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 5 
1 INTRODUCTION 

This guide introduces Data Envelopment Analysis (DEA), a 

performance measurement technique, in such a way as to be appropriate 

to decision makers with little or no background in economics and 

operational research. The use of mathematics is kept to a minimum. This 

guide therefore adopts a strong practical approach in order to allow 

decision makers to conduct their own efficiency analysis and to easily 

interpret results. 

DEA helps decision makers for the following reasons: 

- By calculating an efficiency score, it indicates if a firm is 

efficient or has capacity for improvement. 

- By setting target values for input and output, it calculates how 

much input must be decreased or output increased in order to 

become efficient. 

- By identifying the nature of returns to scale, it indicates if a 

firm has to decrease or increase its scale (or size) in order to 

minimize the average cost. 

- By identifying a set of benchmarks, it specifies which other 

firms’ processes need to be analysed in order to improve its 

own practices. 

After this introduction, Chapter  2 presents the essentials about DEA, 

alongside a case study to intuitively understand its application. 

Chapter  3 introduces Win4DEAP, a software package that conducts 

efficiency analysis based on DEA methodology. Chapter  4 is dedicated 

to more demanding readers interested in the methodical background of 

DEA. Four advanced topics of DEA (adjustment to the environment; 

preferences; sensitivity analysis; time series data) are presented in 

Chapter  5. Finally, Chapter  6 shows how to program the Solver in 

Microsoft Excel © in order to run a basic DEA efficiency analysis. 

 



 

CAHIER DE L’IDHEAP 276 BASICS OF DEA 
 

6 
2 BASICS OF DEA 2.1 AN EFFICIENCY MEASUREMENT METHOD 

DEA is used to measure the performance of firms or entities (called 

Decision-Making Units –DMUs–) which convert multiple inputs into 

multiple outputs. Firm efficiency is defined as the ratio of the sum of its 

weighted outputs to the sum of its weighted inputs (Thanassoulis et al., 

2008, p. 264). DEA is suitable for the use of both private sector firms 

and public sector organizations (and even for entities such as regions, 

countries, etc.)1. It was formulated in Charnes et al. (1978, 1981) in 

order to evaluate a US federal government program in the education 

system called ‘Program Follow Through’. The use of DEA then spread 

to other public organizations (hospitals, aged-care facilities, social 

service units, unemployment offices, police forces, army units, prisons, 

waste management services, power plants, public transportation 

companies, forestry companies, libraries, museums, theatres, etc.) and to 

the private sector (banks, insurance companies, retail stores, etc.). 

Each firm’s efficiency score is calculated relative to an efficiency 

frontier. Firms located on the efficiency frontier have an efficiency score 

of 1 (or 100%). Firms operating beneath the frontier have an efficiency 

score inferior to 1 (or 100%) and hence have the capacity to improve 

future performance. Note that no firm can be located above the 

efficiency frontier because they cannot have an efficiency score greater 

than 100%. Firms located on the frontier serve as benchmarks –or 

peers– to inefficient firms. These benchmarks (i.e. real firms with real 

data) are associated with best practices. DEA is therefore a powerful 

benchmarking technique. 

                                                           
1  To keep it simple and to make this pedagogical guide more understandable, the term 

‘firm’ is used in a generic way. 



 7 2.2 CASE STUDY 1 
To better understand the mechanics behind DEA, this section develops a 

simple practical case study. It includes only one input and one output, 

although DEA can handle multiple inputs and multiple outputs. 

Five register offices (A to E) produce one output (total number of 

documents, such as marriage or birth certificates) with one input 

(number of full-time equivalent public servants)2. The data are listed in 

Table 1. For example, two public servants work in Register Office A. 

They produce one document (during a certain period of time). TABLE 1: Case study 1 – Five register offices produce documents with public servants. 
Input Output 

Register Office 
Public servants (x) Documents (y) 

A 2 1 

B 3 4 

C 5 5 

D 4 3 

E 6 7 

a) Case study 1 – Two basic DEA models 

Two basic models are used in DEA, leading to the identification of two 

different frontiers: 

- The first model assumes constant returns to scale technology 

(CRS model). This is appropriate when all firms are operating 

at an optimal scale. However, note that this is quite an 

ambitious assumption. To operate at an optimal scale, firms 

should evolve in a perfectly competitive environment, which is 

seldom the case. The CRS model calculates an efficiency score 

called constant returns to scale technical efficiency (CRSTE). 

- The second model assumes variable returns to scale 

technology (VRS model). This is appropriate when firms are 

                                                           
2  Note that DEA can handle more outputs and inputs. In order to represent this example 

in a two-dimensional graph, we consider a total of two outputs and inputs of two (one 
output, one input; no variable representing the quality of the variables). 
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not operating at an optimal scale. This is usually the case when 

firms face imperfect competition, government regulations, etc. 

The VRS model calculates an efficiency score called variable 

returns to scale technical efficiency (VRSTE).  

Comparison between the two models reveals the source of inefficiency. 

Constant returns to scale technical efficiency corresponds to the global 

measure of firm performance. It is composed by a ‘pure’ technical 

efficiency measure (captured by the variable returns to scale technical 

efficiency score) and a scale efficiency measure (SE). Section  4.2 

demonstrates how these three notions (CRSTE, VRSTE and SE) relate 

to each other. 

b) Case study 1 – Input or output orientation 

A DEA model can be input or output oriented: 

- In an input orientation, DEA minimizes input for a given level 

of output; in other words, it indicates how much a firm can 

decrease its input for a given level of output. 

- In an output orientation, DEA maximizes output for a given 

level of input; in other words, it indicates how much a firm can 

increase its output for a given level of input. 

The efficiency frontier will be different in a CRS or a VRS model (see 

Section  4.2). However, within each model, the frontier will not be 

affected by an input or an output orientation. For example, the efficiency 

frontier under VRS will be exactly the same in an input or an output 

orientation. Firms located on the frontier in an input orientation will also 

be on the frontier in an output orientation. 

In a CRS model, technical efficiency scores have the same values in an 

input or an output orientation. But these values will be different 

according to the model’s orientation when VRS is assumed. However, 

Coelli and Perelman (1996, 1999) note that, in many instances, the 

choice of orientation has only a minor influence upon the technical 

efficiency scores calculated in a VRS model. 
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Choosing between an input or an output orientation 

The model’s orientation should be selected according to which variables 

(inputs or outputs) the decision maker has most control over. For 

example, a school principal will probably have more control over his 

teaching staff (input) than over the number of pupils (output). An input 

orientation will be more appropriate in this case. 

In the public sector, but sometimes also in the private, a given level of 

input can be granted and secured to a firm. In this case, the decision 

maker may want to maximize the output (and therefore choose an output 

orientation). Alternatively, if the decision maker’s task is to produce a 

given level of output (e.g. a quota) with the minimum input, he will opt 

for an input orientation. 

If the decision maker is not facing any constraints and has control of 

both input and output, the model’s orientation will depend on his 

objectives. Does he need to cut costs (input orientation) or does he want 

to maximize production (output orientation)? 

c) Case study 1 – CRS efficient frontier 

Figure 1 represents the efficient frontier assuming constant returns to 

scale technology (CRS efficient frontier). The CRS efficient frontier 

starts at the origin and runs through Register Office B. Register Office B 

happens to be the observation with the steepest slope, or the highest 

productivity ratio, among all register offices (4 / 3 = 1.33, meaning that 

one public servant produces 1.33 documents). Register Office B is on 

the frontier; it is 100% efficient. Register Offices A, C, D and E are 

beneath the frontier. Their respective efficiency scores are less than 

100%. DEA assumes that the production possibility set is bounded by 

the frontier. This actually implies that DEA calculates relative and not 

absolute efficiency scores. Although firms on the efficient frontier are 

granted a 100% efficiency score, it is likely that they could further 

improve their productivity. 
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10 FIGURE 1: Case study 1 – Register offices beneath the efficient frontier have the capacity to improve performance. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 also illustrates how DEA measures efficiency scores. The 

example of Register Office A is described below: 

- In an input orientation, A’s efficiency score is equal to the 

distance SACRS-I divided by the distance SA. ACRS-I is the 

projection of point A on the efficient frontier (assuming 

constant returns to scale –CRS– and an input orientation –I). 

Note that one can easily calculate efficiency scores using a 

ruler and measuring the distances on the graph. A’s score is 

37.5%. This means that Register Office A could reduce the 

number of public servants employed (input) by 62.5% 

(100 - 37.5) and still be able to produce the same number of 

documents (one).  

- In an output orientation, A’s efficiency score is equal to the 
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constant returns to scale –CRS– and an output orientation –O–). 

A’s score is 37.5%, as in an input orientation3. This means that 

Register Office A could increase its production of documents 

(output) by 62.5% (100 - 37.5) whilst holding the number of 

public servants constant at two. 

d) Case study 1 – VRS efficient frontier 

Figure 2 represents the efficient frontier assuming variable returns to 

scale technology (VRS efficient frontier). The VRS efficient frontier is 

formed by enveloping all the observations. Register Offices A, B and E 

are on the frontier. They are 100% efficient. Register Offices C and D 

are beneath the frontier. Their respective efficiency scores are inferior to 

100%. DEA assumes that the production possibility set is bounded by 

the frontier. Again, this implies that DEA calculates relative and not 

absolute efficiency scores. Although firms on the efficient frontier are 

granted a 100% efficiency score, it is likely that they could further 

improve their productivity. 

                                                           
3  Note that the efficiency scores in a CRS model are always the same for an input or an 

output orientation. 
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12 FIGURE 2: Case study 1 – For the same level of input, Register Office D could improve its output up to the projected values of point DVRS-O (i.e. from 3 to 5 documents). 
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example of Register office D is described below: 

- In an input orientation, D’s efficiency score is equal to the 

distance UDVRS-I divided by the distance UD. DVRS-I is the 

projection of point D on the efficient frontier (assuming 

variable returns to scale –VRS– and an input orientation –I–). 

Note that one can easily calculate efficiency scores using a 

ruler and measuring the distances on the graph. D’s score is 

66.7%. This means that Register Office D could reduce the 

number of public servants employed (input) by 33.3% 

(100 - 66.7) and still be able to produce the same number of 

documents (three).  

- In an output orientation, D’s efficiency score is equal to the 

distance VD divided by the distance VDVRS-O. DVRS-O is the 

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

Public servants

D
o

cu
m

en
ts

A

B

C

D

E

DVRS-O

DVRS-IU

V

VRS efficient frontier

Production possibility set

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

Public servants

D
o

cu
m

en
ts

A

B

C

D

E

DVRS-O

DVRS-IU

V

VRS efficient frontier

Production possibility set



 13 
projection of point D on the efficient frontier (assuming 

variable returns to scale –VRS– and an output orientation –O–). 

D’s score is 60%4. This means that Register Office D could 

increase its production of documents (output) by 40% 

(100 - 60) whilst holding the number of public servants 

constant at four. 

 

How to interpret efficiency scores according to the DEA model’s 

output or input orientation 

Register Office C has an efficiency score of 75% in the CRS model. It 

will get the same efficiency score in an output or in an input-oriented 

model under the constant returns to scale assumption. However: 

- In the input-oriented model, the capacity to improve input (i.e. a 

reduction) by 25% (100 - 75) is calculated using the original input 

value of 5 public servants. The DEA model calculates a projected 

value of 3.75. The 25% improvement is then calculated according to 

the original value: [((5 - 3.75) / 5) x 100] = 25. From a practical point 

of view, the capacity to improve input by 25% means that the Register 

Office should reduce all of its inputs by 25% in order to become 

efficient.  

- In the output-oriented model, the capacity to improve output (i.e. an 

augmentation) by 25% (100 - 75) is calculated using the projected 

output value. Register Office C has an original output value of 

5 documents. The DEA model calculates a projected value of 

6.67 documents. The 25% improvement is calculated according to the 

projected value: [((6.67 - 5) / 6.667) x 100] = 25. From a practical 

point of view, the capacity to improve output by 25% means that the 

Register Office should augment all of its outputs by 25% in order to 

become efficient. 

                                                           
4  Note that the efficiency scores in a VRS model are different for an input or an output 

orientation. 
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e) Case study 1 – CRS, VRS and scale efficiency 

Figure 3 represents the CRS and the VRS efficient frontiers on the same 

graph. Register Office B is CRS and VRS efficient, as it is located on 

both frontiers. Register Offices A and E are efficient under the variable 

returns to scale assumption but inefficient under the constant returns to 

scale assumption. Finally, Register Offices D and C are both CRS and 

VRS inefficient; they are located neither on the CRS nor on the VRS 

frontiers. FIGURE 3: Case study 1 – Register Offices A and E are VRS efficient but CRS inefficient. 
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Some Register Offices (D and C) are not even located on the VRS 

frontier. These Register Offices not only have a scale problem but are 

also poorly managed. For example, Register Office D should move to 

point DVRS-I located on the VRS frontier in order to become VRS 

efficient (i.e. to eliminate the inefficiency attributable to poor 

management). Furthermore, Register Office D should move from point 

DVRS-I to point DCRS-I located on the CRS frontier in order to become 

CRS efficient (i.e. to eliminate the inefficiency attributable to a problem 

of scale). 

As a result, the CRS efficiency (also called ‘total’ efficiency) can be 

decomposed into two components: the VRS efficiency (also called 

‘pure’ efficiency) and the scale efficiency. The following ratios 

represent these three types of efficiency for Register Office D (input 

orientation). 

Technical efficiency of 

D under CRS 

Technical efficiency of 

D under VRS 

Scale efficiency of D 

 
%3.56== −

UD

UD
TE ICRS

CRS

 

 
%7.66== −

UD

UD
TE IVRS

VRS

 

 
%4.84==

−

−

IVRS

ICRS

UD

UD
SE

 

f) Case study 1 – Nature of returns to scale 

The nature of returns to scale of register offices not located on the CRS 

frontier (in other words, scale inefficient) has to be identified. Figure 4 

represents the CRS efficient points ACRS-I and ECRS-I of Register Offices 

A and E (which are CRS inefficient but VRS efficient). It also represents 

the CRS efficient points DCRS-I and CCRS-I and the VRS efficient points 

DVRS-I and CVRS-I of Register Offices D and C (which are CRS and VRS 

inefficient).  
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16 FIGURE 4: Case study 1 – Register Offices A and D face increasing returns to scale –IRS– (economies of scale); C and E face decreasing returns to scale –DRS– (diseconomies of scale). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

To identify the nature of returns to scale, one has to focus on the slope 
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- A register office is located both on the CRS and the VRS 

efficient frontiers (such as point B). Register Office B has the 

highest productivity of all VRS efficient points (4 / 3 = 1.33). It 

is facing constant returns to scale. Such a firm reaches its 

optimal size (or efficient scale)5. It is operating at a point where 
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occurs when the average inputs consumption is minimized and 

does not vary with output. In a situation of constant returns to 

                                                           
5  In the economic context, a firm operates at the optimal size (or efficient scale) when it 

minimizes its average cost. In the context of DEA, we can measure efficiency in 
physical or in monetary terms. Because cost and price information is not always 
available or appropriate, the use of technical efficiency is often preferred. As this latter 
measure is based on physical terms, we prefer to use the expression of average inputs 
consumption instead of average cost. 
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scale, an increase in output of 1 percent requires a 

proportionate increase in input (i.e. 1 percent). 

- A register office (or the projected point of a register office) is 

located at a point where the scale (or the size) has a positive 

impact on productivity. Points A and DVRS-I are in such a 

position (see Figure 5). The productivity of A (1 / 2 = 0.5) is 

inferior to the productivity of DVRS - I (3 / 2.67 = 1.12). The ratio 

of productivity is increasing with the scale. This situation 

occurs until point B, which has a productivity of 1.33. Register 

Offices A and D are therefore facing increasing returns to scale 

(IRS) –or economies of scale–. In this situation, the average 

inputs consumption declines whilst output rises. Register 

Offices A and D have not yet reached their optimal size (or 

efficient scale). To improve their scale efficiency, they have to 

expand their output. In a situation of economies of scale, a 

variation in output of 1 percent results in a variation in input of 

less than 1 percent. Hence, an increase in output results in a 

reduction of the average inputs consumption. 
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18 FIGURE 5: Case study 1 – The ratio of productivity is increasing with the scale. 
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 19 FIGURE 6: Case study 1 – The ratio of productivity is decreasing with the scale. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The specific cases of the five Register offices are described below (see 

Figure 4): 

- Register Office A is located on the VRS frontier but not on the 

CRS frontier. Its inefficiency is due to an inappropriate scale. A 

is facing increasing returns to scale. A variation in output of 

1 percent results in a variation in input of less than 1 percent. 

- Register Office D is neither located on the CRS nor on the VRS 
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poor management. D is facing increasing returns to scale. A 
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less than 1 percent. 

- Register Office B is located both on the CRS and on the VRS 

frontier. It has no inefficiency at all. B is facing constant 

returns to scale. A variation in output of 1 percent results in a 
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- Register Office C is neither located on the CRS nor on the VRS 

frontier. Its inefficiency is due to an inappropriate scale and to 

poor management. C is facing decreasing returns to scale. A 

variation in output of 1 percent results in a variation in input of 

more than 1 percent. 

- Register office E is located on the VRS frontier (but not on the 

CRS frontier). Its inefficiency is due to an inappropriate scale. 

E is evolving in a situation of decreasing returns to scale. A 

variation in output of 1 percent results in a variation in input of 

more than 1 percent. 

g) Case study 1 – Peers (or benchmarks) 

DEA identifies, for each inefficient firm, the closest efficient firms 

located on the frontier. These efficient firms are called peers or 

benchmarks. If inefficient firms want to improve their performance, they 

have to look at the best practices developed by their respective peers.  

Under the CRS assumption, Register Office B is the only firm located 

on the efficient frontier. Hence it is identified as the peer for all other 

inefficient register offices. 

Figure 7 illustrates the peers under the VRS assumption. Three Register 

Offices (A, B and E) are located on the efficient frontier. Two Register 

Offices (C and D) are inefficient. Register Office C has two assigned 

peers: B and E. CVRS-I, the projected point of C on the VRS frontier, lies 

between these two benchmarks. Register Office D also has two assigned 

peers: A and B. DVRS-I, the projected point of D on the VRS frontier, lies 

between these two benchmarks. 



 21 FIGURE 7: Case study 1 – Register Offices A and B are peers of Register Office D; Register Offices B and E are peers of Register Office C. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

h) Case study 1 – Slacks 

Particular positions located on the frontier are inefficient. Assume there 

is an additional register office in our sample, F. It produces 

0.5 document with two public servants. Figure 8 illustrates the efficient 

frontier under VRS. Register Office F is not located on the frontier. In 

order to become efficient, it has first to move to point FVRS-I without slacks. 

At this location, Register Office F should have an efficiency score of 

100%, as it is located on the frontier. But Register Office A, next to him 

on the frontier, is also 100% efficient. The difference between F and A 

is striking. With the same number of inputs (two public servants), F 

produces 0.5 document and A produces one document (i.e. 0.5 more 

than F). Therefore point FVRS-I without slacks cannot be considered as 100% 

efficient, because it produces less output with the same amount of input 

than another register office (A). To get a 100% efficiency score, point 

FVRS-I without slacks has to move further up to point A. This additional 

improvement needed for a firm to become efficient is called a slack.  
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Indeed, every point located on the sections of the frontier which run 

parallel to either the x or the y axes has to be adjusted for slacks. DEA is 

designed to take slacks into account. FIGURE 8: Case study 1 – DEA adjusts the projected values of inefficient firms to take slacks into account. 
 

 

 

 

 

 

 

 

 

 

 

 2.3 MULTIPLE OUTPUTS AND INPUTS 
DEA allows multiple outputs and multiple inputs to be taken into 

account. For example, a shirt company uses machines, workers and 

tissue (three inputs) in order to produce T-shirts, pants and underwear 

(three outputs). DEA can account for all of these variables and even 

more. As a result, DEA goes far beyond the calculation of single 

productivity ratios such as, for example, the number of T-shirts 

produced per worker (one output divided by one input).  

However, the total number of outputs and inputs being considered is not 

limitless from a practical point of view. It depends on the number of 

firms in the data set. If the number of firms is smaller than, roughly 
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speaking, three times the sum of the total number of inputs and outputs, 

it is highly probable that several firms, if not all, will obtain a 100% 

score6. For example, a dataset containing 21 shirt companies allows a 

total of seven outputs and inputs to be dealt with (21 divided by 3). As 

Cooper et al. (2006, p. 106) point out, “if the number of DMUs (n) is 

less than the combined number of inputs and outputs (m + s), a large 

portion of the DMUs will be identified as efficient and efficiency 

discrimination among DMU is questionable due to an inadequate 

number of degrees of freedom. (…). Hence, it is desirable that n exceeds 

m + s by several times. A rough rule of numbs in the envelopment 

model is to choose n (= the number of DMUs) equal to or greater than 

max {m x s, 3 x (m + s)}. ” 

DEA measures firm efficiency based on multiple outputs and multiple 

inputs. If Shirt Company A produces a lot of T-shirts but only a few 

pants and underwear, DEA will automatically attribute a high weighting 

to the T-shirts variable in order to emphasize this strength. As a result, 

DEA ‘automatically’ optimizes the weighting of each variable in order 

to present each firm in the best possible light. 

The particularity of DEA is that weights assigned to outputs and inputs 

are not decided by users. Moreover, it does not use a common set of 

weights for all firms. Instead, a different set of weights is calculated by a 

linear optimization procedure. 

Unfortunately, DEA does not work with negative or zero values for 

inputs and outputs. However, zero values can be substituted with very 

low values such as 0.01. 

It is also noted that each DMU must have the same number of inputs and 

outputs in order to be compared, otherwise DEA cannot be applied. 

A distinction has to be made between variables which are under the 

control of management (discretionary variables) and variables which are 

not (non-discretionary or environmental variables). Ideally, a DEA 

model will exclusively include discretionary variables although some 

                                                           
6  The higher the number of inputs and outputs that are taken into consideration for a 

given number of firms, the more probable it is that each firm will be the best producer 
of at least one of the outputs. Therefore, all firms could obtain a 100% efficiency score. 
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DEA models can also accommodate non-discretionary. In a second step, 

efficiency scores can be adjusted to account for environmental variables 

(i.e. such variables influence the efficiency of a firm but are not a 

traditional input and are not under the control of the manager). 

Moreover, variables should reflect both quantitative and qualitative 

characteristics of firms’ resources and services. Although it may not be 

easy to identify and to convert qualitative characteristics into numbers, it 

is desirable to include such variables in the model in order to 

appropriately benchmark firms. 

 2.4 TYPES OF EFFICIENCY 
The notion of efficiency refers to an optimal situation; the maximum 

output for a given level of input or the minimum input for a given level 

of output. Subject to data availability, several types of efficiency can be 

measured: 

- Technical efficiency, in which both outputs and inputs are 

measured in physical terms7. 

- Cost efficiency: identical to technical efficiency, except that 

cost (or price) information about inputs is added to the model. 

- Revenue efficiency: identical to technical efficiency, except 

that price information about outputs is added to the model. 

- Profit efficiency: identical to technical efficiency, except that 

cost information about inputs and price information about 

outputs are added to the model.  

                                                           
7  This pedagogical guide will focus on the measurement of technical efficiency for two 

main reasons: first, firms in the public sector are often not responsible for the age 
pyramid of their employees; therefore taking into account the wages of the employees 
(which often grow higher alongside seniority) would unfairly alter efficiency of a firm 
with a greater proportion of senior employees; second, firms in the public sector do not 
often produce commercial goods or services with a set price.  
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Technical efficiency is a global measure of firm performance. However, 

it does not indicate the source of inefficiency. This source could be 

twofold: 

- First, the firm could be poorly managed and operated. 

- Second, it could be penalised for not operating at the right 

scale.  

Technical efficiency can be decomposed into a ‘pure’ technical 

efficiency measure and a scale efficiency measure to reflect these two 

sources of inefficiency8. 

 2.5 MANAGERIAL IMPLICATIONS 
DEA is a benchmarking technique. The efficiency scores provide 

information about a firm’s capacity to improve output or input. In this 

sense, DEA offers strong support to decision making. To conduct an 

efficiency analysis and to interpret results often raises practical 

questions. The following list of frequently asked questions offers some 

advice. 

- Is it advisable to involve the managers of the firms to be 

benchmarked in the efficiency analysis from the beginning 

of the process? 

Yes, it is, and for two main reasons. First, managers know the 

processes of their firms and the data available. Therefore they 

are the right persons to pertinently identify which inputs and 

outputs have to be integrated into the analysis. Second, 

managers involved from the beginning of the process are more 

likely to accept the results of the analysis (rather than to reject 

them) if they have been involved in the process. 

                                                           
8  The firm’s management team will definitely be held responsible for the ‘pure’ technical 

efficiency score. In a situation where it does not have the discretionary power to modify 
the firm’s size, it will likely not be accountable for the scale efficiency score. However, 
especially in the private sector, one has the choice of the scale at which it operates: the 
management team can easily downsize the firm and, with some efforts, upsize it also. 
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- How should one respond to managers who claim that their 

firms are different from others, and therefore cannot be 

compared to them? 

Sometimes, inefficiencies can be explained by indisputable 

environmental variables. But sometimes they cannot. Managers 

often justify the low efficiency scores of their firms by arguing 

that their situations are different compared to the situations of 

the other firms. They claim to be a ‘special case’ (and therefore 

it is acceptable to be inefficient). Actually, the majority of 

firms could possibly claim to be different as most possess a 

specificity that others do not have. However, it is likely that the 

difference of one firm will be compensated by the difference of 

another. More generally, it is up to the managers to prove that 

they really face a hostile environment. If they cannot prove it, 

management measures have to be taken to improve efficiency. 

- Assume that a firm obtains an efficiency score of 86.3%. 

Does this number have to be strictly applied? 

Not really, it should be interpreted more as an order of 

magnitude. This order of magnitude informs managers that they 

have to increase their outputs or to decrease their inputs in 

order to become more efficient. But one should not focus too 

strictly on the capacity for 13.7% improvement. Such a number 

could be interpreted by practitioners as too ‘accurate’ and may 

offend their sensibilities. Therefore it is better to consider 

efficiency scores more as more of an objective basis to hold an 

open discussion about the way to improve firm efficiency 

rather than a number to be strictly applied. 

- A firm faces increasing returns to scale. It has economies of 

scale. What does that concretely mean from a managerial 

point of view? 

Such a firm has not yet reached its optimal size. In order to 

reduce its average cost (or its average inputs consumption), it 

has to increase its size. Practically, this could be done either by 

internal growth (i.e. producing more output) or by merging 
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with another firm which is also facing increasing returns to 

scale. If, for some reason, managers cannot influence the scale 

of a firm, they should not be held accountable for this source of 

inefficiency. 

- A firm faces decreasing returns to scale. It has 

diseconomies of scale. What does that concretely mean from 

a managerial point of view? 

Such a firm is already oversized, having exceeded its optimal 

size. In order to reduce its average cost (or its average inputs 

consumption), it has to decrease its size. Practically, this could 

be done either by internal decay (i.e. producing less output) or 

by splitting the firm into two separate businesses. Note that 

some of the production could be transferred to a firm facing 

increasing returns to scale. If, for some reason, managers 

cannot influence the scale of a firm, they should not be held 

accountable for this source of inefficiency. 

- Is efficiency the only criteria to assess a firm’s 

performance? 

Not necessarily. Basically, the assessment of a firm’s 

performance will depend on the management objectives. Other 

criteria such as effectiveness or equity are often considered 

alongside efficiency. If this is the case, the overall performance 

should be balanced with the various criteria. 

- One firm obtains a score of 100% but all the others in the 

dataset obtain much lower scores (for example, starting at 

40% or lower). Is this realistic? 

It could be realistic, but the gap appears to be important. In 

such a case, data have to be carefully checked, and especially 

data of the efficient firm. If a data problem is not identified, 

such results mean that the efficient firm is likely to have 

completely different processes than the other firms. It should 

therefore be absolutely presented as a best practice model. 

However, even if they are realistic, such results are likely to be 

rejected by managers whose firms have low efficiency scores. 
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These managers are likely to be discouraged because it is 

obviously unrealistic for them to improve their firm’s 

efficiency by 60% (or more) in the short run. Therefore it is 

better to exclude the efficient firm from the sample and to run a 

new model. 

- Almost all the firms obtain an efficiency score of 100%. 

Does that mean that all of them are really efficient? 

Yes, it could mean that all the firms are efficient. Such results 

would be great! But they are unlikely. Here, the total number of 

inputs and outputs is probably too high compared to the 

number of firms in the dataset. In this case, one variable has to 

be excluded and a new model has to be run. If the number of 

firms obtaining a 100% score decreases, it indicates that the 

number of variables was too high compared to the number of 

firms. If not, all the firms are just efficient and must be 

congratulated. 

- The model does not show any results. What does that 

mean? 

Data has to be checked. This could happen when data with a 

value of zero are in the set. Zeros have to be substituted by a 

very small number (0.01). 

 

Exercise 1 

The following multiple choice questions test one’s knowledge on the 

basics of DEA. Only one answer is correct. Solutions are listed at the 

end of this exercise.  

1. What is the main purpose of DEA? 

a) DEA measures firms’ effectiveness 

b) DEA measures firms’ efficiency 

c) DEA measures firms’ profit 

d) DEA measures firms’ productivity 
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2. A dataset includes information about input quantity, input cost and 

output quantity. Which type of efficiency cannot be measured? 

a) Technical efficiency 

b) Cost efficiency 

c) Revenue efficiency 

d) Scale efficiency 

3. ‘Pure’ technical efficiency reflects: 

a) A global measure of firm performance 

b) The efficiency of a firm operating at an incorrect scale 

c) A measure of profit efficiency 

d) The efficiency of a poorly managed firm 

4. Firm A is inefficient. Who is its peer(s)? 

a) One or several firms whose efficiency scores are worse than 

firm A’s efficiency 

b) One or several firms whose efficiency scores are better than 

firm A’s efficiency, but which are not located on the 

efficiency frontier 

c) Any firm located on the efficiency frontier 

d) One or several specific firms (i.e. a subgroup of efficient 

DMUs) located on the efficiency frontier 

5. A firm is producing laptops. Which input reflects quality? 

a) The number of FTE employees with a Master’s degree 

b) Total number of FTE employees, disregarding their 

educational background 

c) Total number of square meters of the factory 

d) Energy consumption 

6. A firm has diseconomies of scale. How can the management team 

improve its efficiency? 

a) By merging with another firm 

b) By producing more output 

c) By producing less output 

d) By producing the same amount of output 
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7. A manager plans to measure efficiency using three inputs and two 

outputs. What is the minimum number of firms that should be 

included in the dataset? 

a) 10 

b) 6 

c) 15 

d) It does not matter 

 

Correct answers: 1b; 2c; 3d; 4d; 5a; 6c; 7c. 
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3 DEA SOFTWARE 3.1 EXISTING SOFTWARE 

The user-friendly software packages of DEA incorporate intuitive 

graphical user interfaces and automatic calculation of efficiency scores. 

Some of them are compatible with Microsoft Excel ©. For a survey of 

DEA software packages, one can refer to Barr (2004). Today, several 

software packages have been developed:  

- Free packages include DEAP (Timothy Coelli, Coelli 

Economic Consulting Services) and Win4DEAP (Michel 

Deslierres, University of Moncton), Benchmarking package in 

R (Peter Bogetoft, Copenhagen Business School, and Lars Otto, 

University of Copenhagen), Efficiency Measurement System 

(Holger Scheel, University of Dortmund) or DEA Solver Online 

(Andreas Kleine and Günter Winterholer, University of 

Hohenheim). 

- Commercial packages include DEAFrontier9 (Joe Zhu, 

Worcester Polytechnic Institute), DEA-Solver PRO10 (Saitech, 

Inc.), PIM-DEA (Ali Emrouznejad, Aston Business School) or 

Frontier Analyst (Banxia Software Ltd). 

This section focuses on the ‘twin’ DEA software packages 

DEAP/Win4DEAP11. These packages centre on the basics of DEA, are 

simple to use and are stable over time. They are freely available12 and 

come with data files as examples. As Win4DEAP is the Windows based 

interface of DEAP (which is a DOS program), the current section refers 

only to Win4DEAP. All screenshots and icons presented in this section 

                                                           
9  Zhu (2003) includes an earlier version of DEAFrontier, DEA Excel Solver, on a CD-

ROM. This software works only under Excel © 97, 2000 and 2003. It deals with an 
unlimited number of DMUs and is available at little cost. 

10  Cooper et al. (2006) include a CD-ROM with a DEA-Solver version limited at 50 
DMUs. It is available at little cost. 

11  As DEAP is a DOS program, a user friendly Windows interface has been developed for 
it (Win4DEAP). These ‘twin’ software packages have to be both downloaded and 
extracted to the same folder. Win4DEAP cannot work without DEAP. 

12  DEAP Version 2.1: http://www.uq.edu.au/economics/cepa/deap.htm 
Win4DEAP Version 1.1.3: http://www8.umoncton.ca/umcm-
deslierres_michel/dea/install.html 
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and coming from DEAP or Win4DEAP are reproduced by permission of 

Timothy Coelli and Michel Deslierres. 

 3.2 CASE STUDY 2 
The use of Win4DEAP is illustrated by a case study including a sample 

of 15 primary schools (see Table 2 below). 

The data used in this case study are fictitious (but are very similar to real 

ones). 15 schools produce one output (number of pupils) with three 

inputs (number of full-time equivalent teachers, number of full-time 

administrative staff and number of computers –used as a proxy for 

technology investment). For example, School # 8 educates 512 pupils 

with 28.6 teachers, 1.3 administrative staff and 26 computers. TABLE 2: Case study 2 – On average, each school has 393.6 pupils, 23.2 teachers, 1.3 administrative staff and 21.6 computers. 
Input Output 

School 
FTE teachers FTE adm. staff Computers Pupils 

1 40.2 2.0 37.0 602.0 

2 18.1 1.1 17.0 269.0 

3 42.5 2.1 41.0 648.0 

4 11.0 0.8 10.0 188.0 

5 24.8 1.3 22.0 420.0 

6 21.1 1.3 19.0 374.0 

7 13.5 1.0 13.0 247.0 

8 28.6 1.3 26.0 512.0 

9 23.5 1.3 22.0 411.0 

10 15.9 1.0 15.0 285.0 

11 23.2 1.3 22.0 397.0 

12 26.0 1.4 25.0 466.0 

13 11.1 0.8 11.0 198.0 

14 28.8 1.6 26.0 530.0 

15 19.7 1.3 18.0 357.0 
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a) Case study 2 – Building a spreadsheet in Win4DEAP 

Win4DEAP is launched by clicking the MD icon ( ). Firms (called 

decision-making units or DMUs) are listed in the rows and variables 

(outputs and inputs) in the columns. The opening spreadsheet contains 

one decision-making unit (DMU1), one output (OUT1) and one input 

(IN1) by default (see Figure 9). FIGURE 9: Case study 2 – The opening spreadsheet contains one DMU, one output and one input. 
 

To edit and name firms, outputs and inputs, the user has to click the 

DMU1 ( ), OUT1 ( ) and IN1 ( ) icons, respectively. The 

window reproduced in Figure 10 allows the user to (1) assign a long 

name and a label (maximum of eight characters) to any variable and (2) 

select the nature of the variables (either ‘input’ or ‘output’). Finally, the 

user has to select the ‘with price’ option if he intends to measure cost, 

revenue or profit efficiency (i.e. a ‘price’ column will be added to the 

selected variable in the spreadsheet). 
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The icons  enable the user to add firms (DMUs). The icons 

 enable the user to add variables (inputs or outputs). The icons 

 and  are used to delete any existing DMUs or variables. Finally, 

the following icons  allow the user to reverse the order of 

appearance of DMUs (rows) or variables (columns). 
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How to import Microsoft Excel © data into Win4DEAP 

Note that data can be imported from an Excel © file into Win4DEAP by 

following these steps: 

- Save the Microsoft Excel © data (only numbers, no names of DMUs 

or variables should be included) into the CSV format (Comma 

delimited). 

- In Win4DEAP, first select the ‘File’ menu, then the ‘Import’ option 

and finally the ‘New data set’ application. 

- Select the CSV file and open it. 

- The data is now presented in the Win4DEAP spreadsheet, which 

still has to be configured (DMUs and variables have to be named 

and variables must be defined as inputs or outputs). 

 

Exercise 2 

The objective of this exercise is to correctly calibrate a spreadsheet in 

Win4DEAP. 

Tasks 

a) Prepare a spreadsheet in Win4DEAP including 15 DMUs, 3 inputs 

and one output. Name the DMUs ‘School 1’ to ‘School 15’. The 

first input is ‘FTE teachers’, the second ‘FTE administrative staff’ 

and the third ‘Number of computers’. The output corresponds to the 

number of pupils. 

b) Feed the data appearing in Table 2 into the spreadsheet. 

c) Save the file, preferably into the same folder containing 

DEAP/Win4DEAP (menu ‘File’, option ‘Save as’). 

 

Answer: The spreadsheet should be similar to the one represented in 

Figure 11. 
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b) Case study 2 – Running a DEA model 

To run a DEA model, the user has to click the ‘lightning’ icon ( ). 

The window represented in Figure 12 will then appear. This window 

allows a calibration of the model following steps 1 to 4 described below: 

1. Select an input or an output orientation (Orientation box).  

2. Select the assumption about returns to scale (Returns to scale box). 

By ticking ‘constant’, one assumes constant returns to scale (CRS); 

by ticking ‘variable’, one assumes variable returns to scale (VRS). 
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If one cannot be certain about the fact that firms are operating at an 

optimal scale, running a VRS model is recommended. 

3. Select a model (Calculate box). Three main options are available: 

- To calculate technical efficiency (TE) or technical (CRS), ‘pure’ 

(VRS) and scale efficiency (SE), tick ‘DEA (multi-stage)’. 

Options ‘DEA (1-stage)’, ‘DEA (2-stage)’ and ‘DEA (multi-

stage)’ correspond to different treatments of slacks. Following 

Coelli (1998), the multi-stage treatment is recommended. 

- To calculate cost, revenue or profit efficiency, tick ‘DEA-COST’. 

For this option, cost and/or price information about variables 

must be available and added to the spreadsheet. 

- To calculate technical and scale efficiency when panel data are 

available, tick ‘MALMQUIST’. See Section  5.4 to learn more 

about this. 

4. Choose how to display the results: only summarized or reported 

firm by firm (Report box). 

5. Click ‘Execute’ to run the model. 
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Exercise 3 

The objective of this exercise is to run a DEA model in Win4DEAP 

based on the schools case study. The following information is available: 

- Schools are confronted with budget restrictions; 

- The school system is heavily regulated; 

- An obligatory school by school report is expected. 

Prerequisites 

Exercise 2 
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Tasks 

a) Open the schools data spreadsheet (i.e. the calibrated spreadsheet in 

exercise 2) 

b) Calibrate the model 

c) Execute the model 

 

Answer: The model should be similar to the one represented in 

Figure 13. FIGURE 13: Case study 2 – An input oriented model calibrated for VRS. 
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c) Case study 2 – Interpreting results 

After executing the selected model, a short notice appears with 

information about Timothy Coelli, the developer of DEAP. Results are 

displayed after closing this window. It is recommendable for first time 

users to take some time navigating through the results file in order to 

become familiar with it. Some results tables are commented on in this 

section. Table 3 contains a list of abbreviations with the main acronyms 

used in the results file. TABLE 3: Case study 2 – A table of abbreviations to help with reading the results file. 
Acronym Full name 

DEA Data Envelopment Analysis 

CRS Constant Returns to Scale 

VRS Variable Returns to Scale 

TE Technical Efficiency 

CRSTE Constant Returns to Scale Technical Efficiency 

VRSTE Variable Returns to Scale Technical Efficiency 

SE Scale Efficiency 

IRS Increasing Returns to Scale 

DRS Decreasing Returns to Scale 

 

Figure 14 represents the first table to be commented on. It is an extract 
of the results file and features an efficiency summary. The first column 
contains the 15 schools (listed 1 to 15). The second one displays the 
constant returns to scale technical efficiency scores (CRSTE)13. This 
‘total’ efficiency score is decomposed into a ‘pure’ technical efficiency 
measure (variable returns to scale technical efficiency –VRSTE– in the 
third column) and a scale efficiency measure (scale efficiency –SE– in 
the fourth column). The last column indicates the nature of returns to 
scale (IRS, DRS or a dash): 

                                                           
13  Note that if you had run a constant returns to scale model instead of a variable returns 

to scale one, you would have obtained only one type of efficiency score in your results 
file (technical efficiency –TE). Technical efficiency scores are strictly equal to constant 
returns to scale technical efficiency scores obtained in the CRSTE column of your 
variable returns to scale model. 
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- Firms associated with IRS are facing increasing returns to scale 

(economies of scale). 

- Firms associated with DRS are facing decreasing returns to 

scale (diseconomies of scale). 

- Firms associated with a dash are facing constant returns to 

scale; they are operating at an optimal scale. 

On average, schools efficiency scores are: 

- 94% for CRSTE; overall, schools could reduce their inputs by 

6% whilst educating the same number of pupils. 

- 97.5% for VRSTE; a better school organization would be able 

to reduce input consumption by 2.5%. 

- 96.4% for SE; in adjusting their scale, schools could reduce 

their inputs by 3.6%. 
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All subsequent tables displayed in the results file refer to the VRSTE 

scores. These tables contain the following information: 

- The number of the DMU under review (‘Results for firm’). 

- The technical efficiency score (‘Technical efficiency’), 

corresponding to the VRSTE when a VRS model has been run 

or to the CRSTE when a CRS model has been run.  

- The scale efficiency score (‘Scale efficiency’); note that the SE 

is mentioned only when a VRS model has been run. 

- The lines of the matrix represent the outputs and the inputs of 

the model (‘output 1’, ‘output 2’, etc., ‘input 1’, ‘input 2’, etc.). 

- The first column of the matrix recalls the original values of the 

variables’ outputs and inputs (‘original values’). 
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- The second column of the matrix represents the movement an 

inefficient DMU has to take in order to be located on the 

frontier (‘radial movement’). 

- The third column of the matrix is the additional movement a 

DMU located on a segment of the frontier running parallel to 

the axis has to take in order to become efficient (‘slack 

movement’). 

- The fourth column of the matrix lists the values of the variables 

which enable the DMU to be efficient (‘projected value’); these 

projected values take into account both the radial and the slack 

movements. 

- Finally, the listing of peers is mentioned. Each peer is 

identified by a number and has an associated weight (‘lambda 

weight’) representing the relative importance of the peer.  

As illustrations, three individual school tables are specifically 

commented on below: School # 1 (Figure 15), # 2 (Figure 16) and # 3 

(Figure 17). 

School # 1 (Figure 15) has a ‘pure’ efficiency score of 95.1% and a scale 

efficiency score of 86.9%. It is facing decreasing returns to scale (DRS). 

By improving the operation of the school, 4.9% (100 - 95.1) of inputs 

could be saved. By adjusting the school to its optimal size, 13.1% 

(100 - 86.9) of inputs could be saved. 

The ‘original value’ column contains the original values of the school’s 

variables: School # 1 educates 602 pupils with 40.2 teachers, 2 

administrative staff and 37 computers. However, School # 1 could 

‘produce’ the same quantity of output with fewer inputs: 37.186 teachers 

instead of 40.2; 1.902 administrative staff instead of 2; 

35.185 computers instead of 37 (see the ‘projected value’ column). The 

decreases in inputs 2 and 3 are equal to 4.9 % of the original values: 

(- 0.098 / 2) x 100 for input 2 and (- 1.815 / 37) x 100 for input 314. The 

case of input 1 is slightly different: to become efficient, it has to 

                                                           
14  In a VRS model, the improvement in variables (decrease in inputs or increase in 

outputs) is calculated according to the VRS technical efficiency score (only). In a CRS 
model, it is calculated according to the CRS technical efficiency score, or TE score, 
including not only the pure efficiency but also the scale efficiency. 
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decrease not only by 4.9% (minus 1.972 from the ‘radial movement’ 

column) but also by an additional 1.042 (from the ‘slack movement’ 

column). Overall School # 1 has to decrease its first input by 

minus 3.014 [(- 1.972) + (- 1.042)] to become efficient. This represents 

7.5 % [(- 3.014 / 40.2) x 100]. 

To improve its efficiency, School # 1 has to analyse the practice of 

Schools # 3, # 14 and # 8, which are identified as its peers. To be a peer 

(or a benchmark), a firm must have a ‘pure’ efficiency score of 100%. 

The lambda weight associated with each peer corresponds to its relative 

importance among the peer group. Ideally, School # 1 should analyse 

best practice from a composite school formed by 61.2% of School # 3, 

37.3% of School # 14 and 1.4% of School # 8. As such a ‘virtual’ school 

does not exist. School # 1 should concentrate its best practice analysis 

on the peer associated with the highest lambda value (i.e. School # 3). FIGURE 15: Case study 2 – School # 1 results table. 
 

 

School # 2 (Figure 16) has a ‘pure’ efficiency score of 83.8% and a scale 

efficiency score of 96.4%. It is facing increasing returns to scale (IRS). 

By improving the operation of the school, 16.2% (100 - 83.8) of inputs 

could be saved. By adjusting the school to its optimal size, 3.6% 

(100 - 96.4) of inputs could be saved. 

The ‘original value’ column contains the original values of the school’s 

variables: School # 2 educates 269 pupils with 18.1 teachers, 

1.1 administrative staff and 17 computers. However, School # 2 could 
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‘produce’ the same quantity of output with fewer inputs: 15.163 teachers 

instead of 18.1, 0.922 administrative staff instead of 1.1; 

14.242 computers instead of 17 (see the ‘projected value’ column). The 

decreases in inputs 1, 2 and 3 are equal to 16.2% of the original values 

(‘radial movement’ column). No slack movement is identified.  

To improve its efficiency, School # 2 has to refer to Schools # 13, # 4, 

# 14 and # 8, which are identified as its peers. FIGURE 16: Case study 2 – School # 2 results table. 
 

 

School # 3 (Figure 17) has a ‘pure’ efficiency score of 100% and a scale 

efficiency score of 84.2%. It is facing decreasing returns to scale (DRS). 

This school is well managed. It cannot improve its ‘pure’ efficiency. The 

only capacity for improvement lies in a scale adjustment: 15.8% 

(100 - 84.2) of inputs could be saved.  

The ‘original value’ column contains the original values of the school’s 

variables: School # 3 educates 648 pupils with 42.5 teachers, 

2.1 administrative staff and 41 computers. These values are equal to the 

projected ones (‘pure’ efficiency = 100%).  

As School # 3 is purely efficient, it acts as its own peer. 
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Exercise 4 

The objective of this exercise is to interpret DEA results. Figure 18 

displays results for one of the 15 schools. It has been truncated in order 

to hide the VRS technical efficiency score.  

Tasks 

Answer the following questions: 

a) The variable returns to scale technical efficiency score has been 

removed from the table. Find a way to calculate it.  

Answer: For example, input 1 can be reduced by 0.864 (radial 

movement). This represents 3.7% [(- 0.864 / 23.5) x 100]. Therefore 

VRSTE corresponds to 96.3% (100 - 3.7). You would have obtained 

the same result if you based your calculations on input 2. If you 

based your calculations on input 3, be careful not to take into 

account the slack movement. 

b) Assume that the ‘pure’ efficiency score is equal to 96.3%. What is 

the main feature in need for improvement: the school’s management 

or the school’s scale? 

Answer: The school’s management has the capacity to improve 

efficiency by 3.7% (100 - 96.3). Modifying the school’s scale could 

improve efficiency by 1.3% (100 - 98.7). Therefore the main feature 

in need of improvement is school management. 
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c) Assume that the school has only time to analyze best practice from 

one of its peers. Which one should it select? 

Answer: School # 14. Among the three peers listed (13, 14 and 8), 

School # 14 is associated with the highest weight (41.7%). 

d) How much must the school reduce input 3 in order to be located on 

the efficiency frontier? 

Answer: - 1.184 [(- 0.809) + (- 0.375)]. FIGURE 18: Case study 2 – An efficiency table helps a firm to make decisions based on objective information. 
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4 DEA IN THE BLACK BOX 

This section describes the two principal DEA models: the constant 

returns to scale model (Charnes et al., 1978) and the variable returns to 

scale model (Banker et al., 1984). DEA is based on the earlier work of 

Dantzig (1951) and Farrell (1957), whose approach adopted an input 

orientation. Zhu and Cook (2008), Cooper et al. (2007) or Coelli et al. 

(2005) provide a comprehensive treatment of the methodology. By 

2007, Emrouznejad et al. (2008) identified more than 4000 research 

articles about DEA published in scientific journals or books. 

DEA is a non-parametric method. Unlike parametric methods (such as 

ordinary least square, maximum likelihood estimation or stochastic 

frontier analysis), inputs and outputs are used to compute, using linear 

programming methods, a hull to represent the efficiency frontier. As a 

result, a non-parametric method does not require specification of a 

functional form. 

 4.1 CONSTANT RETURNS TO SCALE 
Charnes et al. (1978) propose a model assuming constant returns to 

scale (CRS model)15. It is appropriate when all firms operate at the 

optimal scale. Efficiency is defined by Charnes et al. (1978, p. 430) as 

“the maximum of a ratio of weighted outputs to weighted inputs subject 

that the similar ratios for every DMU be less or equal to unity”. The 

following notation is adopted, as in Johnes (2004): 

∑

∑

=

==
m

i

iki

s

r

rkr

k

xv

yu

TE

1

1  (1) 

 

                                                           
15  This model is also known as the Charnes, Cooper & Rhodes model (CCR model). 
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Where:  

TEk  is the technical efficiency of firm k using m inputs to produce s 

outputs;  

yrk  is the quantity of output r produced by firm k;  

xik  is the quantity of input i consumed by firm k;  

ur  is the weight of output r;  

vi  is the weight of input i. 

n is the number of firms to be evaluated 

s is the number of outputs 

m is the number of inputs 

The technical efficiency of firm k is maximized under two constraints. 

First, the weights applied to outputs and inputs of firm k cannot generate 

an efficiency score greater than 1 when applied to each firm in the 

dataset (equation # 3). Second, the weights on the outputs and on the 

inputs are strictly positive (equation # 4). The following linear 

programming problem has to be solved for each firm: 

Maximize 

∑

∑

=

=
m

i

iki

s

r

rkr

xv

yu

1

1  (2) 

Subject to 1

1

1 ≤

∑

∑

=

=
m

i

iji

s

r

rjr

xv

yu

  nj ,,1 K=  (3) 

 0, >ir vu  misr ,,1;,,1 KK ==∀  (4) 

 

This linear programming problem can be dealt following two different 

approaches. In the first one, the weighted sums of outputs are 

maximized holding inputs constant (output-oriented model). In the 

second one, the weighted sums of inputs are minimized holding outputs 
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constant (input-oriented model)16. The primal equations for each model, 

known as the multiplier form, are given below: 

CRS output-oriented model 

Primal equation 

CRS input-oriented model 

Primal equation 

Minimize   ∑
=

m

i

iki xv
1

                                    (5) Maximize   ∑
=

s

r

rkr yu
1

                                  (9) 

Subject to Subject to 

0
11

≥−∑∑
==

s

r

rjr

m

i

iji yuxv    nj ,,1 K=              (6) 0
11

≥−∑∑
==

s

r

rjr

m

i

iji yuxv    nj ,,1 K=            (10) 

1
1

=∑
=

s

r

rkr yu                                                 (7) 1
1

=∑
=

m

i

iki xv                                                 (11) 

0, >ir vu    misr ,,1;,,1 KK ==∀             (8) 0, >ir vu    misr ,,1;,,1 KK ==∀           (12) 

  

Using the duality in linear programming, an equivalent form, known as 

the envelopment form, can be derived from this problem. It is often 

preferable to solve the computation using the envelopment form because 

it contains only s+m constraints rather than n+1 constraints in the 

multiplier form. 

CRS output-oriented model 

Dual equation 
CRS input-oriented model 

Dual equation 

Maximize   kφ                                           (13) Minimize   kθ                                            (17) 

Subject to Subject to 

∑
=

≤−
n

j

rjjrkk yy
1

0λφ    sr ,,1 K=               (14) ∑
=

≤−
n

j

rjjrk yy
1

0λ    sr ,,1 K=                  (18) 

∑
=

≥−
n

j

ijjik xx
1

0λ    mi ,,1 K=                   (15) ∑
=

≥−
n

j

ijjikk xx
1

0λθ    mi ,,1K=                (19) 

0≥jλ    nj ,,1 K=∀                                  (16) 0≥jλ    nj ,,1 K=∀                                  (20) 

  

Where:  

kφ
1 and kθ  represent the technical efficiency of firm k 

jλ  represents the associated weighting of outputs and inputs of firm j 

                                                           
16  Note that the input and output orientations refer to the dual equations of each model 

(and not to the primal ones). 
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Every firm located on the sections’ envelope running parallel to the axes 

has to be adjusted for output and input slacks. However, the preceding 

formulation does not integrate the role of slacks in measuring efficiency. 

Considering output slacks, sr, and input slacks, si, the above equations 

become: 

CRS output-oriented model 

Dual equation with slacks 
CRS input-oriented model 

Dual equation with slacks 

Maximize   ∑ ∑
= =

++
s

r

m

i

irk ss
1 1

εεφ               (21) Minimize   ∑ ∑
= =

−−
s

r

m

i

irk ss
1 1

εεθ                 (25) 

Subject to Subject to 

∑
=

=+−
n

j
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1

0λφ    sr ,,1 K=        (22) ∑
=

=+−
n

j

rrjjrk syy
1
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∑
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=−−
n

j

iijjik sxx
1

0λ    mi ,,1K=             (23) ∑
=

=−−
n

j

iijjikk sxx
1

0λθ    mi ,,1K=          (27) 

0,, ≥irj ssλ misrnj ,...,1;,,1;,,1 ===∀ KK  

                                                                  (24) 

0,, ≥irj ssλ misrnj ,,1;,,1;,,1 KKK ===∀  

                                                                   (28) 
  

Here, ε  is a non-Archimedean value defined to be smaller than any 

positive real number. ε  is greater than 0. The firm k is efficient only if: 

- the efficiency score 11 =





=

k
kTE

φ
 (or 1== kkTE θ ); 

- and the slacks 0, =ir ss , sr K,1=∀  and mi ,,1 K= . 

For an in-depth analysis on the treatment of slacks, and especially the 

multi-stage methodology, see Coelli (1998). 
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Banker et al. (1984) propose a model assuming variable returns to scale 

(VRS model)17. It is appropriate when all firms do not operate at optimal 

scale. As Coelli et al. (2005, p. 172) point out, “the use of the CRS 

specification when not all firms are operating at the optimal scale, 

results in measures of TE that are confounded by scale efficiencies (SE). 

The use of the VRS specification permits the calculation of TE devoid 

of these SE effects”. The CRS model can be modified by relaxing the 

constant returns to scale assumption. A measure of return to scale for 

firm k is added in the primal equation (or the convexity constraint 

∑
=

=
n

j

j

1

1λ in the dual equations). 

Figure 19 represents the CRS efficiency frontier (the dashed line) and 

the VRS efficiency frontier (the solid line) on the same graph to 

illustrate a simple example with one output and one input. Only one 

firm, B, is located on both frontiers. A and C are 100% efficient under 

the VRS assumption, but inefficient under the CRS assumption. D and E 

are inefficient under both specifications. 

                                                           
17  This model is also known as the Banker, Charnes & Cooper model (BCC model). 



 53 FIGURE 19: Constant versus variable returns to scale. 
 

 

 

 

 

 

 

 

 

 

The specific situation of firm D is commented on in detail below: 

- Firm D is inefficient under VRS and CRS. In order to become 

VRS efficient, it has to move to point D’. The input-oriented 

VRS technical inefficiency of point D is the distance DD’. In 

order to become CRS efficient, firm D has to move further 

toward point D’’. The input-oriented CRS technical 

inefficiency of point D is the distance DD’’. The distance 

between D’ and D’’ corresponds to scale inefficiency. The ratio 

efficiency measures, bounded by zero and one, are as follows: 

Technical efficiency 

of D under CRS 

Technical efficiency 

of D under VRS 

Scale efficiency 

of D 
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Exercise 5 

The objective of this exercise is (1) to comment in detail on the situation 

of firms E, A, B and C represented in Figure 19 (as above for firm D) 

and (2) to provide ratios of TECRS, TEVRS and SE for firms E, A, B and 

C. 

 

Answer for firm E: 

Firm E is inefficient under VRS and CRS. In order to become CRS 

efficient, it has to move toward point E’’. The input-oriented CRS 

technical inefficiency of point E is the distance EE’’. In order to become 

VRS efficient, it has to move to point E’. The input-oriented VRS 

technical inefficiency of point E is the distance EE’. The difference 

between these two distances, i.e. the distance E’E’’, corresponds to 

scale inefficiency. The ratio efficiency measures, bounded by zero and 

one, are as follows: 

Technical efficiency 

of E under CRS 

Technical efficiency 

of E under VRS 

Scale efficiency 

of E 
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VE
TECRS

''
=

 

 

VE

VE
TEVRS

'
=

 

 

'

''
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VE
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Answer for firm A: 

Firm A is efficient under VRS but inefficient under CRS. In order to 

become CRS efficient, it has to move toward point A’. The input-oriented 

CRS technical inefficiency of point A is the distance AA’; this also 

corresponds to scale inefficiency. The ratio efficiency measures, 

bounded by zero and one, are as follows: 

Technical efficiency 

of A under CRS 

Technical efficiency 

of A under VRS 

Scale efficiency 

of A 
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SA
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'
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1==
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TEVRS

 

 

SA

SA
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'
=
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Answer for firm B: 

Firm B is efficient both under VRS and CRS. It is operating at the 

optimal scale. The ratio efficiency measures, bounded by zero and one, 

are as follows: 

Technical efficiency 

of B under CRS 

Technical efficiency 

of B under VRS 

Scale efficiency 

of B 

 
1==

UB

UB
TECRS

 

 
1==

UB

UB
TEVRS

 

 
1==

UB

UB
SE

 

Answer for firm C: 

Firm C is efficient under VRS but inefficient under CRS. In order to 

become CRS efficient, it has to move toward point C’. The input-

oriented CRS technical inefficiency of point C is the distance CC’; this 

also corresponds to scale inefficiency. The ratio efficiency measures, 

bounded by zero and one, are as follows: 

Technical efficiency 

of C under CRS 

Technical efficiency 

of C under VRS 

Scale efficiency 

of C 

 

WC

WC
TECRS

'
=

 

 
1==

WC

WC
TEVRS
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SE

'
=

 

 

Knowing TE under CRS and TE under VRS, the scale efficiency is 

easily calculated. As kVRSkCRSk SETETE ×= ,, , the scale efficiency is 

obtained through the division of TE under CRS by TE under VRS: 

VRSk

CRSk

k
TE

TE
SE

,

,= . 
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The linear programming problem to be solved under VRS includes a 

measure of returns to scale on the variables axis, ck, for the firm k. The 

primal equations are as follows: 

VRS output-oriented model 

Primal equation 

VRS input-oriented model 

Primal equation 

Minimize   k
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The dual linear programming models are presented hereafter. 

VRS output-oriented model 

Dual equation 

VRS input-oriented model 

Dual equation 

Maximize   kφ                                           (37) Minimize   kθ                                            (42) 

Subject to Subject to 
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When slacks are added into the model, the dual linear programming 
equations become: 

VRS output-oriented model 

Dual equation with slacks 

VRS input-oriented model 

Dual equation with slacks 

Maximize   ∑ ∑
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Subject to Subject to 
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0,, ≥irj ssλ misrnj ,...,1;,,1;,,1 ===∀ KK  

                                                                  (51) 

0,, ≥irj ssλ misrnj ,,1;,,1;,,1 KKK ===∀  

                                                                   (56) 

  

A further step has to be taken in order to identify the nature of the 

returns to scale. This relates to another model, the non-increasing returns 

to scale model (NIRS), derived from the VRS model in which the 

∑
=

=
n

j

j

1

1λ  restriction is substituted by the ∑
=

≤
n

j

j

1

1λ  constraint 

(Coelli et al., 2005). In Figure 20, the NIRS efficiency frontier has been 

added (the dotted line). It corresponds to the CRS frontier from the 

origin to point B followed by the VRS frontier from point B. The nature 

of the scale inefficiencies for each firm can be determined by comparing 

technical efficiency scores under NIRS and VRS. If 

NIRS TE ≠  VRS TE (as for firms A and D), increasing returns to scale 

apply. If NIRS TE = VRS TE (but ≠  CRS TE) (as for firms E and C), 

decreasing returns to scale apply. Finally, if 

NIRS TE = VRS TE = CRS TE, as for firm B, constant returns to scale 

apply. 
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5 EXTENSIONS OF DEA 

In this section, a selection of four extensions of DEA is shortly 

introduced: adjusting for the environment, preferences (weight 

restrictions), sensitivity analysis and time series data. For a broader 

overview of the major developments in DEA, see Cook and Seiford 

(2008). For an up-to-date review of DEA, readers will refer to Cooper et 

al. (2011). 

 5.1 ADJUSTING FOR THE ENVIRONMENT 
Environmental variables influence the efficiency of firms but are not 

under the control of the management team. In DEA, several methods 

accommodate such variables. Those include the Charnes et al. (1981) 

approach, the categorical model (Banker & Morey, 1986a) or the non-

discretionary variable model derived by Banker and Morey (1986b) 

(which indeed includes the environmental variable directly into the DEA 

model). 

The most convincing of these methods, however, is the two-stage 

method, the advantages of which are described in Coelli et al. (2005, 

pp. 194-195) or in Pastor (2002, p. 899). The two-stage method 

combines a DEA model and a regression analysis. In the first stage, a 

traditional DEA model is conducted. This model includes only 

discretionary inputs and outputs. In the second stage, the efficiency 

scores are regressed against the environmental (i.e. non-discretionary or 

exogenous) variables. Tobit regression is often used in the second stage. 

However, recent studies have shown that ordinary least squares 

regression is sufficient to model the efficiency scores (Hoff, 2007) or 

even more appropriate than Tobit (McDonald, 2009).  

The coefficients of the environmental variables, estimated by the 

regression, are used to model the efficiency scores to correspond to an 

identical condition of environment (e.g. usually the average condition). 

Simar and Wilson (2007, p. 32) provide a selection of studies using the 

two-stage method. Among those are applications in education 
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(Chakraborty et al., 2001, McMillan & Datta, 1998, McCarty & 

Yaisawarng, 1993), hospitals (Burgess & Wilson, 1998), defence 

(Barros, 2004), police (Carrington et al., 1997), farming (Binam et al., 

2003) or banking (O’Donnell & van der Westhuizen, 2002). Sueyoshi et 

al. (2010) and Sibiano and Agasisti (2012) provide more recent 

applications in the sector of manufacturing sector and education. 

 5.2 PREFERENCES 
For different reasons (e.g. the weights assigned to variables by DEA are 

considered unrealistic for some firms; the management team may wish 

to give priority to certain variables; etc.), preferences about the relative 

importance of individual inputs and outputs can be set by the decision 

maker. This is done by placing weight restrictions onto outputs and 

inputs (also called multiplier restrictions). Cooper et al. (2011) and 

Thanassoulis et al. (2004) provide a review of models regarding the use 

of weights restrictions. An earlier review can be found in Allen et al. 

(1997). Generally, the imposition of weight restrictions worsens 

efficiency scores. Three main approaches are identified to accommodate 

preferences: 

- Dyson and Thanassoulis (1988) propose an approach which 

imposes absolute upper and lower bounds on input and output 

weights. This technique is applied in Roll et al. (1991) to 

highway maintenance units or in Liu (2009) to garbage 

clearance units. 

- Charnes et al. (1990) develop the cone-ratio method. This 

approach imposes a set of linear restrictions that define a 

convex cone, corresponding to an ‘admissible’ region of 

realistic weight restrictions. See Brockett et al. (1997) for an 

application to banks. 

- Thompson et al. (1986, 1990) propose the assurance region 

method. This approach is actually a special case of the cone 

ratio. It imposes constraints on the relative magnitude of the 

weights. For example, a constraint on the ratio of weights for 
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input 1 and input 2 can be included, such as the following: 

2,1

1

2
2,1 UL ≤≤

ν

ν
, where L1,2 and U1,2 are lower and upper 

bounds for the ratio of the weight of input 2 ( 2ν ) to the weight 

of input 1 ( 1ν ). As a result, the assurance region method limits 

the ‘region’ of weights to a restricted area by prohibiting large 

differences in the value of those weights. An application of this 

model is provided by Sarica and Or (2007) in the assessment of 

power plants. 

 5.3 SENSITIVITY ANALYSIS 
Cooper et al. (2006, p. 271) mention that the term ‘sensitivity’ 

corresponds to stability or robustness. For Zhu (2003, p. 217), “the 

calculated frontiers of DEA models are stable if the frontier DMUs that 

determine the DEA frontier remain on the frontier after particular data 

perturbations are made”. Sensitivity analysis aims to identify the impact 

on firm efficiency when certain parameters are modified in the model.  

The first way to test the sensitivity of DEA results consists in adding or 

extracting firms to DEA models. Dusansky and Wilson (1994, 1995) 

and Wilson (1993, 1995) provide different approaches to deal with this 

concern. The approach of Pastor et al. (1999) allows users to identify the 

observations which considerably affect the efficiency of the remaining 

firms. It also determines the statistical significance of efficiency 

variations which are due to the inclusion of a given firm in the sample. 

Another way to test the sensitivity of DEA results consists in modifying 

the values of outputs and inputs. They focus on the maximum data 

variations a given firm can endure, whilst maintaining its efficiency 

status. Approaches include data perturbation of:  

- a single variable of an efficient firm (Charnes et al., 1985), data 

of other firms remaining fixed; 
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- simultaneous proportional data perturbation of all outputs and 

inputs of an efficient firm (Charnes & Neralic, 1992), data of 

other firms remaining fixed; 

- simultaneous data perturbation of an efficient firm in a situation 

where outputs and inputs can be modified individually (Seiford 

& Zhu, 1998a, or Neralic & Wendell, 2004), data of other firms 

remaining fixed; 

- simultaneous proportional data perturbation of all outputs and 

inputs of all firms (Seiford & Zhu, 1998b). 

For further review of sensitivity analysis, readers can refer to Zhu 

(2001). 

 5.4 TIME SERIES DATA 
In DEA, panel data are considered using two methods: window analysis 

and the Malmquist index. 

Window analysis, introduced by Charnes et al. (1985), examines the 

changes in the efficiency scores of a set of firms over time. A ‘window’ 

of time periods is chosen for each firm. The same firm is treated as if it 

represented a different firm in every time period. In this sense, window 

analysis can also be considered as a sensitivity analysis method. For 

instance, a model including n firms with annual data and a chosen 

‘window’ of t years will result in n x t units to be evaluated. For each 

firm, t different efficiency scores will be measured. The ‘window’ is 

then shifted by one period (one year in our example) and the efficiency 

analysis is repeated. Yue (1992) provides a didactical application of 

window analysis. Other applications include Yang and Chang (2009), 

Avkiran (2004) or Webb (2003).  

The Malmquist total factor productivity index was first introduced by 

Malmquist (1953) before being further developed in the frame of DEA. 

It is used to measure the change in productivity over time. The 

Malmquist index decomposes this productivity change into two 

components: 
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- The first one is called ‘catch-up’. This captures the change in 

technical efficiency over time. 

- The second one is called ‘frontier-shift’. This captures the 

change in technology which occurs over time (i.e. the 

movement of efficiency frontiers over time). 

Readers will refer to Färe et al. (2011) and Tone (2004) for actual 

reviews. Applications of the Malmquist index can be found in Coelli and 

Prasada Rao (2005) and Behera et al. (2011). 
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6 DEA WITH MICROSOFT EXCEL © SOLVER 6.1 MICROSOFT EXCEL © SOLVER 

Excel © Solver is a tool used to find the best way to do something, in 

other words to optimize an objective. Instructions on loading 

Excel © Solver are easily found on the Internet18. 

Excel © Solver allows users to solve optimization problems. An 

optimization model is composed of three elements: the target cell, the 

changing cells and the constraints. These three elements correspond to 

the parameters to be defined in Excel © Solver (see Figure 21). 

- The target cell (‘Set objective’) corresponds to the objective. It 

has to be either minimized or maximized. 

- The changing variable cells are the cells which can be altered in 

order to optimize the target cell. 

- The constraints (one or several) correspond to restrictions 

placed on the changing cells. 

                                                           
18  In Microsoft Excel © 2010, the Solver has to be loaded by clicking the File button, then 

the Excel Options and finally the Add-Ins button. In the Manage box, Excel Add-ins has 
to be selected before clicking the Go button. In the Add-Ins box, the Solver Add-in has 
to be selected. Finally, the OK button has to be clicked. Once the Solver is loaded, it is 
located in the Analysis group on the Data tab. 



 65 FIGURE 21: Three parameters have to be defined in Excel © Solver. 

 

 6.2 PROGRAMMING A CRS MODEL 
Consider five register offices (A to E) producing two outputs (birth and 

marriage certificates) with one input (full-time equivalent public 

servant). The data are listed in Table 4. For example, one full-time 

equivalent (FTE) public servant works in Register Office A. He 

produces one birth and six marriage certificates during a certain period 

of time. 
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Input Output Register 

Office Public servant (x) Birth (y1) Marriage (y2) 

A 1 1 6 

B 1 3 8 

C 1 4 3 

D 1 5 6 

E 1 6 2 

 

The use of Excel © Solver is illustrated with the following CRS model.  

CRS input-oriented model 

Primal equation 

Maximize ∑
=

s
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In this model, the objective is to maximize the weighted sum of outputs 

of firm k. Two constraints have to be considered. First, the weighted 

sum of inputs minus the weighted sum of outputs of firm j has to be 

greater than or equal to zero. Second, the weighted sum of inputs of firm 

k has to be equal to one. 

Users have to prepare an Excel © spreadsheet, such as the one appearing 

in Figure 22. This is divided into two parts: 

- The first part comprises rows 2 and 3. This section enables 

users to successively calculate the efficiency of the five register 
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offices (one at a time). To do this, data of each register office 

have to be entered successively in cells B2 to D2 (dark grey 

cells). Figure 22 already contains data on Register office C. The 

two outputs and one input of Register Office C are assigned 

weights in cells B3 to D3 (light grey cells). A value of one has 

been assigned to all of them in the spreadsheet. These values 

will be precisely modified by Excel © Solver in order to 

maximize the register offices’ efficiency scores. Cell E2 

contains the weighted sum of outputs for Register Office C. 

The formula associated with cell E2 is 

(B2*$B$3) + (C2*$C$3). Cell F2 contains the weighted sum of 

the input for Register Office C. The formula associated with 

cell F2 is (D2*$D$3). Finally, cell G2 contains the efficiency 

score of Register office C as a percentage (light grey cell). The 

formula associated with cell G2 is (E2/F2)*100. Note that the 

score of 700% appearing in the spreadsheet is calculated using 

weighted values of 1 and without any constraints. In other 

words, this score has not yet been optimized under varying 

constraints. 

- The second part comprises rows 6 to 10. It contains the data for 

register offices A to E (output 1 = column B, 

output 2 = column C, input = column D, weighted sum of 

outputs = column E, weighted sum of the input = column F). 

The same formulae as above apply to the weighted sums of 

outputs and the input. An additional column, G, is added in the 

spreadsheet. It is a working column which will be used by 

Excel © Solver. Column G contains the weighted sum of the 

input minus the weighted sum of outputs to adequately reflect 

the 0
11

≥−∑∑
==

s

r

rjr

m

i

iji yuxv  constraint. The formula 

associated with cell G6 is F6 - D6, the formula associated with 

cell G7 is F7 - D7, etc. 
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Once the spreadsheet is ready, the parameters of Excel © Solver have to 

be specified in the following way: 

- The objective is to maximize the weighted sum of outputs of 

Register Office k (∑
=

s

r

rkr yu
1

). In the objective parameter, cell 

$E$2 has to be specified. The Max option has to be ticked. 

- To optimize the objective, the changing variable cells have to 

be specified. They correspond to the weights associated with 

outputs and inputs. In the changing variable cells parameter, 

cells $B$3 to $D$3 ($B3:$D$3) have to be specified. 

- Finally, the restrictions placed on the changing cells have to be 

introduced as constraints. A constraint is added by clicking the 

Add button. In the Add Constraint box, three parameters have 

to be specified: the cell reference, the sign of the constraint (<=, 

= or >=) and the value of the constraint. The first constraint of 

the CRS model ( 0
11

≥−∑∑
==

s

r

rjr

m

i

iji yuxv ) is therefore 

specified as follows: $G$6:$G$10>=0 (where the cell reference 

is $G$6:$G$10, the sign is >= and the constraint is 0). The 

second constraint ( 1
1

=∑
=

m

i

iji xv ) is specified as follows: 

$F$2=1 (where the cell reference is $F$2, the sign is = and the 
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constraint is 1). Note that this constraint means that the given 

level of input is kept constant. 

Figure 23 represents the Solver Parameters defined above. FIGURE 23: The Solver parameters are specified. 

 

 

Finally, a Simplex LP solving method has to be selected and the ‘Make 

Unconstrained Variables Non-Negative box’ has to be ticked. This 

indicates that a linear model with non-negative variables is appropriate 

(and therefore the third and last ‘constraint’ 0, >ir vu  is taken into 

account). 
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The Solve button should be clicked in order to execute Excel © Solver. 

Excel © Solver will search every feasible solution to determine the 

solution which has the best target cell value. Register Office C obtains 

an efficiency score of 73.08% (cell G2). This score is obtained using 

weights of 0.15, 0.04 and 1 assigned to output 1, output 2 and input 1, 

respectively (cells B3, C3 and D3). A Solver Results box appears after 

solving the model. Before solving the model again for the other register 

offices, ‘Restore Originals Values’ has to be ticked before clicking the 

OK button. 

To measure the efficiency of Register Office A (for example), it is 

necessary to replace the values of cells B3 to D3 (which currently refer 

to Register Office C) with the values of cells B6 to D6 (which refer to 

Register Office A). Solving the model will calculate an efficiency score 

of 75% for Register Office A. 

 

Exercise 6 

The objective of this exercise consists in programming the following 

CRS model using Microsoft Excel © Solver. The same data as above 

(see Table 4) have to be used. Note that this CRS model is equivalent to 

the one developed above. Instead of maximizing the weighted sum of 

outputs, however, it minimizes the weighted sum of the input. 

Minimize ∑
=
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Tasks 

a) Prepare an Excel © spreadsheet adapted to the use of 

Excel © Solver. 

b) Which cell has to be optimized?  

Answer: The target cell to be optimized is $F$2 

c) In this case, do you maximize output or minimize input? 

Answer: Input minimization (the Min option has to be ticked in the 

Solver) 

d) Which equation of the CRS model is optimized by the Solver?  

Answer: ∑
=

m

i

iki xv
1

. This equation corresponds to the minimization 

of the weighted sum of the input. 

e) Which variables can be changed in the optimization process?  

Answer: The weights associated with output 1, output 2 and input 3 

can be changed (cells B3, C3 and D3) 

f) Which constraint in the Excel © Solver corresponds to the 

equation 0
11

≥−∑∑
==

s

r

rjr

m

i

iji yuxv  in the CRS model?  

Answer: $G$6:$G$10>=0 

g) Which constraint in the Excel © Solver corresponds to the equation 

1
1

=∑
=

s

r

rkr yu  in the CRS model? 

Answer: $E$2=1. This constraint means that the weighted sum of 

outputs must equal one (e.g. the given levels of outputs are kept 

constant). 

h) Solve the CRS model for each register office. What are the 

efficiency scores? 

Answer: A=75, B=100, C=73.08, D=100 and E=100 
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