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ABSTRACT The neutral rate of allelic substitution is analyzed for a class-structured population subject to a stationary stochastic
demographic process. The substitution rate is shown to be generally equal to the effective mutation rate, and under overlapping
generations it can be expressed as the effective mutation rate in newborns when measured in units of average generation time. With
uniform mutation rate across classes the substitution rate reduces to the mutation rate.

CONSIDER a haploid population of constant size N with-
out overlapping generations, where neutral mutant al-

leles are substituted sequentially at a given locus through
the constant input of mutations at rate m per gene. Then, the
rate k of allelic substitution is equal to the mutation rate;
that is, k = m (Kimura 1971). Does this simple result extend
to more realistic demographic scenarios? In a population
with overlapping generations where individuals reproduce
at discrete time points and mutations arise only in newborns
(the standard assumption), the substitution rate is k= m0/T,
where m0 is the rate at which a newborn accumulates muta-
tions at the gene locus under focus and T is the generation
time (Pollak 1982, equation 11). This is the average age of
the parent of a randomly sampled individual among the N0

surviving newborns. When measured in units of T time
steps, the substitution rate thus depends only on m0 (Pollak
1982, equation 15; Charlesworth 1994, p. 94).

There is, however, an even simpler interpretation of k in
terms of mutation rate under overlapping generations. This
can be reached by observing that the total population size N
necessarily satisfies N = TN0, since the generation time is
the number of units of time the population takes to produce
N newborns when only N0 are produced per unit time (an
observation implied by Felsenstein 1971, equation 1). With
this, k ¼ m; where m ¼ m0N0=N is the mutation rate at a ran-
domly sampled gene from the population, since mutations

arise only in newborns and they form a fraction N0/N of the
population.

How do these two different interpretations of k in terms
of mutation rate generalize to stochastic demography, where
population sizes can fluctuate over time? This article devel-
ops a full stochastic demographic model of neutral evolution
in a class-structured population (e.g., by sex, age, stage).
The model shows that the substitution rate is precisely the
effective mutation rate me, which is the rate at which a gene
lineage accumulates mutations (Rousset 2004, p. 158), and
can be different from the mutation rate at a randomly sam-
pled gene from a randomly sampled individual in the
population. In an age-structured population the effective
mutation rate is shown to reduce to the effective mutation
rate in newborns when measured in units of average gener-
ation time, which can itself be expressed in terms of class
reproductive values. The use of such reproductive values
turns out to be central in structuring the connections be-
tween substitution rate, average mutation rate, effective mu-
tation rate, and generation time.

Model

Biological assumptions

Demography:We now consider a population structured into
a finite number of classes and evolving in discrete time. This
class structure could, for instance, result from the presence
of males and females, of age classes, of groups of individuals
located at different positions in the habitat, or a combination
of these or other factors. The number of individuals in class
i = 0, 1, 2, . . . is written Ni and the vector n [ (N0, N1,
N2, . . .) denotes a state of the population, which gives the
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realized number of individuals in each class i at a census
point (see Table 1 for a list of symbols).

The change in the demographic state of the population is
assumed to follow a discrete-time stochastic process and we
denote by Pr(n9|n) the transition probability per unit time
that a population in state n will be in state n9 in the next
time step. This defines a homogeneous Markov chain, which
may be driven by both endogenous and exogenous factors.
This demographic process is further assumed to have a finite
state space and to be ergodic (irreducible and aperiodic),
conditional on the nonextinction of the population. In force
of these assumptions, the distribution of the process will
approach the stationary probability Pr(n) of being in state
n (Karlin and Taylor 1975; Grinstead and Snell 1997),
which determines the stationary demographic regime.

Genetics: Neutral evolution will be investigated at a given
locus in the backdrop of the stationary demography.
Neutrality means that the number of successful “offspring”
(number of descendants over one time step) of all individ-
uals in the same class j are an exchangeable random vari-
able, and this holds for each class. This entails that the
forward transition probability Pr(n9|n) and the probability
aij(n9, n) that a gene randomly sampled in a class-i individ-
ual in population state n9 descends from a class-j individual
and from population state n in the previous time step do not
depend on the genetic state (allele frequency distribution)
of the population ðPn

P
jaijðn9;nÞ ¼ 1Þ:

Individuals in different classes, like males and females,
may have different ploidies and gi will denote the ploidy of
an individual of class i at the locus of interest. Mutation may
also differ across classes and mij will denote the mutation
rate at a gene transmitted by a class-j individual to a class-i
individual. This allows us to evaluate the rate at which

a randomly sampled gene in a randomly sampled individual
of class i in population state n9 accumulates mutations,
which is

mi
�
n9
� ¼ X

n

X
j

aij
�
n9;n

�
mij: (1)

This generalizes to any class and to stochastic demography,
the standard expression for the rate at which a randomly
sampled gene in a newborn accumulates mutations in
models of overlapping generations with constant size
(Pollak 1982, equations 1 and 2, Charlesworth 1994, equa-
tion 2.49b).

From Equation 1, we can define the following average
mutation rate,

m ¼ 1
N

X
n

X
j
mjðnÞgj NjPrðnÞ; (2)

which gives the ratio of the average number of mutations
produced in the population to the average number
N ¼ P

n
P

j gj NjPrðnÞ of genes in the population (average
size of the gene pool). The mutation rate m gives the rate
at which a randomly sampled gene in a randomly sampled
individual accumulates mutations, since over replicates of
the evolutionary process the probability of sampling an in-
dividual in demographic state n is NðnÞPrðnÞ=N; where
NðnÞ ¼ P

jgjNj; in which case the probability this is
a class-j individual is gj Nj/N(n). Hence, the probability of
sampling a mutant individual of class j in state n is propor-
tional to the size of its class and the probability of occur-
rence of that state.

The aim of this note is to express the neutral substitution
rate k in terms of a mutation rate averaged over the class

Table 1 List of symbols

Symbol Definition

k Substitution rate.
Ni No. class i individuals.
N Average no. gene copies in the population.
Pr(n) Stationary probability that the population is in state n.
Pr(n9|n) Forward transition probability from state n to state n9.
gi Ploidy of a class i individual.
tij Probability that a gene randomly sampled in a class-i individual was transmitted by a class-j individual.
mij Mutation rate at a gene transmitted by a class-j individual to a class-i individual.
m Average mutation rate in the stationary demographic regime.
me Effective mutation rate.
me,0 Effective mutation rate in newborns.
T Average generation time (or mean age of the parents of a newborn).
T(n) Average generation time in population state n.
wij(n9, n) Expected no. class-i individuals in a population in state n9 descending from a single class-j individual in population state n.
fij(n9, n) Probability that a gene sampled in a class-i individual when the population is in state n9 is a copy of a gene of a class-j individual given the

population was in state n in the parental generation.
aij(n9, n) Probability that a gene sampled in a class-i individual when the population is in state n9 is a copy of a gene of a class-j individual and the

population was in state n in the parental generation.
pi(n) Fixation probability of a single mutant residing in a class-i individual.
p Average fixation probability of a single mutant.
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specific mutation rates, the mj(n)’s, and we will see that in
general this quantity is not equal to m:

Substitution rate

Forward process: The substitution rate k is the expected
number of mutations that will fix in the population per unit
time (Kimura 1971; Pollak 1982). Under the above assump-
tions, this can be written as

k ¼ Nmp; (3)

where

p ¼
X
n

X
j
pjðnÞ

gjNjmjðnÞPrðnÞP
s
P

hghNhmhðsÞPrðsÞ
(4)

is the average fixation probability of a single mutant allele,
which depends on the fixation probability pj(n) of a mutant
arising as a single copy in a class-j individual in population
state n and on the probability that the mutation arises in this
state (see Appendix A for a proof). This latter quantity is
given in Equation 4 as the ratio of the number of mutations
arising in class-j individuals in population state n to the total
number of mutations arising per unit time.

Three points are now made about Equation 3. First, this is
exactly of the same form as the classical expression for the
substitution rate (Kimura 1971, equation 4.2), but where all
quantities are averages. Second, if the underlying mutation
model at the locus of interest is the infinite-allele model
(Kimura and Crow 1964; Kimura 1971), then the average
mutation rate m must be very small so that novel mutations
occur in homoallelic populations; otherwise the population
will hardly ever fixate for an allele. By contrast, under the
infinite-site mutation model (Kimura 1969, 1971), free re-
combination among sites and a very small mutation rate per
site entail that mutants arise at homoallelic sites, so that
several mutations can segregate simultaneously and inde-
pendently in the population. Then, Equation 3 gives the
number of mutants fixing at different sites per unit time
and this is the classical situation envisioned for the substi-
tution process (Kimura 1971, p. 183). Third, k does gener-
ally not reduce to m; since p depends on the mutation
distribution and simplifies to 1=N only under special cases.
For instance, this is the case when the mutation rate is the
same in all classes mij = m for all i and j, which entails that
mj(n) = m. Then p ¼ 1=N (Lehmann 2012, appendix A),
and the substitution rate becomes equal to the mutation rate

k ¼ m: (5)

Backward process: To further simplify the expression for k,
we now express the fixation probability pi(n) in terms of
class reproductive values (e.g., Taylor 1990; Rousset 2004),
which allows us to look at neutral evolution in terms of
a backward genealogical process, much like coalescent the-
ory does for effective population size (e.g., Wakeley 2008).

Imagine we trace backward in time the ancestral lineage
of a randomly sampled gene in the population in the
present, at time h = 0. Then, the probability gj, h(n) that
this lineage resides in an individual of class j and in popu-
lation state n at time h in the past satisfies the recursion

gj;hþ1ðnÞ ¼
X
n9

X
i

gi;h
�
n9
�
aij
�
n9;n

�
: (6)

Assuming that every gene position (class of individual and
population state) can be reached in the long run, the
circulation of the ancestral gene lineage among the classes
of individuals and population states determined by the
aij(n9, n) coefficients defines an ergodic Markov chain that
will eventually reach a stationary distribution [given by the
left unit eigenvector of the ergodic Markov matrix with transi-
tion probabilities aij(n9, n) (Karlin and Taylor 1975; Grinstead
and Snell 1997)].

The probability that a gene lineage resides in class i and
in population state n under the stationary distribution is
denoted gi(n), which is the reproductive value of class
(i, n) and is equal to ai(n)Pr(n), where ai(n) is the proba-
bility that the ancestral lineage of a randomly sampled gene
in the population was in class i, given population state n in
the distant past [the reproductive value of class i (Rousset
2004, p. 181)]. With this, we can write the fixation proba-
bility of a single mutant allele entering the population in
state n as

piðnÞ ¼ aiðnÞ
giNi

; (7)

where 1/[giNi] is the frequency of a single mutant in class i
(see Appendix B for a proof).

Substituting Equation 4 and Equation 7 into Equation 3
and rearranging produces

k ¼
X
n

X
i

giðnÞmiðnÞ; (8)

which is a reproductive value weighted averagemutation rate.

Substitution rate as effective mutation rate

The effective mutation me is defined as the average rate at
which a gene lineage accumulates mutations (Rousset 2004,
equation 9.36). This is precisely an interpretation that can
be given to the right-hand side of Equation 8. In effect,
gi(n9) can be interpreted as the probability that the ances-
tral lineage of a randomly sampled gene was in class i in
population state n9 in the distant past, aij(n9, n) is the prob-
ability that this gene descends from an individual in class j in
population state n in the previous time step, and mij is the
mutation rate during such a transition. Hence,

k ¼ me; (9)

which shows that the neutral substitution rate is the
effective mutation rate regardless of the genetic and
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demographic assumptions behind the model. This corre-
spondence is not surprising given the definition of me, but
Equation 8 makes precise that while k has originally been
defined in terms of a forward in time looking process (fixa-
tion probabilities, see Equation 3), it can be interpreted in
terms of a meaningful class-reproductive value weighted
average mutation rate, which defines a backward in time
looking process (e.g., Equation 6). The substitution rate is
thus also the rate at which a randomly sampled gene from
a randomly sampled common ancestor of the population
accumulates mutations, since with probability gi(n) the
common ancestor descends from state (i, n), in which case
it carries mutations at rate mi(n).

The substitution rate k will generally depend on popula-
tion size fluctuations (Balloux and Lehmann 2012) as the
reproductive values generally depend on such fluctuations
(Whitlock and Barton 1997; Rousset 2004). Further, these
are actually very hard to evaluate explicitly and most of the
time can be expressed implicitly only as the solution of a very
large set of simultaneous equations involving population
sizes (e.g., Equation 6). But if

aiðnÞ ¼ giNi

N
; (10)

then piðnÞ ¼ 1=N and from Equation 7 we have

k ¼ m: (11)

When will the reproductive value of a class be proportional
to the number of genes in that class so that this result holds?

If evolution occurs in a patch-structured haploid popula-
tion of constant size in which migration does not affect
group size, migration is said to be conservative and Equation
10 holds (Nagylaki 1998, p. 1600). More generally, how-
ever, migration will result in population size fluctuations
and density-dependent competition can result in very large
populations (or patches) producing only very few individu-
als. In these cases, the reproductive value of a class is un-
likely to be proportional to the number of genes in that class,
because the size of a demographic class is not necessarily
indicative of its asymptotic contribution to the gene pool.
For instance, under good environmental conditions a small
group of individuals may contribute a disproportionally
larger share to the gene pool than a big group of individuals
in poor environmental conditions. Then, me will differ from
m if the rate at which mutations accumulate in individuals
from different classes differs [the mi(n)’s].

A simple situation where the class reproductive values
are not proportional to the number of genes in a class is
a population with separate sexes with a constant number Nf

of females and Nm of males (constancy of demography
entails that we can also drop the dependence on the state
n in all quantities). Then, we have gf = af = tmf/(tmf + tfm),
where tij is the probability that a gene randomly sampled in
a class-i offspring has been transmitted by a class-j parent
(see Appendix D, Equation D17 for a proof; tmf = tfm = 1/2

for diploids, while tmf = 1 and tfm = 1/2 for diploid females
and haploid males). With this, the effective mutation rate is

me ¼
tmf

tmf þ tfm
mf þ

tfm
tmf þ tfm

mm; (12)

while the average mutation rate is

m ¼ gfNf

gfNf þ gmNm
mf þ

gmNm

gfNf þ gmNm
mm: (13)

Thus, if the mutation rate is different in the sexes, then me

and m can markedly differ and this stems from the fact that
even if the number of females is much larger than the num-
ber of males, every offspring has both a father and a mother.
Thus, each sex contributes to the gene pool in proportion to
its ploidy and not according to the number of its represen-
tative individuals (e.g., Taylor 1990).
Overlapping generations and generation time

Haploid reproduction: We now focus on overlapping
generations under haploid reproduction, so that i = 0, 1,
2, . . . indexes the age classes. An individual will be said of
age i if it is between i and i + 1 units of age, where i =
0 stands for newborns. Reproduction is assumed to occur at
the end of a time period, that is, when individuals of age i
have reached i + 1 units of age.

Following standard formulations (Pollak 1982, equations
1 and 2; Charlesworth 1994, equation 2.49b), we also as-
sume that mutations occur only during gametogenesis and
therefore only when newborns are produced. Hence, mij =
0 for i 6¼ 0, and we have m0j $ 0 for all j. From Equation 1,
the probability that a newborn carries a mutation in demo-
graphic state n9 is then given by

m0
�
n9
� ¼ X

n

X
j

a0j
�
n9;n

�
m0j; (14)

whereby the substitution rate (Equation 8) can be written as

k ¼
X
n
g0ðnÞm0ðnÞ  : (15)

We can now define an effective mutation rate me,0 for
newborns, by averaging the mutation rate m0(n) over the

probabilities g0ðnÞ=
hP

sg0ðsÞ
i
that the ancestral lineage of

a randomly sampled gene will be in a newborn. This yields

me;0 ¼
X
n

g0ðnÞP
sg0ðsÞ

m0ðnÞ; (16)

whereby k ¼ me;0

hP
sg0ðsÞ

i
; where the term in square

brackets is related to the average generation time in the next
section.

Generation time: The generation time is now introduced
through the quantity
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T
�
n9
� ¼ X

n

X
i

ðiþ 1Þa0i
�
n9;n

�
: (17)

This is the mean age of the parent of an individual of age class
zero randomly sampled in population state n9 because
a0i(n9, n) is the probability that a newborn sampled in pop-
ulation state n9 descends from a parent of class i living in
population state n, in which case the parent has lived i + 1
units of time. For a population with constant size Equation 17
reduces to the equation for the generation time used in popu-
lation genetics (Felsenstein 1971, p. 583; Pollak 1982, p. 91)
and is a direct extension of that case to fluctuating demography.

To evaluate the average generation time, one needs to
take into account the probability of sampling a newborn in
a given demographic state. Hence, the average generation
time is

T ¼
X
n

g0ðnÞP
sg0ðsÞ

TðnÞ: (18)

In Appendix C, it is proved thatX
n
g0ðnÞTðnÞ ¼ 1; (19)

which implies that

T ¼ 1P
sg0ðsÞ

(20)

and shows that the generation time can be expressed in
terms of class reproductive values.

Substitution rate in terms of generation time: From
Equations 15, 16, and 20, we can now write

k ¼ me;0

T
: (21)

Measured in units of average generation time T, the sub-
stitution rate is equal to the effective mutation rate in new-
borns. If the mutation rate is the same in all individuals,
then m0j = m in which case me,0 = m. In this case, when
measured in units of average generation time, the substitu-
tion rate is equal to the mutation rate, and this then removes
the effect of population size on the substitution rate ob-
served in previous stochastic models of neutral evolution
(Balloux and Lehmann 2012), a point that was suggested
by Lanfear et al. (2014).

This result (Equation 21) also applies to a population
with separate sexes (diploid or haplodiploid), in which case
the summations in me,0 and T must also be taken over the
different sexes (Appendix D, Equation D4). For a constant
demography, the effective mutation rate in newborns can
then be simplified to

me;0 ¼ tmf

tmf þ tfm
mf0 þ

tfm
tmf þ tfm

mm0; (22)

which is of the same form as Equation 12 and where mg0

denotes the rate at which a gene randomly sampled in
a newborn of sex g 2 {f, m} accumulates mutations. With
this, k (Equation 21) reduces to the standard expression for
the neutral substitution rate under overlapping generations
for diploid reproduction (Pollak 1982, equation 8) (see Ap-
pendix D for the connection). This shows that the average
mutation rate in newborns from previous models is the ef-
fective mutation in newborns, where the sex-specific muta-
tion rate is weighted by conditional reproductive values,
which give the proportion of time a gene lineage will spend
in males and females given that it resides in a newborn.

Discussion

The rate k of neutral allelic substitution at a given locus has
been analyzed under the assumptions that the evolving pop-
ulation can be structured into classes (e.g., by sex, age, geog-
raphy, etc.) and that it follows a stationary stochastic
demography. Two main results were found. First, the substitu-
tion rate is equal to the effective mutation rate: k = me, which
is the rate at which a randomly sampled gene from a randomly
sampled common ancestor of the population accumulates
mutations. Second, in the presence of overlapping generations,
the substitution rate can also be expressed as the product k =
me,0/T, where me,0 is the effective mutation rate in newborns
and T is the average generation time (or the mean age of the
parents of a newborn), which itself can be expressed entirely
in terms of class reproductive values (Equation 20).

These results entail that the effective mutation rate me

(Equation 8) is not necessarily equal to the rate m at which
a randomly sampled gene in a randomly sampled individual
from the population accumulates mutations (Equation 2).
Care must thus be taken in interpreting k as a mutation rate.
For instance, it is sometimes said that k is equal to the
mutation rate under almost any conceivable complication
(Lanfear et al. 2014, box 3). But if this mutation rate is
supposed to be that in a randomly sampled gamete, as in
the original formulation of the neutral substitution process
(Kimura 1971), then the substitution rate can be different,
unless mutations occurs at the same rate in every class of
individuals (Equation 5). But if mutations occur with differ-
ent magnitude in different classes of individuals, then even
if k is measured in units of generation time, it can be differ-
ent from the rate at which a randomly sampled gene in
a newborn accumulates mutations. This occurs because
the effective mutation rate in newborns (me,0) is a reproduc-
tive value weighted average of the rate at which newborns
accumulate mutations (Equation 16), which thus weights
different classes of individuals according to their asymptotic
contribution to the gene pool. Different classes of newborns
may be obtained when individuals are born under different
types of demographic or environmental conditions (or are of
different sexes) and where mutation rates can vary during
gametogenesis, owing, for instance, to the fact that irradia-
tion can vary in space and time.
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In summary, with uniform mutation across classes, the
substitution rate is the mutation rate under stochastic
demography and class structure. With nonuniform muta-
tion, how different classes of individuals contribute to the
ancestry of the population can matter (e.g., Equations 12
and 13), in which case the substitution rate is the average
rate at which the ancestors of the population accumulate
mutations. This then justifies the interpretation of the sub-
stitution rate as the effective mutation rate.
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Appendix A

Neutral Substitution Rate

Here, we provide a proof of Equation 3. To that end, we first note that the neutral substitution rate can be expressed as the
expectation over all demographic states of the expected number NFix(n) of mutants produced per unit time in a population in
state n and that will ultimately fix in the population,

k ¼
X
n
NFixðnÞPrðnÞ; (A1)

where

NFixðnÞ ¼
X
n9

X
i

X
j
pi
�
n9
�
wij

�
n9;n

�
gitijmijNjPr

�
n9
��n� (A2)

(Lehmann 2012, equations A1 and A2, assuming no selection). Here, pi(n9) is the fixation probability of a mutation arising
as a single copy in a class-i individual in population state n9, wij(n9, n) is the expected number of class-i individuals in
population state n9 produced by a single class-j individual in population state n (the fitness of an individual of class j
through class-i offspring), gi is the ploidy of a class-i individual, tij is the probability that a gene randomly sampled in
a class-i offspring has been transmitted by a class-j individual, and Nj is the number of class-j individuals in population
state n. Hence, wij(n9, n)gitijmijNj gives the number of mutations in population state n9 when the population was in state n in
the previous time step.

The probability aij(n9, n) that a gene randomly sampled in a class-i individual in population state n9 descends from a class-
j individual and in population state n in the previous time step can now be written as
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aij
�
n9;n

� ¼ fij
�
n9;n

�Pr�n9��n�PrðnÞ
Prðn9Þ : (A3)

The second term is the backward transition probability that a population in state n9 derives from a population in state n one
time step earlier, while

fij
�
n9;n

� ¼ wij
�
n9;n

�
tijNj

Ni
(A4)

is the probability that a class-i individual descends from a class-j individual given state n9 in the offspring generation and
state n in the parental generation (Charlesworth 1994, p. 81; Rousset 2004, equation 11.2; Lehmann 2012, equation A15),
which is obtained as the ratio of the number of genes in class i descending from class j to the total number of genes in class i.

Substituting Equation A3 into Equation A2 yields

k ¼
X
n

X
n9

X
i

X
j

pi
�
n9
�
giNiaij

�
n9;n

�
mijPr

�
n9
�

¼
X
n9

X
i
pi
�
n9
�
mi
�
n9
�
giNiPr

�
n9
�

¼ N
X
n

X
j

mjðnÞgjNjPrðnÞ
N|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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�
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�
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�
giNiPr

�
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n
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j
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p

;

(A5)

which displays k as in Equation 3.

Appendix B

Fixation Probability and Reproductive Value

Here, we provide a proof of Equation 7. To that end, we first write the recursion at steady state for the g reproductive values,
which from Equation 6 reads

gjðnÞ ¼
X
n9

X
i

gi
�
n9
�
aij
�
n9;n

�
: (B1)

Let us now denote by pi,t(n) the expectation (over replicates of the evolutionary process) of the average frequency of
a mutant allele in class i at time t, conditional on the demographic state being n at that time and conditional on some initial
mutant frequency distribution at t = 0. This satisfies the recursion

pi;tþ1
�
n9
� ¼ X

n

X
j
aij
�
n9;n

�
pj;tðnÞ: (B2)

We can collect the pi,t(n) elements into a vector pt, which satisfies the recursion

ptþ1 ¼ Apt; (B3)

where A is the row stochastic transition matrix collecting the aij(n9, n) elements
hP

n
P

jaijðn9;nÞ ¼ 1
i
:

Since the fixation probability of a mutant is its asymptotic frequency (e.g., Hill 1972; Emigh and Pollak 1979; Rousset
2004), the fixation probability in a given class i, conditional on the demographic state being n, is limt/N pi,t(n). The vector p
of fixation probabilities in each class is then given by p = limt/N Atp0, where p0 is the initial mutant frequency distribution
across classes. Note that each element of the vector p will be the same, as the mutant either fixes in the total population and
thus in each class or goes extinct. By standard results for finite ergodic Markov chains, each row of limt/N At is equal to the
left unit eigenvector of the transition matrix A (Grinstead and Snell 1997), which is precisely the vector satisfying the system
of recursions displayed in Equation B1: g = gA. Hence, using gj(n) = aj(n)Pr(n), the fixation probability of a mutant given
initial frequency distribution p0 is
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X
n

X
j

gjðnÞpj;0ðnÞ ¼
X
n

X
j

ajðnÞPrðnÞpj;0ðnÞ: (B4)

When a single mutant arises initially in class i and in population state n, this further reduces to ai(n)pi,0(n) (since with
probability 1 the state is n), which is precisely Equation 7 since pi,0(n) = 1/[giNi]. This latter equation was also given in
Leturque and Rousset (2002, p. 178) for a class-structured population of constant size.

Appendix C

Reproductive Value and Generation Time

Here, we provide a proof of Equation 20. For a haploid age-structured population, with age classes i = 0, 1, 2, . . . , Equation
B1 reduces to

gjðnÞ ¼
X
n9

h
g0

�
n9
�
a0j

�
n9;n

�þ gjþ1
�
n9
�
ajþ1j

�
n9;n

�i
; (C1)

where the first term in brackets is the contribution to the gene pool of class (j, n) through production of newborns, while the
second term is the contribution through survival. For an age-structured population, we also have

fjþ1j
�
n9;n

� ¼ wjþ1j
�
n9;n

�
Nj

Njþ1
¼ 1; (C2)

owing to the fact that wj+1j(n9, n) is the survival of an individual of class j given demographic states n9 and n, so that
necessarily Nj+1 = wj+1j(n9, n)Nj. This entails that aj+1j(n9, n) = Pr(n9|n)Pr(n)/Pr(n9), whereby

P
najþ1jðn9;nÞ ¼P

nPrðn9
��nÞPrðnÞ=Prðn9Þ ¼ P

nPrðn9;nÞ=Prðn9Þ ¼ 1: Summing both sides of Equation C1 over
P

n
P

jðjþ 1Þ then yieldsX
n

X
j

ð jþ 1ÞgjðnÞ ¼
X
n9

h
g0

�
n9
�X

n

X
j

ð jþ 1Þa0j
�
n9;n

�þX
j

ð jþ 1Þgjþ1
�
n9
�i
: (C3)

Using the definition of the generation time (Equation 17) and reindexing the last sum, we have

1þ
X
n

X
j
jgjðnÞ ¼

X
n9

g0
�
n9
�
T
�
n9
�þX

n9

X
h

hgh
�
n9
�
; (C4)

whereby X
n9

g0
�
n9
�
T
�
n9
� ¼ 1: (C5)

Appendix D

Separate Sexes

Stochastic demography
Here, we extend the result k = me,0/T found for haploid reproduction (Equation 21) to a population with both males and
females, which could be diploid, haplodiploid, or subject to other modes of ploidy. The coefficient a0j(n9, n) for haploids
appearing in the previous section is now written as ag0;g9jðn9;nÞ; which stems from the probability that a gene randomly
sampled in a newborn of sex g 2 {f,m} in state n9 descends from an individual of sex g9 2 {f,m} of age j and that was in state n.
Likewise, mg0;g9j denotes the mutation rate of a gene in an individual of sex g9 of age j that is transmitted to a newborn of sex g.

With these definitions, the substitution rate (Equation 8) becomes

k ¼
X
n

X
g

gg0ðnÞmg0ðnÞ; (D1)

where the sex-specific mutation probability in newborns is
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mg90
�
n9
� ¼ X

n

X
g

X
j

ag90;gj
�
n9;n

�
mg90;gj: (D2)

We can define the effective mutation rate among newborns as

me;0 ¼
X
n

X
g

gg0ðnÞX
s

X
y
gy0ðsÞ

mg0ðnÞ; (D3)

which generalizes Equation 14. Likewise, using the same weights, we can define the average generation time

T ¼
X
n

X
g

gg0ðnÞX
s

X
y
gy0ðsÞ

TgðnÞ; (D4)

which generalizes Equation 18 and where

Tg
�
n9
� ¼ X

n

X
g9

X
j
ð jþ 1Þag0;g9j

�
n9;n

�
: (D5)

Using Equations D1–D5, we can write

k ¼ me;0

T
; (D6)

provided that T ¼ 1=
�X

s

X
g
gg0ðsÞ

�
; which requiresX

n

X
g

gg0ðnÞTgðnÞ ¼ 1: (D7)

We now prove this latter equality by applying the same argument as in the previous section. Namely, the reproductive value
ggj(n) satisfies the recursion

ggjðnÞ ¼
X
n9

"�X
g9

gg90
�
n9
�
ag90;gj

�
n9;n

�	þ ggjþ1
�
n9
�
agjþ1;gj

�
n9;n

�#
; (D8)

where

agjþ1;gj
�
n9;n

� ¼ wgjþ1;gj
�
n9;n

�
tggNgjðnÞ

Ngjþ1ðn9Þ
Pr
�
n9
��n�PrðnÞ

Prðn9Þ ¼ Pr
�
n9
��n�PrðnÞ

Prðn9Þ : (D9)

The last equality follows from the fact that necessarily Ngj+1 = wgj+1,gj(n9, n)Ngj and tgg = 1, since during survival no
segregation of alleles occurs. If we now take the sum

P
n
P

g
P

jðjþ 1Þ over Equation D8, we obtainX
n

X
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X
j
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�
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�
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�
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��
;

(D10)

and by reindexing the last sum, this can be written as

1þ
X
n

X
g

X
j
jggjðnÞ ¼

X
n9

X
g9

gg90
�
n9
�
Tg9

�
n9
�þX

n9

X
g

X
h

hggh
�
n9
�
; (D11)

which shows that Equation D7 holds.

Constant demography
In a population of constant size, the effective mutation rate in newborns and the average generation time can be written
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me;0 ¼ g*f0mf0 þ ð12 g*f0Þmm0

T ¼ g*f0Tf þ ð12 g*f0ÞTm;
(D12)

where

mg90 ¼
X
g

X
j
ag90;gjmg90;gj

Tg9 ¼
X
g

X
j

ð jþ 1Þag90;gj;
(D13)

and

g*f0 ¼ gf0
gf0 þ gm0

(D14)

is the probability that a gene lineage is in a female, given that it has been sampled in a newborn. This probability satisfies the
recursion

g*f0 ¼ �
12 tfm

�
g*f0 þ tmfð12 g*f0Þ; (D15)

since, given that a gene lineage is a newborn female, it descends from a female with probability tff = 1 2 tfm and, given that
a gene lineage is a newborn male, it descends from a female with probability tmf. At steady state, we have

g*f0 ¼ tmf

tmf þ tfm
: (D16)

Assuming diploid reproduction, tmf = tfm = 1/2, whereby g*
f0 ¼ 1=2 and the expression for the average generation time

(Equation D13) can then be seen to be precisely the average of the mean age of the parents of a newborn defined by Pollak
(1982, p. 91), since af0,gj (am0,gj) corresponds to 2pgj: (2p

g
:j) in the notations of Pollak (1982). Likewise, me,0 in this case is

precisely vg in the notations of Pollak (1982, equations 1 and 2). With all this, we see that in a diploid population of constant
size k = me,0/T reduces precisely to equation 8 of Pollak (1982).

Semelparous populations
Here, we evaluate the class reproductive values and the fixation probability in a population of constant size in the absence of
overlapping generations. Since, in this case,wff = 1 andwmf=Nm/Nf, we have from Eqation A4 that fff = tff = 12 tfm and fmf = tmf.
Then from Equations A3 and B1, the reproductive value of the female class satisfies

gf ¼
�
12 tfm

�
gf þ tmf

�
12 gf

�
; (D17)

whereby

gf ¼
tmf

tmf þ tfm
: (D18)

With this, noting that gi = ai (population size is constant) and using Equation B4, the fixation probability of a single mutant
allele that arises in females and males is, respectively, given by

pf ¼
1

gfNf

�
tmf

tmf þ tfm

	
and pm ¼ 1

gmNm

�
tfm

tmf þ tfm

	
: (D19)
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