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Lausanne, 2019









In dedication to my wife Ivana





Contents

1 Introduction 1

1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 First order physics and a mathematical model . . . . . . . . . . . . . . . . . . 3

1.3 Numerical modelling and numerical model development . . . . . . . . . . . . 4

1.4 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Modelling the coupled thermo-mechanical ice flow using the implicit
pseudo-transient method on the computer graphics cards 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Implementation of the method on computer graphic cards . . . . . . . . . . . 27

2.4 Model configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Results and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Experiments results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Computational performance . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

i



ii CONTENTS

3 The effect of strain heating on the ice flow 65

3.1 General introduction: Towards an effective boundary condition . . . . . . . . 67

3.2 Literature review on the effects of strain heating on ice flow . . . . . . . . . . 68

3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Numerical model setup . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Parametrization of 1D numerical profiles of velocity and temperature . . . . . 83

3.6 Effects of strain heating for typical ice mass parameters . . . . . . . . . . . . 92

3.7 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.7.1 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.7.2 Comparison to previous literature . . . . . . . . . . . . . . . . . . . . 98

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Perspectives 113

4.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115







Abstract

Observations of ice velocity on ice sheets and glaciers suggest two significantly different modes

of ice flow: slow and fast flow, with up to three orders of magnitude differences in flow ve-

locity between the two. Understanding the physical processes governing the ice flow is of

crucial importance if one wishes to predict the future sea level rise due to the global warm-

ing. This heterogeneity in flow velocities can be often explained by the thermo-mechanical

coupling and the so called creep instability mechanics. Creep instability or thermal runaway

mechanism is a process which revolves around a simple concept of a positive feedback be-

tween deformation rate of ice and temperature. Increasing the deformation rate, rises the ice

temperature, through strain heating, which further increases the ice deformation rate. Unfor-

tunately, most current ice flow models are known for their inability to predict and model this

strong heterogeneity observed in ice flow velocities. This is mostly because current Stokes

solvers are computationally demanding and often require the use of modern supercomputers

and sophisticated algorithms. Additionally, most of the ice flow models are based on sim-

plifying approximations of the mechanical solver, while often neglecting the energy coupling.

Nevertheless, most of the current ice flow models are not very well adapted to all modern

trends in the hardware industry based around many core architectures. Further, they are to

a large extend mostly serial and not easily parallelizable.

In this thesis I address these challenges by developing an ice flow model based on the iterative

pseudo-transient (PT) continuation method. The method relies on the usage of matrix-free

stencil based method, therefore ensuring minimal, local and regular memory access. This

algorithm properties are well suited for modern massively parallel hardware accelerators like

the computer graphic cards. To numerically couple the thermal and mechanical solver an

implicit coupling method is used. Our results show that two orders of magnitude increase in

performance can be obtained over the vectorised CPU version of the algorithm on a single

GPU, in turn enabling us to perform high resolution three dimensional modelling of the

thermo-mechanically coupled ice flow on a personal computer. Additionally, we have shown

that, in order to fully resolve the non linearities associated with the ice flow rheology a high

spatial and temporal resolution is needed.

Finally, I have further investigated how important heat source strain heating can be. I found

during the course of this thesis that strain heating is the main internal volumetric heat source

in the conservation of energy. Its influence is dynamic and it is primarily dependent on the

distribution of stress, ice velocity and temperature. Hence it can vary significantly both in

space and time. It can be a significant heat source in some situations, while non important in

others, nevertheless it should never be discarded since it provides a crucial balance needed for

a proper conservation of mass, energy and momentum. Additionally, my results shown that

strain heating is a process which operates on different time scales and that two distinctive



vi CONTENTS

regimes are usually associated with the strain heating; transient and steady state. Hence, if

one wishes to determine the importance of strain heating as a volumetric heat source it needs

to take both regimes into consideration.





Résumé

L‘observation de la vitesse de la glace sur les calottes glaciaires et les glaciers suggère deux

modes d’écoulement glaciaire très différents : l’écoulement lent et l’écoulement rapide, avec des

différences jusqu’à trois ordres de grandeur de vitesse d’écoulement entre les deux. Compren-

dre les processus physiques régissant l’écoulement de la glace est d’une importance cruciale

si l’on souhaite prédire l’élévation future du niveau de la mer due au réchauffement de la

planète. Cette hétérogénéité des vitesses d’écoulement est souvent expliquée par le couplage

thermomécanique et par la mécanique d’instabilité liée au fluage. L’instabilité de fluage, ou

mécanisme d’emballement thermique, est un processus qui repose sur un concept simple de

rétroaction positive entre le taux de déformation de la glace et la température. En augmen-

tant le taux de déformation, la température de la glace augmente, en chauffant la base, ce

qui augmente encore le taux de déformation de la glace.

Malheureusement, les modèles actuels d’écoulement de la glace sont connus pour leur inca-

pacité à prédire et à modéliser cette forte hétérogénéité observée dans les vitesses d’écoulement

de la glace. Cela est principalement dû au fait que les solveurs Stokes actuels exigent

des calculs complexes et nécessitent souvent l’utilisation de supercalculateurs modernes et

d’algorithmes sophistiqués. En outre, la plupart des modèles d’écoulement de la glace re-

posent sur la simplification des approximations du résolveur mécanique, tout en négligeant

souvent le couplage énergétique. Néanmoins, la plupart des modèles d’écoulement de glace

actuels ne sont pas très adaptés aux tendances modernes de l’industrie du matériel basées sur

de nombreuses architectures de base. En outre, ils sont dans une large mesure principalement

en série et difficilement parallélisables.

Dans cette thèse, jaborde ces défis en développant un modle d’écoulement de la glace basé

sur la méthode de continuation pseudo-transitoire (PT) itérative. Cette méthode repose sur

l’utilisation d’une méthode sans matrice basée sur le gabarit, garantissant ainsi un accès

mémoire minimal, local et régulier. Les propriétés de cet algorithme sont bien adaptées

aux accélérateurs matériels massivement parallèles modernes tels que les cartes graphiques

d’ordinateur. Pour coupler numériquement le solveur thermique et mécanique, une méthode

de couplage implicite est utilisée. Nos résultats montrent qu’il est possible dobtenir une aug-

mentation de deux ordres de grandeur des performances par rapport á la version CPU de lalgo-

rithme vectorisée sur un seul GPU. Cela nous permet ainsi de réaliser une modélisation tridi-

mensionnelle á haute résolution de la circulation de la glace couplée thermo-mécaniquement

sur un ordinateur personnel. De plus, je montre que, pour résoudre complètement les non-

linéarités associées à la rhéologie des écoulements de glace, une résolution spatiale et tem-

porelle élevée est nécessaire.

Finalement, jai également étudié èa quel point le chauffage par contrainte de source de chaleur

peut être important. Jai pu établir que le chauffage par contrainte est la principale source de
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chaleur volumétrique interne dans la conservation de lénergie. Son influence est dynamique

et dépend principalement de la répartition des contraintes, de la vitesse de la glace et de la

température. Par conséquent, il peut varier considérablement dans l’espace et dans le temps.

Il peut constituer une source de chaleur importante dans certaines situations, mais pas dans

dautres. Néanmoins, il ne faut jamais le rejeter car il constitue un équilibre crucial nécessaire

à la conservation appropriée de la masse, de l’énergie et de la quantité de mouvement. De

plus, nos résultats ont montré que le chauffage par contrainte est un processus qui fonctionne

à différentes échelles de temps et que deux régimes distincts sont généralement associés au

chauffage par contrainte; état transitoire et stable. Par conséquent, si l’on souhaite déterminer

l’importance du chauffage par déformation en tant que source de chaleur volumétrique, il

convient de prendre en compte les deux régimes.





CHAPTER 1

Introduction

1
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1.1 General

Ice sheets and glaciers represent a major component of the Earth climate system and are

tightly coupled to both the ocean and the atmosphere dynamics. Understanding the dynamics

of the ice flow therefore is of special interest in today’s global warming world. This is mostly

because of the large volume of water contained in the glaciers and ice sheets and can hence

represent a potential hazard on both the human life and property (Solomon et al., 2007). This

applies to both the coastal regions and the high mountainous regions. The coastal regions

are affected by potential, worldwide sea level rise associated with the melting of ice sheets.

On the other hand, the mountainous regions are at risk of both the abrupt floods and glacier

collapses. Both can have catastrophic environmental and socio-economic consequences.

Sea level rise is mostly associated to the ice discharge from both the Antarctic and Green-

land ice sheets. Observations of ice velocity obtained from the satellite measurements, reveal

two distinct ice flow regimes, slow and fast. The typical velocity range for the slow flow is

between a few meters per year ( m
yr) to up to a 100 m

yr . Fast ice flow is usually associated

with basal sliding and the typical velocity range can be found anywhere between 100 m
yr and

10 km
yr . On both ice sheets, slow ice flow can be found on the largest part of the ice sheet

surface. In contrast, the fast flow is usually associated with the ice streams. The fast flow

can be found on less than 10% of ice sheet surface, but it can carry even up to 90% of ice

discharge into the ocean (Bamber et al., 2000). For example, we show this ice flow velocity

heterogeneity in Figure 1.1 for Greenland and Antarctica ice sheets. Explanations for this ice

flow heterogeneity are often attributed to the topographic and/or geologic control. In exam-

ple, significant basal topography can direct the flow into the steep narrow channels, therefore

significantly affecting the stress state and focusing all the ice flow into the channel. On the

other hand, geology affects the properties of the bed itself (Clarke, 2005). For example, the

transition from slow to fast flow can coincide with the transition from hard bed to the soft

bed. The existence and temporal variability of some of the ice streams cannot be explained

by either the topographic or geologic control. These are known as pure ice streams and can

mostly be found in the Siple Coast region of Antarctica, hence a different physical mechanism

needs to be invoked to explain and predict spontaneous generation and evolution of pure

ice streams. This has long been recognized as a crucial task in the glaciology community

(Brinkerhoff and Johnson, 2015; Bueler and Brown, 2009; Haseloff et al., 2018; Kyrke-Smith

et al., 2015; Payne and Dongelmans, 1997; Suckale et al., 2014). Often, two different physical

mechanisms are invoked to explain the striking difference in the ice flow velocities between

stream and sheet flow. The first one is the thermal runaway (Clarke et al., 1977; Yuen and

Schubert, 1979b), often also called creep instability, while the other is hydraulic runaway or

instability (Fowler and Johnson, 1996). The former is related to the non-linear feedbacks

between the ice temperature and velocity. The later is associated with melt-water drainage
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A B

Figure 1.1: A) Greenland velocity field B) Antarctica velocity field. Figure modified from
Mouginot et al.(2017)

system (distributed or channelized) and non-linear feedbacks between the ice velocity and

basal water pressure through a phenomenological sliding law dependent on the effective pres-

sure. Interestingly, this two distinct mechanisms are not exclusive of each other since they

are linked though the production of basal melt-water. Similarly, both physical mechanisms

are often invoked to explain, still unresolved, glacier surging phenomena. It is therefore often

speculated that streaming and surging can arise solely as a result of thermo mechanical feed-

backs (Clarke et al., 1977; Payne and Dongelmans, 1997; Schubert and Yuen, 1982; Yuen and

Schubert, 1979b). Surging is explained as a temporal variation occurring when an ice flow is

constrained to flow in one direction, while the streaming occurs in the three dimensions when

the flow is horizontally free (Fowler and Johnson 1996, Payne 1997).

1.2 First order physics and a mathematical model

Since the 1950s, it is a well established fact in glaciology that at the first order physics of

the ice flow is best described by a mathematical model for gravity driven viscous fluid with a

strong temperature dependence of viscosity (Grigoryan et al., 1976; Hutter, 1983; Morland,

1984; Robin, 1955). This results in a mathematical model which is described by a set of

highly non linear coupled mathematical equations not susceptible to an analytical treatment.

The strongest nonlinearities inherent to the ice flow are associated with the ice rheology. The

ice rheology is given by a stress-strain rate relation which describes the secondary creep rate

of ice (also called steady state creep). It is usually described by a power law with a power

law exponent (Glen, 1955, 1952; Steinemann, 1958) or by a hyperbolic flow law (Garofalo,
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1963; Wong and Jonas, 1968). The value of the power law exponent is still heavily debated

in the glaciology community (Bons et al., 2018). However, the commonly used value in ice

flow modelling is 3. In both cases, the rate factor varies with temperature and is described

by an Arrhenius type exponential dependence. Hence, ice velocity strongly depends, through

ice viscosity, on temperature, while the temperature depends on strain heating. How strong

is this coupling and how important strain heating is for the ice flow is still elusive. Although

this was a topic of numerous previous studies opposing conclusions were made (Clarke et al.,

1977; Fowler et al., 2010; Grigoryan et al., 1976; Yuen and Schubert, 1979b).

It is a well established fact that multi-coupled nonlinear problems, such as the ice flow, can

result in a highly localized multi scale problem, both in space and time. Additionally, it is

unknown a priori where and when this localization will occur. Therefore, the ice flow is a

multi-physics and multi-scale problem and to resolve all the physics a high numerical spatial

and temporal resolution is needed.

1.3 Numerical modelling and numerical model development

The publication of the fourth Intergovernmental Panel on Climate Change (IPCC) assessment

report (Solomon et al., 2007) revealed that ice sheet flow models did not provide an accurate

description of polar ice sheet discharge due to their inability to model slow and fast ice flow

simultaneously and their inability to correctly capture marine ice sheet dynamics(Bueler and

Brown, 2009; Gagliardini et al., 2013; Pattyn et al., 2008). This was attributed to the fact that

at the time most ice flow models were based on simplified asymptotic approximations of the

Stokes flow. Since then, the main focus of ice flow modelling community has been on the me-

chanics of the ice flow either through development of more computationally tractable shallow

models or through the development of the Stokes flow models. Additionally, extensive effort

was invested into the development of more physics based enthalpy based model (Aschwanden

et al., 2012; Gilbert et al., 2014; Hewitt and Schoof, 2017; Schoof and Hewitt, 2016) and the

investigation of its numerical properties (Kleiner et al., 2015). Unfortunately, these studies are

concentrated on a single model, i.e. either mechanical model or temperature/energy model,

and no feedbacks were explored. Hence, even though a variety of energy/thermo-mechanically

coupled models exist little investigation is done into the verification of the obtained numer-

ical solutions. This is mostly due to the lack of analytical solutions. Meanwhile model

benchmarks are often concentrated on verifying the implementation of the mechanical model

only, i.e. EISMINT (Huybrechts and Payne, 1996) and ISMIP-HOM (Pattyn et al., 2008)

benchmark experiments, while only a single model inter-comparison investigating the physical

thermo-mechanical coupling exist, i.e. EISMINT 2 (Payne et al., 2000). Unfortunately, the

experiments in EISMINT 2 are usually performed using a thermo-coupled shallow approxima-

tion model, i.e. shallow ice model or a first order model. Therefore, aforementioned studies
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reveal that thermo-mechanically coupled models do not converge below the grid refinement.

Numerically resolving the first order physics governing the ice flow is imperative to properly

model and predict the complex behaviour of real ice sheets and glaciers. This can be a es-

pecially challenging task in three dimensions (3-D) with the current numerical models. As

already numerically investigated by Payne and Dongelmans (1997), three dimensional mod-

elling is a necessity if one plans to investigate formation and evolution of ice streams and

surges.

Unfortunately, high resolution three dimensional modelling of the coupled thermo-mechanical

solver with existing Stokes flow models is currently reserved for supercomputers and often

require the assistance of computer scientists. It is a well known fact that the Stokes solver with

non linear rheology is computationally most challenging part of the problem. This is mostly

because the current algorithms require the assembly (and inversion) of large sparse matrices

to solve the linear problem. The solution of the linear problem can be obtained by using

the so called direct solvers in 1-D and 2-D and iterative in 3-D. The memory requirements

associated with the matrix assembly (and inversion) grow linearly in 1-D, quadratically in 2-D

and cubically in 3-D, therefore high resolution modelling can quickly saturate the available

computer memory and any meaningful numerical resolution is not easily achievable with a

personal computer. Additionally, algorithms based around matrix assembly are intrinsically

serial and often require non regular (random) memory access. Random memory access can

be up to two orders of magnitude slower then the regular one (Omlin, 2017). Furthermore,

significant reduction in parallel efficiency can be expected. Additionally, advantages of the

direct solver, i.e. like the indifference to a high viscosity ratios, vanishes in 3-D when a

iterative linear solver is used.

Today, most commonly used computational units are parallel devices based around multi

core (CPUs) and many core architectures (GPUs, MIC). Accordingly, these devices are most

suited for parallel based algorithms. In addition, current hardware is limited by memory

access/transfer speed and not the floating point performance. Hence, faster computation

speed often does not bring any significant reduction in wall time. This is especially true for

the memory bounded algorithms. Development of the new numerical models suited to the

current hardware, combined with an exponential development of the computer graphic cards

in the last decade, is a path which can bring most performance increase in a smallest amount

of time.

1.4 Research questions

We have identified the following challenges that we will try to tackle in this thesis:
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1. How to efficiently numerically solve thermo-mechanically coupled flow in 3-D by taking

advantage of the modern hardware?

2. How to sufficiently numerically resolve all the non linearities governing the ice flow? In

particular, determining which spatial and temporal numerical resolution is sufficient?

3. Do we need additional heat sources to heat the ice to the melting temperature at the

base? How significant heat source is the strain heating?

4. Can the heterogeneity in ice flow velocities be explained only by a creep instability

mechanism?

We plan to tackle this challenges by developing a thermo-mechanically coupled Stokes solver

that efficiently utilize the modern computer graphic card accelerators or graphical processing

units (GPUs).

The GPUs are massively parallel devices originally developed to transfer the computations

regarding the computer visualization from the central processing unit (CPU) and therefore

relaxing at least some computational load from the more serial task oriented CPU. A GPU is

hence optimized for calculating the color of a pixel independently from each other; in which

case latency can be masked by high throughput, i.e., compute as many threads as possible

in a reasonable time. The GPUs programming model is based around a well-known parallel

principle called Single Instruction Multiple Data (SIMD), where each single instruction is

executed on multiple data. Therefore a block of instructions can be executed by thousands of

different threads in parallel fashion, each thread calculating a single grid point. The GPUs are,

in consequence, perfectly suited for stencil based numerical methods like the finite difference

method (FDM). Additionally with the usage of staggered regular grid stencil operation, i.e.

derivative calculation, requires only neighbouring values, therefore memory access is minimal,

local and regular. This can result in significant performance increases since all the performant

properties of modern hardware are taken in consideration while developing an algorithm.

Furthermore, we plan to use an iterative matrix free pseudo-transient (PT) continuation

method (Kelley and Keyes, 1998; Yang and Mittal, 2014) to minimise the resulting system

residuals thus avoiding the drawbacks like the need for a matrix assembly, set-up and inversion.

Additional benefits from our approach reside in the ease of numerically coupling mechanical

and energy/temperature solvers and the fact that the obtained solution is implicit, in a sense

that both velocity and temperature are determined simultaneously. Accordingly, we expect

to gain significant performance increase that will enable us to make use of the high numerical

resolution, both spatial and temporal, on a consumer desktops with NVIDIA graphic cards.

The crucial step while developing a numerical model is the verification of obtained numerical

solutions. The goal is to obtain at least some knowledge on how well the numerical model

approximate the mathematical model used to describe a physical process one wishes to study.



1.4. RESEARCH QUESTIONS 7

This can ideally be achieved by comparing the obtained numerical results with analytical

solutions when available. By constructing the so called manufactured analytical solution or

by benchmarking the numerical model results with the solutions of other existing numerical

models in a variety of different, carefully thought scenarios. Unfortunately, every approach

has a significant drawback. Analytical solutions are almost impossible to obtain for such

complex three dimensional physics. Hence, analytical solutions are often obtainable only for

the very specific cases and are not representative of the full system behaviour. Manufactured

analytical solutions can verify that the algorithm is implemented correctly, i.e. reduce the

probability of implementation errors to a minimum, but unfortunately uses non physical

source terms and therefore can not give as any information about the actual physical model

we want to simulate (Brown, 2011). Even though both presented methods can provide us with

some kind of measurement error (i.e. discretization error), there is a significant difference

between the two, given that the error obtained by measuring against analytical solution

inform us how well our numerical model approximate the true physical process described

by a given mathematical model, therefore capturing both spatial scales and time scales for

the processes to operate. The third option for verifying the numerical implementation are

the community model benchmarks. They often include the numerical solutions of different

continuum assumptions and they are therefore not numerically solving the same mathematical

model. This makes it almost impossible to create a meaningful measurement of the numerical

errors even between the models of the same continuum assumptions. Nevertheless if a problem

of sufficient complexity is addressed, model benchmark can at least point to, or reveal new,

complications with participating models (Bueler, 2008).

In this thesis we plan to investigate the numerical and computational behaviour of our a new

numerical model for ice sheets and glaciers by benchmarking it against a variety of analytical

solutions and by comparison with solutions obtained by more commonly used models. We

start in Chapter 2 by presenting an iterative pseudo transient (PT) method used to numeri-

cally solve the thermo mechanically coupled mathematical model describing the ice flow. In

this chapter we further present the algorithm implementation on modern computer graphic

cards and take advantage of its intrinsic parallelism. We also show significant performance

gain, up to two orders of magnitude, while using the GPU implementation compared to a

vectorised CPU version. Hence, avoiding the limitations imposed by some more often used

methods. We find that high spatial and temporal numerical resolution is needed to capture

the highly non linear ice flow. In Chapter 3, using the developed model, we have investigated

the influence of different physical processes on the coupled flow, i.e. additional stress gradi-

ents, advection and diffusion. We have shown that additional stress gradients can have a first

order effect on the solution. We have further shown two different regimes on which strain

heating can operate. Additionally importance of advection in stabilizing the flow was shown.

Finally, we present our conclusions and future work directions in Chapter 4.
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Abstract

Under certain conditions thermo-mechanical coupling could be the first order physics govern-

ing the flow of ice below melting temperature. Temperature can affect the rheology of ice, and

through that the ice velocity. Numerous studies have investigated this coupling using analyti-

cal and numerical approaches. Here we develop a model based on the pseudo-transient method

with the implicit coupling between ice viscosity and temperature. The pseudo-transient (PT)

method is based on the finite difference discretization and a pseudo-time integration, and

therefore results in a matrix free form. This results in a simple and a highly parallelizable

algorithm that enables high spatial numerical resolution in one, two and three dimensions.

The developed algorithms make use of the intrinsic parallelism of the computer graphic cards

(GPU), which enable us to accelerate the developed algorithms. We first test the compu-

tationally most intensive part, i.e. the Stokes solver, in a set of experiments and compare

its performance in both two and three-dimensional simulations with a code widely used in

glaciology, the finite element code Elmer/Ice, using simple test case scenarios. The simu-

lation results show that the PT method can deliver results in a good agreement with the

Elmer/Ice Stokes solver. Second, we show that up to a two order of magnitude increase in

computational performance can be reached when the code is translated from MATLAB to

CUDA C (cf Nvidia). Third, a time evolution simulation of the coupled thermo-mechanical

model is presented. We find that: 1) high spatial numerical resolution is needed to properly

capture the highly non-linear thermo-mechanical coupling; 2) numerical coupling method has

only minor effects on the result; 3) high temporal numerical resolution is at least equally

important as the high spatial numerical resolution. The codes examples based on PT method

in both MATLAB and CUDA C programming language are provided.



2.1. INTRODUCTION 19

2.1 Introduction

The publication of the fourth IPCC report (Solomon et al., 2007) revealed that ice sheet flow

models did not provide an accurate description of polar ice sheet discharge (e.q., Gagliardini

et al., 2013; Pattyn et al., 2008) due to their inability to model slow and fast ice flow simul-

taneously (Bueler and Brown, 2009; Gagliardini et al., 2013). This was attributed to the fact

that, at the time, most ice flow models were based on a simplified asymptotic approxima-

tions of the non-linear Stokes equations. Since then, the primary focus of ice flow modelling

community has been on the mechanics of the ice flow either through development of more

computationally tractable shallow ice models (Bassis, 2010; Bueler and Brown, 2009; Egholm

et al., 2011; Goldberg, 2011; Perego et al., 2012; Pollard and DeConto, 2012; Schoof and

Hindmarsh, 2010; Tezaur et al., 2015) or through the development of full Stokes flow models

(Brinkerhoff and Johnson, 2013; Gagliardini and Zwinger, 2008; Gagliardini et al., 2013; Isaac

et al., 2015; Jarosch, 2008; Jouvet et al., 2008; Larour et al., 2012; Leng et al., 2014, 2012).

In that context, the physics of ice flow is best described by a mathematical model for incom-

pressible, homogeneous non-linearly viscous fluid with a strong temperature dependence of

viscosity (Hutter, 1983; Morland, 1984; Robin, 1955). It is therefore crucial that a fully cou-

pled thermo-mechanical system of equations is solved simultaneously and mass, momentum

and energy are conserved at every point in space and time. This requires both high spatial

and temporal resolutions. However, thermo-mechanically coupled transient Stokes models

are scarce and verification of the numerical solution is difficult since analytical solutions are

lacking. Meanwhile model benchmarks often concentrated on verifying the mechanical model

only, i.e. EISMINT (Huybrechts and Payne, 1996) and ISMIP (Pattyn et al., 2008) bench-

mark experiments, and there is only one model inter-comparison investigating the physical

thermo-mechanical coupling, i.e. EISMINT 2 (Payne et al., 2000). Unfortunately, the ex-

periments in EISMINT 2 are usually performed using a coupled thermo-mechanical shallow

approximation model (Brinkerhoff and Johnson, 2015; Bueler et al., 2007; Hindmarsh, 2006,

2009; Payne and Baldwin, 2000; Saito et al., 2006), i.e. shallow ice model or a first order

model, and often produce numerical solutions that do not converge under grid refinement,

therefore making any comparison difficult.

Even though thermo mechanically coupled Stokes models exist (Gilbert et al., 2014; Gong

et al., 2018; Leng et al., 2014; Schäfer et al., 2014; Zhang et al., 2015; Zwinger et al., 2007),

there is no investigation into the numerical aspects of the implemented model, i.e. the influ-

ence of the numerical resolution, numerical coupling method and numerical time integration

method used, with exception of Duretz et al. (2019). This motivated us to investigate the

behaviour of a fully coupled thermo-mechanical 2D and 3D Stokes model with a primary goal

to distinguish between the effects of physics and numerics. To achieve this, we have developed

a numerical model based on the pseudo-transient (PT) method (Cundall et al., 1993; Frankel,

1950; Kelley and Keyes, 1998; Kelley and Liao, 2013; Poliakov et al., 1993). This iterative
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method combined with the finite difference discretization of the system of equations results

in matrix free form and it is suitable for modern parallel hardware like the computer graphic

cards (Duretz et al., 2019; Omlin, 2017; Räss et al., 2018).

We start by giving an overview of the mathematical model describing the ice dynamics, where

we also describe the developed method and its numerical implementation. We continue by

giving an overview of graphics processing units (GPUs) and explain our GPU implementation

of the model. We then describe the model configuration and experiments used to verify our

numerical adaptation of the model, followed by the results and performance measurements.

Finally, we discuss pros and cons of the method and give our concluding remarks.

2.2 Model

2.2.1 Mathematical model

The mathematical model describing the flow of an incompressible non linear viscous fluid

with temperature dependent rheology under the external force is given by the following set of

conservation laws (Equations 2.1-2.3 ) and rheology (Equation 2.4). Ice is usually considered

to be an incompressible fluid, so the equation for conservation of mass, or the continuity

equation, reduces to the following form:

∂vi
∂xi

= 0 (2.1)

where vi are velocity components in xi spatial direction.

Newton’s second and third laws state that linear momentum is conserved if the sum of all

forces acting on an object is equal to zero. Since dimensional scaling shows that ice is not

accelerating or decelerating, all body forces are balanced due to external force (gravity) and

the equations for conservation of linear momentum can be written as:

∂τij
∂xj

− ∂P

∂xi
+ Fi = 0 (2.2)

where Fi is the external force defined as Fi = ρg sinα(1, 0,− cotα). Ice density is denoted by

ρ, g is the gravitational acceleration and α is the characteristic bed slope. P is the isotropic

pressure and τij is the deviatoric stress tensor. The deviatoric stress tensor τij is obtained by

decomposing the Cauchy stress tensor σij in terms of deviatoric stress τij and the isotropic

pressure P .

The governing equation for the conservation of heat in the case of incompressible fluid with

no melt is given by:

ρc(
∂T

∂t
+ vi

∂T

∂xi
) =

∂

∂xi
(k
∂T

∂xi
) + τij ε̇ij (2.3)
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where T represents the temperature deviation from the initial temperature T0, usually chosen

at the ice surface, c is the specific heat capacity, k is the thermal conductivity and ε̇ij is the

strain rate tensor. The term τij ε̇ij represent the strain heating, a viscous heating source term.

Thermal conductivity can be either constant or temperature dependent. Note that here we

are not accounting for the phase change, and hence we do not impose the constraint on the

temperature by the pressure melting point.

The rheology of ice is best described by Glen’s flow law (Glen, 1952; Nye, 1953)

ε̇ij =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

) = a0τ
n−1
II e

− Q
R(T+T0) τij (2.4)

where a0 is the pre-exponential factor, R is the universal gas constant, Q is the activation

energy, n is the stress exponent and τII is the second invariant of the stress tensor defined

by τII =
√

1
2(τ2

xx + τ2
yy + τ2

zz + 2(τ2
xy + τ2

yz + τ2
xz)). For modelling ice, it is generally assumed

that the Glen flow law exponent n equals 3.

Our physical domain of interest involves top, bottom and lateral boundaries. At the ice

top surface Γt (t), we impose the upper surface boundary condition σijnj = −Patmnj where

nj denotes the normal unit vector at the ice surface boundary, and Patm the atmospheric

pressure. Because atmospheric pressure is negligible relative to pressure within ice column,

we can also use a standard stress free simplification of the upper surface boundary condition

σijnj = 0.

On the bottom bedrock surface we can impose two different boundary conditions. For the

parts of ice-bedrock interface Γ0(t) where ice is frozen to the ground, we impose zero velocity

vi = 0 boundary condition, which includes both the no sliding condition and the imperme-

ability condition. On the parts of ice-bedrock interface Γs(t) where ice is at its the melting

point, we impose a Rayleigh friction boundary condition or the so-called linear sliding law

given by:

vini = 0 niσijtj = −β2vjtj (2.5)

where parameter β2 denotes a given sliding coefficient, ni denotes the normal unit vector at

the ice bottom surface, and tj denotes any unit vector tangential to the bottom surface. On

the side or lateral boundaries, we impose either Dirichlet boundary conditions if the velocities

are known, or periodic boundary conditions.

For numerical purposes, it is often preferable to use dimensionless variables. Here, we use

two different set of scales, depending on whether we solve the mechanic parts of the model

or thermo-mechanically coupled system of equations. In the former, we use the scales often

used across the glaciology literature (Baral et al., 2001; Hutter, 1983), while in the latter the

importance of diffusion length scale is recognized.
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In the case of mechanics only the following independent scales are used to non-dimensionalize

the equations

Lsc = H , τsc = ρgLsc sinα , vsc = 2nA0Lscτ
n
sc (2.6)

where is H is the glacier thickness or the maximum vertical domain size, A0 is the isothermal

deformation rate factor and α is the mean bed slope.

In the form of the non-dimensionalized variables we can then rewrite the governing equations

as follows:
∂v′i
∂x′i

= 0 (2.7)

∂τ ′ij
∂x′j

− ∂P ′

∂x′i
+ F ′i = 0 (2.8)

ε̇′ij =
1

2
(
∂v′i
∂x′j

+
∂v′j
∂x′i

) = 2−nτ ′n−1
II τ ′ij (2.9)

where F ′i is now defined as F ′i = (1, 0,− cotα).

The model parameters are the stress exponent n, the mean bed slope α and domain size in

each horizontal direction, i.e. L′x and L′y. L
′
z is always arbitrarily chosen equal to 1.

In the case of the thermo-mechanically coupled set of equations, the four independent scales

are used to non-dimensionalize the thermo-mechanically coupled equations: temperature,

stress, time and length. The characteristic scales are chosen such that the coefficients in front

of the diffusion and strain heating terms in the temperature evolution equation (Equation

2.3) reduce to 1.

T =
nRT 2

0

Q
, τ = ρcpT , t = 2−na−1

0 τ−ne
Q
RT0 , L =

√
k

ρcp
t (2.10)

Additionally, we can derive their dependent combinations such as the velocity scale given by

v = L
t
. We obtain the dimensionless primed-variables by normation with the characteristic

scale for the variable given in Equation 2.10.

In the form of the non-dimensionalized variables, we can then rewrite the governing equations

as follows:
∂v′i
∂x′i

= 0 (2.11)

∂τ ′ij
∂x′j

− ∂P ′

∂x′i
+ F ′i = 0 (2.12)

∂T ′

∂t′
+ v′i

∂T ′

∂x′i
=
∂2T ′

∂x′i
2 + τ ′ij ε̇

′
ij (2.13)
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ε̇′ij =
1

2
(
∂v′i
∂x′j

+
∂v′j
∂x′i

) = 2−nτ ′n−1
II exp

(
nT ′

1 + T ′

T ′0

)
τ ′ij (2.14)

where F ′i is now defined as F ′i = F (1, 0,− cotα) and F = ρg sinαL
τ .

The model parameters are the non-dimensional initial temperature T ′0, stress exponent n, non-

dimensional force F , the mean bed slope α, non-dimensional domain height L′z and horizontal

domain size L′x and L′y.

Furthermore, we analyse a special mathematical case, in 1-D, and in which case all horizontal

derivatives vanish ( ∂
∂x′ = ∂

∂y′ = 0). The only non-vanishing stress component τxz and pres-

sure P are determined by analytical integration and are constant in time for a fixed domain.

To derive the equations, we use the fact that stresses vanish at the surface and the bound-

ary condition on the velocity, where we set the basal velocity (both horizontal and vertical

component) to 0, which leads to

∂T ′(z, t)

∂t′
=
∂2T ′(z, t)

∂z′2
+ 2(1−n)(FL′z)

(n+1)(1 − z

L′z
)(n+1) exp

(
nT ′(z, t)

1 + T ′(z,t)
T ′0

)
(2.15)

v′x(z, t) = 2(1−n)(FL′z)
n

∫ z

0
(1 − z′

L′z
)n exp

(
nT ′(z, t)

1 + T ′(z,t)
T ′0

)
dz (2.16)

where L′z is the non-dimensional height of the domain (ice thickness).

Note that the velocity and strain heating terms (Equations 2.15 and 2.16) are now a function

of temperature only, and hence, depth and time. Therefore, to obtain a solution of the cou-

pled system one first needs to determine the temperature evolution profile, while the velocity

can then be obtained diagnostically by a simple numerical integration. This decoupling of

the strain heating term from the velocity dependence enable us to obtain a reference nu-

merical solution of a 1D coupled thermo-mechanical model by solving numerically just the

temperature evolution equation.

2.2.2 Numerical implementation

The coupled thermo-mechanical Stokes equations (Equations 2.11-2.14) are discretized using

the Finite Difference Method (FDM) on a staggered Cartesian grid. Depending on the ex-

periment both regular and irregular grid spacing is used. Among many numerical methods

currently used to solve partial differential equations, the finite difference method (FDM) is

most commonly used and has been successfully applied in solving the same set of equations

in many geophysical problems, i.e geodyamics community (Gerya, 2009; Harlow and Welch,

1965; Ogawa et al., 1991). The staggering of the grid provides that the method is second
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My(i,j+1/2)

My(i,j-1/2)

Mx(i-1/2,j) Mx(i+1/2,j)

C(i,j)

V(i-1/2,j+1/2) V(i+1/2,j+1/2)

V(i-1/2,j-1/2) V(i+1/2,j-1/2)

Figure 2.1: 2D staggered grid positioning: C represents variables located at cell center, V
depicts variables located at cell vertices and Mx and My represents variables located at cell
mid-faces in x or y direction.

order conservative (Gerya and Yuen, 2003; Patankar, 1980) and free of the oscillatory pres-

sure modes (Shin and Strikwerda, 1997). Furthermore, the finite difference discretization of

the thermo-mechanically coupled Stokes equations on a staggered grid produce simple, yet

highly compact stencils. This can easily lead to easily parallellizable algorithms that are well

suited for modern highly parallel architectures like computer graphics cards (Omlin, 2017).

Since our main motivation is to develop a 3-D solver capable of resolving the highly non linear

physics at the high spatial and temporal resolution efficiently utilize the modern hardware is

crucial.

On the staggered grid different physical variables are located on the different geometrical

positions. For example, pressure nodes and normal components of the strain rate tensor

nodes are located at the cell centres. Velocity components are located at the cell mid-faces,

while shear components are located at the cell vertices (Gerya and Yuen, 2003). Figure 2.1

illustrates staggering of the variables in two dimensions. For the viscous fluid, rheology is

given by a power law in the form of the Glen’s flow law and therefore viscosity is a function

of the second invariant of the strain rate tensor (Equation 2.4). Values of the shear and

normal strain rate components are hence evaluated on the same grid position. This is done

by averaging the shear strain rate components to interpolate the values to the wanted position.

The same interpolation by averaging is needed to obtain the shear stress components which

are located on the cell vertices, but in that case averaging is done on the viscosity field.
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The advection term in the temperature equation is discretized using the first order upwind

scheme while the physical time integration is done using the implicit backward Euler numerical

scheme.

Our numerical approach for solving the above system of the coupled non-linear partial dif-

ferential equations is based on a classical pseudo-transient (PT) continuation method or the

relaxation method (Cundall et al., 1993; Frankel, 1950; Kelley and Keyes, 1998; Kelley and

Liao, 2013; Poliakov et al., 1993). This is an iterative and a matrix-free method. The basis

behind the method is the introduction of numerical time derivative τ (or the pseudo time)

into the actual physical equations one wishes to solve.

The modified equations (Equations 2.11-2.13) are then corresponding to the following:

dP

dτp
=
∂vi
∂xi

dvi
dτv

=
∂τij
∂xj

− ∂P

∂xi
+ Fi

dT

dτT
= −∂T

∂t
− vi

∂T

∂xi
+
∂2T

∂xi2
+ τij ε̇ij (2.17)

where we drop the primes for clarity. The right hand side of the equations is then substituted

by the force fv, pressure fp and temperature fT residuals. These residuals quantify the mag-

nitude of the imbalance of the corresponding equations. Hence, they represent the discretized

equation of the previous iteration level with the current solution vector.

dP

dτp
= fp

dvi
dτv

= fv

dT

dτT
= fT (2.18)

The spatial derivatives are then discretized on a staggered grid as described previously, while

the pseudo temporal integration is performed as follows:

xk+1 = xk + ∆τxfx (2.19)

where x represents either temperature, pressure or a specific velocity component, k is the

iteration number and ∆τx is the numerical time-step. The variable specific definition of each

numerical time-step while be provided further down in this section.

The algorithm iterates until pressure, force and temperature residuals vanish, meaning that

steady state (in pseudo time) is reached and the implicit numerical solution of the original

form of the physical equations is obtained. It is also important to emphasize here that this
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procedure leads to the two-way numerical coupling between temperature and mechanics, and

enables us to, upon convergence, recover an implicit solution of the non-linear partial differ-

ential equations (PDEs), since both the coupling terms and rheology are treated implicitly.

For example, physical viscosity ηk is a function of temperature and the velocity field (via

the the second invariant of the strain rate tensor); during the iterative process the physical

viscosity is always evaluated at the current time step and thus the non linear coupling terms

is treated implicitly.

In every iteration k, we update the effective viscosity ηkeff in the logarithmic space by taking

a fraction rη of the actual physical viscosity ηk and a fraction (1−rη) of the effective viscosity

calculated in the previous iteration ηk−1
eff .

ηkeff = exp(rη ln[ηk] + (1 − rη) ln[ηk−1
eff ]) (2.20)

The ratio rη is a viscosity relaxation factor and its value is set between 0 and 1. This relaxation

of the non-linearity is a continuation method since the effective viscosity iteratively approaches

the physical and non linear viscosity values within the pseudo-transient iterations. A similar

non-linear viscosity relaxation approach was successfully implemented in the ice sheet model

development by Tezaur et al. (2015).

During the iterative procedure the material is made slightly compressible, and thereby cri-

terion of incompressibility is relaxed. To balance the divergence free formulation of strain

rates, we introduce a parameter ηb. This is the numerical equivalent of the bulk viscosity and

is introduced during the normal stress component evaluation, where it is multiplied with the

pressure residual fp. Normal stress is hence given by τii = 2ηb(ε̇ii + ηbfp). Once the method

converges, pressure residual fp vanishes and the incompressible form of the normal stress is

recovered.

The numerical time steps needed for the pseudo temporal integration are chosen according

to the following rules and may vary at each grid point since ηkeff is evaluated at the specific

grid point:

∆τvi = rvi
min(∆x,∆y,∆z)2

2.1ndimη
k
eff (1 + ηb)

∆τp = rp
2.1ndimη

k
eff (1 + ηb)

max(nx, ny, nz)

∆τT =
1

2ndim
min(∆x,∆y,∆z)2

+ 1
∆t

(2.21)

where rvi and rp are relaxation parameters, ndim is the number of dimensions, ∆x, ∆y and

∆z are grid spacing, nx, ny and nz are the number of numerical grid points. ∆t is the actual

physical time step used for advancing the temperature in time. It can be noticed that ∆τvi
and ∆τT are modified explicit Courant-Friedrich-Lewy (CFL) diffusive time steps. The ∆τp
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is chosen such to balance the viscosity term introduced in ∆τvi and therefore reduce the

sensitivity of the iterative method on the value of physical viscosity.

Next, we define the velocity, pressure and temperature increments as:

∆vki = ∆τvif
k
v + (1 − ν

ni
)∆vk−1

i

∆P k = ∆τpf
k
p

∆T k = ∆τT f
k
T (2.22)

where we apply damping on the velocity increments with a goal of significantly reducing the

number of iterations needed for the method to converge. The similar strategy in damping

of the velocity increments was already successfully applied by Choi et al. (2013) and Yang

and Mittal (2014). The optimal value of the introduced parameter ν is found to be in a

range between 1 and 10, and it is usually problem dependent. This approach was successfully

implemented in recent PT developments by Räss et al. (2018) and Duretz et al. (2019).

The velocity, pressure and temperature fields are then updated at each iteration using the

following rules:

vki = vk−1
i + ∆vki

P k = P k−1 + ∆P k

T k = T k−1 + ∆T k (2.23)

The iteration procedure is repeated until an exit criterion max [abs(fk+1 − fk)] < tolnl is

reached where is tolnl is chosen threshold value.

We implemented the PT method in MATLAB and CUDA C programming languages. Com-

putations in CUDA C can be performed in both double and single floating point precision.

If not emphasized differently, the computations in CUDA C are performed in double floating

point precision. The implementation in the CUDA C is explained in the next section. The

codes examples based on PT method in both MATLAB and CUDA C programming language

are available for download from Bitbucket at https://bitbucket.org/alicul/tmc/.

2.3 Implementation of the method on computer graphic cards

Our GPU algorithm development effort is motivated by the aim to resolve the coupled thermo-

mechanical system of equations (Equations 2.11-2.14) with high spatial and temporal accuracy

in three dimensions. To achieve this we have exploited the low level intrinsic parallelism of

a shared memory device, i.e. the computer graphic card. Recent trends in the computing

industry show a shift from single core to many core architectures as an effective way of

increasing computational performance. This trend is common with both central processing
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Figure 2.2: Chip schematic for both the central processing unit (CPU) and graphical
processing unit (GPU) architecture: GPU architecture consist of thousands arithmetic and
logical units (ALU). On the CPU most of the on-chip space is devoted to controlling units
and cache memory, while the number of ALUs is significantly reduced

units (CPU) and graphic processing units (GPU) hardware architectures (Cook, 2012). A

GPU is a massively parallel device originally optimized for calculating the color of a pixel

independently from each other; in which case latency can be masked by high throughput, i.e.

compute as many jobs as possible in a reasonable time. A schematic representation (Figure

2.2) highlights the conceptual discrepancy between GPU and CPU; on the GPU chip, the

majority of the area is devoted to the arithmetic units while on the CPU a large area of the

chip hosts scheduling and control microsystems.

The programming model behind the GPUs is based around well-known parallel principle

called Single Instruction Multiple Data (SIMD), where each single instruction is executed on

each different data. The same block of instructions is executed by each thread. Massive paral-

lelism of the GPU, and with that very high performance, is achieved by executing thousands

of threads at the same time, which can effectively hide the latency. In numerical techniques

such as the finite-difference method one computes values on a grid of mesh points by approx-

imating spatial derivatives by differences between two (or more) adjacent neighbouring grid

points. This results in minimal, local and regular memory access. Additionally, this so-called

stencil operation is identical for each grid point throughout the entire computational domain.

Combined with matrix free discretization of the equations and iterative updates the FD sten-

cil evaluation is well suited for the SIMD programming philosophy behind the GPUs. The

key here is that one thread is calculating one grid point in each kernel. Since, on the device,

one core can simultaneously execute several threads, the set of operations are executed on the

entire computational domain almost concurrently. In order to mask the latency and achieve

high performance the optimal thread occupancy and thus numerical resolution must be high.
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Figure 2.3: Schematic illustrating the set-up for the numerical experiments: A)two-
dimensional model B) three-dimensional model. Both surface and the bed are flat and
inclined for a constant slope angle α. The model coordinate axes are shown and the applied
boundary conditions are also presented.

Some general disadvantages of using GPUs are therefore the time one needs to invest into

development of the new algorithm, and the need that this algorithm is suited to the GPU

massively parallel architecture. Algorithm development also needs to strongly take into the

account GPU threads and memory hierarchy and limit the transfer of data from and to

the GPU device. On the other hand, GPU’s are compact, highly available, relatively pro-

grammable devices which offer high performance (theoretical memory peak bandwidth and

gigaflops performance) and good price to performance ratio. To summarize, GPUs offer a suc-

cessful alternative to conventional CPUs and thanks to their massively parallel architecture

philosophy with thousands of cores and threads the performance gap between them today

can be more then two orders of magnitude (Omlin, 2017).

2.4 Model configuration

In order to verify the numerical implementation of the developed PT model, we consider three

numerical experiments based on a inclined box featuring a mean slope angle α. We perform

these numerical experiments on both two- and three-dimensional computational domains

(Figure 2.3A 2.3B, respectively). The extent of the computational domain is given by Ω2D =

[0 Lx] × [0 Lz] and Ω3D = [0 Lx] × [0 Ly] × [0 Lz] for two and three-dimensional

domain, respectively. The difference between the 2D and the 3D configuration lies in the

boundary conditions imposed at the base and at the lateral sides. At the surface, the zero

stress σijnj = 0 boundary condition is prescribed in all experiments.

The aim of Experiment 1 and 2 is to first verify the implementation of the mechanical part of

the solver, i.e. the Stokes solver, which is the most computationally expensive part (Equations

2.7-2.9). For these experiments, the model can therefore be considered isothermal. We com-

pare the numerical solutions we obtain to the solutions delivered by the finite element Stokes
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solver Elmer/Ice (Gagliardini et al., 2013), which has been tested thoroughly (Gagliardini

and Zwinger, 2008; Pattyn et al., 2008). Experiment 3 is thermo-mechanically coupled.

The model parameters are the stress exponent n, the mean bed slope α and two horizontal

distances Lx and Ly in their respective dimensions (x, y) and are given in Table 2.1.

Table 2.1: Non-dimensional model parameters and the dimensional values for comparison

Experiment Lx Ly α n β0 LDx LDy LDz
Exp.1 2D 10 - 10 3 - 2 km / 200 m

Exp.1 3D 10 4 10 3 - 2 km 800 m 200 m

Exp.2 2D 10 - 0.1 3 0.1942 10 km / 1 km

Exp.2 3D 10 10 0.1 3 0.1942 10 km 10 km 1 km

impose a no-slip or zero-velocity condition for all directions

In the Experiment 1, at the base, we impose a no-slip or zero-velocity condition in all di-

rections. We set the free slip boundary conditions at the lateral boundaries. Experiment 2

differs from the first one with regards to both the implemented periodic boundary conditions

on the lateral sides, and the basal prescribed linear sliding law (Equation 2.5). The 3D and

2D sliding coefficients are given as follows:

β2(x, y) = β0(1 + sin
2πx

Lx
sin

2πy

Ly
)

β2(x) = β0(1 + sin
2πx

Lx
) (2.24)

where β0 is a chosen non-dimensional constant. Therefore, the model configuration of Exper-

iment 2 corresponds to the ISMIP benchmark (Pattyn et al., 2008) experiment C in the 3D or

experiment D in the 2D case. The differences can arise depending on the prescribed values of

the parameters α, Lx, Ly and β0. This experiment is exactly the same as ISMIP experiments

C and D at L = 10 km (Pattyn et al., 2008), but in our case we use non-dimensional variables.

In contrast to Experiments 1 and 2, for Experiment 3 the configuration and the boundary

conditions are identical to the Experiment 1, while the additional boundary conditions are

given on the temperature and fluxes. The deviation of the surface temperature T0 is kept

equal to 0 at the surface. At the bottom we set the vertical flux qz to 0, while on the lateral

sides both fluxes qx and qz are set to 0 as well. Additionally, Experiment 3 comprises also

the 1D model. The model parameters used in the Experiment 3 can be found in Table 2.2.
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Table 2.2: Experiment 3: Non-dimensional model parameters and the dimensional values
for comparison

Experiment Lx Ly Lz α n F T0 LDx LDy LDy TD0
1D - - 3 × 105 10 3 2.8 × 10−8 9.15 / / 300 m -10 ◦C

2D 10Lz - 3 × 105 10 3 2.8 × 10−8 9.15 3 km / 300 m -10 ◦C

3D 10Lz 4Lz 3 × 105 10 3 2.8 × 10−8 9.15 3km 1.2 km 300 m -10 ◦C

2.5 Results and performance

2.5.1 Experiments results

Experiments 1 and 2: Stokes solver

In this section, we report and compare our numerical solutions obtained by the PT method

(CUDA C implementation) to the reference Elmer/Ice model. All the values are reported in

their dimensionless form, while the horizontal axes are always scaled with their aspect ratio.

In Figure 2.4, the results of the two-dimensional Experiment 1 simulation are reported. Since

this is a two-dimensional experiment, we report both horizontal Vx and vertical velocity Vz

components at the top surface. Since at the left and right boundary horizontal velocity is set to

zero, the maximum value obtained by the ice flow is located in the middle of the slab. Contrary

to the horizontal velocity, the boundary condition on the vertical velocity reduces to a free slip

boundary condition (∂Vz/∂x = 0). On the left side, the ice is pushed down (compression),

and therefore the values of the vertical velocity are negative, while on the right side the ice

is being pulled up (extension), and values of the vertical velocity are positive. The results

obtained with our PT algorithm are in good agreement with the numerical solutions produced

by Elmer/Ice. The numerical resolution of the Elmer/Ice model is 1001 × 275 (8.25 × 105

DoF’s) grid points in x and z directions, while we employed 2047 × 511 (31.38 × 105 DoF’s)

grid points for the PT method. The DoF represent the number of degrees of freedom (DoF),

i.e. 3 variables in 2D (Vx, Vz, P ) and 4 variables in 3D (Vx, Vy, Vz, P ) multiplied by the number

of grid points involved.

In Figure 2.5, the results of the three-dimensional Experiment 1 simulation are reported. We

report the horizontal Vx, Vy and vertical velocity Vz components at the top surface in the

upper panel, while a comparison with the reference solution from Elmer/Ice at y ≈ Ly/4 is

made in the lower panel. Again, there is a good agreement between the models. In the case

of the PT method, the numerical resolution used was 319× 159× 119 (≈ 24.14× 106 DOF’s)

grid points in x, y and z directions. The numerical resolution used in Elmer/Ice was set to

61 × 61 × 21 (≈ 3.1 × 105 DOF’s).
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Figure 2.4: Non-dimensional simulation results for the 2D set-up of Experiment 1: A)
horizontal surface velocity B) vertical surface velocity across the slab. The results of both
PT CUDA model and Elmer/Ice model are reported and compared. The horizontal distance
x is scaled with the reported aspect ratio Lx, while the non-dimensional values of velocities
are reported. For comparison the maximum horizontal velocity (≈ 0.0365) would correspond
to ≈ 174 m

yr . The horizontal distance is 2 km, while the ice thickness is 200 m. The box is
inclined for 10◦.
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Figure 2.5: Non-dimensional simulation results for the 3D set-up of Experiment 1: in the
upper panel from left to right (A, C and E) surface velocity components (Vx, Vy and Vz)

are shown. The black solid line depicts the position where y =
Ly

4 . In the bottom panel

from left to right (B, D and F), the surface velocity components (Vx, Vy and Vz) at y =
Ly

4
are reported and compared with Elmer/Ice model. Horizontal distances x and y are scaled
with the reported aspect ratio  Lx and  Ly respectively, while all the values of the velocity
are given in their non-dimensional form. For comparison the maximum horizontal velocity
(≈ 0.022) would correspond to ≈ 105 m

yr . The horizontal distance is 2 km in x-direction, 800
m in y-direction, while the ice thickness is 200 m. The box is inclined for 10◦.
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Experiment 2 considers the case where ice is sliding at the base. This experiment is exactly

the same as ISMIP experiments C and D at L = 10 km, but in our case we use non-dimensional

variables. The periodic boundary conditions are prescribed at the lateral boundaries. In Fig-

ure 2.6, the results of the two-dimensional Experiment 2 simulation are reported. Elmer/Ice

solution was obtained with the numerical resolution of 241 × 120 (≈ 8.7 × 104 DOF’s), while

the PT method used the numerical resolution of 511 × 127 grid points (1.95 ≈ 105 DOF’s).

Both velocity components (Vx and Vz) at the surface of the slab are shown and compared

between the models. Again, excellent agreement between the models is obtained.

In Figure 2.7, the PT method simulation results for the surface velocity components (Vx, Vy

and Vz) are shown in the upper panel, while in the lower panel surface velocity components

at y ≈ Ly/4 are presented and compared. In this simulation the Elmer/Ice model used the

numerical resolution of 61×61×21 (≈ 3.12×105 DOF’s), while the solution obtained with the

PT method used the numerical resolution of 63×63×31 (≈ 1.23×105 DOF’s). Good agreement

between the numerical implementations is seen, even though some differences between the

solutions can be seen in horizontal velocity component Vy. We explain this differences with

the fact that the grid does not coincide with the y =
Ly
4 and its dependent on the numerical

resolution. Additionally, since the flow is driven by the basal boundary condition velocity

component Vy is more then two orders smaller then the velocity component Vx, therefore the

differences are more pronounced.

As already stated, the differences between Experiments 1 and 2 can be found in the applied

boundary conditions. Periodic boundary conditions are applied on the lateral side, while

linear sliding law is applied at the base. This results in order of magnitude higher values in

the convergence rate and therefore higher time to the solution. A closer investigation reveals

that this is due to the periodic boundary conditions, since the viscosity ratio is similar in

both experiments and additional non-linearities due to slip do not introduce new significant

non-linearities.

Numerical time integration and thermo-mechanical coupling: Benchmarking of

our implementation

Here we report the numerical solutions obtained by the three developed algorithms based

on the PT method. They are implemented in either MATLAB or CUDA C programming

languages; the 3D model, addressing the full set of equations in x, y and z coordinates, the

2D model in which there is no variation in y direction, thus delivering a numerical solution

only in x and z coordinates; the 1D model in which there is no variation in neither x nor y

direction.

The 1D model is a special mathematical case, in which we can employ analytical integra-

tion to derive a physically semi-decoupled set of PDEs (Equation 2.15 and 2.16). From a
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Figure 2.6: Non-dimensional simulation results for the 2D set-up of Experiment 2: A)
horizontal surface velocity B) vertical surface velocity across the slab. The results of both
PT CUDA model and Elmer/Ice model are reported and compared. The horizontal distance
x is scaled with the reported aspect ratio Lx, while the non-dimensional values of velocities
are reported. For comparison the maximum horizontal velocity (≈ 5.58) would correspond
to ≈ 16.9 m

yr . The horizontal distance is 10 km, while the ice thickness is 1 km. The box is
inclined for 0.1◦.
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Figure 2.7: Non-dimensional simulation results for the 3D set-up of Experiment 2: in the
upper panel from left to right (A, C and E) surface velocity components (Vx, Vy and Vz) are

shown. The black solid line depicts the position where y =
Ly

4 . In the bottom panel from

left to right (B, D and F), the surface velocity components (Vx, Vy and Vz) at y =
Ly

4 are
reported and compared with Elmer/Ice model. The horizontal distances x and y are scaled
with the reported aspect ratio Lx and Ly respectively, while all the values of the velocity
are given in their non-dimensional form. For comparison the maximum horizontal velocity
(≈ 5.42) would correspond to ≈ 16.4 m

yr . The horizontal distance is 10 km in x-direction, 10
km in y-direction, while the ice thickness is 1 km. The box is inclined for 0.1◦.
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computational point of view, one can numerically solve this PDE with a high spatial and

temporal resolution and therefore minimize the influence of numerical errors. To establish

a 1D reference solution for both the temperature and velocity profile, we have numerically

solved Equation 2.15 on regular grid, varying numerical time steps until we have determined a

reference solution. The influence of different time integration methods was also investigated.

As a reference solution, we taken the run with 4000 grid points and a time step of 5 × 105

in dimensionless value. The numerical time integration is performed using a backward Euler

implicit method. The total simulation time was 2.9 × 108 and therefore 580 numerical time

steps were performed. The 1D algorithm was implemented using the MATLAB programming

language. Using the dimensional value, the numerical time step used would correspond to

around 4.3 days, while the total simulation time corresponds to approximately 6.7 years. All

the values are reported in their dimensionless form using the scales given in the Equation

2.10, while the horizontal axes are scaled with the non-dimensional ice thickness Lz in all the

figures.

The PT solver was then run with exactly the same physical parameters as the reference model,

for varying numerical resolutions. In Figure 2.8, we show the reference solution and compare

it at three different spatial numerical resolutions and three different physical times. The grey

area in Figure 2.8 highlights when melting temperature is passed. The vertical numerical

resolution nz used was 31, 95 and 201 grid points. The numerical solutions were compared

at non-dimensional times 1 × 108, 2 × 108 and 2.9 × 108. (Using the dimensional values this

would correspond to 2.3, 4.6 and 6.7 years). One can notice that at relatively short times,

while the coupling is still minor, solutions at all numerical resolutions agree with each other

and with the reference solution. As soon as the coupling becomes stronger, the solutions

obtained with a lower numerical resolution start to deviate from the reference model, while

the solution obtained at high spatial resolution with PT model is still satisfactory. Note that

after 6.7 years, the model would reach melting temperature and is not realistic.

Next, the influence of the numerical coupling method and numerical time integration in phys-

ical time is studied. Hence, three different numerical models were compared. The first model

is the coupled PT method, described in the numerical section, where the viscosity and there-

fore the strain heating term is implicitly determined at the current time step. The numerical

time integration in physical time is performed using the backward Euler implicit method. The

second model differs from the first one in a sense that the mechanical and thermal model are

numerically decoupled. Physically, the viscosity, and hence the strain heating term, are still

coupled and are a function of temperature. For this case, in the mechanical model viscosity

and strain heating terms are a function of temperature obtained at the previous time step.

The strain heating term can therefore, during a single time step, be considered as a constant

source term in the temperature evolution equation. Again, for the second model numerical

time integration in physical time is performed using the backward Euler implicit method. The
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Figure 2.8: Non-dimensional simulation results for the A) temperature deviation T B)
horizontal velocity component Vx. The results of the PT model at three different numerical
resolutions are reported and compared with a reference model results. Vertical resolutions
used are LR = 31, MR = 95 and HR = 201 grid points. The results are compared at non-
dimensional times 1 × 108, 2 × 108 and 2.9 × 108. Using the dimensional values this would
correspond to 2.3, 4.6 and 6.7 years. The vertical distance z is scaled with the ice thickness
Lz, while the non-dimensional values of temperature deviation and velocities are reported
on x axis. Shaded area corresponds to the part of the solution which is above the melting
temperature and it is therefore unphysical. The melting temperature in non dimensional
units approximately corresponds to 0.35. This configuration would correspond to a 300
m thick slab inclined for the 10◦ angle with a surface temperature of -10◦C. Maximum
initial velocity for the isothermal slab would correspond to approximately 486 m

yr , while the
maximum velocity just before the melting point is reached correspond to 830 m

yr . The flow

law constant a0 used corresponds to 8.75 × 10−13Pa−3s−1
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Figure 2.9: Non-dimensional simulation results for the A) temperature deviation T B)
horizontal velocity component Vx. The results of both coupled and uncoupled model with
different numerical time integration methods at three different times are reported and com-
pared with a reference model results. The results are compared at non-dimensional times
1 × 108, 2 × 108 and 2.9 × 108. Using the dimensional values this would correspond to
2.3, 4.6 and 6.7 years. The vertical distance z is scaled with the ice thickness Lz, while
the non-dimensional values of temperature deviation and velocities are reported on x axis.
Shaded area corresponds to the part of the solution which is above the melting tempera-
ture and it is therefore unphysical. The melting temperature approximately corresponds to
0.35 of temperature deviation. This configuration would correspond to a 300 m thick slab
inclined for the 10◦ angle with a surface temperature of -10◦C. Maximum initial velocity for
the isothermal slab would correspond to approximately 486 m

yr , while the maximum velocity
just before the melting point is reached correspond to 830 m

yr . The flow law constant a0 used

corresponds to 8.75 × 10−13Pa−3s−1
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third model differs from the second one such that a numerical time integration in physical

time is performed using the forward Euler explicit method. Therefore, in this case we inves-

tigate the influence of the numerical coupling and the numerical time integration method on

the numerical solution. For both explicit and implicit numerical time integration the same

time step is used 5× 105 in dimensionless value. The total simulation time was 2.9× 108 and

therefore 580 numerical time steps were performed. The vertical numerical resolution with

201 grid points is used for all models. We make sure that the chosen time step for explicit inte-

gration of diffusion equation is below the stability condition or the Courant−Friedrichs−Lewy

condition (CFL) for the explicit scheme given by ∆z2

2.1 , where ∆z represent the grid spacing

in vertical direction. In Figure 2.9, we show the numerical solutions of the fully coupled

method with backward Euler (implicit) time integration and two uncoupled methods with

either backward (implicit) or forward (explicit) Euler time integration. These results are

also compared with the reference model solution. Interestingly, a good agreement between

all methods is achieved, suggesting that if high enough spatial and temporal resolution are

chosen all methods can capture the coupled flow correctly. For larger times, when a physical

coupling is stronger, both the uncoupled models give a slightly smaller values then for the

coupled model for both the temperature and velocity.

Next, we have additionally verified that developed 2D and 3D algorithms can also reproduce

the same results if appropriate boundary conditions are implemented. For example, in both

2D and 3D models periodic boundary conditions are implemented on the lateral side, similar

to the Experiment 2 case. In this case, all the variable variations in x or y coordinate vanish

( ∂
∂x and ∂

∂y ) and therefore both models reduces to the 1D problem. In the 3D model run, we

used the numerical resolution of 127 × 127 × 127 grid points in x, y and z direction, while in

the case of a 2D model the numerical resolution of 127× 127 grid points in x and z directions

was used.

In Figures 2.10 and 2.11, we show the non-dimensional numerical simulations results for the

temperature T and horizontal velocity Vx for both the three and two-dimensional cases at

three different physical times. The numerical solutions were compared at times 0.7 × 108,

1.4 × 108 and 1.9 × 108. Using the dimensional values this would correspond to 1.6, 3.2 and

4.4 years. All units are non-dimensional. As expected from a 1D model solution, temperature

varies only as a function of time and depth with the highest value obtained close to the base

and at the later times. Similarly, the velocity profile is equivalent to the 1D model solution

and the largest velocity value is found at the surface. For the 2D and 3D model we report

only the horizontal velocity component Vx, since Vy and Vz are negligible. Hence, spatial

variation can only be seen in the vertical direction.

In Figure 2.12, we show a comparison of all PT method based models and a reference solution.

Good agreement between all models is achieved at initial times, while temperature values are

still low, and the coupling is not so pronounced. At later times, closer to the thermal runaway
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Figure 2.10: Non-dimensional simulation results at three different time stages for both 2D
and 3D model implementations are presented. In the left column the spatial distribution of
the temperature deviation from the initial temperature T is shown for a 3D model, while
in the right column the same is shown for a 2D model implementation. For readability,
the length scales are rescaled with Lz. The numerical solutions were compared at times
0.7 × 108, 1.4 × 108 and 1.9 × 108. Using the dimensional values this would correspond to
1.6, 3.2 and 4.4 years. This configuration would correspond to a 300 m thick slab inclined
for the 10◦ angle with a initial surface temperature of -10◦C. Maximum initial velocity for
the isothermal slab would correspond to approximately 486 m

yr , while the maximum velocity
just before the melting point is reached correspond to 830 m

yr .
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Figure 2.11: Non-dimensional simulation results at three different time stages for both 2D
and 3D model implementations are presented. In the left column the spatial distribution of
the horizontal velocity component Vx is shown for a 3D model, while in the right column
the same is shown for a 2D model implementation. For readability, the length scales are
rescaled with Lz.The numerical solutions were compared at times 0.7 × 108, 1.4 × 108 and
1.9 × 108. Using the dimensional values this would correspond to 1.6, 3.2 and 4.4 years.
This configuration would correspond to a 300 m thick slab inclined for the 10◦ angle with a
initial surface temperature of -10◦C. Maximum initial velocity for the isothermal slab would
correspond to approximately 486 m

yr , while the maximum velocity just before the melting
point is reached correspond to 830 m

yr .
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Figure 2.12: Non-dimensional simulation results for the A) temperature deviation T B)
horizontal velocity component Vx. Results of three PT models implementations (1D, 2D
and 3D model) at three different times are reported and compared with a reference model
results. Vertical resolutions used are 31, 95 and 201 grid points. The results are compared
at non-dimensional times 0.7 × 108, 1.4 × 108 and 1.9 × 108. Using the dimensional values
this would correspond to 1.6, 3.2 and 4.4 years. The results of a 2D model are taken at
location x = Lx

2 , while the results of a 3D model were taken at location x = Lx

2 and y =
Ly

2 .
The vertical distance z is scaled with the ice thickness Lz, while the non-dimensional values
of temperature and velocities are reported on x axis. Shaded area corresponds to the part
of the solution which is above the melting temperature and it is therefore unphysical. The
melting temperature approximately corresponds to 0.35 of temperature deviation. This
configuration would correspond to a 300 m thick slab inclined for the 10◦ angle with a surface
temperature of -10◦C. Maximum initial velocity for the isothermal slab would correspond to
approximately 486 m

yr , while the maximum velocity just before the melting point is reached
correspond to 830 m

yr .
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(Clarke et al., 1977), slight deviations of all lower resolution models (127 grid points) can be

noticed, which suggest that a higher spatial resolutions is needed to properly capture the

behaviour close to the thermal runaway. This is additionally corroborated with the previous

results, where a higher vertical resolution of 201 grid points prove sufficient to model the

coupled flow even at the larger times. The lower vertical resolution of only 127 grid points

is chosen because of the 3D model, to achieve reasonable computation times. Therefore, it is

established that at high enough numerical resolution all algorithms can successfully resolve

the coupled thermo-mechanical ice flow.

Experiments 3: Thermo-mechanical coupling

Now we report the numerical solutions obtained by the 2D and 3D PT algorithms. The

obtained solutions are compared to the 1D solutions to investigate the spatial variations in

temperature and velocity for the prescribed boundary conditions. All the values are reported

in their dimensionless form, while the horizontal axes are always scaled with their aspect

ratio. In the 3D model run, we used the numerical resolution of 511 × 255 × 127 grid points,

while in the case of a 2D model the numerical resolution of 511 × 127 grid points was used.

The numerical time step used was 5 × 105 in dimensionless value. The total simulation non-

dimensional time was 2.9 × 108 and 580 numerical time steps were performed. The results

were compared at non-dimensional times 1×108, 2×108 and 2.5×108. Using the dimensional

values this would correspond to 2.3, 4.6 and 5.8 years.

In Figures 2.13 and 2.14, the results of both two and three-dimensional Experiment 1 simu-

lations are reported for temperature T and velocity component Vx. Contrary to the previous

experiment, all three velocity components are now variable in space and time. At all times,

both temperature and velocity reach their highest value at the middle of the box set-up at

locations x = Lx
2 and y =

Ly
2 in 3D and at x = Lx

2 in 2D. The highest values of temperature

are always located at the bottom, while the highest value of velocity is now just below the

surface. This can be seen at all times. Interestingly, a significant temperature rise is also

located close to the stagnant lateral boundaries. This can be assigned to a now spatially vari-

able strain heating term. Additionally, spatial variability of the temperature in all directions

confirms the need for high spatial numerical resolution not only in the vertical direction, but

also in the horizontal directions.

In Figure 2.15, we compare the 1D model, obtained by the PT method and reference solution,

with the solutions obtained with the 2D PT model and the 3D PT model for both the

temperature T and horizontal velocity component Vx at three different times. The numerical

solutions at x = Lx
2 location is taken for the 2D model, while the numerical solution at

location x = Lx
2 and y =

Ly
2 is taken in the 3D case. Since the initial time, the temperature

deviation is 0 throughout the slab for all models, the only differences between the models
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Figure 2.13: Non-dimensional simulation results for the Experiment 3 at three different
time stages for both 2D and 3D model implementations are presented. In the left column
the spatial distribution of the temperature deviation from the initial temperature T is shown
for a 3D model, while in the right column the same is shown for a 2D model implementation.
For readability, the length scales are rescaled with Lz. The results are compared at non-
dimensional times 1 × 108, 2 × 108 and 2.5 × 108. Using the dimensional values this would
correspond to 2.3, 4.6 and 5.8 year. The melting temperature approximately corresponds to
0.35 of temperature deviation. This configuration would correspond to a 300 m thick slab
inclined for the 10◦ angle with a surface temperature of -10◦C
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Figure 2.14: Non-dimensional simulation results for the Experiment 3 at three different
time stages for both 2D and 3D model implementations are presented. In the left column
the spatial distribution of the horizontal velocity component Vx is shown for a 3D model,
while in the right column the same is shown for a 2D model implementation. For readability,
the length scales are rescaled with Lz. The results are compared at non-dimensional times
1 × 108, 2 × 108 and 2.5 × 108. Using the dimensional values this would correspond to 2.3,
4.6 and 5.8 years.
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Figure 2.15: Non-dimensional simulation results for the Experiment 3: for the A) tem-
perature deviation T B) horizontal velocity component Vx. Results of three PT models
implementations (1D, 2D and 3D model) with a periodic boundary conditions at the lateral
sides at three different times are reported and compared with a reference model results. The
results are compared at non-dimensional times 1 × 108, 2 × 108 and 2.5 × 108. Using the
dimensional values this would correspond to 2.3, 4.6 and 5.8 year. Results of a 2D model are
taken at location x = Lx

2 , while the results of a 3D model were taken at location x = Lx

2 and

y =
Ly

2 . Vertical distance z is scaled with the ice thickness Lz, while the non-dimensional
values of temperature and velocities are reported on x axis. Shaded area corresponds to the
part of the solution which is above the melting temperature and it is therefore unphysical.
The melting temperature approximately corresponds to 0.35 of temperature deviation. This
configuration would correspond to a 300 m thick slab inclined for the 10◦ angle with a surface
temperature of -10◦C. The non-dimensional velocity of 0.02 corresponds to approximately
830 m

yr .
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at initial time arise because of different stress distribution. For example, additional stress

tensor components in 2D and 3D, for aspect ratio used, can be as large as the shear stress

tensor component, therefore, velocity is reduced in the 2D and 3D dimension models. This

also gives rise to the differences in the strain heating term, and hence the source term in

the temperature evolution equation. Additionally, in the 1D case the shear stress tensor

component is a function only of depth and therefore a constant in time. This is not the case

in the 2D and 3D cases, where all stress tensor components are a function of both the spatial

position and time. This is further corroborated by the results in Figure 2.15, where both the

temperature and therefore the velocity are highest for the 1D model and significantly reduced

for the 2D and 3D models. This additionally confirms the need for the high resolution 3D

coupled models.

2.5.2 Computational performance

Now that we have verified our method, we wish to assess the computational performance of

the algorithm. We use two different metrics to assess the PT algorithm performance; the

effective memory throughput (MTPeff ) and the wall time. We first compare the effective

memory throughput of the vectorised MATLAB CPU implementation and CUDA C GPU

implementation. We employ double (DP) floating point precision for the CUDA C for fair

comparison. Next, we utilize the wall-time metric to compare the performance of our various

implementation (MATLAB, CUDA C) and compare those with the time-to-solution of the

Elmer/Ice solver. Comparison with Elmer/Ice is not the objective here. Results obtained with

Elmer/Ice are therefore used just for reference. We use two different methods to solve the lin-

ear system in Elmer/Ice: the direct method and the iterative method, for the 2D experiments

and the 3D experiments, respectively. The direct method utilized the UMFPACK routines

to solve the linear system, while the bi-conjugate gradient stabilized method (BICGstab)

method with ILU0 preconditioning was utilizited to solve the linear system in 3D experi-

ments. We employ the Experiment 1 configuration for all the performance measurements.

An Intel i7 4960HQ 2.6 GHz (Haswell arhcitecture) 4-cores CPU with Turbo Boost up to 3.8

GHz is used for all model runs involving the CPU. For simplicity, in all experiments a single

core of the CPU was utilized, hence no parallization techniques were employed in the CPU

algorithms. Hence, our reference MATLAB or Elmer/Ice single core CPU implementation is

not representative of the CPU hardware capabilities.

The PT solver relies on evaluating a finite difference stencil; each cell of the computational

domain needs thus to access neighbouring values in order to approximate derivatives. These

memory access operations are the performance bottleneck of the algorithm, making it memory

bounded. The performance of the algorithm therefore depend crucially on the speed of the
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memory transfers and not the rate of the floating point operations. This reflects today’s

hardware specifications displaying a significantly important flops-to-bytes ratio.

As shown by Omlin (2017), a relevant metric to assess the performance of the memory

bounded algorithms is therefore the effective memory throughput (MTPeff ) (Equation 2.25).

The MTPeff determines how efficiently data is transferred between the main memory and

the computation processor and is inversely proportional to the execution time.

MTPeff =
(Nx ·Ny ·Nz) · nt ·NIO ·Nprec

109 · tnt

[
GB

s

]
(2.25)

where (Nx · Ny · Nz) is the total number of grid cells, nt is the total number of numerical

iterations performed, Nprec is the computational floating point precision (single 4 bytes or

double 8 bytes), tnt is the total wall time in seconds needed to compute the required number

of iterations and the NIO is the number of memory accesses performed. NIO represents

the minimum of memory operations (read-and-write or read only) required to solve a given

physics problem. In our case, if we solve only the mechanical problem, the number of degrees

of freedom (DOFs) we need to solve and therefore also update in every iteration is 3 (Vx, Vz

and P ) in the 2D case, and 4 (Vx, Vy, Vz and P ) in the 3D case. The updates therefore require

the minimum of 6 (8) read or write operations in 2D (3D). The additional read-and write is

needed to resolve the non-linear viscosity. Therefore, NIO is equal to 10 in 2D case and to 12

in 3D case.

We report the MTPeff values obtained for the PT algorithm for both the vectorised MAT-

LAB CPU and CUDA C GPU implementation in double precision (Figure 2.16 A). We ad-

ditionally assess the GPU performance for two separate cases using the single floating point

precision. The results we obtain should be compared to the peak MTPpeak values for the

specific hardware used. The MTPpeak reports the memory transfer rate obtained by perform-

ing just memory copy operations without any computations; this value reflects the hardware

performance limit. Measured MTPpeak value for the Intel i7 4960HQ CPU is 20 GB/s, while

for the TITAN X GPU the value is 260 GB/s. The MATLAB CPU implementation utilizing

a single core of the CPU saturated at about 0.7 GB/s, while the CUDA C implementation

reached 16 GB/s. Hence, the MATLAB single core CPU implementation reaches 3.5% of the

(CPU) hardware peak value, while the GPU CUDA C versions runs around 6.15% using the

double precision arithmetics and 11% using the single precision arithmetics. From the GPU

MTPeff value it is seen that further performance gains can be obtained by optimising the

GPU code using more on the fly calculations or more efficient kernel arrangement.

We report the wall-time to the solution obtained with PT CUDA C solver, with both 2D

and 3D configurations, in Figure 2.16 B. In more detail, PT CUDA C enables us to solve

≈ 24 × 106 DOF’s in around 15 minutes. This wall time further reduces if a single precision

floating point arithmetic is used on the TITAN X (Maxwell) GPU, where only 3 minutes
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Figure 2.16: Performance evaluation of the PT mechanical solver in terms of: A) effective
memory throughput MTPeffective in GB

s ; B) Wall time (in seconds) to converge the Stokes
solver to eps = 1e − 8. The DoF represent the number of degrees of freedom, i.e. 3
variables in 2D (Vx, Vz, P ) and 4 variables in 3D (Vx, Vy, Vz, P ) multiplied by the number of
grid points used. We report the results obtained using 2D PT CPU single core vectorised
implementation in MATLAB, the PT CUDA C (2D and 3D) GPU implementation and
Elmer/Ice FEM single CPU core model run with a direct solver in 2D and iterative in
3D. The CPU codes were running on the Intel i7 4960HQ CPU processor with 8 GB RAM,
while the GPU codes were running on Nvidia Titan X (Maxwell) GPU with 12 GB on board
RAM. All the computations were performed in double precision floating point arithmetic’s,
except the two runs represented in the figure with the green square (2D) and diamond (3D),
which are performed using the single precision arithmetic’s. The PT MATLAB CPU and
Elmer/Ice single core CPU runs are only shown as a reference and are not to be used for
performance comparison.
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Figure 2.17: Performance evaluation of the PT mechanical solver in terms of: A) effective
memory throughput MTPeffective in GB

s ; B) Wall time (in seconds) to converge the Stokes
solver to eps = 1e − 8. The DoF represent the number of degrees of freedom, 4 variables
in 3D (Vx, Vy, Vz, P ) multiplied by the number of grid points used. We report the results
obtained using PT single CPU core vectorised implementation in MATLAB and the PT
CUDA C GPU implementation while running on different GPU chip. The CPU codes were
running on the Intel i7 4960HQ CPU processor with 8 GB RAM, while the GPU codes were
running on Nvidia Titan Black (Kelvin) GPU with 6 GB on board RAM, Nvidia Titan X
(Maxwell) GPU with 12 GB on board RAM, Nvidia Quadro P1000 (Pascal) GPU with 4
GB on board RAM and Nvidia Tesla GV100 (Volta) GPU with 16 GB on board RAM. All
the computations were performed in double precision floating point arithmetic’s. The PT
MATLAB single core CPU runs are only shown as a reference and are not to be used for
performance comparison.
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are needed to obtain the solution for the same amount of DOF’s. In further investigation, it

would be interesting to compare the results of the CPU algorithms obtained by utilizing all

cores with an algorithm using the GPU card of the same price and energy consumption range

like the CPU.

We further report the performance results obtained using the PT GPU CUDA C imple-

mentation, using four different graphical processing units(Figure 2.17). We produced the

data-points using only 3D PT codes. All the calculations are performed using double preci-

sion floating point arithmetics. We compared the MTPeff and wall time while varying the

numerical resolution used (DoF ). We use GPUs from various price range and chip genera-

tion. Using both the entry level GPU like QUADRO P1000 (Pascal), high end gaming cards

TITAN Black (Kepler) or TITAN X (Maxwell) and HPC GPU accelerators like Tesla V100

(Volta). MATLAB implementation peaks at 0.46 GB/s, QUADRO P1000 (Pascal) peaks

at 4.3 GB/s, TITAN Black (Kepler) reaches 12.4 GB/s, TITAN X (Maxwell) reaches 16.7

GB/s while the Tesla V100 (Volta) peaks at 83.2 GB/s. This performance differences can

be seen in terms of a wall time where numerical resolution of 511 × 255 × 127 grid points

(66× 106 DoFs) can be solved in around 1 hour on the TITAN BLACK GPU, 40 minutes on

the TITAN X GPU while just 8 minutes is needed on the TESLA V100 GPU. Also, it is worth

mentioning that around 4.5 GB of memory is used for solving a mechanical Stokes model at

this resolution. For example, this is more than the amount available on the QUADRO P1000

(4 GB). Additionally, the results show that using the more advanced GPU solutions like the

HPC GPU accelerators Tesla V100 (Volta) offers us a significant - order of magnitude higher

- performance increase compared to an entry level GPU solution, like the QUADRO P1000.

2.6 Discussion

Numerically resolving the first order physics governing the ice flow is imperative to properly

model the complex behaviour of ice sheets and glaciers. Current studies reveal that thermo-

mechanically coupled models do not converge below the grid refinement; it is thus questionable

how well numerical models approximates the mathematical ones. Unfortunately, only a few

studies investigate the numerical aspects of the thermo-mechanically coupled Stokes solvers

(Duretz et al., 2019). Few others (Zhang et al., 2015) are usually done with a very low spatial

(vertical) resolution, and do not address the influence of the numerical coupling method

and numerical time integration methods at all. The reasons are mainly the computational

limitation for numerical modelling of high resolution 3D non-linear ice flow.

To address these issues, we have developed a new numerical model based on an iterative

pseudo transient (PT) finite difference method. This results in a simple, highly parallelizable

matrix free algorithm well suited to make use of the intrinsic parallelism of the modern
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hardware accelerators, such as GPUs. These properties of the PT method, combined with the

modern graphic cards enable us to use the developed algorithms with a high spatial numerical

resolution in all three dimensions while still retaining reasonable computation times. This was

shown with extensive performance tests by investigating time to solution and the efficiency

of exploiting the current hardware capabilities. To verify that the solver gives accurate and

coherent results a set of experiments was performed and an excellent agreement with a widely

used glacier flow model Elmer/Ice is obtained.

One additional advantage of the PT transient method is its simple implementation and read-

able codes and hence the potential to also use it for educational purposes.

The efficiency of the PT method is limited by the viscosity contrast across the domain and

the implemented boundary conditions. This is mostly seen in the Experiment 2, where the

periodic boundary conditions are implemented and the number of iterations needed for the

model to converge, and therefore the time to solution, significantly increases.

The influence of two numerical integration methods, forward (explicit) and backward (im-

plicit) Euler method were studied and the influence of the numerical time step on the solution

was established. To determine the influence of the numerical time step, we have first chosen

a one-dimensional coupled thermo-mechanical experiment in which the coupling is strong.

Since the model does not account for a phase change, i.e. melting, and we do not impose

the constrain given by the pressure melting temperature the model solution will result in a

thermal runaway and the solution will diverge. We run the 1D model to the time 2.9 × 108

just before the thermal runaway starts to occur. Therefore the value of the numerical time

step needs to be chosen sufficiently small to resolve the physical process. By using the explicit

numerical time integration scheme time step is limited by the stability restriction (CFL condi-

tion) associated with the numerical method. This restriction limits the time step value and if

a high enough numerical resolution is used the time step can easily reduce to the value needed

to resolve the physical process. At low numerical resolutions this stability condition (CFL

condition) is not a good enough choice for the physical process in question. More specifically,

while the non-dimensional time needed to rise the temperature in our example was around

2 × 108, low resolution (less then 20 grid points) stability (CFL) condition results in values

higher then this time and hence it does not resolve the physical process sufficiently. On the

other side, usage of the implicit scheme for the time integration (both coupled or uncoupled)

should guarantee numerical stability and allows one to chose the time step for advancing in

time. Since the physical coupling is highly non-linear (exponential term) there is no guarantee

for convergence of any solver when using too large numerical time step not relevant to the

physical process in question and not capable of resolving the actual physics. Therefore, even

in the cases when we used the implicit scheme, the value of the numerical time step is reduced

to the values close to the explicit stability condition. One can also envision that usage of more

advance numerical time integration methods, i.e. Crank-Nicolson can improve the numerical
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stability, but the numerical time step will still have to be small enough to resolve the process.

Criterion needed to determine the sufficient time step for resolving the physical process will

be investigated in further detail in the next chapter of this thesis.

Next, two different methods of numerical thermo-mechanical coupling were investigated and

compared. It was shown that at high enough spatial and temporal resolution the differences

between the coupling method are relatively small, but nevertheless uncoupled model always

produce the numerical solution with less localization then a coupled one. On the other

hand, numerical coupling method can turn out to be an important factor when temperature

advection is included in the model and the additional physical coupling needs to be taken into

account. One can speculate that adding temperature advection into the model again indicate

the need for a high spatial resolution or will show a need for some better, flux conservative,

scheme then upwind.

To summarize, the presented PT method combined with the modern accelerators like the

high end gaming GPU’s enable us to run transient high resolution three-dimensional thermo-

mechanically coupled simulations on a desktop computer. Hence, enabling us to investigate

the influence of different coupling methods and tackle the problem of non-convergent solutions

under the grid refinement.

2.7 Conclusions

In this study, we developed a iterative model (PT model) well suited to exploit the capabilities

and advantages of the modern hardware, like the computer graphic card. The pseudo-transient

(PT) model is an iterative, matrix-free method based on the finite difference discretisation.

The algorithm implementation results in simple and readable codes, with great potential for

using in educational purposes. The developed algorithm is ported to CUDA C programming

language to benefit from the parallel capabilities of the GPU. This enabled us to use the high

spatial and temporal resolution in three dimensions and to investigate the thermo-mechanical

coupling and resolve the first order physics governing the ice flow.

We first benchmarked the mechanical component of the developed model against a community

standard model Elmer/Ice in a set of experiments specifically designed to test the various

components of the solver. For example, we first determined that the mechanical solver gives

accurate and coherent results for a variety of different set-ups and boundary conditions,

all while providing reasonable and competitive computation times. We later investigated

two different methods of numerical thermo-mechanical coupling and also investigated the

influence of two numerical integration methods, explicit and implicit. We showed that the

numerical time step needs to be chosen with care, no matter the implemented numerical time

integration scheme and that sufficiently high temporal resolution needs to be used to resolve
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the physical process in question. On the other hand, even though the differences between

the numerically uncoupled and coupled model are small, uncoupled model always produce

the numerical solution with less localization then a coupled one. Additionally, numerical

coupling can show to be important when temperature advection is studied.

We have also established that a relatively high spatial numerical resolution is needed to

properly resolve all the non-linearities of the coupled ice flow. For example, vertical resolution

of more than 100 grid points on a regular grid is needed, contrary to the previous studies

using only 5 − 20 grid points in the vertical direction. Additionally, we have also shown that

the horizontal spatial variation can influence the ice flow and hence high spatial numerical

resolution in all direction is needed to properly resolve the physics of the ice flow. Further we

have shown that, compared to lower order approximations, additional stress component can

significantly slow down the process of thermal runaway.

Our results provides a new insight into the importance of different numerical implementations

of thermo-mechanical coupling and shows the significance of the high spatial resolution, both

horizontal and vertical, in numerically resolving the highly non-linear coupled physics.
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Abstract

It is often speculated that thermo-mechanical coupling is responsible for glacier and ice sheet

surging, the generation and shut down of ice streams and the local transition from no sliding

to sliding. The processes controlling these phenomena are still heavily debated. Usually,

studies investigating the importance of strain heating are concentrated on one dimensional

steady state thermo-mechanical models which, under given assumptions, can be susceptible

to the analytical solutions. Here, we have numerically investigated the time evolution of a two

dimensional thermo-mechanically coupled model. The results were compared to the solution

of a one dimensional model. The importance of advection, horizontal diffusion and additional

stress gradients is shown. Additional stress gradients have the first order effects on the

solution, while advection plays an important role only in the later stages of the temperature

evolution. This was shown with the extended 1D model which approximates the effects of the

additional stress gradients. The solutions of the extended 1D model differed only slightly from

the computationally more expensive 2D model. By performing the parametric analysis (data

collapse), two distinct regimes of a thermo-coupled flow were identified: transient and steady

state regime. Parameters controlling the temperature and velocity increase are determined

and compared with the so-called stability parameter (Brinkman number), a parameter often

used to determine the importance of the strain heating. We have determined that the stability

parameter is a good predictor for only the steady state solution, but not for the transient

regime which is diffusion length scale independent. The importance of the transient regime

can also be deduced from the information that reaching the steady state often requires time

even up to 100 diffusion time scales, which is unrealistic. Therefore, we suggest that the

transient regime should be investigated further.
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3.1 General introduction: Towards an effective boundary con-

dition

One of the biggest challenges in glaciology is to understand the physical processes that take

place at, or very close to, the ice bedrock interface (Zoet and Iverson, 2016). Today, ice surface

velocity can be measured at unprecedented resolution using satellite or airborne measurements

(Joughin et al., 2010). However, ice velocity measurements at the base of glaciers are scarce

and often very localised. This is primarily because of the limited access to the glacier beds

(Chandler et al., 2006). Therefore, constraining the ice velocity at the base of the ice sheet or

glaciers still remains challenging and basal sliding remains a major source of uncertainty in

ice flow modelling (e.q. Cohen et al., 2005; Stearns and Van der Veen, 2018; Zoet and Iverson,

2016). To circumvent this problem, ice flow modellers usually rely on inverse modelling

with a goal of obtaining the slip coefficient (or the so-called friction parameter) and hence

constraining the current sliding velocity (e.q. Larour et al., 2012; MacAyeal, 1992; Shapero

et al., 2016). In the simplest, linear case, the functional form is given as τb = β2Vb, where τb is

the stress at the base, Vb is the velocity at the base and β is the unknown slip coefficient. The

inverse modelling approach is very useful for diagnostic ice flow modelling, but unfortunately

it is often not appropriate for long-term prognostic simulations or paleo-ice sheet modelling

(e.q., Krabbendam, 2016). This is mostly because the slip coefficient does not inform us about

the physics of sliding processes or the dependence of this coefficient on various influences like,

for example, temperature, water content, debris, basal topography. To reduce this uncertainty

a better understanding of basal processes and a physics based mathematical model of basal

sliding is needed (Schoof, 2005; Stearns and Van der Veen, 2018; Zoet and Iverson, 2016).

The basal thermal regime, the temperate ice layer, the rheology of basal ice, the effects of

basal meltwater and friction, water fluxes, surface water influx and basal topography are often

identified as key elements required to properly determine the magnitude of basal sliding. Since

the problem of determining basal boundary conditions is closely related to determining the

thermal field, detailed thermo-mechanical investigations are needed (Brown, 2011).

In the previous chapter, we have shown that obtaining an accurate numerical solution of the

thermo-mechanical Stokes equations requires high numerical resolution. This is mostly due to

strain heating, which concentrates most of the shearing close to the base. Analytical studies

investigating the strain heating are mostly concerned with the steady state solutions (Clarke

et al., 1977; Fowler et al., 2010; Yuen and Schubert, 1979b). While strain heating is often

accounted for in numerical models, we have shown that the effects of strain heating with a

Stokes models are usually not resolved at a sufficient scale. This is mostly due to the use of low

spatial resolution and too large time-steps. Resolving grid spacing of a meter scale and less in

the large scale three-dimensional coupled Stokes models is challenging and often not feasible

due to computational limitations. Therefore, taking into consideration the temperature and
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velocity increase due to strain heating would require us to prescribe an effective boundary

condition that accounts for the coupled processes at these scales. This motivated us to

quantify the temperature and velocity increase due to strain heating. Additionally, we plan

to identify at which conditions these increases are significant enough to require a special

treatment of the boundary layer. The primary goal here is stating a relationship between

basal drag τb and velocity increase ∆V between Stokes model without strain heating and the

thermo-mechanically coupled Stokes model. This relationship would represent the third type

of the boundary conditions (Robin boundary condition) or the, so called, effective boundary

condition. We start by extending the analysis of Clarke et al. (1977) and Yuen and Schubert

(1979b), who have set the theoretical basis on the effects of strain heating on ice flow, to

transient regime and two dimensions. This is achieved by solving the coupled full stress

equations, which enables us to study the effects of stress components and their gradients. Our

approach also gives the opportunity to assess the respective role of horizontal and vertical

advection on the stability.

In the following, we start by giving an overview of the mathematical model of the thermo-

mechanically coupled flow. Further, we describe the model set-up and the experiments. We

continue by presenting the results of the numerical experiments and the differences between

the models are shown. We then describe our parameter analysis and the determined relations

for the temperature and velocity increases due to strain heating, where we also describe the

implications of our results to the real ice masses. Finally, we discuss how our results relate

to the previous studies of Clarke et al. (1977) and Yuen and Schubert (1979b)and give our

concluding remarks.

3.2 Literature review on the effects of strain heating on ice

flow

Viscous heating is a heat source resulting from the transformation of mechanical energy to

heat (also often called strain heating). As a consequence of conservation laws, viscous heating

is a non-removable part of a system (Burg and Gerya, 2005; Landau and Lifshitz, 1963). It is

often considered that viscous heating is the main heat source responsible for melting the ice at

the base and therefore making the ice temperate at the bottom. However, the questions that

remain open are how does viscous heating influence the fluid (ice) flow and how significant is

the heat source?

Many studies have speculated that thermo-mechanical coupling can be responsible for some

still unresolved and interesting phenomena such as glacier and ice sheet surging (e.q., Clarke

et al., 1977; Schubert and Yuen, 1982), the generation and shut down of ice streams (e.q.,

Brinkerhoff and Johnson, 2015; Hindmarsh, 2009; Suckale et al., 2014), and the local transition
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from no sliding to sliding (e.q., Fowler and Larson, 1980a,b; Moore et al., 2009). Therefore,

further investigations of the thermo-mechanical coupling are needed.

Robin (1955) was the first to suggest that temperature can have a strong influence on the ice

flow and that ice sheet and glacier surging can be explained by the process of creep instability,

or the so called thermal runaway. Thermal runaway results from a positive feedback through

thermo-mechanical coupling. For a given stress, an increase in temperature leads to an

increase in deformation rate, which leads to an increase in viscous/strain heating, which

further increases temperature. The possibility of thermal runaway in glaciers and ice sheets

was studied by Clarke et al. (1977). They studied a simple slab model of heat transfer with

a fixed ice thickness and concluded that heat transfer in the slab is determined by three

dimensionless parameters: stability, advection and geothermal parameters. In particular,

they assessed the importance of strain heating with the value of the stability parameter.

This stability parameter varies slightly by definition and names, i.e. Brinkman (Turcotte

and Schubert, 2014), Gruntfest (Gruntfest, 1963) or Nahme number (Costa and Macedonio,

2003), and it is in most cases defined as a ratio between heat produced by viscous dissipation

and a conductive heat flux. Expressed differently, the stability parameter, or the Brinkman

number, measures the ability of the fluid to conduct away the frictionally generated heat -

the higher its value, the larger the temperature rises (Turcotte and Schubert, 2014). The

stability parameter is often considered as a good indicator for determining the importance

of strain heating, even though it presumes that the generated heat is dissipated through the

whole thickness of the slab.

Clarke et al. (1977) first numerically calculated the solutions for the steady state heat equation

with no advection and no heat flux at the base. Interestingly, their model is mathematically

very similar problem to the one in addressing thermal explosions (Frank-Kamenetzky, 1939),

with differences lying in the definition of exponential term. They determined that there can

exist up to three solutions to the problem which they termed ”subcritical”, ”supercritical”

and ”hot” branches. Below some critical value of the stability parameter, the three branches

exist for the same stability parameter. Above the critical value, only the solution on the ”hot”

branch exist, which is considered by the authors to be the creep instability or thermal runaway.

Note, however, that because temperature can rise well above the melting temperature of ice,

such a solution may not be found in natural systems.

Clarke et al. (1977) also numerically calculated a critical value for the stability parameter and

they have determined that this value is strongly dependent on the advection and geothermal

parameters, and that it can vary by up to 5 orders of magnitude. The authors have estimated

the critical values over the range of parameters corresponding to natural ice masses, and

concluded that creep instability can easily arise in the accumulation and ablation zones of

a glacier or an ice sheet. By extending their analysis further, they also calculated the time

scale (i.e., inverse growth rate) needed for the creep instability to develop, with perturbation
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analysis using the linearised time-dependent heat equation. The growth rate they obtained

by linear analysis showed that the time for the instability to grow is much larger than the

residence time of ice in the ablation zone and of the usual surge periods. Therefore, they

concluded that creep instability is most likely to occur in the accumulation zone and that

creep instability is an unlikely surge mechanism for glaciers. However, they do not exclude

the possibility that surges of ice sheets are triggered by creep instabilities.

The second study investigating the role of strain heating was proposed by Yuen and Schubert

(1979b). In their analysis, the authors considered the same set-up as Clarke et al. (1977),

i.e. a slab on a inclined slope, but used ice surface velocity instead of ice thickness as the

main prescribed variable. In the case of Clarke et al. (1977), the ice thickness is known and

kept fixed in time. Therefore, the strain heating term can be analytically determined from

the momentum balance and rheology. Mechanics can be decoupled from the energy solver,

and rheology and the strain heating term depends exponentially on temperature. Therefore,

velocity is only computed diagnostically. In the case of Yuen and Schubert (1979b), the a

priori known variable is the ice surface velocity, which leads to a coupled non-linear system

of equations for temperature and velocity that needs to be solved iteratively, with a goal of

determining the unknown ice thickness. Expressed differently, the main difference between

the models can be found in how the surface boundary condition in the mechanical solver

is implemented. Is it a Neumann boundary condition (BC), or a zero strain rate boundary

condition for an a priori given ice thickness, or a Dirichlet BC for an a priori given constant

velocity?

As in the case of Clarke et al. (1977), Yuen and Schubert (1979b) obtained multivalued

solutions for both temperature and velocity as a function of ice thickness, leading to either

subcritical or supercritical branches. Interestingly, both authors found that for certain param-

eters, solutions on both branches give the basal temperature below the melting temperature

for realistic values of ice thickness and surface velocity. They have further linearised both

temperature and momentum equations in both one and two dimensions and investigated the

stability of their steady state solutions where they found no unstable mode. The linear stabil-

ity of steady state solutions was then investigated in more details in the studies by Yuen and

Schubert (1977) for asthenospheric shear flows by Johns and Narayanan (1997). The main

conclusion is that stability depends on the choice of the boundary condition. Stability of

steady state solutions on both branches is obtained in the case of a Dirichlet boundary condi-

tion, which is the case they considered in the glaciology aspect, but in the case of a Neumann

boundary condition, the solutions on supercritical branch are often unstable - at least in one

dimensional stability analysis where the perturbation shear stress is fixed, like in the case of

Clarke et al. (1977). This physically destabilizing mechanism is explained in more detail in

Burg and Gerya (2005), while the differences between one dimensional and multidimensional

linear stability can be nicely seen in Yuen and Schubert (1979a), as well as Hindmarsh (2004)
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and Hindmarsh (2006); where the stabilising influence of varying the perturbation stress is

investigated. Unfortunately, this led to conclusions that thermo-mechanically coupled shallow

ice models are ill-posed and are not to be used.

Continuing their analysis, Yuen and Schubert (1979b) stated that even though linear sta-

bility analysis shows that both steady state solutions are stable to small perturbations, the

destabilizing effect of finite amplitude perturbations should be investigated further. While

Schubert and Yuen (1982) investigated the possibility that ice ages are initiated by creep

instability (thermal runaway) and surging of the East Antartic ice sheet, Yuen et al. (1986)

studied the explosive growth of creep instability in ice sheets. Altogether, these studies led to

the conclusions that linear stability analysis of the growth time is insufficient, and that full

non-linear thermo-mechanical coupling should be considered.

In his short note, Fowler (1980) questioned the applicability of the results obtained by Clarke

et al. (1977) and Yuen and Schubert (1979b). This was done on the basis that neither ice

thickness nor the surface velocity are known a priori, since they result from the ice dynamics,

and that ice flux, which depends on the accumulation, should rather be taken as a prescribed

variable. As further stated by the author, prescribing the ice flux rather then ice thickness

can have a stabilizing effect on the solution since this is equivalent to letting the top surface

evolve. Therefore, this may result in the solutions being single-valued. This was further

shown by Fowler and Larson (1980a,b) using a two dimensional plane flow and taking the

accumulation into the consideration while neglecting advection in the ice. Their results show

that the obtained steady state is unique and also linearly stable. Therefore, an important

take home message is that including the free surface has a stabilizing effect on the solution.

More recently, Fowler et al. (2010) revived the discussion by reducing the heat equation to a

balance between viscous heating and diffusion and assuming that most of the shear happens in

a layer near the base. This approximations reduced the parabolic non linear heat equation to

an elliptic one which is susceptible to a well known analytical solution (Turcotte and Schubert,

2014). For the chosen boundary conditions, the integration constants were approximated

(otherwise they could be determined only numerically) and the solution for the steady state

temperature in a slab with no advection was obtained. This approximate solution is then

coupled with the surface evolution equation and three separate cases representing glacier flow

were numerically considered: cold, temperate and polythermal. The following conclusions

were made:

• thermal runaway cannot occur because at the point when it should occur the change of

boundary conditions from cold to temperate never allows it, a conclusion similar to the

one already obtained by Clarke et al. (1977).

• temperature variations have very little effect on the overall motion of the glacier.
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• geothermal heat flux is insufficient to raise the basal temperature to the melting point.

• the importance of an additional heat source (that the authors assign to the latent heat

by buried surface meltwater and rainwater).

• that without an extensive heat source concentrated in a basal layer, glaciers would re-

main cold (and they speculated that in continental cold climates, like that in Antarctica,

there would be no melting at the base at all).

Unfortunately, this approximation implies that diffusion has infinite time to dissipate the heat

over the whole slab thickness. The actual time to dissipate the heat is limited, by the change

of thickness, therefore the generated heat can only dissipate to a limited distance during this

time. This distance up to where the heat dissipates is an unknown, and it is the actual

thickness of the shear zone, which should be searched as a solution of the problem. Second,

this kind of approximation resets the temperature field from the previous time step, therefore

energy is not conserved. This analysis showed that there is a need for a direct numerical

simulation of ice flow that consistently conserves the mass, energy and momentum.

Another important aspect of the system stability is the role of advection. Clarke et al.

(1977) and Lliboutry (1987) have shown that vertical advection can have both stabilizing and

unstabilizing effects, and thus should be considered. This is also seen from scaling and non

dimensionalization (Baral et al., 2001; Hutter, 1983; Morland, 1984) where both advection

terms are shown to have first order effects on the temperature field. Similarly, Van der

Veen and Oerlemans (1984) developed a simple global scale model based on conservation of

mass, energy and momentum to investigate the feedbacks of thermodynamics on the ice mass

discharge and found that ice flow feedbacks with meltwater production may give rise to two

different flow regimes, slow and fast.

3.3 Model

3.3.1 Mathematical model

The mathematical model describing the flow of an incompressible non linear viscous fluid

with temperature dependent rheology under the external force is given by the following set

of conservation laws (Equations 3.1-3.3 ) and rheology (Equation 3.4). Mass conservation for

the incompressible flow:
∂vi
∂xi

= 0 (3.1)

where vi are velocity components in xi spatial direction. Conservation of momentum is given

by:
∂τij
∂xj

− ∂P

∂xi
+ Fi = 0 (3.2)
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where Fi is the external force defined as Fi = ρg sinα(1, 0,− cotα). Ice density is ρ, g is

the gravitational acceleration and α is the mean bed slope. P is the pressure and τij is the

deviatoric stress tensor.

The governing equation for the conservation of heat in the case of an incompressible fluid

with no melt is given by:

ρcp(
∂T

∂t
+ vi

∂T

∂xi
) =

∂

∂xi
(k
∂T

∂xi
) + τij ε̇ij (3.3)

where T represents the temperature deviation from the initial temperature T0, usually chosen

at the ice base, cp is the specific heat capacity, k is the thermal conductivity and ε̇ij is the

strain rate tensor. The term τij ε̇ij represent the strain heating, a viscous heating source

term. Thermal conductivity can be either constant or temperature dependent. In this study

we consider it as a constant value. In this model, we are not accounting for the phase change

and hence we do not impose the constraint on temperature by pressure melting.

The rheology of ice is best described by Glen’s flow law (Glen, 1952; Nye, 1953)

ε̇ij =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

) = a0τ
n−1
II e

− Q
R(T+T0) τij (3.4)

where a0 is the pre-exponential factor, R is the universal gas constant, Q is the activation

energy, n is the stress exponent and τII is the second invariant of the stress tensor defined by

τII =
√

1
2(τ2

xx + τ2
yy + τ2

zz + 2(τ2
xy + τ2

yz + τ2
xz)).

Four independent scales are used to non-dimensionalize the thermo-mechanically coupled

equations: temperature, stress, time and length. The characteristic scales are chosen such

that the coefficients in-front of the diffusion and strain heating terms in the temperature

evolution equation (Equation 3.3) reduce to 1.

T =
nRT 2

0

Q
τ = ρcpT t = 2−na−1

0 τ−ne
Q
RT0 L =

√
k

ρcp
t (3.5)

Additionally, we can derive their dependent combinations such as the velocity scale given by

v = L
t
. We obtain the dimensionless primed-variables by normation with the characteristic

scale for the variable given in Equation 2.10.

In the form of the non-dimensionalized variables we can then rewrite the governing equations

as follows:
∂v′i
∂x′i

= 0 (3.6)

∂τ ′ij
∂x′j

− ∂P ′

∂x′i
+ F ′i = 0 (3.7)
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∂T ′

∂t′
+ v′i

∂T ′

∂x′i
=
∂2T ′

∂x′i
2 + τ ′ij ε̇

′
ij (3.8)

ε̇′ij =
1

2
(
∂v′i
∂x′j

+
∂v′j
∂x′i

) = 2−nτ ′n−1
II e

nT ′

1+ T ′
T0′ τ ′ij (3.9)

where F ′i is now defined as F ′i = F (1, 0,− cotα) and F = ρg sinαL
τ . The non dimensional

viscosity is described as:

η′ = e

−T ′

1+ T ′
T ′0 ε̇′

1−n
n

II (3.10)

where the second invariant of the strain rate tensor ε̇II is defined by

ε̇′II =

√
1

2
(ε̇′

2
xx + ε̇′

2
yy + ε̇′

2
zz + 2(ε̇′

2
xy + ε̇′

2
yz + ε̇′

2
xz)) (3.11)

The model parameters are the non dimensional initial temperature T ′0, stress exponent n, non

dimensional force F , the mean bed slope α, aspect ratio ε and non dimensional domain height

L′z.

3.3.2 Numerical model setup

In order to assess the importance of strain heating on the ice flow we start by looking at the

simple two dimensional parallel sided slab setup, as shown in Figure 1, where all boundaries

are flat and the slab is inclined for a given angle α. At the base we prescribe the zero

horizontal (no slip) and vertical velocity (no melting or freezing) and zero vertical heat flux.

At the top surface a stress free surface is prescribed and temperature deviation from the

initial temperature is set to zero, meaning that surface temperature does not change during

the run. On the left and right boundaries, horizontal velocity and temperature flux is set

to zero, while the shear stress is also set to zero. The temperature deviation is set to zero

everywhere inside the slab, meaning that at the start of simulation the slab can be considered

isothermal with non dimensional initial temperature T ′0. The model parameters are given in

Table 3.1.

Table 3.1: Reference run - non dimensional numbers and the dimensional values for com-
parison

nx nz L′z ε L′x F α T ′0 n LDx LDz TD0
399 39 2 ×105 10 ε × Lz 1.4×10−8 5 9.15 3 2 km 200 m -10 ◦C

The aspect ratio ε , i.e., the slab length divided by the slab thickness, is chosen such that the

effects of longitudinal stress play an important role for the flow. Therefore, stabilizing effects

of longitudinal stresses can be investigated.
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Figure 3.1: Schematic illustrating the model set-up. Both the surface and bed are flat and
inclined at a constant slope angle α. The model coordinate axes are shown and the applied
boundary conditions are also plotted.

More specifically, the goal of the modelling exercise is to investigate the importance of different

physical terms in the full set of mathematical equations. The reference run (model 1) is a

fully coupled (i.e., two way) thermo-mechanical two dimensional model. In the second model

(model 2) advection (blue color) is omitted from the temperature Equation 3.12, therefore

the temperature at all times reflects a balance between diffusion and the strain heating. The

third model (model 3) also excludes the horizontal diffusion term (red color).

∂T ′

∂t′
+v′x

∂T ′

∂x′
+ v′z

∂T ′

∂z
=
∂2T ′

∂x′2
+
∂2T ′

∂z′2
+H ′2Ds (3.12)

The strain heating term in two dimensions is given by Equation 3.13 and should preferably

be written as a function of both the viscosity and the second strain rate invariant, since both

viscosity, a material property, and a second invariant of a strain rate tensor are independent

of the orientation of the coordinate system.

H ′2Ds = τ ′xxε̇
′
xx + τ ′zz ε̇

′
zz + 2τ ′xz ε̇

′
xz = 4η′ε̇′

2
II (3.13)

The obtained results are compared with the solutions of a one dimensional model, appropriate

to model an infinite channel or a slab, meaning that all horizontal derivatives vanish. The

1D model is therefore equivalent to the models used by Clarke et al. (1977) and Yuen and

Schubert (1979). It should be noted that for the chosen parameters, a one dimensional model
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can reach steady state on the subcritical branch, but the use of slightly different parameters

can result in thermal runaway and the steady state solution is not obtainable any more with

a one dimensional model.
∂T ′

∂t′
=
∂2T ′

∂z′2
+H ′1Ds (3.14)

Therefore in the case of the one dimensional infinite channel, the conservation of energy

reduces to a balance between temperature evolution, vertical diffusion and strain heating

term as in Equation 3.14. It should be noted that in a one dimensional case, the strain

heating is only due to shear stress and can be explicitly stated as in Equation 3.15.

H ′1Ds = 2τ ′xz ε̇
′
xz = 4η′ε̇′

2
xz = 21−n(FL′z)

n+1(1 − z′

L′z
)n+1e

nT ′

1+ T ′
T0′ (3.15)

To determine the first order effects in the stress balance, we derived an extended 1D model

and compare its solutions to both the 1D and 2D diffusion model (model 2) solutions. Hence,

advection terms are again neglected. We start the derivation by making the assumption of

hydrostatic balance. This enable us to obtain the pressure solution and reduce the problem

to solving just the x-direction momentum equation given by:

∂τ ′xz
∂z′

≈ −(F + 2
∂τ ′xx
∂x′

) (3.16)

The hydrostatic assumption combined with the assumption that horizontal gradients of the

vertical velocity are small compared to the vertical gradients of horizontal velocity compo-

nents, corresponds to the so called Blatter-Pattyn model (Blatter, 1995; Pattyn, 2003). Next,

we define the following parameter:

β(x′ =
L′x
2
, z′, t′ = t′0) = 2

∂τ ′xx
∂x′

(3.17)

and calculate it from the solution of a model 2 at t′0 at x′ = L′x
2 . Then this parameter is depth

averaged:

β =
2

L′z

∫ L′z

0

∂τ ′xx
∂x′

∂z′ (3.18)

and to simplify our analysis further we have made an assumption that the longitudinal stress

gradient can be well approximated by the introduced depth averaged longitudinal stress gradi-

ent β. We have further assumed that longitudinal stress is small compared to the shear stress

τ ′xz. It should be stated here that since the rheology is strongly non-linear and strain-rates of

all directions are contributing to the effective viscosity, these assumptions do not necessarily



3.4. RESULTS 77

hold. Hence, under given assumptions, we can analytically integrate Equation 3.16 and obtain

the explicit expression for the modified shear stress:

τ ′xz(x, z) = (F + β)L′z(1 − z′

L′z
) (3.19)

The temperature evolution is still governed by Equation 3.14, but F is now substituted with

F + β in Equation 3.15.

3.4 Results

The results of a reference model run and model 2 run are presented in Figure 3.2. The left

panels show the horizontal velocity component for different times and different model runs,

while the right panels show the temperature evolution for different model runs. For readability

in all figures, the length scales are rescaled with L′z and velocity with the maximum velocity

Vsc at t′0. At t′0=0, the initial temperature deviation is set to 0, and both model runs result in

an equivalent output for the velocity and stress fields. The initial scaled velocity of 1 would

correspond to approximately 7 m/yr, while the scaled velocity of 3 would correspond to the

velocity of 21 m/yr. Temperature deviation of 0.1 would correspond to the temperature

increase of 2.87 ◦ C and the melting temperature would then be reached at temperature

deviation of approximately 0.35.

The solutions at x′

L′z
= 5 are shown in more detail in Figure 3.3, where the panels again

show the horizontal velocity component on the left and temperature deviation on the right

at different times t′. Times t′1,t′2 and t′3 therefore correspond to 0.27, 1 and 9.97 diffusion

time scale. For comparison, using the dimensional values, this would correspond to 250, 950

and 9.5 × 103 years. The solutions of three models are shown: 1D model, reference model or

model 1 and model 2. As we can see in Figure 3.3, by going further in time both the velocity

and the temperature increase until a balance between vertical diffusion and the strain heating

term is achieved. Since with a given set of parameters steady state is achievable with a one

dimensional model, one can expect that after some time both the temperature deviation and

velocity will reach steady state. Depending how far, or close, the parameters are of the critical

value, more or less time is needed to achieve this steady state. Usually, the amount of time

varies from 2 times to up to 100 times the diffusion time scale. In our case time, t′3 is around

10 times bigger than the diffusion time scale and the steady state is achieved. One can notice

that when the balance is achieved the velocity increases 1.66 times from the initial value,

while the temperature deviation from the initial value is 0.196.

Next, we compare the solutions of a one dimensional model with a solution of the two dimen-

sional finite channel without the temperature advection term (model 2). The main differences
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Figure 3.2: Non dimensional simulation results at four different time stages for both
model 1 and model 2. In the left column the spatial distribution of the horizontal velocity
component is shown, while in the right column the temperature deviation from the initial
temperature is shown. At t0 both models return completely the same output, so the simu-
lation result of a single model is shown. For readability, the length scales are rescaled with
Lz and velocity with the maximum velocity Vsc at t0. This configuration would correspond
to a 2 km long and 200 m thick box inclined for the 5◦ angle with a initial basal temper-
ature of -10◦C. The initial scaled velocity of 1 would correspond to approximately 7 m/yr.
Temperature deviation of 0.1 would correspond to the temperature increase of 2.87 ◦ C.
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Figure 3.3: Simulation results at four different time stages at x = Lx

2 (≈ 1 km) for both
model 1 and model 2 and a comparison with 1D model. In the left column the horizontal
velocity component as a function of depth is plotted, while in the right column the tem-
perature deviation from the initial temperature is plotted. Solid red line represents the 1D
solution, black line model 1 solution and blue line model 2 solution. The initial scaled ve-
locity of 1 would correspond to approximately 7 m/yr, while the scaled velocity of 3 would
correspond to the velocity of 21 m/yr. Temperature deviation of 0.1 would correspond to
the temperature increase of 2.87 ◦ C and the melting temperature would then be reached at
temperature deviation of approximately 0.35.
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between the models therefore arise due to the existence of horizontal derivatives, especially

due to the longitudinal stress gradient/horizontal pressure gradient in the momentum bal-

ance, the horizontal diffusion term in the conservation of energy and different definitions of

the strain heating term. At the initial time t′0, the maximum horizontal velocity in a finite

channel is reduced to 0.59 of the original value for the infinite channel. This effect is mostly

because of the effects of longitudinal stress gradient/horizontal pressure gradient that arise

in case of a finite channel, since in this case horizontal derivatives are not equal to zero any

more. As we advance in time and reach the time t′3 the velocity increases 1.147 times from its

initial value, while temperature increases to 0.068. This is a significant reduction compared

to the one dimensional case. In turn, it shows a stabilizing effect of the longitudinal stress

gradient and horizontal pressure gradient in the momentum balance.

In case of a two dimensional finite channel with advection (reference model 1) the velocity

increases only 1.056 times its initial value, while temperature increases to 0.038, which is

again almost a double reduction in value compared to the previous case with no advection

included. One striking feature of the results is the depth profile (and spatial distribution) of

the temperature, which in both previous cases is linear in the top 85% of ice; while this is

not the case when temperature advection is included in the model. This is easily seen in the

Figure 3.4, where the temperature depth profile is plotted at time t′3 at different horizontal

positions for both model runs. This confirms the scaling analysis (Baral et al., 2001; Hutter,

1983; Morland, 1984), which shows that, at the first order, the strain heating heat source

is primarily balanced by advection of heat and only mildly adjusted by the vertical heat

diffusion.

Additionally, in Figure 3.4 the velocity depth profiles of both model runs at different horizontal

positions are plotted. We observe that the horizontal velocity component obtained with a

model run, including temperature advection, is always equal or smaller than the one obtained

with a model not including advection.

In Figure 3.5 the spatial distribution of the strain heating is shown at t′3 for both model 1

(panel A) and model 2 (panel B). The strain heating term is rescaled, with the maximum

value of strain heating Hssc at t′0 for model 2. In panel C the difference between the models

is shown, where it can be noticed that the model 1 strain heating values are always equal or

smaller the values obtained with model 2. The maximum difference is around 10% and are

distributed close to the base. In panel D, the spatial distribution of a 1D model is shown,

where one can notice that the maximum strain heating values are up to 3 times higher than

that in model 1 and model 2.

In Figure 3.6 the results of the model 3 and the extended 1D model are plotted and compared

with the previous model runs. One can notice that the difference between model 2 and model

3 is minimal and conclude that the horizontal diffusion has a second order effect on the
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Figure 3.4: Simulation results at the last time stage for both model 1 and model 2 at
three different horizontal positions (cross-sections). Time t3 corresponds to 9.97 diffusion
time scale or for comparison 9.5 × 103 years using dimensional values. In the top panel (A)
the horizontal velocity as a function of depth is plotted, while in the bottom panel (B) the
temperature deviation as a function of depth is shown. Solid black line represents model 1
solution and blue line model 2 solution.
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Figure 3.5: Spatial distribution of the strain heating term at the time t3 for (A) model 1,
(B) model 2 and (D) the 1D model. Time t3 corresponds to 9.97 diffusion time scale, or for
comparison 9.5 × 103 years using dimensional values. The difference between model 1 and
model 2 is also shown in panel C. For readability, the length scales are rescaled with Lz,
while the strain heating term is rescaled with the maximum value of strain heating Hssc at
t0 for model 1. This configuration would correspond to a 2 km long and 200 m thick box
inclined for the 5◦ angle with a initial basal temperature of -10◦C.
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solution. On the other hand, the inclusion of this simple correction to the basal shear stress

in a 1D model enables the approximation of the effects of longitudinal stress gradients. This

correction has first order effects on the solution. The extended 1D model and the model 2

are almost indistinguishable from each other and the remaining difference can be assigned to

a simple reduction of a function of three variables to a constant.

3.5 Parametrization of 1D numerical profiles of velocity and

temperature

In the results section it was shown that the 2D behaviour can be properly approximated

with the extended 1D model. Here, we return to the initial set of dimensional equations

(Equations 3.1 - 3.4) and reduce it to the one dimensional case without advection. Therefore,

the temperature evolution is a competition between vertical diffusion (blue term) and the

depth dependent strain heating term due to shearing (red term). The temperature evolution

in an inclined slab is then governed by the following equation:

∂T

∂t
=

k

ρcp

∂2T

∂z2
+

2a0

ρcp
e
− Q
RT0 τn+1

b

(
1 − z

Lz

)n+1

e

Q

RT2
0

(
T

1+ T
T0

)
(3.20)

Additionally, we define the following parameters:

τb = ρgLz sinα V0 = 2a0e
− Q
RT0 τnb

Lz
n+ 1

td =
ρcpL

2
z

k
Tsc =

RT 2
0

Q
(3.21)

where τb is the basal shear stress, V0 is initial velocity at the surface, td is diffusion time scale

and Tsc is the temperature scale. At the start of each simulation the initial basal temperature

is set to T0 everywhere throughout the slab and during the simulation the top surface (z = Lz)

temperature is kept at T0, while at the base (z = 0) the heat flux qz is set to zero. The physical

variables held constant during each simulation are reported in Table 3.2. Next, we define an

dimensionless parameter λ as follows:

λ =
2a0QL

2
zτ
n+1
b

kRT 2
0

e
− Q
RT0 (3.22)

The parameter λ is exactly equivalent to the stability parameter β in (Clarke et al., 1977)

where it is used to determine the efficiency and importance of strain heating.

We then vary the mean bed slope from 4 − 10◦ and slab thickness from 50 − 200 m. The

initial temperature in the slab is varied from 253− 258 K. The stability parameter λ and the

diffusion time scale td are then calculated for every set of parameters and the logarithm of

temperature deviation scaled with Tsc is then plotted as a function of stability parameter λ
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Figure 3.6: Simulation results at four different time stages at x = Lx

2 for both model 1,
model 2 and model 3 and a comparison with 1D model and 1D extended model. In the
left column the horizontal velocity component as a function of depth is plotted, while in
the right column the temperature deviation from the initial temperature is plotted. Solid
red line represents the 1D solution, black line model 1 solution, blue line model 2 solution,
model 3 solution is plotted with blue crosses while the 1D extended solution with red crosses.
The initial scaled velocity of 1 would correspond to approximately 7 m/yr, while the scaled
velocity of 3 would correspond to the velocity of 21 m/yr. Temperature deviation of 0.1
would correspond to the temperature increase of 2.87 ◦ C and the melting temperature
would then be reached at temperature deviation of approximately 0.35.



3.5. PARAMETRIZATION OF 1D NUMERICAL PROFILES OF VELOCITY AND TEMPERATURE 85

THERMAL
RUNAWAY

lo
g(

t/t
d)

log(λ)

log(T/TSC)

0

-1

-2

-3

-4

-3 -2 -1 0 1

0

-1

-2

-3

-4

1

-5

-6

-7

-8

λc

Figure 3.7: Contour plots for scaled temperature increase T
Tsc

as a function of parameter

λ and scaled time t
td

. The white color represents the area where thermal runaway occurred.
Solid black line indicate the λc and separates the diagram on two distinct parts, one where
the steady state is reachable and an area where in finite time thermal runaway will occur.
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Table 3.2: Physical constants

Symbol Definition Value Unit

R gas constant 8.314 J
molK

g gravity acceleration 9.8 m
s2

ρ ice density 900 kg
m3

k thermal conductivity 2.51 W
Km

κ thermal diffusivity 1.33 × 10−6 m2

s

cp specific heat capacity 2096.9 J
kgK

n flow law exponent 3 —
a0 flow law constant 8.75 × 10−13 Pa−3s−1

Q creep activation energy 60 × 103 J
mol

and scaled time t
td

. The results are presented as a filled contour plot in Figure 3.7. It can

be seen that when the stability parameter λ reaches some critical value λc, thermal runaway

occurs in a finite amount of time. Melting temperature is reached, and since melting is not

accounted for in our model then the model is not valid any more. As shown by Clarke et al.

(1977) the critical value λc is approximately equal to π2

4 . This amount of time is always

slightly larger than the adiabatic critical time, since diffusion plays an important role, even

in the initial transient phase, by slowing down the heating process. It can also be seen that

the solution obtained at short times and a larger value of the stability parameter is similar

to the solution obtained with a smaller value of the stability parameter and at longer times.

We follow Dold (1985) who argued that the early stages of thermal runaway can be described

using a logarithmic expression. Here, we propose the following ansatz as a predictor of

maximum temperature at the base of the slab:

Tb = Tsc ln

[
1

1 − aBr

]
(3.23)

where we define an additional dimensionless parameter as:

Br = λ

(
t

td

)b
(3.24)

where t is time and td again represents the diffusion time scale. The parameters a and b are

derived by fitting the above function to the numerical solution. The obtained values for the

fitting parameters are given in Table 3.3.

Table 3.3: Fitting parameters valid for λ < 20

Symbol Value
a 0.3179
b 0.7974
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Figure 3.8: Comparison between the numerical solution and predicted solution using the
ansatz given by Equation 3.23. In both cases the maximum temperature is scaled with Tsc,
while time is scaled with td. The maximum temperature in this configuration is located at
the base of the slab. A) stability parameter λ = 2.23 was obtained by using the ice thickness
H = 140 m and initial basal temperature of T0 = -15 ◦C B) stability parameter λ = 11.3
was obtained by using the ice thickness H = 200 m and initial basal temperature of T0 =
-20 ◦C . The shaded area in panel B represent area above the melting temperature, an area
where the solution is not valid any more. In both cases the slab was inclined for α = 10 ◦
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One can also immediately notice similarity with the analytical solution obtained in the adia-

batic case :

TAD(z, t) = Tsc ln

 1

1 − λ
(
t
td

)(
1 − z

Lz

)n+1

 (3.25)

where TAD is the temperature increase in the adiabatic case. We continue our derivation by

using the first term of the Macularian series for natural logarithm ln[1 − x] ≈ −x where we

obtain:

TAD(z, t) ≈ Tscλ

(
t

td

)(
1 − z

Lz

)n+1

(3.26)

where Tscλ
(
t
td

)
can be recognized as a temperature at the base in the adiabatic case and

therefore the temperature profile in the adiabatic case is given by:

TAD(z, t) = TADb

(
1 − z

Lz

)n+1

(3.27)

We further correct and replace the basal temperature with the temperature given by Equation

3.23 which takes into account diffusion in a boundary layer close to the base and the following

temperature ansatz is obtained:

T (z, t) = Tb

(
1 − z

Lz

)n+1

(3.28)

To verify that the proposed ansatz can be used to predict the values of the maximum

temperature deviation in the slab in early stages ( ttd < 0.2) we compare the numerical solutions

and the predicted values in two different examples. The first example is with the value of

the stability parameter set to λ = 2.23, a value which is lower than the critical value λc, and

the second one with the value of the stability parameter λ = 11.3, a value higher then the

critical one. The first solution is therefore expected to reach the steady state at some point

in time, while the second solution is certain to result in thermal runaway by reaching the

melting temperature first. The results are shown in Figure 3.8 and good agreement between

the predicted and numerical solution is obtained in the early stages.

Next, we have varied the values of λ from 7 to 20, and values of scaled time t
td

from 0.01 to 0.1.

The values of maximum temperature increase, scaled with temperature scale T
Tsc

, at different

times is shown and plotted against the stability parameter λ in the top panel of Figure 3.9.

In the bottom panel the same is plotted against the Br parameter. It can easily be seen that

solutions are scattered in the upper figure when plotted against the stability parameter, while

solutions collapse when plotted against the Br parameter. This shows us that the introduced

Br parameter is a good predictor for determining the maximum temperature increase and

hence the importance of strain heating.
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asses the importance of strain heating and their ability to predict the maximum temperature
deviation in the slab. The maximum temperature deviation scaled with Tsc is plotted in
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The values of λ were varied from 7 to 20, while scaled time t

td
was varied from 0.01 to 0.1

in both cases. The colorbar corresponds to the scaled time t
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.
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The velocity profile in the slab is given by:

Vx(z, t) = 2a0 exp

(
− Q

RT0

)
τnb

∫ z

0
(1 − z

Lz
)n exp

(
Q

RT 2
0

T (z, t)

(1 + T (z,t)
T0

)

)
dz (3.29)

under the assumption of small temperature increases T
T0

≈ 0, we obtain the following relation

for velocity:

Vx(z, t) = 2a0 exp

(
− Q

RT0

)
τnb

∫ z

0
(1 − z

Lz
)n exp

(
Q

RT 2
0

T (z, t)

)
dz (3.30)

If we further use the fact that temperature in the slab can be approximated well by using

Equation 3.28 (T (z, t) ≈ Tb(1 − z
Lz

)n+1):

Vx(z, t) = 2a0 exp

(
− Q

RT0

)
τnb

∫ z

0
(1 − z

Lz
)n exp

(
Q

RT 2
0

Tb(1 − z

Lz
)n+1

)
dz (3.31)

where the integral can be solved analytically to obtain the following:

Vx(z, t) = 2a0 exp

(
− Q

RT0

)
τnb

Lz
(n+ 1)

RT 2
0

Q

1

Tb
exp

(
QTb
RT 2

0

)(
1 − exp

(
QTb
RT 2

0

(
(1 − z

Lz
)n+1 − 1

)))
(3.32)

where we can further recognize initial velocity V0 from Equation 3.21 and substitute the basal

temperature Tb (Equation 3.23) to obtain:

Vx(z, t) = V0

[
1

(1 − aBr) ln [ 1
1−aBr ]

](
1 − exp

(
ln [1 − aBr]

(
1 − (1 − z

Lz
)n+1

)))
(3.33)

Furthermore, velocity at the surface can be obtained by setting z = Lz which simplifies the

above expression to:

V S
x (t) = V0

[
aBr

(1 − aBr) ln [ 1
1−aBr ]

]
(3.34)

while the velocity increase due to the shear heating can be formulated as follows:

∆V (t) = V0

(
aBr

(1 − aBr) ln [ 1
1−aBr ]

− 1

)
(3.35)

where velocity increase ∆V (t) is defined as ∆V (t) = V S
x (t) − V0.

The proposed ansatz can be used to predict the maximum velocity as a function of time, for

a given value of λ. The maximum velocity is always located at the surface of the slab. Due

to the approximations of temperature throughout the slab and errors introduced by using the
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Figure 3.10: Comparison between the numerical solution and predicted solution using the
ansatz given by Equation 3.28 for A) temperature and by Equation 3.33 for B) velocity.
The stability parameter λ = 113.26 was obtained by using the ice thickness Lz = 200 m
and initial basal temperature of T0 = -20 ◦C. The value for the flow law constant a0 used
was 8.75 × 10−12 Pa−3s−1. The slab was inclined for α = 10 ◦ The model was running for
10.12 years. In panel A we have additionally shown the adiabatic temperature profile (black
squares) given by Equation 3.25, but only above the boundary layer H > 20 m in which
diffusion significantly influences the solution. In panel B black solid line depicts the velocity
profile at the initial time. The value of the fitting parameter a was reduced to 0.3, while the
value of the fitting parameter b was kept the same.
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ansatz for the prediction of maximum basal temperature, errors between the actual numerical

solution and the predicted values can be expected. The magnitude of these errors strongly

depends on the values of the fitting parameters a and b.

To verify the validity of the derived expressions for the temperature and velocity increases due

to shear heating, in Figure 3.10 we show depth profiles for both temperature (panel A) and

velocity (panel B) increase. We compare the numerical solution and the predicted solution

using the ansatz given by Equation 3.28 for A) temperature and by Equation 3.33 for B)

velocity. The results show that a good agreement is achieved between the two. Additionally,

it can be seen that the error strongly depends on the fitting parameters a and b. Adiabatic

temperature solution given by the analytical solution (Equation 3.25) represent the numerical

solution well in the upper part of the domain, above a boundary layer of thickness H =
√

k
ρcp t,

which in our case is approximately 20 m. In the boundary layer, diffusion has significant

influence and modifies (slows down) the adiabatic solution by conducting the produced heat.

Hence, in this boundary layer the temperature increase is better represented by Equation 3.23

and therefore a combined solution given by Equation 3.28 approximates well the numerical

solution for the temperature increase throughout the slab. The same is true for the velocity

profile shown in the panel B.

3.6 Effects of strain heating for typical ice mass parameters

Here, we investigate the implications of the previous analysis by using realistic dimensions.

We have first varied characteristic values of ice thickness Lz and basal slope α to investigate

temperature and velocity increases due to strain heating over 1 year. The physical variables

are reported in Table 3.4. The results are presented in Figure 3.11. The results show that

the largest increases in temperature, up to 17 ◦C, are obtained at high slopes and large ice

thickness. The basal temperature of the slab is therefore increased from -20 ◦C to -3 ◦C in

one year, while the velocity values of order 1 km
yr can be seen. On the contrary, low slope

angles and ice thickness are areas were strain heating is insignificant and therefore does not

influence neither the temperature or velocity.

Table 3.4: Additional physical constants used for Figure 3.11

Symbol Definition Value Unit
a0 flow law constant 2.7613 × 10−5 Pa−3yr−1

Q creep activation energy 60 × 103 J
mol

T0 initial basal temperature -20 ◦C
t time 1 yr
α mean bed slope [1 to 10] ◦

Lz ice thickness [50 to 500] m
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Figure 3.11: Dependence of A) the maximum temperature increase and B) velocity as a
function of basal slope α and ice thickness Lz presented as a contour plot. The dark lines
are contour lines. Initial basal temperature T0 is set to -20◦C.

Next, we have varied characteristic values of initial basal temperature T0 and creep activation

energy Q during 1 year for a fixed stress state in the slab. The physical variables are reported

in Table 3.5. The results are presented in Figure 3.12. The results show that the largest

increases in temperature, up to 5 ◦C, are obtained at high basal temperature and low values

of creep activation energy. The same is true for the velocity, where we can see maximum

surface velocities of up to 1 km
yr . High creep activation energy, combined with low basal

temperature implies low strain heating and minor temperature increase.

Table 3.5: Additional physical constants used for Figure 3.12

Symbol Definition Value Unit
a0 flow law constant 2.7613 × 10−5 Pa−3yr−1

Q creep activation energy [60 to 120] × 103 J
mol

T0 initial basal temperature [-40 to -5] ◦C
t time 1 yr
α mean bed slope 10 ◦

Lz ice thickness 300 m

Finally, we have varied the flow law constant a0 and time t for a fixed stress state in the slab.

The physical variables are reported in Table 3.6. The results are presented in Figure 3.13.

Results show that high values of flow law constant combined with the increased time enables

higher values of temperature increase, up to 12 ◦C, and high velocity values of up to 1.5 km
yr .
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Figure 3.12: Dependence of A) the maximum temperature increase and B) velocity as a
function of initial basal temperature T0 and activation energy Q, presented as a contour
plot. The dark lines are contour lines. The slab thickness Lz is set to 300 m inclined for a
basal slope α of 10◦.
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Figure 3.13: Dependence of A) the maximum temperature increase and B) velocity as a
function of flow law constant a0 and time t presented as a contour plot. The dark lines are
contour lines. The slab thickness Lz is set to 300 m inclined for a basal slope α of 10◦.
Initial basal temperature T0 is set to -20◦C. Black solid line depicts the flow law constant
from Paterson (1994), while the red solid line depicts the flow law constant from Clarke
et al. (1977)
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Table 3.6: Additional physical constants used for Figure 3.13

Symbol Definition Value Unit
a0 flow law constant [0.6 to 6] × 10−5 Pa−3yr−1

Q creep activation energy 60 × 103 J
mol

T0 initial temperature -20 ◦C
t time [0.1 to 5] yr
α mean bed slope 10 ◦

Lz ice thickness 300 m

Since in most investigations the flow law constant a0 values reported in Clarke et al. (1977)

were used, in Figure 3.13 we highlight this value with a red solid line. Values of the flow

law constant a0 reported in Paterson (1994) are depicted with a black solid line. Both flow

law constant values corespond to the values used for cold ice (T < −10)◦C. The maximum

temperature increase obtained with the Clarke et al. (1977) values are around 3.5 ◦C, while

the maximum temperature increase using the Paterson (1994) values are 1.5 ◦C. Since the

value of a0 is dependent on water content, grain size and the type of ice, and can vary by

an order of magnitude, this can provide additional weakening mechanisms and increase the

strain heating further.

3.7 Discussion and summary

3.7.1 Discussion of the results

We have presented the mathematical model suitable for describing the coupled thermo-

mechanical fluid flow, in both their dimensional and non dimensional form. We have designed

a numerical experiment with the goal of determining the processes occurring in thermo-

mechanically coupled problems. The experiment is based around a standard two dimensional

inclined box set-up. Three two dimensional and two one dimensional experiments were per-

formed. A reference run, or model 1, is a fully coupled model. In model 2 we have neglected

the advection terms in the temperature evolution, while model 3 also neglects the horizontal

diffusion. Also, two different one dimensional models were constructed. The standard one

dimensional model is obtained by neglecting all horizontal derivatives. This model is best

suited for modelling the infinite channel behaviour since it ignores the longitudinal stress and

pressure gradients. This model is therefore equivalent to the model used in the studies by

Clarke et al. (1977) and Yuen and Schubert (1979b). The second one dimensional model is

constructed from the two dimensional model, with the goal of approximating the effects of the

longitudinal stress and pressure gradients by modifying the horizontal momentum equation

and considering the longitudinal stress and pressure gradients to be constant in time and

depth. We named this model the extended 1D model.
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The importance of different terms was therefore investigated and compared with a reference

model. It was shown that the pressure gradient/longitudinal stress gradient have a first order

effect and can significantly alter the temperature distribution in a slab, while the effects of

horizontal diffusion are of the second order and the differences between model 2 and 3 are

negligible.

It has been shown that the extended 1D model can approximate the results of a more com-

plex two dimensional model. This can be explained easily if one considers the extended 1D

horizontal momentum balance and notice that the only change compared to the 1D case is

the reduced value of the force term. Therefore, the 1D and 2D diffusion models (models 2 and

3) should give similar results if one consistently reduces the value of the basal shear stress. It

should be noted here that an increase of the basal stress is also a possibility.

The results obtained in a reference run with a two way coupled model differ from the above

cases, both spatially and in time. At the early stages (t < t1) both models 1 and 2 pro-

duce similar results. Since the stress distribution, and therefore strain heating, are almost

equal over short time scales this means that the results can deviate only slightly for both

temperature increase and velocity. For longer times scales, this does not need to be the case,

since both stress and strain heating are spatially distributed differently. The reference model

reaches the steady state at much earlier times compared to model 2. Model 2 shows negligi-

ble velocity increase and the maximum temperature increase is reduced to almost half of the

value in model 2. These results show the stabilizing effect of the heat advection, and shows

that at longer times scales advection plays an important role in stabilizing the temperature

distribution in the slab.

Thereafter, the solution of a one dimensional model is analysed in more detail. During a

single transient run, three separate regimes were identified: (i) transient (or the initial stage),

where the temperature rises quickly in a short amount of time (ii) transition phase where the

temperature rise is still noticeable, but the temperature rise slows down until the third phase

is reached (iii) steady state. We have concentrated our analysis on the initial transient phase.

We performed the parametrization of 1D numerical profiles of velocity (Equation 3.33) and

temperature (Equation 3.28) using simple two parameter fits utilizing the functional form

from the adiabatic solution (Equation 3.25).

Parameters that best describe the maximum temperature in a slab have been determined. The

transient phase is best described by a non dimensional number Br obtained by multiplying

the parameter λ and scaled time t
td

. This fact also implies the similarity between the two

solutions, one at higher value of λ and lower value of scaled time t
td

, and the solution obtained

with lower value of λ and higher value of scaled time t
td

. Since this regime is not diffusion

length dependent, the equivalent of this phase would be diffusion in a semi-infinite solid with

a transient heat source at the wall. Further confirmation of this fact is the comparison of the
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adiabatic solution with a non adiabatic transient phase, and a non adiabatic solution is just

a slowed down version of the adiabatic case. This analysis shows that the stability parameter

is not sufficient to determine the importance of the strain heating and our results therefore

emphasize the importance of recognizing different regimes in thermo-mechanically coupled

flow.

The obtained parametrization for the velocity increase (Equation 3.35) represents an increase

due to strain heating and can therefore be used as an effective boundary condition that

accounts for the coupled processes at scales of interest. The effective boundary condition is

therefore a non-linear relationship between basal drag τb and velocity increase ∆V between

mechanical model without strain heating and the thermo-mechanically coupled model. This

relationship would represent the third type of the boundary conditions or the so called Robin

boundary condition. The main difference compared with the more commonly used, linear

sliding law, is that no ad hoc parameters, like the slip coefficient β are introduced into the

model. Furthermore, the proposed effective boundary conditions arise due to a real physical

coupling. In particular, the above analysis shows that a linear relationship between basal drag

τb and velocity increase ∆V is not appropriate for describing basal sliding. Moreover, the

non-linearity of the suggested functional form is sensitive to and controlled by physics related

non-linearities; for example, power law rheology and Arrhenius dependence of viscosity on

temperature. It is also consistent with linear stress versus depth dependence due to thin ice

approximation of the stress balance.

There are several limitations in our approach which should be investigated further. For

example, our analysis considers only the simplest geometrical set-up and boundary conditions.

The reasoning behind this is the analysis of solely the viscous heating effects, by reducing the

effects of additional factors to a bare minimum. Effects of varying geometry and therefore

the effects of additional stress components are mimicked by considering the aspect ratios at

which additional stresses have an important influence.

Our analysis is also valid only for the ”cold” slab, where the ice temperature is below the

melting temperature, and we have therefore not considered the situations where the ice starts

to melt. If the melting temperature is reached then the model is not valid any more. Ad-

ditionally, at the base we have ignored the influence of the geothermal heat flux. Further

experiments could therefore involve adding an additional layer below the ice representing the

bedrock, since lithosphere thermal inertia is an important physical process (Bueler and Brown,

2009). Furthermore, (Clarke et al., 1977) investigated, under the assumption of quasi-uniform

flow, the influence of the vertical advection term and the authors have shown that inclusion

of vertical advection can have both stabilizing and destabilizing effects on the flow. In their

case, the velocity field is prescribed (approximated as a linear function of depth) and there

is no proper feedback/coupling between the velocity (and hence also thickness) and temper-

ature. Here, we have investigated the influence of both horizontal and vertical advection in
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a two way coupled system. The results show that inclusion of both horizontal and vertical

advection seems to have a stabilizing effect on the flow. We have followed the theoretical

approach by Hutter (1983), Morland (1984) and Baral et al. (2001) and included both advec-

tion terms, since no shallow scaling justifies the inclusion of just the vertical advection term.

An interesting fact, not to be ignored, is also the time needed for the fully coupled problem

to converge to a steady state. While the model excluding the advection terms is still in its

transient phase, the fully coupled model is already in its steady state phase and the balance

between the advection, diffusion and strain heating is achieved. Therefore, in systems where

the ratio between advection and the diffusion of temperature is high (high Peclet number),

ignoring advection is not justified.

The most severe limitation of our model is probably the inability of the boundaries to evolve in

time. The upper, bottom and lateral surfaces should be coupled to their respective kinematic

conditions and therefore free to evolve in time. The time scales at which these boundaries

can be considered fixed should be further investigated and are of great interest.

3.7.2 Comparison to previous literature

Studies investigating the strain heating often reduced the temperature equation to a boundary

value problem of the following form:

φξξ + λ(ξ)e

φ

1+
φ
θ = 0 (3.36)

where λ(ξ) = λbξ
n+1 is a function of depth ξ, while the exponential Arrhenius term is some-

times approximated with the Frank-Kamenetzky(FK) approximation (Frank-Kamenetzky,

1939) i.e e

φ

1+
φ
θ ≈ eφ for small values of φ.

Equations of this form are mathematically classified as a semilinear elliptic partial differ-

ential equation with exponential non linearity. When the exponential term is given by the

FK approximation, the above boundary value problem (BVP) reduces to a equation often

know across the literature by different names i.e Barenblatt, Bratu, Emden, Fowler, Frank-

Kamenetskii, Gelfand or Liouville (Dupaigne, 2011). The arising multiplicity of the boundary

value problem solutions is well studied in mathematics (Dupaigne, 2011) and across different

fields (fluid dynamics; glaciology; geodynamics; chemical engineering). It is a well known fact

that the multiplicity of the solutions is due to a non-linear exponential term arising from tem-

perature dependent viscosity and it is not a result of the non linear dependence of a material

rheology on the strain rate (Yuen et al., 1986).

Therefore, it is an established fact that for the values of the stability parameter λ lower

than the critical, two solutions of the above BVP exist. They correspond to subcritical and
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supercritical branches. Above the critical value of the stability parameter λ, no solution

exists.

The thermal runaway, defined as an unbounded growth of temperature in a finite time, is hence

associated with the non existence of the solution of the BVP problem. A distinction should

therefore be made between the thermal runaway and thermal instabilities caused/induced by

small perturbations to steady state solutions of the BVP problem.

Clarke et al. (1977) have argued that the number of solutions can actually depend on the

form of the exponential term. They have found that if the exponential term is given by the

Arrhenius law, there exists another solution of the BVP problem and they named this solution

a hot branch. Hence, the authors concluded that for values of the stability parameter lower

than critical, up to three solution of the stated BVP exist (i.e. subcritical, supercritical and

hot branch), while above the critical value only one solution (hot branch) exists.

Yuen and Schubert (1979b) obtained two solution with the full Arrhenius term but only

because the authors did not explore the whole parameter space, investigating only the ones

physically possible. Otherwise the solutions should be equivalent to the ones obtained by

Clarke et al. (1977). Since neither of the above studies approximated the λ(ξ), the solution

is only obtainable numerically.

Compared to the previous studies Fowler et al. (2010), reduced the Arrhenius term to the

FK approximation and also approximated λ(ξ) ≈ λb across the slab. Therefore, he further

reduced the problem to φξξ + λbe
φ = 0, which is susceptible to a known analytical solution

and discussed in detail in Turcotte and Schubert (2014). The authors obtained the solutions

on subcritical and supercritical branch. It should also be noted here that even though the

analytical solution of the problem exists, the constants of integration (determined by the

boundary conditions) can only be obtained numerically, or they can be further approximated

like the authors did in the study. By approximating the constants, one is limited on the part

of the branch where there is very little shear heating, and the solution is dictated by the

basal boundary condition. A similar conclusion was already obtained by investigating the

real world example and studying potential heat sources that have a major control on the fast

flow of the Vestfonna ice cap, Svalbard (Schäfer et al., 2014).

On the other hand, by approximating the depth dependence of λ(ξ) by its constant maximum

value λb, the amount of heat generated through the slab is much higher then it should actually

be for the same value of λ. Therefore the critical value of the stability parameter reduces

even further from λc ≈ π2

4 to λc ≈ 0.878.

The results in Fowler et al. (2010) also indicated that the supercritical branch is non physical,

since its above the melting temperature. This somehow contradicts the results of Clarke et al.

(1977) and Yuen and Schubert (1979b) , where it is easily seen that in certain situations the

solutions on the supercritical branch can be below the melting temperature of ice. These
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differences can be appointed either to the depth dependence of the parameter λ(ξ) or to the

approximations made in obtaining the integration constants. Approximating the integration

constants leads to a solution which effectively approximates the supercritical branch only at

high temperatures above the melting temperature.

Even though the approach taken in Fowler et al. (2010) has the advantage that it is analytically

tractable and allows for easy coupling to the thickness evolution equation, unfortunately it is

not energy conservative and hence does not approximate the temperature well enough.

Both studies by Fowler et al. (2010) and Clarke et al. (1977) concluded that at the moment

when thermal runaway should happen, the switch in boundary condition from cold to tem-

perate stabilizes it and the critical value of the stability parameter changes to a larger value.

Since the temperature in a slab is always lower than that at the base, there is no possibility

of thermal runaway according to these studies. This is certainly not the case if one also looks

at values of the stability parameter larger than the critical one. Compared to a cold based

BC where the thermal runaway (first) occurs only at the base, in case of a temperate BC, the

thermal runaway (highest temperature) first occurs at some distance above the base.

Contrary to the previous studies, we have here followed the approach of Fujita (1969). Fujita

(1969) investigated the above BVP together with an associated initial boundary value problem

(IBVP) from a theoretical point of view. A similar approach was also taken by Costa and

Macedonio (2003) in their study of viscous heating in fluids with temperature dependent

viscosity, where authors investigated the implication of viscous heating on the magma flow.

The associated IBVP is hence given by

φτ = φξξ + λ(ξ)e

φ

1+
φ
θ (3.37)

Solving the given IBVP requires an initial condition φ = φ(ξ) and a set of boundary conditions

to be prescribed (i.e. φ(ξ = 0, t) = 0 and ∂φ
∂τ (ξ = H, t) = 0). If, for example, λ(ξ) is fixed and

constant in time, the given IBVP leads to the one of the solutions of the associated BVP:

• if the the values of the stability parameter or the initial condition are below the critical

ones, after the transient period the solution of the IBVP will reach a steady state

solution on the subcritical branch of the BVP problem.

• if the the value of the stability parameter is below the critical one and the initial

condition is equal to the critical value, after the transient period the solution of the

IBVP will reach a steady state solution on the supercritical branch of the BVP problem.

• in case the exponential term is the full Arrhenius term, the solution on the ”hot branch”

will have equivalent meaning to the thermal runaway. Therefore, if either the initial con-
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Figure 3.14: Schematic of a transient system behaviour.

dition or the stability parameter (or both) have values above critical, thermal runaway

occurs after some transient period.

This is shown schematically in Figure 3.14.

In the previous section we have shown the importance of the transient stage, and therefore the

importance of solving the IBVP instead of BVP problem. We have also shown the stabilizing

effects of the additional stress components. Therefore, in a coupled system the stability

parameter λ(ξ, t) actually varies both spatially and in time and it is determined from the

mechanical model and the conservation of mass.

3.8 Conclusions

Thermal runaway, a physical instability due to a non linear exponential term arising from

temperature dependent viscosity, is inherent to all thermo-mechanically coupled flows. Con-

sidering only the adiabatic case, which is a severe restriction, it is easily seen that a solution

is certain to blow up in a finite amount of time. In the adiabatic case, the stress distribution,

the initial temperature condition and the material properties are only factors influencing the

efficiency of heat generation and the actual amount of time that is needed for the runaway to

occur.

In the non adiabatic case, the diffusion can additionally dissipate the generated heat through-

out the slab. How efficiently this can be done will determine either the critical time before
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the runaway or the critical stability parameter below which the steady state solution can be

reached. Below the critical stability parameter, diffusion is more efficient than the generation

of heat by strain heating, while above the critical value the generation of heat is more efficient

and the diffusion can again limit it for only a certain amount of time. The time needed for

the temperature to reach steady state varies with the stability parameter, and close to the

critical stability parameter it can reach values of up to 100 diffusion time scales. Hence there

is a high probability that in this specific non realistic example, the change of slab size will

occur much sooner than the temperature reaches the steady state.

We have further shown that the stability parameter is not a good predictor for determining the

maximum basal temperature increase and hence the importance of strain heating. To establish

a parameter useful for predicting basal temperature increase due to the strain heating we have

introduced a parameter Br. This parameter takes into consideration the fact that diffusion

has limited time to influence the flow.

The stability parameter, and hence also the introduced Br parameter, strongly depends on

the state of the stress field in the slab, and solving a full mechanical model or their shallow

approximations can affect its value. The fact that both velocity and temperature fields can

be well approximated with a modified 1D model tells us that shallow approximation has

slightly more limited applications, and that both stress models are prone to thermal runaway.

Furthermore, the stability parameter greatly depends on material properties, like the flow

law constant, which value is still uncertain and often varies by an order of magnitude. The

uncertainties in the material properties can significantly affect the actual value of the stability

parameter.

Furthermore, the proposed parametrization of 1D numerical profiles of velocity (Equation

3.33) and temperature (Equation 3.28) can be used as an effective boundary condition that

accounts for the thermo-mechanically coupled processes at scales of interest. The effective

boundary condition is therefore derived as an non-linear relationship between basal drag τb

and velocity increase ∆V , where velocity increase ∆V represents an velocity increase due to

strain heating. Additionally it was shown that the non-linearity of the suggested functional

form is sensitive to and controlled by physics related non-linearities. Hence, in cases where

strain heating plays an important role, we argue that a linear relationship between basal drag

τb and velocity increase ∆V is not appropriate for describing basal sliding.

The slab boundaries evolve due to the velocity field and the prescribed mass balance, and

therefore the time evolution of the temperature field is limited by a certain amount of time.

Consequently in situations where strain heating is important, one can easily expect the tem-

perature, and hence velocity and the stress state, to be in a transient state.

The limited time also limits the influence of advection, but the effects of advection and the

change of the slab size should be further investigated.
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4.1 General remarks

In many instances it is seen that algorithms are not well adapted to the current trends in

hardware industry, i.e. massive parallelism. Furthermore, algorithms can be limited by the

memory restriction imposed by the usage of the direct methods or relatively poor performance

of the iterative solvers in three dimensions. Therefore, due to computational limitations

three dimensional modelling of the physical processes is generally restricted to low numerical

resolution or is reserved to the usage of supercomputers.

We have addressed these challenges by developing an numerical model based on the itera-

tive pseudo-transient (PT) continuation method. The same method was already successfully

applied by Duretz et al. (2019) for studying spontaneous strain localisation in geodynami-

cal applications and Räss et al. (2018) in studying spontaneous channelling of porous fluids.

Method relies on the usage of matrix-free stencil based method, therefore ensuring minimal,

local and regular memory access. These algorithm properties are well suited for modern mas-

sively parallel hardware accelerators like the computer graphic cards (GPU). The performance

of which strongly depends on the memory access and transfer speed and not the actual speed

of calculations.

In this thesis, we have reported the performance of the developed algorithm on various graphic

cards. We have shown that the usage of high end gaming graphic cards have enabled us

to perform high resolution three dimensional modelling of the thermo-mechanically coupled

ice flow, where we have further established that a high numerical (spatial and temporal)

resolution is needed to capture the non linearities associated with the ice flow rheology.

Unfortunately, the need to recognise moderate enhancements of gradients near the base is

numerically achieved only by a small number of computationally tractable shallow ice models,

while some more complete continuum models often use very low vertical numerical resolution

while modelling coupled flow. We have further shown that implicit coupling results in a

slightly more localized solution and its in better agreement with a referent solution. The

coupling method can hence have significant influence in a more complete thermal model

when advection is allowed to operate and the flow problem becomes even more non linear and

two way coupled.

We have further investigated localization and temporal evolution of strain heating on synthetic

cases using a numerical approach. Strain heating is the main internal volumetric heat source

in the conservation of energy. Its influence is dynamic and it is dependent on the distribution

of stress and strain rate. Hence it can vary significantly both in space and time. It can be a

significant heat source in some situations, while non important in others.

Additionally, strain heating can operate on different time scales and it can therefore limit the

influence of diffusion. We have determined that two distinctive regimes are usually associated
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with the strain heating; transient and steady state, and we have determined that in a steady

state regime strain heating can significantly influence the ice flow only in situations when

diffusion is close to balance the strain heating term. In other words, close to the so-called

critical stability parameter. Furthermore, our results show that large stress gradients in

the momentum balance can have first order influence on the strain heating distribution and

therefore significantly slow down the process. Therefore, it can be said that the distribution

of stress in an ice slab affects the time scale on which strain heating operates.

Our results therefore corroborates conclusions of many previous studies (Grigoryan et al.,

1976; Van der Veen and Oerlemans, 1984; Yuen et al., 1986; Yuen and Schubert, 1979b) where

authors identified that a first order balance is between temperature evolution, ice advection

and strain heating while diffusion if often important only in a varying conductive boundary

layer.

4.2 Future work

In future work it would be interesting to continue with the research on numerical properties

and behaviour of the model. Specifically, investigating the influence of the numerical coupling

method when advection and the change of material properties (evolution of the boundaries)

are included in the model. Therefore, simultaneous, implicit, solution of velocity, temperature

and material properties (i.e. geometry change) should be sought. Additionally, the magnitude

of numerical errors introduced by the first order upwind scheme compared to flux conservative

schemes like total variation diminishing (TVD) type should be investigated for an advection

dominated system. Furthermore, since velocity and stress change on the time-scale governed

by the temperature evolution the change of geometry can therefore occur very localized in

time and space and can further evolve across the boundary. It is imperative that this kind of

behaviour is not filtered out by the use of overly diffusive numerical schemes.

One additional aspect that should be considered in future investigation is the introduction

of conservation laws due to their geometrical structure into the model and therefore the

conservation of total energy. For example, for single phase model, conservation of mass,

energy and momentum requires variations of density with temperature. The importance of

which is still discussed in the literature(Fowler, 2013; Hughes, 2009, 2012). Change of density

over time implies that fluid had either compressed or expanded. This can introduce additional

gradients in the system and their influence should be investigated. Therefore enforcing that

the divergence of flow velocity vanishes in a coupled model can easily lead to errors in mass

conservation. Magnitude and significance of this errors should be quantified.

The main theme across this thesis is numerical modelling of thermo-mechanically coupled ice

flow. The problem of determining the thermal field consistent with the current flow condi-
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tions is a complementary and closely related to the problem of determining basal boundary

conditions. By prescription of the slip/no slip transition into the continuum formulation we

introduce non-physical singularities into the model (Brown, 2011). The physically based basal

boundary condition should satisfy conservation laws (linear momentum, mass,energy and mo-

mentum of momentum) and should therefore be thermodynamically admissible. To address

this problem a sub-temperate sliding law, like the one proposed in (Fowler, 1986) should be

investigated further and results should be compared with different sliding laws currently used

across the literature.

In this thesis we have investigated only the viscous rheology. Different rheologies should be

further investigated. For example visco-elasto-plastic rheology.
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glacier modeling on graphic cards, Platform Geosciences, Swiss Academy of Science,

submitted to Swiss Geoscience Meeting, 2015

• Licul, A., Herman, F., Podladchikov, Y., Räss, L. and Omlin, S. (2016). Multi-GPU
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