAM.
3. Matériel et méthode

3.1. Introduction
L’étude comportait deux parties : 2 polysomnographies à domicile et les tests au centre d’investigation et de recherche sur le sommeil (CIRS).

Les participants étaient invités tout d’abord à passer en fin d’après-midi au CIRS du CHUV afin que la technicienne en polysomnographie, Nadia Tobback, leur installe le dispositif d’enregistrement. Les patients rentraient ensuite dormir à leur domicile et ramenaient le matériau le lendemain. Nous avons réalisé 2 polysomnographies : l’une avec OAM et l’autre sans OAM afin de comparer les différences de d’index apnées/hypopnées et de déterminer cliniquement l’efficacité ou non de ce traitement. Afin que la lecture des résultats de la PSG soit objective sans biais d’interprétation, la technicienne n’était pas tenue au courant si le patient portait sa prothèse ou non lors de chacune des nuits. La partie des tests de prédiction était réalisée directement au Centre d’Investigation et de Recherche sur le Sommeil du CHUV.

3.2. Recrutement des sujets
Nous avons sélectionné 15 patients atteints d’apnée du sommeil et actuellement traités par orthèse d’avancement mandibulaire de type bi-bloc pour participer à cette étude. La liste des patients, remplie par Monsieur Anthony Byrde, Technicien-dentiste, a été fournie par le Dr. Martin Broome, Médecin chef de la Division de chirurgie orale et maxillo-faciale.

Chacun des participants a été contacté par téléphone. Les critères d’inclusion à l’étude étaient (1) un syndrome d’apnée du sommeil modéré à sévère (index d’apnée/hypopnée ≥15 événements/heures), (2) l’utilisation d’une orthèse d’avancement mandibulaire de type bi-bloc, (3) l’absence de dispositifs métalliques à l’intérieur du corps (pacemaker) qui pourraient interférer avec la stimulation magnétique des nerfs phréniques.

Le consentement éclairé était recueilli pour chaque participant. S’il acceptait l’étude, le participant recevait par mail une explication détaillée de l’étude qui avait été décrite brièvement au téléphone.

3.3. Enregistrement du sommeil
La polysomnographie est un examen médical qui consiste à enregistrer plusieurs variables physiologiques (mouvements respiratoires, flux aérien, électroencéphalogramme, électrocardiogramme, électromyogramme, saturation en oxygène, ...) durant le sommeil d’un patient. Ce test est effectué chez le participant et permet d’évaluer objectivement l’efficacité de son OAM.
3.4. Matériel

Les mesures de l’avancement mandibulaire étaient effectuées grâce à une réglette spécialement conçue pour cet usage. Nous avons mesuré les flux d’air passant par les VAS grâce à un pneumotachographe. Le principe du pneumotachographe repose sur la loi de Poiseuille selon laquelle, en régime laminaire, à travers une grille, le débit est proportionnel à la perte de charge par unité de longueur. L’enregistrement continu de cette perte de charge, c’est-à-dire la différence de pression entre deux points du tube, donne une courbe différentielle dont les ordonnées représentent la vitesse du courant aérien, donc le volume par unité de temps.

Nous avons utilisé un pneumotachographe de type Fleisch qui mesure la différence entre la pression avant et après une membrane. La membrane est formée d’une série de capillaires parallèles qui créent une faible résistance au flux d’air. De par la disposition en série de ces petits tubes parallèles, l’écoulement de l’air qui passe à travers lorsque le sujet respire est un flux laminaire. Ainsi, la différence de pression avant et après la membrane, mesurée par un capteur de pression, est directement proportionnelle au débit d’air (20, 21).

Dans notre expérience, le pneumotachographe était directement relié à un masque de CPAP. Le pneumotachographe était chauffé à 35°C afin d’éliminer l’humidité contenue dans l’air expiré qui pourrait perturber les mesures du flux.

Une fois le masque appliqué sur le visage du participant, nous vérifions systématiquement l’absence de fuite d’air. Pour ce faire, nous demandions au sujet de boucher le trou du masque par lequel il respirait, et de souffler. Ainsi, il lui était facile de s’assurer que le masque avait la bonne taille. Dans le cas contraire, le masque était ajusté jusqu’à la disparition des fuites d’air.

3.5. Calibration du pneumotachographe

Nous avons utilisé un débitmètre fourni par Imtmedical : le FlowAnalyser™ PF-300. Ce dispositif nous a permis de créer un flux d’air précis et constant à travers le pneumotachographe pour ensuite calibrer cette valeur sur PC grâce au logiciel RemLogic.

Pour ce faire, nous avons tout d’abord calibré le pneumotachographe afin que celui-ci renvoie des données en microvolt. Ainsi, chaque débit créé par le débitmètre était détecté par le pneumotachographe qui convertissait ces données en microvolt. Le logiciel RemLogic nous a permis de rassembler ces valeurs et de calculer une équation de droite de type

\[F(y) = ax + b \]

où \(y = \text{débit créé} \left(\frac{l}{\text{min}} \right) \) et \(x = \text{microvolt mesurés} \ (\text{mv}) \).
Le logiciel a extrapolé les valeurs des deux inconnues (a et b). Cette droite faisait correspondre au mieux les microvolts mesurés par le pneumotachographe au débit d’air inspiré ou expiré par le participant. Une fois le pneumotachographe calibré en micro voltage, nous avons pu modifier l’échelle sur le logiciel RemLogic en affichant le débit en l/min sur l’axe Y et le temps en sec sur l’axe X. En conclusion, le pneumotachographe rend un signal de différence de pression en microvolt à partir du flux respiratoire du patient, ces données sont converties en débit grâce à la formule et s’affichent sur le logiciel RemLogic.

3.6. Stimulation des nerfs phréniques

La stimulation magnétique cervicale supramaximale des nerfs phréniques a été réalisée avec un stimulateur Magstim 200 muni d’une bobine circulaire de 90 mm. Cette technique permet de déclencher une inspiration involontaire en stimulant les nerfs phréniques qui innervent le diaphragme. De plus, la stimulation dissocie l’activité des muscles inspiratoires et celle des muscles dilatateurs des voies aériennes supérieures. Ce faisant, elle reproduit artificiellement ce qu’il se passe durant le sommeil des patients apnéiques puisque pendant le sommeil la préactivation physiologique des muscles dilatateurs du pharynx à l’inspirium est en grande partie perdue.

3.7. Déroulement des tests au CIRS

Pour aider le patient à maintenir un avancement mandibulaire maximal pendant les tests, nous avons réalisé un moulage des dents en position d’avancement maximal à l’aide d’un un pistolet Applyfix® 4 Dispensing Guns de Kettenbach LP muni d’un embout qui permettait de mélanger le Futar®D fast. Après l’application de la pâte sur les dents inférieures du patient, celui-ci est invité à avancer au maximum sa mandibule et de serrer les dents durant une période de 30sec à 1 minute le temps que la pâte durcisse. De cette manière, nous avons créé une prothèse d’avancement mandibulaire max éphémère que le patient peut utiliser durant les différents tests.

La première partie des tests consistait à mesurer le volume sonore du ronflement du patient à l’aide d’un sonomètre digital UNI-T® UT-352. Pour ce test, le patient était allongé sur un lit, la tête sur un oreiller, il devait fermer complètement la bouche et effectuer un ronflement par le nez uniquement. Le sonomètre était approché vers la bouche du patient par l’examineur et le volume en décibels était entré dans la base de données. Ce test était réalisé 5 fois avec la mâchoire en position neutre, c’est-à-dire en position relâchée, 5 fois avec la prothèse d’avancement maximal réalisée avec le Futar®D fast et 5 fois avec la prothèse d’avancement mandibulaire bi-bloc utilisée par le patient pour soigner ses apnées nocturnes. Le patient était invité à faire des pauses entre deux enregistrements afin que celui-ci ne se fatigue pas trop.
Pour chaque série de 5 ronflements, l'investigateur a en plus attribué une note allant de 1 à 4 en fonction de sa perception subjective de la puissance du bruit du ronflement. Ainsi, une note de 4 indique un fort ronflement et une note de 1 une absence de ronflement.

La deuxième partie consistait à réaliser deux tests principaux : le sniff test et le snore test

Le sniff test est un test dynamique qui consiste à effectuer à partir de la capacité résiduelle fonctionnelle pulmonaire un effort de reniflement maximal, aussi intense et aussi rapide que possible (22,23). Cette technique reconnue et non invasive s'est avérée utile pour évaluer de façon simple la force des muscles inspiratoires.

Le sniff test va permettre de mesurer le flux d'air passant dans les VAS du patient lorsque celui-ci réalise ce test en décubitus latéral. Pour se faire, le patient était allongé sur un lit, la tête sur un oreiller, il devait porter le masque pour CPAP modifié décrit plus haut. Le patient était invité à fermer la bouche, et effectuer un reniflement très brusque (sniff) par le nez uniquement. De plus, le sniff test devait être réalisé à la fin d'une expiration normale. Ce test était à nouveau réalisé 5 fois en position neutre, 5 fois avec la prothèse éphémère d'avancement maximal réalisée avec le Futar®D fast et 5 fois avec la PAM du patient.

Le snore test permet de mesurer la puissance des ronflements du sujet. Le patient devait réaliser 5 ronflements de même puissance en portant le masque pour CPAP modifié qui enregistrerait des variations de pression. La méthode était identique à celle vue précédemment, c'est-à-dire que le sujet devait effectuer un ronflement par le nez en maintenant la bouche fermée. Ce test était réalisé avec la mâchoire dans les 3 positions décrites plus haut.

La troisième partie des tests consistait à reproduire le sniff test et le snore test en position assise de la même manière que précédemment. Le patient était installé dans un fauteuil du CIRS, nous lui demandons de garder la tête droite afin de ne pas compromettre les VAS. Ce test était réalisé avec la mandibule dans les 3 positions décrites plus haut.

Pour terminer, nous avons réalisé le test de stimulation électromagnétique des nerfs phréniques. La bobine du stimulateur était positionnée sur la nuque du participant, le trou central se situait au niveau de la 7ème vertèbre cervicale (C7) afin de stimuler les deux nerfs phréniques avec un seul stimulus. Un stimulus durait 0,1 seconde. Les sujets étaient toujours stimulés en position assise avec leur tête maintenue en position neutre. Les stimulations étaient délivrées à la fin d'une expiration. Nous demandons au participant de respirer calmement et nous détections la fin de l’expiration en palpitant son sternum. Ce test de stimulation était réalisé 5 fois en position neutre, 5 fois avec la prothèse d’avancement maximal réalisée avec le Futar®D fast et 5 fois avec la PAM du patient.
3.8. Questionnaire
Le patient recevait un questionnaire pour évaluer sa satisfaction concernant l'utilisation de sa prothèse d'avancement mandibulaire. Le patient était invité à évaluer sa satisfaction sur une échelle allant de 1 à 10 (10 étant la meilleure note) sur les points suivants :

- Qualité du sommeil nocturne
- Qualité de l'éveil
- Concentration la journée
- Ronflement
- Satisfaction générale

3.9. Lecture des données
3.9.1. Logiciel RemLogic
Nous avons utilisé la Version 3.3.1 (Build 2315) du logiciel RemLogic de Embla Systems pour analyser les résultats (24).

3.9.2. Méthode d'analyse avec RemLogic
3.9.2.1. Sniff test
Le logiciel RemLogic recueille les données sous forme de courbes de flux. Les courbes sont analysées par la fonction « peak-to-peak » qui permet de mesurer le flux d'air en L/min entre deux points sélectionnés par l'utilisateur. Lors d'un sniff test typique, le participant vide ses poumons d'air au maximum et inspire brusquement par le nez. Nous avons besoin de deux points pour mesurer le flux d'air : un au tout début de l'inspiration et l'autre au moment du flux maximal.
Le premier point est le « point d'inflexion », c'est-à-dire le point au cours duquel le participant se met à inspirer brutalement, plus le sniff test est bref plus ce point est précis sur la courbe. Le deuxième point est le débit maximal atteint, c'est-à-dire le point le plus haut de la courbe. La fonction « peak-to-peak » fait la différence entre ces deux points et permet ainsi de mesurer le flux d'air qui est entré dans les voies aériennes du participant.
3.9.2.2. Snore test
Le ronflement est mesuré sous forme de variation de pression. Nous utilisons une mesure spectrale pour caractériser le ronflement du sujet. Dans le cadre de cette étude, nous avons utilisé deux spectres différents : le spectre AR (spectre autorégressif) et le spectre FFT (spectre fast Fourier transform ou transformation rapide de Fournier) qui est une méthode efficace pour déterminer le spectre de n'importe quel signal. La transformation rapide de Fourier consiste à décomposer rapidement un signal périodique quelconque, grâce à un procédé mathématique, en une somme de signaux sinusoïdaux de différentes amplitudes et déphasages (25,26). Le but de ce test était d’observer objectivement une atténuation du ronflement lorsque le sujet avançait sa mâchoire en avant. Que ce soit avec le spectre AR ou FFT, le logiciel RemLogic affiche le spectre du ronflement sous la forme d’un graphique. Il s’agit de la puissance du ronflement en fonction de sa fréquence. Il détecte automatiquement la pression la plus élevée et affiche à quelle fréquence elle a lieu. Ainsi, pour chaque mesure du snore test nous obtenons la pression maximale du ronflement (en cmH₂O) et sa fréquence (en Hz).

3.9.2.3. Stimulation test
Le principe de la mesure du flux d’air lors d’une stimulation des nerfs phréniques était le même que celui du sniff test
3.10. Analyse des résultats

Les mesures récoltées ont été rassemblées dans une base de données comprenant les résultats des deux polysomnographies (une avec et l’autre sans OAM), les valeurs moyennes de tous les tests effectués 5x consécutivement, les mesures du sonomètre et les notes du questionnaire rempli par le participant.

3.10.1. Analyse des polysomnographies

Au cours de cette étude, nous nous sommes intéressés aux apnées et hypopnées obstructives du participant et à l’effet du port de l’OAM sur celles-ci. Grâce aux données des deux PSG, nous avons pu calculer un index d’apnées/hypopnées obstructives par la formule ci-dessous :

\[
\frac{HO \ nb + AO \ nb}{TST \ \ast \ 60}
\]

\(HO \ nb = \) Nombre d’hypopnées obstruées

\(AO \ nb = \) Nombre d’apnées obstruées

\(TST = \) Temps total de sommeil enregistré

Nous avons déterminé deux index d’apnées/hypopnées obstructives, l’un avec le port de la prothèse (poAHI avec « p » pour PAM) et l’autre sans prothèse (oAHI). À partir de ces deux valeurs, nous avons pu calculer le pourcentage de réponse au traitement par prothèse d’avancement mandibulaire grâce à la formule suivante :

\[
\frac{oAHI - poAHI}{oAHI \ \ast \ 100}
\]

\(oAHI = Index \ d’apnées/hypopnées \ obstruées \ sans \ PAM \)

\(poAHI = Index \ d’apnées/hypopnées \ obstruées \ avec \ PAM \)

À partir du pourcentage de réponse des participants, nous avons déterminé les « répondeurs au traitement », c’est-à-dire ceux dont le nombre d’apnées et hypopnées obstructives est suffisamment diminué avec le port de la PAM.

Pour que le participant soit classé dans le groupe des « répondeurs » il fallait que sa réponse soit ≥ 20%. Les sujets dont la réponse n’était pas suffisante ou dont le poAHI s’aggravait étaient classés dans le groupe « non répondeurs ».

3.10.2. Analyse des test effectués au CIRS

Nous avons calculé le pourcentage de réponse pour chaque élément mesuré durant la partie des tests au CIRS. La réponse était déterminée par comparaison avec la valeur référence, qui est la mâchoire en position neutre, en utilisant la formule ci-dessus. Par exemple, pour calculer le pourcentage de réponse du sniff test assis avec le port de l’OAM la formule était la suivante :

\[
\frac{ST \ A \ N - ST \ A \ OAM}{ST \ A \ N \ \ast \ 100}
\]

\(ST \ A \ N = Sniff \ test \ assis \ avec \ mâchoire \ en \ position \ neutre \)

\(ST \ A \ OAM = Sniff \ test \ assis \ avec \ OAM \)
4. **Résultats**

4.1. Groupes répondeurs et non-répondeurs

Le groupe des non-répondeurs comprend 8 sujets (7♂ et 1♀) âgés entre 40-60 ans qui présentent un BMI de 31.29 ± 3.84 kg/m², un tour de coup de 40.80 ± 2.76 cm. Le groupe des répondeurs comprend 6 sujets (4♂ et 2♀) de la même tranche d’âge avec un BMI de 29.53 ± 4.17 kg/m² et un tour de coup de 41.28 ± 2.08 cm.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-Répondeurs</th>
<th>Répondeurs</th>
<th>Différence</th>
<th>95% CI</th>
<th>P value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>n Moyenne DS</td>
<td>n Moyenne DS</td>
<td>n Moyenne DS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>8 50.2500 13.2638</td>
<td>6 51.0000 14.1280</td>
<td>0.7500</td>
<td>-15.2890 to 16.7890</td>
<td>0.9205</td>
</tr>
<tr>
<td>Taille (m)</td>
<td>8 1.6777 0.08</td>
<td>6 1.7333 0.0742</td>
<td>-0.4833</td>
<td>-2.4527 to 3.4193</td>
<td>0.7261</td>
</tr>
<tr>
<td>Poids (kg)</td>
<td>8 79.8250 20.2513</td>
<td>6 88.0833 7.5695</td>
<td>8.2583</td>
<td>-10.8284 to 27.3450</td>
<td>0.3644</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>8 33.3750 8.2925</td>
<td>6 29.5333 4.1673</td>
<td>-3.8417</td>
<td>-11.9386 to 4.2552</td>
<td>0.3216</td>
</tr>
<tr>
<td>Tour de coup (cm)</td>
<td>8 40.8000 2.7553</td>
<td>6 41.2833 2.0769</td>
<td>0.4833</td>
<td>-2.4527 to 3.4193</td>
<td>0.7261</td>
</tr>
<tr>
<td>Overbite (mm)</td>
<td>8 2.3125 1.6677</td>
<td>6 1.7500 1.1726</td>
<td>-0.5625</td>
<td>-2.3060 to 1.1810</td>
<td>0.4955</td>
</tr>
<tr>
<td>Overjet (mm)</td>
<td>8 1.7625 1.6017</td>
<td>6 3.0833 2.2454</td>
<td>1.3208</td>
<td>-0.9109 to 3.5526</td>
<td>0.2215</td>
</tr>
<tr>
<td>Avancement mandibulaire Max (mm)</td>
<td>8 4.9375 3.7075</td>
<td>6 6.1667 3.0441</td>
<td>1.2292</td>
<td>-2.8265 to 5.2848</td>
<td>0.5215</td>
</tr>
<tr>
<td>Avancement PAM (mm)</td>
<td>8 2.6875 1.0670</td>
<td>6 2.6667 1.9664</td>
<td>-0.02083</td>
<td>-1.7957 to 1.7541</td>
<td>0.9800</td>
</tr>
<tr>
<td>Mallampati (stade)</td>
<td>8 3 1</td>
<td>6 2</td>
<td>1</td>
<td>-1</td>
<td>-2.8559 to 0.9393</td>
</tr>
</tbody>
</table>

^a T-test

4.2. Questionnaire

Le questionnaire était basé sur 5 points centrés sur la symptomatologie résiduelle depuis le port de l’OAM. Les 5 points devaient être gradés de 1 à 10 selon la satisfaction individuelle. La moyenne générale de chacun des participant est de 31.21 ± 8.49 sur 50 points max.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-Répondeurs</th>
<th>Répondeurs</th>
<th>Différence</th>
<th>95% CI</th>
<th>P<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>n Moyenne DS</td>
<td>n Moyenne DS</td>
<td>n Moyenne DS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualité éveil</td>
<td>8 5.5000 1.8516</td>
<td>6 6.5000 2.0736</td>
<td>1.0000</td>
<td>-1.2913 to 3.2913</td>
<td>0.3604</td>
</tr>
<tr>
<td>Qualité sommeil</td>
<td>8 6.0000 1.4142</td>
<td>6 6.8333 1.6021</td>
<td>0.8333</td>
<td>-0.9263 to 2.5929</td>
<td>0.3225</td>
</tr>
<tr>
<td>Concentration diurne</td>
<td>8 6.3750 1.8468</td>
<td>6 6.3333 2.2509</td>
<td>-0.04167</td>
<td>-2.4245 to 2.3412</td>
<td>0.9702</td>
</tr>
<tr>
<td>Ronflement</td>
<td>8 5.6250 1.9955</td>
<td>6 6.6667 3.1411</td>
<td>1.0417</td>
<td>-1.9431 to 4.0264</td>
<td>0.4617</td>
</tr>
<tr>
<td>Satisfaction générale</td>
<td>8 6.1250 2.2321</td>
<td>6 7.0000 1.6733</td>
<td>0.8750</td>
<td>-1.4997 to 3.2497</td>
<td>0.4377</td>
</tr>
<tr>
<td>Total / 50</td>
<td>8 29.6250 7.1701</td>
<td>6 33.3333 10.2892</td>
<td>3.7083</td>
<td>-6.4209 to 13.8375</td>
<td>0.4406</td>
</tr>
</tbody>
</table>

^a T-test
4.3. Calculs statistiques
Tous les pourcentages de réponse ont été rassemblés dans une nouvelle base de données pour faciliter les calculs statistiques. Pour ce faire, nous avons utilisé le logiciel MedCalc® (Version 16.8.4) (27). Nous avons réalisé des comparaisons d’échantillons indépendants en effectuant un test de Student (T-test) et un Mann-Whitney test. Ceci afin de déterminer quels paramètres présentent une réponse significative en comparant les sujets du groupe « répondeurs » avec ceux du groupe « non répondeurs ».

4.3.1. Calculs statistiques des différents tests
Les trois variables suivantes sont ressorties statistiquement significatives (voir annexes) :

- Le taux de réponse concernant l’index d’apnée/hypopnée obstructive au cours des deux nuits passées avec la PSG (l’une avec et l’autre sans l’OAM du participant) (p=<0.0002 avec le test de Student et p=0.0007 avec le Mann-Whitney test). Cette variable est statistiquement significative en comparant le groupe des répondeurs et non-répondeurs car c’est justement sur l’amélioration de l’oAHI que nous avons défini les deux groupes.
- Le taux de réponse concernant l’amélioration du Snore Test en position couché, avec avancement mandibulaire max et analysé par le Spectre AR (p=<0.0105 avec le test de Student et p=0.0127 avec le Mann-Whitney test)
- Le taux de réponse concernant l’amélioration du Snore Test en position assis, avec avancement mandibulaire max et analysé par le Spectre FFT (p=<0.0310 avec le test de Student et p=0.0293 avec le Mann-Whitney test).
4.3.1.1.
T-test : Comparaison des différentes mesures durant les tests entre répondeurs et non répondeurs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-répondeurs</th>
<th>Répondeurs</th>
<th>95% CI</th>
<th>P a</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Réponse durant la PSG (amélioration oAHI avec PAM)</td>
<td>n</td>
<td>Moyenne</td>
<td>DS</td>
<td>n</td>
</tr>
<tr>
<td>Ronflement au sonomètre Avancement mandibulaire max % réponse</td>
<td>8</td>
<td>-15.4300</td>
<td>25.7656</td>
<td>6</td>
</tr>
<tr>
<td>Ronflement au sonomètre PAM % réponse</td>
<td>8</td>
<td>0.2975</td>
<td>1.6998</td>
<td>6</td>
</tr>
<tr>
<td>Note subjective ronflement position Avancement mandibulaire max % Réponse</td>
<td>8</td>
<td>28.1250</td>
<td>26.3294</td>
<td>6</td>
</tr>
<tr>
<td>Note subjective ronflement position PAM % Réponse</td>
<td>8</td>
<td>28.1237</td>
<td>19.3837</td>
<td>6</td>
</tr>
<tr>
<td>Sniff test Couché Avancement mandibulaire max % réponse</td>
<td>8</td>
<td>-2.4062</td>
<td>25.1063</td>
<td>6</td>
</tr>
<tr>
<td>Sniff test Couché PAM % réponse</td>
<td>8</td>
<td>-4.1950</td>
<td>21.6271</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Couché Avancement mandibulaire max (Spectre AR) % réponse</td>
<td>8</td>
<td>37.6488</td>
<td>33.9942</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Couché Avancement mandibulaire max (Spectre FFT) % réponse</td>
<td>8</td>
<td>15.0475</td>
<td>49.0789</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Couché PAM (Spectre AR) % réponse</td>
<td>8</td>
<td>-112.1100</td>
<td>227.6917</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Couché PAM (Spectre FFT) % réponse</td>
<td>8</td>
<td>-22.7725</td>
<td>40.6371</td>
<td>6</td>
</tr>
<tr>
<td>Sniff test Assis Avancement mandibulaire max % réponse</td>
<td>8</td>
<td>-3.7212</td>
<td>6.1820</td>
<td>6</td>
</tr>
<tr>
<td>Sniff test Assis PAM % réponse</td>
<td>8</td>
<td>-8.9038</td>
<td>13.7638</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Assis Avancement mandibulaire max (Spectre AR) % réponse</td>
<td>8</td>
<td>33.2238</td>
<td>56.0233</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Assis Avancement mandibulaire max (Spectre FFT) % réponse</td>
<td>8</td>
<td>18.4750</td>
<td>36.6672</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Assis PAM (Spectre AR) % réponse</td>
<td>8</td>
<td>-103.3363</td>
<td>341.5346</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Assis PAM (Spectre FFT) % réponse</td>
<td>8</td>
<td>-22.9825</td>
<td>114.5475</td>
<td>6</td>
</tr>
<tr>
<td>Stim test Avancement mandibulaire max % réponse</td>
<td>7</td>
<td>5.4814</td>
<td>25.5500</td>
<td>5</td>
</tr>
<tr>
<td>Stim test PAM % réponse</td>
<td>7</td>
<td>-3.9657</td>
<td>14.3761</td>
<td>5</td>
</tr>
</tbody>
</table>

* T-test
4.3.1.2. Mann Whitney test : Comparaison des différentes mesures durant les tests entre répondeurs et non répondeurs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-Répondeurs</th>
<th>Répondeurs</th>
<th>P *</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Réponse durant la PSG (amélioration oAHI avec PAM)</td>
<td>n M édian</td>
<td>Average Rank</td>
<td>n M édian</td>
</tr>
<tr>
<td>Réponse durant la PSG (amélioration oAHI avec PAM)</td>
<td>8 -11.7800</td>
<td>4.5000</td>
<td>6</td>
</tr>
<tr>
<td>Ronflement au sonomètre Avancement mandibulaire max % Réponse</td>
<td>8 -0.1050</td>
<td>6.7500</td>
<td>6</td>
</tr>
<tr>
<td>Note subjective Ronflement position Avancement mandibulaire max % Réponse</td>
<td>8 29.1650</td>
<td>7.8125</td>
<td>6</td>
</tr>
<tr>
<td>Note subjective Ronflement position PAM % Réponse</td>
<td>8 33.3300</td>
<td>7.5000</td>
<td>6</td>
</tr>
<tr>
<td>Sniff test Couché Avancement mandibulaire max % Réponse</td>
<td>8 -2.3550</td>
<td>7.1250</td>
<td>6</td>
</tr>
<tr>
<td>Sniff test Couché PAM % Réponse</td>
<td>8 -3.1500</td>
<td>7.5000</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Couché Avancement mandibulaire max (Spectre AR) % Réponse</td>
<td>8 29.6400</td>
<td>9.8750</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Couché Avancement mandibulaire max (Spectre FFT) % Réponse</td>
<td>8 15.9900</td>
<td>9.0000</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Couché PAM (Spectre AR) % Réponse</td>
<td>8 -21.3300</td>
<td>8.6250</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Couché PAM (Spectre FFT) % Réponse</td>
<td>8 -23.0600</td>
<td>8.0000</td>
<td>6</td>
</tr>
<tr>
<td>Sniff test Assis PAM % Réponse</td>
<td>8 -2.7450</td>
<td>6.3750</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Assis Avancement mandibulaire max (Spectre AR) % Réponse</td>
<td>8 -2.5200</td>
<td>6.6250</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Assis Avancement mandibulaire max (Spectre FFT) % Réponse</td>
<td>8 42.4650</td>
<td>9.1250</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Assis PAM (Spectre AR) % Réponse</td>
<td>8 28.9200</td>
<td>9.6250</td>
<td>6</td>
</tr>
<tr>
<td>Snore Test Assis PAM (Spectre FFT) % Réponse</td>
<td>8 11.3750</td>
<td>8.6250</td>
<td>6</td>
</tr>
<tr>
<td>Stim test Avancement mandibulaire max % Réponse</td>
<td>8 3.4200</td>
<td>9.1250</td>
<td>6</td>
</tr>
<tr>
<td>Stim test PAM % Réponse</td>
<td>7 -1.2500</td>
<td>7.8571</td>
<td>5</td>
</tr>
</tbody>
</table>

* Mann-Whitney test
Lors du snore test nous avons aussi pu mesurer la fréquence à laquelle l’intensité des ronflements des participants était la plus intense.

4.3.2. Calculs statistiques des polysomnographies

Parmi les nombreuses données enregistrées par la PSG nous avons sélectionné quelques variables avec lesquelles nous avons pu comparer les deux groupes de patients. Les variables retenues étaient : le pourcentage de sommeil de stade 1, 2, 3 et REM, le temps total de sommeil sur le dos, l'efficacité du sommeil, l'index de réveils totaux, le temps d'éveil après le premier endormissement, l'index de mouvement périodique des jambes durant le sommeil, l'index d’apnées obstructives, centrale, mixtes et d'hypopnée. Pour chacune de ces variables et pour chaque participant, nous avons calculé la différence entre la PSG avec et sans PAM (en soustrayant les valeurs de la PSG sans PAM par les valeurs de la PSG avec PAM). Nous avons ensuite utilisé MedCalc pour calculer la p value des différences en séparant les participants dans les deux groupes répondeurs et non-répondeurs.

Les trois variables suivantes sont ressorties statistiquement significatives en comparant les différences des deux PSG entre le groupes des répondeurs et non-répondeur :

- Le pourcentage de sommeil de stade 1 (p=<0.0352 avec le test de Student et p=0.0426 avec le Mann-Whitney test) dont la moyenne des différences est négative chez les non-répondeurs (-1.7438 ± 3.8215) et positive chez les répondeurs (2.8174 ± 4.5704). Ceci indique que, avec le port de la PAM, le pourcentage de sommeil de stade 1 augmente chez les non-répondeurs alors qu’il diminue chez les répondeurs

- L’index d’apnée obstructives (p=<0.0105 avec le test de Student et p=0.0080 avec le Mann-Whitney test) et l’index d’hypopnée (p=<0.0040 avec le test de Student et p=0.0080 avec le Mann-Whitney test). Dans les deux cas, La moyenne des différences est négative chez les non-répondeurs (Respectivement -1.7150 ± 4.2755 et -2.6075 ± 4.6913) et positive chez les répondeurs (Respectivement 4.9767 ± 3.8272 et 11.9550 ± 10.3761). Ceci indique que le port de l’OAM diminue de manière significative l’index d’apnée obstructive et l’index d’hypopnée chez les répondeurs par rapport aux non-répondeurs
4.3.2.1. Données PSG avec et sans PAM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-répondeurs (moy. ± DS)</th>
<th>Répondeurs (moy. ± DS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SANS PAM</td>
<td>AVEC PAM</td>
</tr>
<tr>
<td>Sommeil de stade 1</td>
<td>8.94 ± 5.74</td>
<td>10.68 ± 6.74</td>
</tr>
<tr>
<td>Sommeil de stade 2</td>
<td>63.87 ± 7.84</td>
<td>61.82 ± 8.68</td>
</tr>
<tr>
<td>Sommeil de stade 3</td>
<td>13.55 ± 7.85</td>
<td>13.11 ± 8.77</td>
</tr>
<tr>
<td>REM</td>
<td>13.64 ± 7.31</td>
<td>14.36 ± 3.57</td>
</tr>
<tr>
<td>Temps total de sommeil</td>
<td>417.73 ± 42.97</td>
<td>378.74 ± 31.69</td>
</tr>
<tr>
<td>Temps total de sommeil sur le dos</td>
<td>62.44 ± 45.54</td>
<td>92.79 ± 97.98</td>
</tr>
<tr>
<td>Efficacité du sommeil</td>
<td>86.66 ± 9.54</td>
<td>88.54 ± 5.74</td>
</tr>
<tr>
<td>Index de réveils total</td>
<td>37.97 ± 15.84</td>
<td>35.6 ± 10.39</td>
</tr>
<tr>
<td>Temps d’éveil après le premier endormissement (WASO)</td>
<td>67.54 ± 56.61</td>
<td>49.98 ± 29.12</td>
</tr>
<tr>
<td>Index de mouvement périodique des jambes durant le sommeil (PLMSI)</td>
<td>17.85 ± 15.8</td>
<td>15.72 ± 20.57</td>
</tr>
<tr>
<td>Index d’apnées centrale (CAI)</td>
<td>1.88 ± 2.65</td>
<td>1.66 ± 1.48</td>
</tr>
<tr>
<td>Index d’apnées obstructives (OAI)</td>
<td>10.7 ± 10.76</td>
<td>12.42 ± 11.63</td>
</tr>
<tr>
<td>Index d’apnées mixtes (MAI)</td>
<td>3.03 ± 2.63</td>
<td>3.22 ± 3.03</td>
</tr>
<tr>
<td>Index d’hypopnée (HI)</td>
<td>22.69 ± 14.36</td>
<td>25.3 ± 15.97</td>
</tr>
</tbody>
</table>

4.3.2.2. T test : Comparaison des différences entre répondeurs et non-répondeurs (données PSG sans PAM – données PSG avec PAM)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-répondeurs</th>
<th>Répondeurs</th>
<th>Différence</th>
<th>95% CI</th>
<th>P a</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Moyenne</td>
<td>DS</td>
<td>n</td>
<td>Moyenne</td>
<td>DS</td>
</tr>
<tr>
<td>S1%</td>
<td>8</td>
<td>-1.7438</td>
<td>3.8215</td>
<td>6</td>
<td>2.8267</td>
</tr>
<tr>
<td>S2%</td>
<td>8</td>
<td>2.0475</td>
<td>3.8871</td>
<td>6</td>
<td>0.02833</td>
</tr>
<tr>
<td>SWS%</td>
<td>8</td>
<td>0.4400</td>
<td>4.4919</td>
<td>6</td>
<td>-2.8033</td>
</tr>
<tr>
<td>REM%</td>
<td>8</td>
<td>-0.7425</td>
<td>5.3260</td>
<td>6</td>
<td>-0.05167</td>
</tr>
<tr>
<td>TST</td>
<td>8</td>
<td>38.9875</td>
<td>52.9405</td>
<td>6</td>
<td>7.9167</td>
</tr>
<tr>
<td>TST supine</td>
<td>8</td>
<td>-30.3500</td>
<td>91.4064</td>
<td>6</td>
<td>22.0667</td>
</tr>
<tr>
<td>Sleep Efficiency</td>
<td>8</td>
<td>-1.8800</td>
<td>7.7290</td>
<td>6</td>
<td>2.1500</td>
</tr>
<tr>
<td>Total arousal index</td>
<td>8</td>
<td>2.3750</td>
<td>10.6782</td>
<td>6</td>
<td>8.1900</td>
</tr>
<tr>
<td>WASO</td>
<td>8</td>
<td>17.5625</td>
<td>40.9854</td>
<td>6</td>
<td>-12.7500</td>
</tr>
<tr>
<td>PLMSI</td>
<td>8</td>
<td>2.1250</td>
<td>11.9777</td>
<td>6</td>
<td>-8.6317</td>
</tr>
<tr>
<td>CAI</td>
<td>8</td>
<td>0.2138</td>
<td>2.1280</td>
<td>6</td>
<td>1.0617</td>
</tr>
<tr>
<td>OAI</td>
<td>8</td>
<td>-1.7150</td>
<td>4.2755</td>
<td>6</td>
<td>4.9767</td>
</tr>
<tr>
<td>MAI</td>
<td>8</td>
<td>-0.1875</td>
<td>1.7693</td>
<td>6</td>
<td>0.7650</td>
</tr>
<tr>
<td>HI</td>
<td>8</td>
<td>-2.6075</td>
<td>4.6913</td>
<td>6</td>
<td>11.9550</td>
</tr>
</tbody>
</table>

* a T-test
4.3.2.3. Mann Whitney test : Comparaison des différences entre répondeurs et non répondeurs (données PSG sans PAM – données PSG avec PAM)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-Répondeurs</th>
<th>Répondeurs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Médian</td>
<td>Average Rank</td>
<td>n</td>
</tr>
<tr>
<td>S1%</td>
<td>8</td>
<td>-1.8900</td>
<td>5.5000</td>
<td>6</td>
</tr>
<tr>
<td>S2%</td>
<td>8</td>
<td>1.9600</td>
<td>7.6250</td>
<td>6</td>
</tr>
<tr>
<td>SWS%</td>
<td>8</td>
<td>1.2500</td>
<td>8.3750</td>
<td>6</td>
</tr>
<tr>
<td>REM%</td>
<td>8</td>
<td>0.4850</td>
<td>7.5000</td>
<td>6</td>
</tr>
<tr>
<td>TST</td>
<td>8</td>
<td>41.7500</td>
<td>8.8125</td>
<td>6</td>
</tr>
<tr>
<td>TST supine</td>
<td>8</td>
<td>-24.0000</td>
<td>6.6250</td>
<td>6</td>
</tr>
<tr>
<td>Sleep Efficiency</td>
<td>8</td>
<td>0.3250</td>
<td>7.0000</td>
<td>6</td>
</tr>
<tr>
<td>Total arousal index</td>
<td>8</td>
<td>0.3350</td>
<td>6.8750</td>
<td>6</td>
</tr>
<tr>
<td>WASO</td>
<td>8</td>
<td>3.7500</td>
<td>8.2500</td>
<td>6</td>
</tr>
<tr>
<td>PLMSI</td>
<td>8</td>
<td>1.6550</td>
<td>9.2500</td>
<td>6</td>
</tr>
<tr>
<td>CAI</td>
<td>8</td>
<td>-0.2150</td>
<td>6.6250</td>
<td>6</td>
</tr>
<tr>
<td>OAI</td>
<td>8</td>
<td>-0.8850</td>
<td>5.0000</td>
<td>6</td>
</tr>
<tr>
<td>MAI</td>
<td>8</td>
<td>-0.2350</td>
<td>6.1875</td>
<td>6</td>
</tr>
<tr>
<td>HI</td>
<td>8</td>
<td>-3.2550</td>
<td>5.0000</td>
<td>6</td>
</tr>
</tbody>
</table>

a Mann-Whitney test
5. Discussion

Le but de cette étude était d’identifier des tests diurnes capables d’identifier les sujets répondeurs au traitement de leurs apnées par OAM dans le but de pouvoir à l’avenir sélectionner les patients susceptibles de répondre à ce traitement. Malheureusement, aucun de ces tests n’a montré de différence significative entre les patients qui améliorent leurs apnées et hypopnées obstructives avec leur OAM et ceux qui ne montrent aucun bénéfice.

Une des principales difficultés rencontrées lors de cette étude est le faible taux d’amélioration des apnées/hypopnées du sommeil avec les OAM, ce qui fut une grande surprise. Sur les 14 sujets étudiés nous n’avons trouvé que 6 répondeurs malgré la définition très « souple » utilisée (amélioration de 20% des événements obstructifs). Nous n’avons en plus observé qu’une faible diminution de l’oAHI (en moyenne de 50%) chez les 6 sujets répondeurs et même une aggravation de 15% des événements respiratoires obstructifs chez les 8 sujets non-répondeurs. Nous nous sommes aussi aperçu qu’un grand nombre d’entre eux n’utilisaient plus leur OAM. Les principales raisons évoquées étaient que, selon eux, leur prothèse n’était plus adaptée à leur mâchoire ou qu’elle s’était abîmée avec le temps. Cependant, très peu de ces patients ont jugé important de confier ces problèmes rencontrés à leur médecin et ceux qui l’ont fait ont débuté ou repris un traitement avec la CPAP au vu de l’absence d’amélioration de leur symptomatologie.

Ces observations suggèrent que la prise en charge des patients traités par OAM devrait être améliorée avec un suivi systématique, un avancement progressif de la mandibule jusqu’au maximum de la tolérance du patient, suivi d’un contrôle polygraphique. Si l’amélioration objective des apnées/hypopnées n’est pas satisfaisant, ou s’ils ne tolèrent pas leur OAM, un autre traitement devrait leur être proposé.

5.1. Mesure du ronflement par sonomètre

Le but de ce test très simple était d’observer une différence au niveau des ronflements du participant lorsque ce dernier relâche ou avance au maximum sa mâchoire. Malheureusement, les enregistrements n’ont pas permis de différencier de manière significative le volume des ronflements. Ceci peut s’expliquer par le fait que le sonomètre ne peut pas faire la différence entre le ronflement à proprement parlé et le « bruit sifflant » de la respiration par le nez.

5.2. Questionnaire

En règle générale, le questionnaire montre que l’avis des patients sur leur OAM n’est pas différent entre les répondeurs et les non répondeurs. En effet, les patients
classés dans le groupe « répondeurs » qui présentent une amélioration de leur oAHI avec une réponse de ≥20% n'ont donné en moyenne que des notes légèrement supérieures (33.33 ± 10.29) par rapport aux patients du groupe « non répondeurs (29.63 ± 7.17) mais cette différence était loin d'être significative (p=0.44). Deux participants, classés dans le groupe « non répondeur » car leur oAHI s'aggravait avec le port de l'OAM, ont même attribué beaucoup de points au questionnaire car ils étaient « subjectivement » satisfaits de ce traitement. Ceci implique que l'impression des patients par rapport à l'efficacité de leur OAM n'est pas toujours complètement fiable.

5.3. Tests prédictifs d'efficacité

Le sniff test en position assise ou couchée n'a pas montré de variation du flux d'air significative en fonction des 3 différentes positions de la mâchoire du participant.

Les résultats de cette étude montrent que le test de stimulation électromagnétique des nerfs phréniques n'a pas été capable de prédire l'efficacité des orthèses d'avancement dans le traitement du SAOS.

Cependant le snore test, c'est-à-dire la mesure des variations de pressions lorsque le patient effectue un ronflement, a révélé des résultats intéressants.

Une des variables statistiquement significatives après comparaison des deux groupes est le taux de réponse concernant l'amélioration du Snore Test en position couchée, avec avancement mandibulaire max et analysé par le Spectre AR. Les non-répondeurs ont une moyenne de 37.6 ± 33.9 % de réponse et -61.7 ± 85.1 % pour les répondeurs. La moyenne positive chez les non-répondeurs indique que la puissance du ronflement (mesuré en cmH₂O) diminue si on passe d'une mâchoire en position neutre à un avancement mandibulaire max. C'est le contraire chez les répondeurs qui ont une moyenne négative c'est-à-dire que la puissance du ronflement augmente.

La deuxième variable statistiquement significative, à savoir le taux de réponse concernant l'amélioration du Snore Test en position assise, avec avancement mandibulaire max et analysé par le Spectre FFT nous amène à la même constatation. En effet, le taux de réponse moyen des non-répondeurs est 18.4 ± 36.6 % et -43.8 ± 58.8 % pour les répondeurs.

Cette constatation étonnante nous amène à la conclusion que les patients apnéiques dont la puissance des ronflements augmente lorsqu'ils projettent leur mâchoire en avant peuvent tout de même être des bons répondeurs au traitement par orthèse d'avancement mandibulaire. Ce résultat contre-intuitif qui va clairement à l'encontre de notre hypothèse initiale pourrait éventuellement s'expliquer par une « libération » du voile du palais lors de l'avancement mandibulaire produisant des vibrations aériennes de plus fortes amplitudes même si leur son n'est pas plus important selon les mesures effectuées.
5.4. Polysomnographies
Les polysomnographies effectuées avec et sans OAM ont montré que les sujets répondeurs avaient légèrement moins de stade de sommeil N1 (sommeil léger) ce qui est logique puisque les apnées du sommeil ont tendance à maintenir le patient dans les stades superficiels du sommeil et le traitement des apnées à favoriser un passage plus rapide vers les stades profonds du sommeil (N2-N3).

5.5. Limites de l'étude
La principale limitation rencontrée au cours de cette étude a été le nombre de participants. Grâce aux appels téléphoniques, nous avons pu contacter des personnes qui bénéficiaient d’une OAM depuis déjà plusieurs années.

La précision des mesures a probablement été affectée par le participant lui-même. En effet, le caractère répétitif des divers tests a pu fatiguer le sujet malgré les précautions prises lui demandant de faire des pauses entre 2 sniff ou snore test. En outre, il était très difficile pour le sujet de réaliser 5x fois un sniff test ou un snore test de manière identique, c’est-à-dire avec la même force. La conséquence de cette constatation est qu’il existe de grandes variations de mesure au sein du même sujet.

Ensuite lors de la phase de stimulation des nerfs phrénique, les réactions des sujets ont été très variables. La majorité des sujets n’avait aucun problème pour se relâcher et respirer calmement durant cette étape. Pour eux, les chocs délivrés ne provoquaient qu’une légère gêne. Cependant, certains autres sujets ne supportaient pas du tout la stimulation et se crispaient durant toute la procédure. Ainsi, il est possible que cet état ait diminué l’efficacité de la stimulation phrénique. Pour terminer, certains ont tout simplement refusé de participer à cette partie du test.
6. Conclusion

Cette étude n’aura pas pu démontrer de test fiable permettant de prédire l’efficacité d’une orthèse d’avancement mandibulaire dans le traitement du syndrome d’apnée du sommeil.

Cependant, nous avons pu révéler certains faits très importants au cours de ce travail :

- Les patients qui bénéficient d’une OAM dans le cadre d’un SAOS nécessiteraient un suivi et un contrôle plus approfondi. En effet, la plupart des patients qui reçoivent une OAM sont souvent « perdus » et ne bénéficient pas systématiquement d’un contrôle pour confirmer l’efficacité de l’orthèse. Un contrôle sous forme d’une polygraphie ou d’une polysomnographie serait cependant indispensable afin d’identifier rapidement les patients qui ne présentent aucune amélioration de leurs apnées/hypopnées voire qui s’aggravent avec le port de l’OAM. Ce faisant, nous pourrions adapter l’orthèse de manière individuelle afin qu’elle convienne mieux au patient.

- Les orthèses d’avancement mandibulaire restent un traitement de deuxième ligne dans le traitement des apnées du sommeil. Plusieurs études ont confirmé leur efficacité dans le traitement du SAOS de degré moyen à modéré (28–30). Les patients qui ne supportent pas la CPAP peuvent aussi bénéficier de ce traitement mais sans garantie de l’efficacité. Ainsi, chez ce type de patients, il pourrait être utile de confirmer objectivement l’effet thérapeutique ou non de l’orthèse après l’avoir confectionnée par un examen du sommeil (polysomnographie).

Nous espérons que ce travail servira d’ébauche à de nouvelles études recherchant d’autres prédicateurs de l’efficacité d’une OAM dans le traitement du SAOS. On pourrait par exemple émettre l’hypothèse que les orthèses éphémères (avec le Futar®D) que nous avons utilisées lors des tests diurnes pour maintenir la mandibule en position avancée pourraient être utilisées pour une nuit « test » sous polysomnographie et prédire ainsi la tolérance et l’efficacité de l’OAM chez ces patients.
7. Remerciements

- Dr Raphaël Heinzer pour m’avoir soutenu tout au long de cette étude
- Nadia Tobback, physiothérapeute et technicienne en polysomnographie, qui m’a beaucoup aidé durant les tests et pour la mise en place des PSG sur les participants
- Gianpaolo Lecciso, technicien chef au CIRS, qui s’est chargé de tout l’aspect technique de l’étude (calibration et réglage du pneumotachographe, connexion avec l’ordinateur, etc.)
- Dr Martin Broome et Anthony Byrde, technicien-dentiste, qui m’ont fourni la liste des patients utilisant une orthèse d’avancement mandibulaire dans le cadre d’un SAOS.
- Les 15 participants qui ont accepté de donner un peu de leur temps à la réalisation de cette étude.
8. Bibliographie

