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Abstract
The definition of obesity as a mere ‘excess of fat mass’ belies its complexity. Its quantifica-

tion alone is far from trivial and it is now clear that that’s not enough. The heterogeneity

present in the ‘obese’ phenotype is not simply a cosmetic variation but an accumulation of

profound biological differences caused by the interplay of genetic and environmental factors

with substantial implications for a person’s health and well-being. Recognizing this com-

plexity has led to the description of many aspects contributing to obesity: establishing their

nature, discovering the underlying causes, and understanding their consequences.

Although the study of a complex system through the examination of its parts in isolation

is a typical scientific approach, this fails to account for their interdependency and makes it

difficult to distinguish the contributions that are specific to each rather than shared among

them. By applying principal component analysis, we identified four orthogonal axes of

genetically-defined variation in body shape. These independent components arise from

distinct genetic bases expressed in different tissues and impact health in separate ways. In

particular, this revealed a body mass-neutral component affecting body fat distribution

which increased the risk of lipotoxicity-related diseases.

The deleterious consequences of obesity are qualitatively well established but their quan-

tification is less trivial. Some have been found to be specific to overweight individuals while

others seem to affect everyone. Stratification can provide some indications as to such dif-

ferences between groups, but this relies on the definition of an arbitrary threshold and the

approximate linearity of the effect within each stratum. Instead, we’ve developed PolyMR,

a Mendelian randomization-based method for the inference of non-linear effects through

polynomial approximation. We then showed that most effects of obesity-related anthropo-

metric traits are strongly non-linear.

Finally, I showed that failing to account for interaction effects with, e.g., sex attenuates

and biases the estimated effects. I propose an extension of PolyMR which enables the

simultaneous modeling of interaction effects and demonstrate its effectiveness.





Résumé
La simplicité de la définition de l’obésité comme «excès de matière grasse» ne fait pas jus-

tice à la complexité qu’elle cache. Sa mesure n’est déjà pas aisée et il est désormais clair

que ça n’est pas suffisant. L’hétérogénéité présente dans le phenotype communément appelé

«obésité» n’est pas une simple particularité cosmétique, mais l’accumulation d’impor-

tantes différences biologiques, résultats des interactions de nombreux facteurs génétiques

et environnementaux avec des conséquences considérables pour la santé et le bien-être de

la personne. L’acceptation de cette complexité a entrainé l’étude de nombreux aspects de

l’obésité, de la description de leur nature à la découverte de leurs causes et conséquences.

Bien que l’étude des systèmes complexes par l’analyse de ses composantes individuels est

une approche scientifique typique, elle ne permet pas de tenir compte de leur interdépen-

dance et la distinction entre leurs contributions spécifiques ou partagées en est rendue diffi-

cile. En appliquant une analyse à composantes principales, nous avons identifié quatre axes

orthogonaux de variations à base génétique dans la morphologie du corps. Ces composantes

indépendantes sont le résultat de bases génétiques différentes exprimées dans des organes

distincts et avec des conséquences spécifiques sur la santé. Nous avons en particulier identifié

une composante neutre en terme de masse corporelle, mais affectant la répartition de matière

grasse qui augmente les risques de maladies liées à la lipotoxicité.

Les conséquences néfastes de l’obésité sont qualitativement bien démontrées, mais leur

quantification est moins aisée. Certaines sont limitées aux personnes en surpoids, alors

que d’autres semblent affecter tout le monde proportionnellement. L’analyse stratifiée peut

fournir des indications quant aux différences entre les groupes, mais cela nécessite la fixa-

tion d’un seuil arbitraire et l’approximation de l’effet dans les deux groupe reste linéaire.

Nous avons développé PolyMR, une méthode basée sur la randomisation Mendelienne

pour l’inférence d’effets non-linéaires par approximation polynomiale. Nous avons en-

suite montré que la majorité des effets de mesures corporelles liées à l’obésité sont fortement

non-linéaires.

Finalement, j’ai montré que de manquer de considérer les interactions des effets avec, par

exemple, le sexe peut introduire un biais dans les estimations et une atténuation du signal.

Je propose également une extension à PolyMR qui permette d’inclure les interactions dans

la modélisation et en démontre l’efficacité.
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1.1 The main types of adiposity, based on location, are subcutaneous adi-
pose tissue (SAT), which is stored beneath the skin over the entire body,
and visceral adipose tissue (VAT), which is deposited in and around or-
gans in the abdomen. 15

1.2 Factor Analysis (FA) and principal component analysis (PCA) of-
fer slightly different strategies for the decomposition of variance. (A)
FA models the factors as shared components giving rise to the observed
variables (X1 and X2) and allowing for individual variance, whereas
(B) PCA decomposes all variance into principal components (PCs). This
difference is illustrated in the equations, where (C) FA typically defines
the observed variables as a function of factors, while (D) PCA defines
PCs as a function of the observed variables. Illustrated graphically, (E)
the residual variance of FA is attributed to the individual error terms,
while (F) in PCA this yields a second PC. 20

1.3 Mendelian randomization relies on assumptions enabling the ac-
curate estimation of effects which may have been difficult to test in prac-
tice, such as the effect of HDL cholesterol on cardiovascular disease. Solid
lines represent true underlying causal effects, dashed lines show asso-
ciations. SNP: single nucleotide polymorphism; LDL-c: low-density
lipoprotein cholesterol; HDL-c: high-density lipoprotein cholesterol;
CVD: cardiovascular disease. 24
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3.1 PolyMR is able to recover the shape of the causal function. The
true causal function is shown in green (solid line). The observed asso-
ciation model is shown in orange (short-dashed) while that obtained
using PolyMR is shown in purple (long-dashed). The hulls around the
model curves show the 95% coverage hull across 1000 simulations. Shown
here are (a) high polygenicity (10’000 causal SNPs accounting for the
heritability of 0.3); and (b) a sigmoid causal effect ( fα(X ) = 0.1 · 1

1+e−2·X ).
The Y-axis shows the expected association with/effect of the exposure
on the outcome, relative to the outcome level at the mean population
exposure. 76
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settings was expected due to the polynomial approximation approach. 76
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tions. The root mean square errors (RMSEs) are shown for both PolyMR
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error bars showing the 95% confidence interval (CI) of the true mean
across simulations. Settings were split into polynomial and non-polynomial
causal functions. Arrows in the polynomial plot indicate RMSEs which
exceed the bounds of the plot. 77

3.4 Most tested causal effects have strong non-linear components in
the UK Biobank. The red points show the mean outcome plotted against
the median exposure for each of 100 bins, split by covariate-adjusted
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tion obtained using PolyMR. The hulls around both curves correspond
to the 95% confidence interval. 79

3.5 Non-linear causal effects may be observed in several situations.
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case. 83

3.6 The confidence intervals (CIs) of PolyMR are correctly calibrated
for the returned function order. The size of the theoretical 95% CI
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only those results where the correct order of the causal function was
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3.7 PCs 1–3 mostly increased SBP, though with qualitatively different
effects (teal, dashed). The values on the y-axis are given relative to the
expected outcome for an exposure level equal to that of the population
mean. The points represent the mean difference in observed outcome
for each centile of the population ranked by exposure level, with the
red line (solid) showing the observed association. The values in paren-
theses indicate the variance (in body shape) explained by each PC. 87

3.8 PCs 1–3 had distinct effects on total cholesterol levels in blood (blue,
dashed), despite showing similar inverted-U shaped observational as-
sociations (red, solid). The values on the y-axis are given relative to the
expected outcome for an exposure level equal to that of the population
mean. The points represent the mean difference in observed outcome
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ues in parentheses indicate the variance (in body shape) explained by
each PC. 87
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ence of covariate C. This covariate could also be a confounder, i.e. af-
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exposure. Solid lines represent causal effects, dashes show associations. 90

3.10 Adjusting for sex can have different consequences based on the exposure-
outcome relationship. The sex-specific and -combined effects of body
fat percentage (BFP, left) and waist-to-hip ratio (WHR, right) on LDL
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the sex-specific curves (green and blue) for BFP indicates an interac-
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blood and (B) risk of depression show very different sex-specificity.
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is much greater than that inferred in women (red, solid), whereas the
effects on depression were identical across the respective sex-specific
exposure distributions (i.e. no significant sex-interaction coefficient).
The estimated effect (y-axis) is here shown relative to that estimated
for the sex-specific population mean exposure. 95

3.13 Some inferred causal functions showed considerable irregular-
ity, with many inflection points, as shown here for the effects of (A)
BMI on the risk of depression and (B) weight on glucose. The inferred
(sex-interacting) effect is plotted (y-axis) as a function of the absolute
exposure value for each sex, compared to the expected effect at the sex-
specific population mean exposure. 95

3.14 PCs 1–3 show similar effects on glucose levels in blood, with no
effect in normal-weight individuals but monotonic increasing effects
for larger values. 98

5.1 Graph of the constituents of BMI and their effects on depression
(A) as intended when using BMI as exposure for MR and (B) the more
likely underlying model of causality. Solid arrows represent causal ef-
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1 Throughout the manuscript I use the
term obesity in the broad sense to mean
excess adiposity.
2 This is partly based on the review
co-first authored with Dr. Thomas W.
Winkler in 2020 and published in Current
Diabetes Reports [1].

1
Introduction

The following document details the work I ac-
complished during my PhD under the supervi-
sion of Profs. Zoltán Kutalik and Bogdan Dragan-
ski, summarizes the output thereof, and discusses
its implications within the wider context of obe-
sity, genetics, and causal inference. The first part of
this thesis focused directly on the variation in body
shape which leads to such heterogeneity within the
‘obese’ phenotype: from understanding the struc-
ture of this variability, to identifying the underly-
ing genetic determinants, biological mechanisms,
and tissues involved, to pinpointing the specific
consequences of its various aspects through the use
of Mendelian randomization (MR). The second part
focused more on the limitations of MR, specifically
in the presence of non-linear causal effects, devel-
oping an extension to enable the modeling of such
effects, and revealing the high prevalence of non-
linearity in the consequences of obesity.

This introduction encapsulates our current un-
derstanding of obesity1 and the heterogeneity
therein2, methods to explore complex traits, and
methods to infer causality between phenotypes or
events. The second chapter summarizes my con-
tributions to the aforementioned projects, as well
as some aspects of these which were not published.
The final chapter discusses the relevance of these
results taken together, existing challenges in these
topics and possible avenues of future research.
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3 Prevalence of obesity vastly increased
over the last decades, reaching an esti-
mated 39% of adults overweight and 13%
obese in 2016 [7]
4 The population attributable fraction, or
PAF, is the proportion of the total (e.g.
deaths) which would be avoided in the
absence of the exposure (e.g. obesity) [8].
5 Disability-adjusted life years (DALYs)
account for the overall burden of diseases
as the combination of years lost due to ill
health, disability, or early death.

6 Calculated as weight (kg) / height2
(m2).

7 I.e. assuming that all adipose tissue has
the same effect, regardless of location or
type.

1.1 Obesity: Moving beyond body mass index

OBESITY IS DEFINED BY THE EXCESSIVE ACCUMU-
LATION OF FAT, with the potential to cause numer-
ous deleterious effects on health, increasing the risk
of many noncommunicable diseases such as type
2 diabetes (T2D) [e.g. 2] and cardiovascular dis-
ease (CVD) [reviewed in 3], as well as increasing
the mortality and morbidity of infectious diseases
such as COVID-19 [4–6]. Combined with the
high prevalence worldwide3, obesity is thought to
cause approximately 5 million deaths (8.9% PAF4)
and account for 160 million disability-adjusted life
years5 (6.3% PAF) worldwide (estimates for 2019)
[9]. This imposes a considerable burden on public
health and incurs a massive economic cost as well.
For example, the estimates for the health expen-
ditures attributable to obesity in the US in 2005
range from $86 to $210 billion, representing 9.1–
20.6% of the total [10, 11].

Although obesity is defined by the accumula-
tion of fat mass, it is usually quantified using body
mass index (BMI)6, which measures excess weight
as a surrogate for adiposity. According to WHO
guidelines [7], BMI above 25 qualifies an individ-
ual as overweight while above 30 would qualify
one as obese, though additional categories [12]
and population-specific cutoffs have been proposed
[13]. BMI provides a reasonably accurate predictor
of many of the adverse health effects of obesity at
the population level [14, 15], however its use in the
diagnosis of obesity and the prediction of disease
risk implicitly relies on certain assumptions about
(1) the relationship between height and normal body
weight, (2) body composition, and (3) the homogene-
ity of the effects of adiposity7. These simplifications
are not necessarily inappropriate, but they do merit
careful consideration rather than implicit accep-
tance.

HEIGHT AND WEIGHT are, of course, not inde-
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8 Interestingly, this inaccuracy of BMI as
a predictor of excess weight is not a de-
sign flaw, rather it was never intended to
serve this purpose. Adolphe Quetelet set
forth the formula for BMI, then known
as Quetelet’s index, in his description of
the relationship between height and
weight in the average man (of the mid-
nineteenth century) but never postulated
that this reflected body composition or
adiposity in any way [16–18].

9 Other tissue types typically considered
include bone, water, and muscle mass.

pendent and one’s weight is expected to increase
with height. BMI assumes that body weight should
(all other things being equal) be proportional to
the height squared, which serves as the very for-
mula that defines BMI. Mathematically, however,
the volume (and therefore the weight) of an object
increases relative to the cube of the linear scaling
factor, i.e. multiplying all dimensions by 2 would
increase the weight by 23 = 8-fold. Of course,
people do not simply scale equally in all dimen-
sions, however the exponent 2 is generally con-
sidered to under-correct for height8, leading to
underestimation of excess weight in shorter peo-
ple and overestimation in taller people [18, 19].
Alternative formulas have been proposed, such as
using 2.5 as exponent for height instead of 2 (i.e.
weight(kg)/height(m)2.5) which seems to better
approximate excess weight across a wider range of
individuals [20], and could address this limitation
to some extent (although these have never been
widely adopted). Even with such improvements
in the modeling of excess weight as a function of
height, the use of BMI to quantify obesity relies on
the assumption that this reflects a disproportionate
increase in adiposity rather than increases in other
tissues, such as muscle mass. The validity of this
assumption depends on many factors which may
contribute to large variations in body composition
across individuals.

BODY COMPOSITION broadly refers to the pro-
portions of different tissue types which compose
the human body and varies from person to person.
This can be considered at any level of detail but
for our purposes we will consider two categories
of tissue: fat mass and everything else, termed lean
mass.9 Linking these two concepts together is body
fat percentage (BFP) calculated, exactly as its name
suggests, by dividing the amount of fat mass by the
total. Given that fat mass is ultimately most directly
responsible for adverse effects of obesity on health,
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10 Body composition-sensitive metrics
have been proposed, such as the fat/fat-
free mass index (FMI/FFMI) which use
the formula for BMI but substitute fat
or fat-free mass estimates for weight
[21, 22], though these also require body
composition estimates and are not widely
used.

11 Factors affecting body composition
include sex [28], age [28], ethnicity [28],
diet [29, 30], lifestyle [31], genetics [32],
and gut microbiota [33, 34]

its quantification within the body is a critical step
towards predicting the risks imposed by an individ-
ual’s physical condition, however no improvements
in the formula for BMI can address the fact that
BFP cannot be measured from height and weight
alone10. BMI-based diagnosis of obesity therefore
relies on an assumption of ‘average’ body compo-
sition, from which fat mass can be estimated, and
any deviation from the assumed body composition
will lead to bias and loss of accuracy. The question
is: how reasonable is this assumption?

There are of course extremes where large de-
viations from the population average may pro-
vide incorrect or misleading indications as to a
person’s health risks, particularly in athletes and
bodybuilders, who have proportionally greater
muscle mass. For example, in his prime Arnold
Schwarzenegger’s BMI was above 30 [23], which
would have qualified him as ‘obese’ despite his health
risks being quite obviously different from those of
most obese people. This has led to adapted rec-
ommendations, such as those from the Centers for
Disease Control and Prevention (CDC) that ath-
letes consult with a “trained healthcare provider”
rather than follow standard BMI-based guidelines
[24]. While this is a widely acknowledged limita-
tion of the effectiveness of BMI for specific individ-
uals, several studies have shown that BMI is insuffi-
ciently sensitive to assess adiposity at the individual
level even in the general population [25–27]. This
should hardly be surprising given that many fac-
tors affect body composition independent of height
and weight11. This has led to the development of
alternate BMI cutoffs for the diagnosis of obesity,
such as the population-/ethnicity-specific thresh-
old applied in China (28) [35] or Japan (25) [36].
These alternate cutoffs remain a stopgap measure
which improves the performance of BMI in a spe-
cific population but lacks flexibility and ultimately
only focuses on adjusting for a single factor (here
ethnicity). Ultimately, reliable assessment of fat
mass (or BFP) cannot depend on BMI.
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12 Mathematically, this implies a mono-
tonic function, which has the property of
preserving the rank of (here) individuals.

Many other methods have been developed and
used to measure BFP specifically or body compo-
sition in general, each with their own challenges
and limitations, but the current leading methods
in terms of accuracy are dual-energy X-ray ab-
sorptiometry (DXA), magnetic resonance imaging
(MRI), and computerized tomography (CT). These
techniques enable imaging of the entire body, from
which tissue types can be inferred and body com-
position estimated. Although these methods are
largely considered gold standards in body com-
position analysis, the values returned will differ
slightly depending on the method of choice (e.g.
DXA tends to measure ~5kg less fat mass than the
other two) [37]. This can be a slight limitation for
the exact measurement of these quantities, how-
ever in the context of obesity this is not necessarily
required: it is enough that the fat/lean mass esti-
mates with a given method enable a meaningful
comparison across individuals, i.e. that a differ-
ence in reported values reflects a true difference
in mass in the appropriate direction12 and this has
been shown to be the case [37, 38]. This enables
the quantification of adiposity/obesity, allowing
the comparison of individuals and the prediction
of associated risk. Despite these clear advantages,
these methods are rarely used in clinical practice
due to onerous requirements for time, expensive
machinery, and specialized personnel. Body com-
position is therefore usually estimated using an-
other method: bio-electrical impedance analysis
(also termed bioimpedance or BIA).

BIA exploits the fundamental differences in tissue
properties between fat and lean mass, specifically
its electrical resistivity. The impedance (resistance) of
an individual’s body when exposed to a weak elec-
tric current (1–10µA) depends on several factors,
among which is body composition: lean mass con-
tains more water, leading to greater electrical con-
ductivity, i.e. reduced impedance/resistance. Com-
bined with other factors such as height, weight,
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13 It is likely that certain factors inter-
act with obesity to determine health
outcomes, a topic discussed in Sec. 5.1.

age, and sex, the measured impedance can be used
to estimate lean mass, whereby fat mass and BFP
can be deduced. Its efficiency, low cost, and ease
of use have made BIA one of the most widespread
methods for the estimation of body composition
and is now included in many standard scales des-
tined for private use. One of the main drawbacks
of BIA is its sensitivity to many factors, such as de-
hydration, prior moderate intensity physical ac-
tivity, or extreme BMI values (below 18 kg/m2 or
above 40 kg/m2) [39–41], which may bias results.
Although some studies have reported high accuracy
for BIA-derived estimates, provided certain guide-
lines are strictly adhered to [42, 43], the accuracy
in general is modest but useful [41, 44].

That the risk of adverse health effects increases
with the amount of adipose tissue is well established
and greater accuracy in its quantification can only
aid in the diagnosis of obesity and the prediction
of disease risk. However, there remains consid-
erable variation in the metabolic response across
individuals that cannot be explained by body com-
position alone. There are many factors which are
known or suspected to contribute to these health
discrepancies, such as differences in lifestyle and
diet, although these mostly act directly upon health
or through increased obesity and are not our fo-
cus here.13 Of greater relevance to us is the fact that
body fat is more than simply a number, that indi-
viduals with identical BFP may have very different
body fat distribution, and that the type of adiposity
may change how it affects health.

THE INFLUENCE OF BODY FAT DISTRIBUTION on
metabolic health is not yet fully understood, but
it is now widely accepted to contribute signifi-
cantly to health disparities between individuals
with similar body composition [15, 45–47]. One
of the foremost hypotheses in the field to explain
the causal link between body fat distribution and
metabolic health is that of adipose tissue expand-
ability [reviewed in 48]. This postulates that excess
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Figure 1.1: The main types of
adiposity, based on location, are
subcutaneous adipose tissue (SAT),
which is stored beneath the skin
over the entire body, and visceral
adipose tissue (VAT), which is de-
posited in and around organs in the
abdomen.

14 Calculated as the unit-free ratio of the
circumference of the waist to that of the
hips.

15 The correlation coefficient between
WHR and BMI is around r ≈ 0.5.

calories are preferentially stored in subcutaneous adi-
pose tissue (SAT, Fig. 1.1) with minimal impact on
metabolism or health and that this tissue is capable
of expanding to accommodate additional fat. How-
ever, this tissue’s capacity for expansion is finite
and when exceeded the surplus calories are liable
to be deposited ectopically in and around organs
as visceral adipose tissue (VAT) or in skeletal muscle.
These ectopic fat deposits are thought to contribute
much more directly to the averse health effects of
lipotoxicity [45–47] through mechanisms such as
low-grade inflammation [49, 50]. Certain research
results have further hinted at possible protective
effects of SAT [51, 52], proposed to act through
pathways such as the segregation of harmful com-
pounds or the release of protective adipokines,
though these have not yet been fully demonstrated.

The predominantly abdominal location of un-
healthy fat deposits (VAT) has shifted the atten-
tion to abdominal obesity and metrics to quantify it.
Waist circumference (WC) is an obvious choice
for this and has been (and, to some extent, still is)
used for this purpose. It is a useful measure at the
individual level, since a change in WC is likely to re-
flect an increase or decrease in abdominal fat, mak-
ing it useful to gage the evolution of that person’s
risk of disease. On the other hand, at the population
level it depends on many other factors such as bone
morphology or height which make it less reliable
as an indicator for inter-individual comparison of
abdominal obesity. Waist-to-hip ratio (WHR)14

is another metric for abdominal adiposity more
widely used at the population level, enabling useful
comparisons between individuals and the definition
of practical guidelines as to desirable values. Now,
as might be expected from the conceptual proxim-
ity of abdominal and overall obesity, WHR tends to
increase with BMI15 but, crucially, it still provides
additional information about disease risk indepen-
dent of BMI [15]. WHR-centered analyses of ab-
dominal obesity have already provided meaningful
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16 Although large cohorts such as the UK
Biobank are beginning to accumulate
dozens of thousands of samples, increas-
ing power beyond what has been possible
up until now.

17 Penetrance refers to the likelihood of
a phenotype manifesting itself due to
the presence of a genetic variant. High
penetrance indicates that the presence of
the allele is usually sufficient for the effect
to occur.
18 Depending on the phenotype studied,
this will usually be logistic regression for
binary traits such as diseases or linear
regression for continuous traits.

insight into some of the biological determinants
of the location of fat deposits and the mechanisms
through which they lead to disease [52], however
such metrics are not sufficient to provide a full pic-
ture of obesity-related health consequences.

The previously mentioned methods for the high-
definition measurement of body composition, namely
DXA, MRI, and CT, intrinsically provide much-
needed information about the location of adipose
tissue in addition to the quantity, and even BIA-
derived measurements can be used to approximate
body composition in specific parts of the body (e.g.
torso or left leg) rather than overall. The gain in
accuracy from these methods comes at the cost
of sample size and the availability of these mea-
surements has so far been quite limited.16 These
methods have nevertheless been instrumental in the
formulation of the adipose tissue expandability hy-
pothesis and such metrics are beginning to provide
the means to explore the determinants, particularly
genetic, which give rise to such inter-individual
variability in body fat distribution.

1.2 Genetics of obesity and body shape

In the field of genetics, traits are frequently dis-
cussed in terms of complexity, with complex traits be-
ing affected by numerous weak genetic (and possi-
bly environmental) factors, as opposed to Mendelian
traits, which depend on few genetic variants. There
are examples of common Mendelian traits, such as
blood type or lactose intolerance, but those studied
are generally of public interest for their pathogenic-
ity and are typically caused by rare, high penetrance
variants.17 Their study usually involves pedigree
analysis in affected families. On the other hand,
identifying genetic variants associated with com-
plex traits generally requires the regression18 of
the phenotype of interest onto each individual
single nucleotide polymorphism (SNP) across the
genome, a process known as genome-wide association
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19 GWAS is the common abbreviation
(instead of GWAA) and the term I will
use throughout the manuscript. The
‘S’ stands for study, though the term is
commonly used to indicate the analysis
itself.

20 Note: Although I mention ‘effect’ sizes
throughout this document, this does not
imply a causal effect of, e.g., a GWAS hit,
rather to the size of the effect which is
tagged by it.

21 Explained variance is the phenotypic
variance in the population which can
be explained by a given SNP. Low
explained variance may be due to small
effect sizes or low minor allele frequency.

analysis (GWAS19) [reviewed in 53].
GWASs come with many challenges, the fore-

most of which arises from the typically weak ge-
netic associations which characterize complex traits,
combined with the large number of tests involved
in genome-wide screening, quickly requiring
very large sample sizes to detect ever-smaller ef-
fect sizes.20 Recent years have seen the creation of
multiple large-scale biobanks with the genetic and
phenotypic information of hundreds of thousands
of individuals [e.g. the UK Biobank, 54], which
has enabled the discovery of thousands of genomic
loci involved in many traits and diseases [55]. Sam-
ple size remains a limitation for the discovery of
SNPs with low explained variance21 and some traits
which are difficult to study using population-based
biobanks, such as those with low heritability (e.g.
lifespan [56]), where measurements are costly (e.g.
body fat distribution) or invasive (e.g. gene expres-
sion in brain tissue), or are otherwise difficult to
assess/estimate (e.g. social anxiety). Samples can-
not always be combined at the individual-level (i.e.
simply pooling the data from multiple cohorts) due
to privacy concerns, but summary statistics (namely
SNP-trait association strength and standard error)
across multiple studies can be combined through
meta-analysis.

Within the context of obesity, such studies have
uncovered hundreds of SNPs associated with BMI
and WHR, as well as WHR adjusted for BMI (WHRad-
jBMI) [57, 58], most of which individually ex-
plained little variance due to small effects or the
rarity of the effect allele, jointly explaining 3.9–
6.0% of the total trait variance. The genomic loci,
and indeed the biological pathways and tissues in-
volved, are largely distinct for BMI and WHRad-
jBMI, suggesting separate mechanisms for the ac-
cumulation of body mass and the distribution of
adiposity (although larger sample sizes have found
overlap in SNPs with smaller effect sizes [57, 58]).
The modulation of BMI seems to be largely de-
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pendent on the central nervous system through
mechanisms involving appetite regulation and en-
ergy balance [59, 60], while that of WHRadjBMI
appears to involve the digestive system and adi-
pose tissue directly through adipogenesis and in-
sulin signaling [52, 61]. Whereas the genetic ba-
sis for BMI appears to be largely shared between
sexes, many SNPs show sexually dimorphic effects
on WHRadjBMI with a majority of them being
stronger in women [58]. Several SNPs have been
found to be suggestive of non-abdominal adiposity
in women, specifically increasing hip circumfer-
ence, whereas in men they increased both hip and
waist circumference [1]. Their effects in women
are suggestive of an increased SAT-to-VAT ratio
(as has been shown for similar SNPs [52]), though
it remains unclear whether this shift is sex-specific
or simply detectable in women due to a greater
propensity for SAT deposition on the hips.

With the multiplicity of possible metrics available
to describe human physiology, from the standards
of BMI and WHR to high precision DXA mea-
surements, it follows logically that many of them
show high correlation. Which makes sense: for
example, any shift in body fat distribution will be
characterized by an increase in adiposity in one or
more locations, mirrored by decreased adiposity
elsewhere, affecting body composition and mass
in all locations. This makes it difficult to study the
causes or consequences of any of these traits in iso-
lation as would be required for the typical scien-
tific approach. However, the very interdependency
which makes the study of single traits difficult can
be leveraged through multi-trait analysis.

1.3 Integrative approaches to characterizing body shape

The combined analysis of multiple phenotypes can
leverage the shared variance to maximize statistical
power and/or exploit trait specificity to disentangle
the etiology of, e.g., obesity consequences. Here,
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22 A ‘composite’ trait is one which is
defined as a function of several others.
In this sense, BMI and WHR could be
considered composite traits, however for
clarity and simplicity the term ‘composite
trait’ in this manuscript refers to those
traits derived from the methods described
here rather than manually defined
metrics.
23 The ‘objects’ to cluster can be anything
for which a meaningful similarity (or
conversely dissimilarity/distance) metric
can be defined. In the context of obesity,
this could be individuals, anthropometric
traits, genetic variants, etc..

24 K-means clustering stochastically
creates a set number (K) of clusters by
iteratively assigning each object to the
(randomly initiated) nearest center until
convergence.
25 Hierarchical clustering iteratively
groups the two nearest objects or clusters
into a new cluster, providing a tree-
shaped structure.

I will mainly describe two types of approaches
which are commonly used in exploratory analy-
ses of related variables: clustering into groups based
on similarity and the analysis of covariance structure
for the creation of composite traits.22

CLUSTERING-BASED APPROACHES broadly aim
to split a set of objects23 into meaningfully differ-
ent groups, termed clusters, based on their similar-
ity. The resulting clusters are comprised of objects
which are more similar to one another than to ob-
jects of other clusters. Varying definitions of sim-
ilarity and constraints on the formation of clusters
have given rise to numerous methods for achieving
them, such as K-means24 or hierarchical clustering.25

These methods have, for example, been used in
hypothesis-driven approaches to uncover genetic
variants associated with favorable metabolic profiles
despite increasing adiposity [51, 62, 63].

Typical clustering-based methods assign objects
to mutually exclusive clusters, which may be de-
sirable in the extent where it provides more easily
interpretable cluster membership but may be lim-
iting as well. For example, genetic variants may
reasonably be expected to contribute to multiple
biological pathways with potential relevance to the
variables used in the classification. Other methods
have been proposed to allow for probabilistic clus-
ter membership or potentially overlapping clusters
[64, 65], which can overcome these limitations to
some extent. An alternative to the classification of
these objects is the analysis of their covariance.

THE COVARIANCE STRUCTURE OF DATA contains
information on the shared associations between
phenotypes, and patterns therein can provide in-
sight into causal relationships or common causes
affecting them. Two commonly used methods to
disentangle these are factor analysis (FA) and prin-
cipal component analysis (PCA), with slightly dif-
ferent assumptions but similar processes (Fig. 1.2).
Both seek to define a set of composite traits, linear
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Figure 1.2: Factor Analysis (FA)
and principal component anal-
ysis (PCA) offer slightly different
strategies for the decomposition of
variance. (A) FA models the factors
as shared components giving rise to
the observed variables (X1 and X2)
and allowing for individual variance,
whereas (B) PCA decomposes all
variance into principal components
(PCs). This difference is illustrated
in the equations, where (C) FA typ-
ically defines the observed variables
as a function of factors, while (D)
PCA defines PCs as a function of
the observed variables. Illustrated
graphically, (E) the residual variance
of FA is attributed to the individual
error terms, while (F) in PCA this
yields a second PC.

26 Mathematically, these linear combina-
tions are defined by a rotation matrix.

27 Independent factors are defined using
an orthogonal rotation matrix, while non-
independent ones use an oblique rotation
matrix.

combinations of the original phenotypes,26 which
best explain most of the covariance structure of
the original data. FA explicitly assumes the exis-
tence of the shared factors which give the method
its name: latent (unobserved) variables which un-
derlie the observed phenotypes and is the source of
the correlation among them. The number of fac-
tors is usually defined beforehand based on a priori
knowledge or expectations, though in exploratory
FA it may be varied to compare results. These fac-
tors may affect any number of observed phenotypes
and may or may not be independent from one an-
other.27

In PCA, these composite phenotypes, termed
principal components (PCs), are sequentially chosen
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to maximize the variance they explain while re-
maining orthogonal to all other PCs. Depending
on the data and the FA algorithm chosen, these
methods may provide similar results. The key dif-
ference which separates them is that FA allows for
part of the variance in an observed variable to re-
main unexplained by the factors (Fig. 1.2 A, C,
E), whereas PCA will partition all observed vari-
ance into the necessary number of PCs (Fig. 1.2 B,
D, F). It is, however, typical to discard the lower-
variance PCs and instead use only the top X PCs
to summarized the variance over all included vari-
ables, a process known as dimensionality reduction.
The number of PCs to select is usually determined
to explained a certain percentage of the total vari-
ance (e.g. select enough PCs to explain 99% of the
total variance) or based on a scree plot, which dis-
plays the eigenvalues of the sorted PCs (which are
proportional to the explained variance).

This combination of correlated traits can be
leveraged to increase the statistical power to de-
tect loci with concerted effects on multiple phe-
notypes, as has been shown for anthropometric
traits [66], which provides some insight into their
co-regulation and biological pathways or tissues
involved. These associations can improve our fun-
damental understanding of the variation in human
body shape, however they still lack a critical ele-
ment to maximize their usefulness in the context
of public health: causality. Indeed, any association
between a shift in adiposity and a corresponding
change in metabolic health could indicate an effect
of adiposity on metabolism, or it could be the re-
verse, or they may simply share a common cause.
Any health guidelines or drugs designed based on
such associations would risk being useless or even
harmful, hence the importance of causal inference.
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28 This alternate scenario is termed the
counterfactual.

29 Intervention studies, as the name sug-
gests, are experiments where the re-
searchers affect the subjects in some way,
as opposed to observational studies, where
the subjects are merely monitored.

30 Exchangeability requires that all
variables susceptible of confounding the
association between the treatment and
outcome are balanced between groups,
i.e. that groups could be exchanged
(prior to treatment) with no impact on
the results.

1.4 Causal inference

While association analyses serve to detect events
which tend to co-occur (or variables which are
correlated), causal inference aims to establish whether
one of these events occurs as a consequence of the
other, or whether a one variable affects another.
The study of causation, termed etiology, is fasci-
nating in its own right, however it is of vital im-
portance within the context of medicine and pub-
lic health. Understanding the causes that lead to a
given result provides possible means through which
to affect the outcome, which is at the core of dis-
ease prevention and treatment. The ideal exper-
iment to establish causality would be to observe
the outcome of a treatment while knowing pre-
cisely what would have occurred in the absence of
treatment.28 This would enable the unambiguous
deduction that any difference in outcome is due to
the treatment and is, of course, impossible. Failing
this, the gold standard remains randomized control
trials.

RANDOMIZED CONTROL TRIALS (RCTS) are a
type of intervention study29 aiming to infer causal-
ity while minimizing the possibility of bias. Test
subjects are randomly allocated to two or more
groups, one of which is the control group, which
receives no treatment, while the other(s) receive
the treatment(s) of interest, following which the
outcome is compared between groups to determine
the effect(s) of the treatment. The key assumption
underlying the inference of causality is that the
groups are exchangeable,30 in which case any differ-
ence in the outcome can be attributed to the ef-
fects of the treatment. RCTs are therefore designed
around this assumption, from the eponymous ran-
domization, which serves to avoid selection or al-
location bias, to double blinding, which limits the
impact of accessory manipulations not directly rel-
evant to the treatment. Although RCTs remain
the most reliable method of causal inference, they
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31 Mendelian randomization is derived
from a method originally developed in
the field of econometrics called instrumen-
tal variable analysis.

32 Pleiotropy (or more precisely horizontal
pleiotropy) occurs when a genetic
variant has effects on multiple traits
independently.

are often costly and time-consuming. Worse, es-
pecially where human subjects are concerned, they
may be unethical, impractical, or downright im-
possible. A more practical alternative has emerged
in recent years, enabling causal inference based on
observational data alone: Mendelian randomization, a
method which uses genetic variants as a proxy for
RCT.

MENDELIAN RANDOMIZATION (MR)31 exploits the
naturally occurring, random segregation of genetic
alleles at birth as a kind of RCT [67, 68]. The ba-
sic idea is that if a phenotype of interest (hereafter
termed exposure) causally affects an outcome, then
any genetic variant associated with a change in the
exposure should exhibit a corresponding associa-
tion with the outcome. Working backwards, MR
infers causality by testing whether an exposure-
associated variant (known as an instrumental variable
or IV) is also significantly associated with the out-
come. The validity of this inference relies on three
core assumptions (Fig. 1.3):

1. Relevance. The IV must be associated with a
change in the exposure;

2. No pleiotropy. The outcome must be indepen-
dent of the IV, conditional on the exposure;

3. Exclusion restriction. The IV must be inde-
pendent of any confounding of the exposure-
outcome relationship.

The first is intrinsic to the definition of an IV: a
variant is only useful if it can predict a change in
the exposure. The second assumption excludes
SNPs tagging any effect acting directly on the out-
come without affecting the exposure. This mainly
serves to exclude pleiotropic32 SNPs or those tagging
an effect occurring primarily on the outcome and
affecting the exposure through reverse causality.
The final assumption is analogous to the exchange-
ability requirement for RCTs: the probability of
having one or more copies of the effect allele must
not be associated with any variables which might
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Instrumental
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e.g. SNP

Exposure X
e.g. HDL

Outcome Y
e.g. CVD

αβx

βy = βx ∗ α

Confounder
e.g. LDLX

X

1

2

3 Figure 1.3: Mendelian random-
ization relies on assumptions
enabling the accurate estimation of
effects which may have been difficult
to test in practice, such as the effect
of HDL cholesterol on cardiovas-
cular disease. Solid lines represent
true underlying causal effects, dashed
lines show associations. SNP: single
nucleotide polymorphism; LDL-c:
low-density lipoprotein cholesterol;
HDL-c: high-density lipoprotein
cholesterol; CVD: cardiovascular
disease.

33 Population stratification occurs due to
the assortative (i.e. non-random) mating
which occurs in society, causing genetic
variants to become more or less frequent
within certain strata of the population
(due to selection or genetic drift). These
variants then become non-causally
associated with any variables which
differ across the concerned strata, such as
geographical location, socio-economic
status, or chopsticks usage [69].

affect both exposure and outcome. Although this
applies to any confounder, this is usually considered
with respect to population stratification.33 If these
assumptions are satisfied, then the IVs can be used
to estimate the causal effect of the exposure on the
outcome.

The simplest approach of MR uses two-stage
least squares regression on individual-level data.
The value the exposure x takes on in an individual
can be described as the sum of IV-tagged genetic
effects and other contributions (untagged genetic
and/or environmental):

x = G · βx + ϵx , (1.1)

where G is the matrix of IV genotypes, βx is the
vector of genetic effect estimates for the IVs, and
ϵx is the error term which includes the effects of
other factors. The outcome y can be expressed as
the causal effect of x plus other IV- and exposure-
independent effects:

y = x · α + ϵy , (1.2)

where α is the causal effect of the exposure on
the outcome and ϵy is the error term (including
other effects). βx can then be estimated from Equa-
tion 1.1 using ordinary least squares regression,
with which we can predict the expected exposure
level in each individual as x̂ = G · β̂x. Regressing
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the outcome y onto this predicted exposure x̂ pro-
vides an accurate estimate of the causal effect which
is free of the observational confounding which
would bias results if the outcome were directly
regressed on the observed exposure (provided the
assumptions are verified, of course), i.e.

y = x̂ · α + ϵ′y (1.3)

provides a valid estimate of the causal effect of in-
terest α.

Most widely-used methods today are based on a
slightly different approach known as two-sample
MR or summary statistics MR [70]. Simply put, if
the MR assumptions are respected, the association
of an IV with the outcome (βy) can be described
as the combination of its association with the ex-
posure (βx) and the causal effects of the exposure
on the outcome (α), i.e. the product of the two
(Fig. 1.3). Therefore, the ratio of the effect estimate
of the IV on the outcome to that on the exposure
provides an estimate of the causal effect of inter-
est. This can be done for any number of IVs, the
estimates of which can then be combined through
inverse-variance weighted (IVW) meta-analysis.
Equivalently, the IV-outcome effects can be re-
gressed onto the IV-exposure ones (excluding an
intercept), where the resulting slope represents the
strength of the causal effect. This has the distinct
advantage of using summary statistics, which can
easily be shared or obtained from publicly available
sources, and opens up the possibility of using MR
across samples, enabling the testing of effects where
the exposure and outcome are not measured in the
same individuals.

Many extensions have been proposed for MR
(especially summary statistics MR) to address spe-
cific limitations or reduce the bias that might be in-
duced by violated assumptions. Below are some of
the more notable developments on the topic with a
brief summary of each:

MR-Egger [71] is designed to account for IVs with
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imbalanced pleiotropy, i.e. where they have in-
dependent effects on the exposure and outcome.
This is achieved by the inclusion of an intercept
in the regression of outcome effects on exposure
ones.

Median-based MR [72] reduces bias introduced by
a small number of invalid IVs by using a median-
based combination of causal effect estimates (in-
stead of the standard IVW meta-analysis).

Mode-based MR [73] uses a similar, majority-based
approach as median-based MR, but instead as-
sumes that valid IVs represent the largest group
of similar causal effect estimates (expected to be
identical in an infinite sample).

MR-PRESSO [74] addresses horizontal pleiotropy
through the sequential detection and exclusion
of outliers to eliminate or reduce the bias they
would introduce.

MR-Clust [75] considers clusters of IVs acting
through different mechanisms, which may lead
to multiple causal effect estimates representing
different biological pathways.

Factorial MR [76] uses genetic IVs and polygenic
scores to investigate possible interactions between
two IV-tagged exposures.

CAUSE [77] uses structural equation modeling
to allow for (some) correlated and uncorrelated
pleiotropy.

LHC-MR [78] builds upon a similar framework as
that of CAUSE [77] (and the LCV model [79]),
simultaneously estimating forward and reverse
causality between exposure and outcome, as well
as confounding.

Multivariate MR [80] accounts for known pleiotropy
by including multiple exposures in the effect esti-
mation.

For a comparison of the performance and robust-
ness of some of these methods (and others), see [81]
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for univariable approaches or [82] for multivariable
ones.

These developments and improvements extend
the possibilities of MR, however they have one lim-
itation in common which is rarely mentioned or
even considered: they assume the putative causal
effect to be linear, i.e. that the expected change in
the outcome caused by a change in the exposure
does not depend on the value of the exposure, only
the size of the change. For example, this would im-
ply that a 1 kg/m2 change in BMI would lead to
the same change in blood pressure whether the ini-
tial BMI was 20 or 35. Even though this isn’t bio-
logically plausible in many cases, this assumption is
implicit to any method aiming to estimate a linear
causal effect.

This limitation/assumption is not without some
MR-based developments aiming to address it, namely
LACE (Localized average causal effect) [83] and
SpotIV (Semi-parametric outcome models with
possibly invalid IVs) [84]. Both of these approaches
make use of the control function [85]: the residual
variation in the exposure after conditioning on the
IV(s), i.e.

ϵx = x − G · βx , (1.4)

where x is the observed exposure, G is the matrix
of IV genotypes, and βx is a vector of the IV ef-
fect estimates. The SpotIV approach is designed
to account for invalid IVs and aims to estimate the
specific difference in risk between two levels of the
exposure, allowing for non-linearity in the causal
effect. LACE broadly operates by stratifying the
population based on the control function (i.e. the
IV-free exposure) and estimating a linear causal ef-
fect in each bin. These estimates can then be com-
bined using either a fractional polynomial approach
or a piecewise linear one.

Both of these approaches enable the estimation
of non-linear effects, but present their own lim-
itations. The SpotIV approach is designed to ac-
count for invalid IVs, making it potentially more
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34 Initial tests suggest that the runtime
increases quadratically with sample
size, to an estimated ~150 minutes for
100K individuals for only 7 IVs. The
implementation was also not particularly
robust to any changes in parameters such
as the number of IVs.

robust to (minor) violations of the traditional MR
assumptions, but only enables the point estima-
tion of an expected change in risk associated with
a specific change in exposure level. This may al-
low the interrogation of very specific hypotheses
but is unsuitable to exploratory investigations of the
causal relationship between exposure and outcome.
It would theoretically be possible to the obtain this
point estimation for multiple changes across the
exposure distribution, but it is unclear how reli-
able this would be. Furthermore, we found the
current implementation [86] to scale poorly with
increasing numbers of IVs or sample size,34 which
would likely make it unusable on UK Biobank-
sized cohorts (~370’000 unrelated white European
individuals) with the number of IVs typically avail-
able for complex traits (e.g. 536 independent SNPs
associated with BMI [57]); repeating it multiple
times to observe the shape of the causal relationship
was simply not an option. LACE performs quite
well across a wide range of settings and although
the selection of the number of bins is somewhat
arbitrary, we found the results reasonably robust
in UK Biobank-size cohorts. However, its semi-
parametric approach does not fully exploit the po-
tential statistical power available. In the second part
of this thesis, I focused on the development of a
fully parametric approach to increase the statisti-
cal power and better approximate the shape of the
underlying causal relationship.



1 This review is published in Current
Diabetes Reports and the preprint version
is included below.

2
Obesity and its consequences

2.1 Heterogeneity, genetics, and consequences: A review

Heterogeneity in obesity: genetic basis and metabolic
consequences [1]1 summarizes our current under-
standing of obesity and the heterogeneity reflected
in the various metrics used to quantify it, with a
focus on the underlying genetics, favorable adipos-
ity, and sexual dimorphism. New results provided
by Thomas Winkler illustrated the apparent sexual
dimorphism involved in the genetics of favorable
adiposity, raising further questions concerning the
sex-specificity of body fat distribution and its con-
sequences on health. We examined the available
evidence for the roles of VAT and SAT in the pro-
tective effects of favorable adiposity and the biolog-
ical mechanisms which may be involved. Finally,
we examined two avenues for future study of body
fat distribution and its relevance for health, namely
high-accuracy techniques (e.g. DXA and MRI) and
integrative approaches (e.g. PCA), reviewing their
advantages and limitations, past uses, and potential
insight they might yield.

This review article was co-first authored by Thomas
W. Winkler and myself. I wrote most of the first
draft (based on an initial structure provided by
Zoltán Kutalik) while Thomas wrote the sections
on BMI/WHR genetics and sexual dimorphism. I
restructured and finalized the article based on feed-
back and suggestions from all the other authors.
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Purpose of review. Our review provides a brief summary of the most recent advances towards 

the identification of the genetic basis of specific aspects of obesity and the quantification of their 

consequences on health. We also highlight the most promising avenues to be explored in the 

future.  

Recent findings. While obesity has been demonstrated to lead to adverse cardio-metabolic 

consequences, the underlying mechanisms remain largely unknown. The elucidation of the 

molecular underpinnings of this relationship is hampered by the extremely heterogeneous nature 

of obesity as a human trait. Recent technological advances have facilitated a more in-depth 

characterisation of body composition at large-scale.  

Summary. At the pace of current data acquisition and resolution, it is realistic to improve current 

obesity diagnosis and to advise individuals based on detailed body composition combined with 

tissue-specific molecular signatures. Individualized predictions of health implications would 

enable more personalised and effective public health interventions. 

 



Introduction 

Obesity has been repeatedly shown to increase the risk of many non-communicable diseases 

such as type 2 diabetes (T2D, reviewed in (Boles et al. 2017) and cardiovascular disease (CVD, 

reviewed in Ortega et al. 2016). It is usually defined using body mass index (BMI, weight [kg] / 

height2 [m2]), where BMI >= 30 kg/m2 qualifies an individual as obese and BMI >= 25 kg/m2 as 

overweight (according to WHO guidelines, https://www.who.int/news-room/fact-

sheets/detail/obesity-and-overweight). This metric uses excess weight as a surrogate for 

adiposity, under the assumption that body composition is sufficiently similar between individuals, 

and provides a fairly reliable predictor of adiposity-related metabolic complications and disease 

risk in most cases (Mokdad et al. 2003; Pischon et al. 2008). Although BMI can approximate 

overall excess body fat, it fails to capture other metabolically relevant aspects of adiposity, leading 

to considerable disparity in health outcomes between individuals with similar BMI. In particular, 

differences in body fat distribution, both the location and subtype of adipose tissue used to store 

excess calories, have been shown to affect health-related outcomes (Pischon et al. 2008; Kaess 

et al. 2012; Rosenquist et al. 2013; Abraham et al. 2015). 

The link between body fat distribution and metabolic consequences is still somewhat unclear, 

but one of the most widely supported hypotheses is that excess calories are primarily stored in 

subcutaneous adipose tissue (SAT) with minimal metabolic impact (Virtue and Vidal-Puig 2010). 

This accumulation causes the expansion of peripheral fat stores, however their capacity for 

expansion can be exceeded, causing a mild form of lipodystrophy where residual calories 

accumulate in ectopic fat deposits in and around organs (visceral adipose tissue, VAT) or in 

skeletal muscle. This ectopic adiposity is thought to play a more direct role in the metabolic 

consequences of obesity. Its predominantly abdominal location has drawn the focus to central 

adiposity, which can be assessed by waist circumference or waist-to-hip ratio (WHR). WHR in 

particular has been shown to be a strong predictor for disease risk and mortality independent of 



BMI (Pischon et al. 2008). This distinction between overall and central adiposity has enabled a 

better characterization of obesity, and a first step towards disentangling the healthy adiposity from 

unhealthy. 

Genetics of BMI and WHR 

BMI and WHR are among the most commonly used measures of obesity and multiple genetic 

studies have helped to understand the biological mechanisms underlying these traits. GWAS 

combining ~700,000 individuals from the UK Biobank (Sudlow et al. 2015) and the Genetics of 

Anthropometric Traits (GIANT) consortium have identified 536 genomic loci associated with BMI 

and 346 with WHR adjusted for BMI (WHRadjBMI, Table 1, Yengo et al. 2018; Pulit et al. 2019). 

These loci explained a total of 6.0% and 3.9% of the phenotypic variation in the population, 

respectively. Approximate conditional analyses highlighted multiple independent signals at many 

of the identified loci (Table 1). For example, four independent association signals were detected 

at the TBX15-WARS2 locus for WHRadjBMI, some of which were specific to men or women, 

suggesting a complex genetic architecture at many of the identified loci (Shungin et al. 2015). 

The effect of most genetic variants on obesity traits identified by GWAS are rather moderate, 

resulting in an average increase of ~0.3 kg per allele (for a 1.70m tall person) for BMI-associated 

common variants (Locke et al. 2015). Still, the cumulative effect of common variants can improve 

the prediction of the likelihood of obesity (Shungin et al. 2015; Locke et al. 2015). In  meta-

analyses of coding variants based on ExomeChip GWAS, 14 independent low-frequency and rare 

associations were detected for BMI and 9 for WHRadjBMI (Turcot et al. 2018; Justice et al. 2019). 

Although these rare variants only explain a small additional proportion of the phenotypic variation 

due to their rarity, they exhibit effect sizes up to ~10 times larger than those of common variants. 

For example the largest effect for BMI was observed for a nonsense mutation in the MC4R gene 

that is present in 1 in 5,000 individuals and resulted in a ~7 kg increase in body weight per allele 



(for a 1.70 m tall person, Turcot et al. 2018). Importantly, genes at identified loci overlapped with 

genes that are known for severe monogenic forms of obesity, such as MC4R, BDNF, BBS4 and 

POMC (Locke et al. 2015). Together this indicates that many genes may affect obesity both 

through small effects of common variants and large effects of rare ones. 

The strongest genetic factors for BMI and WHRadjBMI appear to be largely distinct 

(Shungin et al. 2015; Locke et al. 2015), however larger sample sizes have uncovered additional 

loci with smaller effect sizes, 105 of which are associated with both phenotypes (Yengo et al. 

2018; Pulit et al. 2019). Concordantly, the tissues and mechanisms involved appear to be different 

for BMI and WHRadjBMI. Pathway and tissue specificity analyses suggest that genetic variants 

affecting BMI act primarily through the central nervous system, involving appetite regulation and 

energy balance (Locke et al. 2015; Turcot et al. 2018). In contrast, genetic effects on WHRadjBMI 

seem to act primarily through adipose tissue, and involve adipogenesis and insulin signaling. The 

genomic loci which were common to both phenotypes were enriched for variants associated with 

opposite effects on BMI and WHR (unadjusted for BMI), contrary to the positive phenotypic 

correlation between the two (Pulit et al. 2019). This is due to the fact that GWAS on WHRadjBMI 

is best powered to identify loci affecting hip (but not waist) circumference, thereby increasing BMI 

while decreasing WHR (Winkler et al. 2018). Although many of these loci affect both sexes, the 

dependence of adiposity distribution on sex is apparent in many sexually dimorphic genetic 

effects. 

Sexual dimorphism in BMI and WHR 

Examining the sex specificity of the genetics of body fat distribution can further our 

understanding of the mechanisms involved, whether specific to either or common to both. Sex-

stratified GWAS in up to 330,000 individuals of European ancestry were unable to detect sexual 

dimorphism at any locus for BMI but found 44 loci with significantly different effects on 



WHRadjBMI in men and women (Randall et al. 2013; Winkler et al. 2015). Although some loci 

showed opposite effects in both sexes, most were significantly stronger in women. 

Similar results were found for the 346 loci associated with WHRadjBMI in larger sample sizes, 

where a majority of the 53 sexually dimorphic loci had stronger effects in women than in men 

(Pulit et al. 2019). Among these dimorphic loci, 28 showed directionality of effects which was 

consistent with favorable, non-central adiposity (increased BMI and decreased WHR), but only in 

women (Figure 1). Using sex-specific summary results for waist and hip circumference for 

European ancestry individuals from the UK Biobank (www.nealelab.is/uk-biobank, N > 350,000), 

we observed that while the BMI-increasing alleles of the 28 loci had stronger effects on hips in 

women, they were enriched for effects increasing both waist and hip circumference in men 

(Figure 1). This suggests that genetically-driven WHR is a stronger indicator of favorable 

adiposity in women compared to men. 

Since sex differences in fat distribution are largely influenced by sex hormones, the sexually 

dimorphic genetic factors may interact with hormonal levels to regulate gene expression and gene 

activity (Wells 2007; Kirchengast 2010; Brown and Clegg 2010; Muraleedharan and Jones 2010; 

Ma et al. 2015). Indeed, recent work in mice has shown that sex-specific differences in 

mitochondrial activity mediated the sexual dimorphic effects of the genetic variants around 

LYPLAL1 on fat accumulation and insulin resistance (Norheim et al. 2019). Although some 

autosomal genes have been shown to have tissue-specific sex differences in expression in 

humans (Kassam et al. 2019), the extent of their contribution to the sexual dimorphism of body 

fat distribution remains unclear. Identifying the genes and tissues mediating differences in 

adiposity distribution will be crucial to understanding not only the differences between sexes, but 

the drivers of heterogeneity in obesity as a whole. 



Deeper characterisation of favourable adiposity 

While BMI and WHR are useful as measures of obesity through their ubiquitous availability in 

large studies, they remain insufficient for the in-depth investigation of the quantity and distribution 

of metabolically-relevant adiposity deposits. Imaging methods on the other hand, namely dual-

energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI), do allow the precise 

measurement of localized body fat mass, including SAT and VAT and other ectopic fat deposits. 

While the cost of these methods is prohibitive in large cohorts, their availability in smaller cohorts 

has been particularly useful in the further characterization of obesity-related genetic factors and 

uncovering the tissues and mechanisms involved. 

Using these, we were able to investigate the tissues involved in the genetic effects of 24 loci 

increasing non-central obesity, i.e. increased BMI but decreased WHR, and found them to 

increase SAT in particular, with non-significant effects on either waist circumference or VAT 

(Winkler et al. 2018). They were, however, associated with a significant decrease in pericardial 

adipose tissue (PAT). By applying Mendelian randomization (MR), a method which uses genetic 

variants as instrumental variables to approximate randomized controlled trials (Burgess, 

Butterworth, and Thompson 2013), we were further able to show that these changes in adipose 

tissue distribution were protective of CVD and T2D. Follow-up analyses performed in additional 

data from the UK Biobank and the Ectopic fat (Chu et al. 2017), DIAGRAM (Morris et al. 2012), 

MAGIC (Dupuis et al. 2010) and Global Lipids Genetics consortia (Dupuis et al. 2010; Willer et 

al. 2013) confirmed this link with SAT, but found no association with either waist circumference 

or VAT. It remains unclear whether the protective effects of these genetic variants was mediated 

entirely through a reduction in PAT or whether other unmeasured fat deposits were also 

decreased. It has also been suggested that SAT may have protective effects, such as through 

the secretion of beneficial adipokines (Manolopoulos, Karpe, and Frayn 2010; Rydén et al. 2014; 



Lotta et al. 2018). The possible positive contribution of SAT to metabolic health through 

mechanisms other than the sequestration of lipids requires additional investigation. 

Combining BMI with metabolic traits through hierarchical clustering revealed a similar set of 

genetic variants with profiles consistent with a shift from favorable to unfavorable adiposity 

(Yaghootkar et al. 2014a). Despite being associated with lower BMI, these loci were associated 

with poor metabolic health, including higher triglyceride and lower HDL levels, consistent with a 

mild form of lipodystrophy. Consistent with the adipose expandability hypothesis, the detrimental 

effects were associated with increased visceral-to-subcutaneous adipose tissue ratio and liver fat. 

Further investigation revealed these genetic variants to be associated with increased risk of T2D, 

CVD and hypertension (Yaghootkar et al. 2016a). Interestingly, while this was combined with a 

shift in body fat from the trunk to the legs in women, decreasing central obesity and WHR, the 

shift was in the opposite direction for men, confirming that WHR is a poor indicator of favorable 

adiposity in men. 

A similar approach has led to the discovery of 53 loci associated with increased insulin 

resistance phenotypes despite decreasing BMI (Lotta et al. 2017). The decrease in adiposity was 

found to be driven by reduced SAT, while ectopic fat, namely VAT and liver fat, was increased (Ji 

et al. 2019a). This shift in body fat distribution was also associated with a metabolic profile similar 

to a mild form of lipodystrophy (e.g. increased triglyceride levels and blood pressure). 

Furthermore, a polygenic risk score composed of these genetic variants was found to contribute 

to familial partial lipodystrophy type 1, highlighting the similarities of the genetic basis of obesity-

induced and severe forms of insulin resistance. Other loci have been shown to be associated with 

ectopic fat traits (Chu et al. 2017) and functional analysis of two genes therein, namely ATXN1 

and UBE2E2, revealed a role in adipocyte differentiation. These results further support the 

hypothesis of peripheral adipose tissue dysregulation and ectopic fat deposits as primary drivers 

of the adverse metabolic consequences of obesity. 



Disentangling the consequences specific to adiposity subtype and distribution is hampered by 

the limited availability of imaging-derived phenotypes, relegating their study to the secondary 

characterization of predefined aspects of adiposity. However, the correlation of many aspects of 

body morphology and their dependence on factors such as age and gender makes it possible to 

accurately estimate fat/lean mass composition of body parts through the use of bioimpedance. 

Estimates of body composition 

Exploiting the fact that adipose tissue has higher electric resistivity than lean mass, measures 

of bio-electric impedance across different parts of the body can be combined with easily available 

data such as age, gender, and anthropometric traits to provide remarkably accurate estimates of 

fat/lean mass in various parts of the body. Bioimpedance-based estimates are quite highly 

correlated with DXA or MRI measures (r2≈0.91), however they tend to be slightly biased in 

individuals with extreme values of BMI (below ~18 or above ~40, (Sun et al. 2005; Achamrah et 

al. 2018). 

The accurate estimation of fat and lean mass in large studies such as the UK Biobank has led 

to the identification of 98 genetic variants associated with body fat distribution across arms, legs 

and trunk, 29 of which were novel (Rask-Andersen et al. 2019). Genetic regulation for adiposity 

in trunk and legs was found to be largely shared, with less overlap in variants with the arms. 

Approximately one third of all variants had a stronger effect in women than in men. 

Although this is typically done for body parts, combinations of the same anthropometric traits 

and bioimpedance could also provide reasonable estimates for other DXA/MRI traits such as VAT 

or SAT, which are suspected to be etiologically implicated in metabolic consequences of obesity. 

Estimating these in the UK Biobank through multivariate linear regression, we found that the 

accuracy is somewhat lower than estimates for body parts where bioimpedance can be measured 

(VAT r2≈0.67, abdominal SAT r2≈0.74). Averaging multiple instances of bioimpedance 



measurements can reduce the variability slightly and improve accuracy (VAT r2≈0.71, abdominal 

SAT r2≈0.86). Additional analyses will be required to determine whether these estimates capture 

etiologically relevant variance beyond what is provided by other measurements. Extending this 

further, however, the combination of multiple phenotypes into composite traits need not be 

restricted to the estimation of specific components of body composition.  

Exploratory analysis of variance in body 

morphology 

Combining multiple relevant phenotypes into composite traits can be highly effective in 

increasing statistical power, describing specific aspects of obesity and allowing their detailed 

characterisation in terms of genetic basis and impact on metabolic health. Methods aimed at 

reducing data dimensionality, such as principal component analysis (PCA), are particularly suited 

to the task of combining multiple traits and understanding the underlying architecture. Applying 

PCA to six anthropometric phenotypes, namely BMI, WHR, and the constituents of both, (Ried et 

al. 2016) were able to summarize over 99% of the variance into four principal components (PCs), 

which provide the main axes of variation in body shape (as defined by the six traits). These axes 

could be summarized as overall obesity, increased height and WHR, increased height and hip 

circumference (decreasing WHR), and increased BMI and weight. Subsequent genome-wide 

analysis showed that the genetic factors underlying each PC are largely distinct from each other 

with little overlap in genome-wide significant hits, which is consistent with different mechanisms 

affecting these phenotypes. Although there was substantial overlap with hits for the six original 

traits, their combination nevertheless allowed the discovery of 6 new loci. Unfortunately, the 

mechanisms and pathways underlying these associations have not yet been investigated. 



Similarly, canonical correlation analysis (CCA), a method to infer relations between datasets, 

has also been shown to be suitable to detect variants associated with combinations of phenotypes 

(Cichonska et al. 2016a). By applying this to metabolic traits, (Ji et al. 2019b) identified variants 

associated with changes in metabolic profiles rather than individual traits. They combined these 

results with summary statistics for body fat percentage using hierarchical clustering to obtain a 

set of variants which were associated with healthy metabolic profiles despite higher body fat. In 

addition to the traits used in discovery, the variants were found to be associated with higher BMI 

and subcutaneous fat, but reduced liver fat and lower visceral-to-subcutaneous adipose tissue 

ratio. Consistent with previous results, this was associated with reduced risk of T2D, heart 

disease, and hypertension. 

Integrative approaches to characterization of 

adiposity 

As the number of genetic loci associated with individual anthropometric traits has increased, 

the overlap between them has revealed the complexity of their shared etiology. This has shifted 

the focus from single traits to combinations thereof, providing a more integrative view of genetic 

mechanisms involved in adiposity and a promising avenue for future research. Depending on the 

traits selected in the exploratory phase, the focus of integrative approaches ranges from 

understanding the shared genetics underlying body shape (as in Ried et al. 2016) to better 

characterizing specific aspects of adiposity and their consequences (as in Yaghootkar et al. 

2014). 

Widely-available anthropometric traits, especially BMI and WHR, are almost invariably 

included, either in the construction of composite traits or in downstream analyses. The inclusion 

of additional body measures is highly dependent on both the focus of the endeavor and data 



availability. DXA- or MRI-based measures of specific fat deposits known or suspected to be 

biologically relevant (e.g. liver fat) or even in other parts of the body can add a significant amount 

of information, but their limited availability may be restrictive. Bioimpedance-based estimates of 

body composition can also provide useful insight into the subtle differences in adiposity subtypes. 

The incorporation of molecular traits or disease outcomes related to obesity, in addition to or 

instead of anthropometric traits, provides a more targeted perspective of co-occurring symptoms. 

By focusing on the adiposity-related phenotypes which are most clinically relevant, this approach 

is particularly suited to a supervised approach aimed at further characterizing known or suspected 

aspects of obesity with certain expected consequences, such as favorable adiposity or 

dysregulation of SAT similar to lipodystrophy. However, the inclusion of secondary phenotypes 

not causally linked to aspects of body morphology may bias results away from the relevant 

mechanisms towards environmentally confounded correlations. Furthermore, inferring causality 

between any of the selected phenotypes, primary or secondary, is likely to be complicated by their 

inclusion in the exploratory phase, leading to circular arguments. Care should also be given to 

the selection of traits to include in the exploratory phase, as oversampling traits related to any 

aspect of obesity will inherently bias the derived components toward the selected aspect unless 

appropriately weighted. 

In addition to the selection of phenotypes themselves, the nature of the data itself merits 

consideration as both phenotypic and genetic data may provide useful insight, but the 

requirements, interpretation and downstream analyses will vary accordingly. Phenotypic data may 

provide insight into overall correlations between traits, including the influence of genes and 

environment, as well as any interaction they may have. An advantage of phenotype-based 

composite traits is that they can be used in any type of downstream analysis much like any other 

phenotype, including genetic ones such as GWAS (Ried et al. 2016). The main limitations of this 

approach are likely to be the (potentially undesirable) environmental effects included, as well as 

the requirement for individual-level data. On the other hand, using genetic associations as a 



starting point may remove some of the influence of environmental factors but requires reliable 

effect estimates and, implicitly, a strong genetic basis and/or large sample sizes. Public availability 

of many GWAS results makes this an attractive option for many anthropometric traits, but 

genetics-based composite traits may require additional adjustments, such as accounting for 

phenotypic correlation in the linear combination of genetic effects to produce interpretable effect 

sizes. Either type of data is suitable to many methods for the analysis of data structure and 

covariance. 

Clustering methods broadly provide a categorization of elements based on their properties 

and hierarchical clustering has already proven successful in furthering our understanding of 

adiposity subtypes, their genetic basis and their effects on health (Yaghootkar et al. 2014, 2016; 

Ji et al. 2019). This type of clustering does, however, have limitations, such as the resulting 

clusters being mutually exclusive and non-probabilistic. In light of the high prevalence of 

pleiotropy, it is reasonable to expect that some of the variants may contribute to more than one 

mechanism relevant to adiposity and/or metabolic health. Forcing these into non-overlapping 

clusters could potentially obscure secondary mechanisms in the etiology of adiposity-related 

health consequences. Alternative clustering methods allowing potentially overlapping and/or non-

deterministic clusters, such as the Iterative Signature Algorithm (Bergmann, Ihmels, and Barkai 

2003), may provide complementary insight into these effects. 

The covariance structure of data is particularly indicative of shared mechanisms and its 

analysis can shed light on both etiology and consequences of shifts in adiposity distribution. PCA, 

as was used by (Ried et al. 2016c), is one of the most widely used techniques for this but factor 

analysis (FA) could prove to be a valid alternative. While PCA decomposes the data into 

uncorrelated components while preserving most of the covariance structure, FA identifies a 

predefined number of latent variables which are assumed to give rise to the observed data. The 

principle behind FA may in fact be closer to the biological hypothesis that changes in the subtypes 

of adiposity are affecting both body morphology and metabolic health and may yield more 



biologically meaningful results. CCA has similarly already proven useful in the creation of 

composite traits (Cichonska et al. 2016b; Ji et al. 2019d), but this method can be used more 

generally to co-analyze datasets using cross-covariance matrices. This provides optimal linear 

combinations of two sets of variables to obtain the maximum correlation and could conceivably 

be employed to find composite adiposity traits co-occurring with a set of metabolic abnormalities 

and/or obesity-related diseases. 

Conclusion 

While the ever-increasing sample sizes of GWAS have led to the discovery of dozens or even 

hundreds of loci associated with many anthropometric traits, this has only highlighted the 

complexity of the biological mechanisms underlying body morphology. Integrative and 

comparative analyses of multiple aspects of obesity have provided critical insight into the shared 

and distinct genetic mechanisms underpinning the emergence of heterogeneity in obesity and its 

consequences on health. Many genetic factors have already been found to be relevant to the shift 

between healthy and unhealthy adiposity, highlighting the role of subcutaneous adipose tissue as 

a relatively benign or even beneficial fat storage. Additional investigations will be required to 

further elucidate the mechanisms involved, which may be instrumental in preventing obesity-

related health deterioration. Furthermore, the discovery of these and additional genetic markers 

facilitate the classification of individuals into more homogeneous subgroups of obesity and will 

subsequently provide a better characterization of individual-level health risks associated with 

excessive adiposity and allow more targeted interventions in patients at greatest risk of 

complications.



Tables & Figures 

Table 1. Overview of GIANT consortium genome-wide association studies for BMI and 

WHRadjBMI from 2010 to 2019.  

Trait Reference Year Description 
Discovery 

Sample size 
# GWS 
loci 

# Secondary 
signals 

Explained 
var 

# Sex 
diff loci 

BMI Speliotes et al 2010 46 studies 
(HapMap) 

123,865 32 - 1.45% 0 

 Locke et al 2015 125 studies 
(HapMap / 
Metabochip) 

339,224 97 6 2.70% 2 

 Turcot et al 2018 123 studies 
(ExomeChip) 

526,508 14a - <0.1% 1 

 Yengo et al  2018 Locke et al + 
UK Biobank 

795,612 536 405 6.00% - 

WHRadjBMI Heid et al  2010 32 studies 
(HapMap) 

77,167 14 - 1.03% 7 

 Shungin et al 2015 101 studies 
(HapMap / 
Metabochip) 

224,459 49 16 1.40% 20 

 Justice et al 2019 74 studies 
(ExomeChip) 

344,369 9a - 0.10% 3 

  Pulit et al  2019 Shungin et al + 
UK Biobank 

694,649 346 117 3.90% 53 

a Number of rare or low frequency variants (MAF < 5%) 

 

  



Figure 1. Favorable adiposity candidate versus sexually dimorphic loci. Based on the 346 

WHRadjBMI loci from Pulit et al 2019, the Venn diagram compares 137 favorable adiposity 

candidate loci (positive BMI and negative WHR effect based on nominal significant association, 

P < 0.05, “BMI+WHR-“) with the 53 loci with significant sex-difference in their effect on 

WHRadjBMI. For the 28 overlapping loci, the scatter plots compare genetic effects on waist and 

hip circumference by sex using summary results from UK Biobank (http://www.nealelab.is/uk-

biobank).  
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PC1
Body size—73.3%

PC2
Adiposity—19.9%

PC3
Abdominal fat deposition—3.8%

PC4
Lean mass—2.4%

Figure 2.1: The top 4 body prin-
cipal components (PCs) explain
more than 99% of the total variance.
The silhouettes illustrate the ex-
pected phenotypes at the lower (left)
and upper (right) extremes of the PC
scale. The values in gray indicate the
variance explained by the PC.

2.2 Through the lens of integrative analysis

The core aim of this project was to disentangle the
various aspects of body shape, understand their ge-
netic basis, and identify the specific consequences
of each on health and lifestyle. The paper has been
published in Communications Biology [87] and is in-
cluded below.

Using principal component analysis (PCA), we
showed that most (> 99%) of the total genetically-
defined variance in 14 traits related to body shape
can be summarized using just 4 principal compo-
nents (PCs, Fig. 2.1), in order of decreasing ex-
plained variance: (1) body size increased all included
traits; (2) adiposity decreased stature but increased
fat mass; (3) predisposition to abdominal fat deposi-
tion increased WHR and waist circumference at
the expense of hip circumference; and (4) lean mass
decreased stature but increased lean mass. Enrich-
ment analyses suggest that the biological mecha-
nisms underlying the first two PCs involve genes
expressed in the brain and central nervous sys-
tem, while those of the latter two appear to involve
many tissues (among which adipose tissue) and
rather concern embryo-/morphogenesis and en-
ergy homeostasis. Mendelian randomization (MR)
analyses revealed many consequences on health and
lifestyle, both shared and distinct, the comparison
of which provided useful clarifications to the etiol-
ogy of certain obesity-related diseases. Finally, we
showed that the orthogonality of these PCs could
be leveraged to create combined predictors of dis-
eases which outperformed individual traits within
the same population and retained much of their
predictive accuracy in an ethnically diverse sample.
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Obesity is a major risk factor for a wide range of cardiometabolic diseases, however the

impact of specific aspects of body morphology remains poorly understood. We combined the

GWAS summary statistics of fourteen anthropometric traits from UK Biobank through

principal component analysis to reveal four major independent axes: body size, adiposity,

predisposition to abdominal fat deposition, and lean mass. Mendelian randomization analysis

showed that although body size and adiposity both contribute to the consequences of BMI,

many of their effects are distinct, such as body size increasing the risk of cardiac arrhythmia

(b= 0.06, p= 4.2 ∗ 10−17) while adiposity instead increased that of ischemic heart disease

(b= 0.079, p= 8.2 ∗ 10−21). The body mass-neutral component predisposing to abdominal

fat deposition, likely reflecting a shift from subcutaneous to visceral fat, exhibited health

effects that were weaker but specifically linked to lipotoxicity, such as ischemic heart disease

(b= 0.067, p= 9.4 ∗ 10−14) and diabetes (b= 0.082, p= 5.9 ∗ 10−19). Combining their

independent predicted effects significantly improved the prediction of obesity-related dis-

eases (p < 10−10). The presented decomposition approach sheds light on the biological

mechanisms underlying the heterogeneity of body morphology and its consequences on

health and lifestyle.
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Obesity is one of the main risk factors for many non-
communicable diseases, such as type 2 diabetes (reviewed
in ref. 1) and cardiovascular diseases (reviewed in ref. 2).

The associated disease risk and underlying biology of obesity are
generally studied through the lens of body mass index (BMI,
weight [kg]/height2 [m2]), which uses excess body mass as a
surrogate for adiposity. This approximation provides a reasonably
accurate predictor at the population level3,4 but is blind to many
aspects of body shape and composition that may be critical to
disease etiology. Indeed, disease risk and progression have been
shown to be affected by the location and type of the adipose tissue
in which excess calories are stored3–6. Abdominal obesity in
particular, usually assessed using waist circumference or waist-to-
hip ratio (WHR), is associated with increased disease risk and
mortality independent of BMI3.

Although the exact mechanisms underlying the consequences
of adiposity on health have not been fully elucidated, the pre-
dominant hypothesis is that of adipose tissue expandability: that
excess calories are preferentially stored in subcutaneous adipose
tissue (SAT), which can expand with little to no deleterious
impact on health7,8. When its capacity for expansion is exceeded,
adipose cells hypertrophy, causing local inflammation, and fat is
increasingly stored as ectopic fat in organs and as visceral adipose
tissue (VAT) around organs in a process similar to a mild form of
lipodystrophy. Ectopic and visceral fat are thought to play a
central role in many of the direct consequences of obesity.

Much remains unknown about the genetic and environmental
factors affecting body fat distribution and its contribution to
health outcomes. Currently available non-invasive imaging
techniques such as magnetic resonance imaging (MRI) and dual-
energy X-ray absorptiometry (DXA) allow the accurate mea-
surement of adipose mass in different parts of the body and have
considerably improved our understanding of the impact of dif-
ferent subtypes of adiposity on health9,10. However, such tech-
niques remain costly and are therefore generally restricted to
smaller sample sizes.

An alternative approach is the concurrent analysis of multiple
traits, leveraging the co-occurring changes in multiple phenotypes
to understand the underlying causes and mechanisms. Analysis of
variance methods, such as principal component analysis (PCA),
have been used to investigate the complex architecture underlying
body morphology, revealing the main axes of phenotypic varia-
tion and increasing the statistical power to detect novel loci
affecting body morphology11. While this has improved our
understanding of the genetic basis underlying common and dis-
tinct components of anthropometric traits, their impact on health
and quality of life remains unknown. Other approaches such as
clustering and canonical correlation analysis have identified single
nucleotide polymorphisms (SNPs) associated with healthier
metabolic profiles, despite higher BMI and/or body fat
percentage12–15. However, these hypothesis-driven approaches
(i.e., identifying clusters of functionally similar SNPs based on
both obesity measures and health outcomes) are not suited to
determine the causality of these correlated differences or the
directionality of potential causal effects because the SNP groups
have different health consequences by construction.

Here we followed a hypothesis-free approach to isolate inde-
pendent axes of variations in body shape and size and investi-
gated their health consequences. We performed a PCA on GWAS
summary statistics of 14 anthropometric traits from the UK
Biobank16 to extract orthogonal components, each representing
different features of body shape (Fig. 1). We show that these
measures of body shape can be summarized using four principal
components (PCs) affecting body size, adiposity, abdominal fat
deposition, and lean mass, respectively. Enrichment analyses
highlighted differences in the pathways and tissues involved in

these composite traits, providing insight into the underlying
biological mechanisms. We then used robust cross-sex Mendelian
randomization (MR) to assess the impact of these independent
components on health and lifestyle. While many health and
lifestyle consequences were shared with individual traits, these
orthogonal PCs allowed us to better disentangle the independent
contributions of different aspects of body shape. The results can
be explored using the shiny app which can be downloaded by
following the instructions at http://wp.unil.ch/sgg/pca-mr/. Fur-
thermore, the combination of these PCs improved the prediction
accuracy of obesity-related diseases.

Results
PCA of genetic effects. A schematic representation of our
composite MR analysis framework is shown in Fig. 1. We selected
14 anthropometric and bioimpedance-derived traits (Supple-
mentary Data 1) as the basis for the PCA, 13 of which were
available in the UK Biobank16 with genome-wide summary sta-
tistics made available by the Neale lab (www.nealelab.is/uk-
biobank). Summary statistics for WHR were not available in the
UK Biobank, therefore we performed a GWAS in the UK Biobank
following the same procedure as that used by the Neale lab. SNPs
which were then genome-wide significant (GWS, p < 5 × 10−8)
for any trait were pruned to be independent. The resulting SNP x
traits matrix of effect estimates was subjected to PCA. The
loadings of each PC were then rescaled according to the pheno-
typic correlation between these traits in the UK Biobank so as to
obtain standardized effect sizes, i.e. the resulting PC phenotypes
would have a variance of 1. SNP-PC associations were then cal-
culated genome-wide and SNPs for each PC were re-pruned
individually.

The top four PCs explained more than 99% of the total variance
(Fig. 2, Supplementary Data 2). PC1 (73.3% variance) represents an
overall increase in body size, with positive weights for all traits
indicating a slightly disproportionate increase in body mass
compared to height, resulting in higher BMI as well. PC2 (19.9%)
shows a decrease in height with an increase in fat mass at the expense
of lean mass. PC3 (3.8%) is largely BMI- and body fat mass-neutral,
decreasing hip circumference, and increasing waist circumference
and hence WHR, reflecting a shift in body fat from hips to the waist.
PC4 (2.4%) resulted in decreased height and increased BMI, with an
increase in lean mass at the expense of fat mass.

Performing this analysis using male- or female-specific
summary statistics produced very similar results, though PC3
explained less variance than PC4 in men (Supplementary
Data 3–4, Supplementary Note 1). PCs were also robust to
changes in the selection of specific traits. For example, excluding
WHR yielded effect estimates which were highly correlated with
those obtained using the full set of traits (all |r| > 0.99, see
Supplementary Note 2), though the altered explained variance
also resulted in the reordering of PCs 3 and 4.

PCs 1–3 were highly correlated with weight, BMI, and WHR,
respectively, both phenotypically (r ≥ 0.70, Supplementary Fig. 3)
and in terms of their causal effects on the tested outcomes. The
(genetically) orthogonal nature of PCs nevertheless resulted in
much lower phenotypic correlation with each other than between
traits (e.g., the phenotypic correlation between PC1 and PC2 was
only 0.36 while that between weight and BMI was 0.90,
Supplementary Fig. 4, Supplementary Data 5). Note that the
phenotypic realization of PCs are not orthogonal, and their
correlation is therefore not zero, due to differences between their
environmental and genetic correlation. However, the MR-derived
causal effect estimates of PCs are independent and therefore
additive (though they may still be correlated), which is not the
case for individual traits.
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For brevity and clarity, we mainly describe the PCs in
comparison with BMI and occasionally weight or WHR. Other
traits had causal effects similar to or weaker than these traits (e.g.,
the effects of body fat percentage and BMI on the disease had a
correlation coefficient r= 0.95, p= 7.6 × 10−43) or were less
relevant to obesity-related health outcomes (e.g., height).

We found 615 independent GWS SNPs associated with PC1
(body size), 641 with PC2 (adiposity), 354 with PC3 (predisposi-
tion to abdominal fat deposition), and 610 with PC4 (lean mass).
Among these, respectively 3, 83, 137, and 330 SNPs did not reach
genome-wide significance for any individual trait. For compar-
ison, BMI had 532 independent GWS SNPs.

Tissue/pathway enrichment. We tested the PCs for the enrich-
ment of genes expressed in specific tissues using the MAGMA
method17 through the FUMA interface18 in both GTEx v819 and
brain development and aging data from BrainSpan20. We also
tested for their enrichment of molecular pathway terms from the
DEPICT dataset21 using PASCAL22. The tissue-enrichment
results of the four PCs as well as weight, BMI, and WHR are
shown in Fig. 3 and listed in Supplementary Data 6–9.

Loci associated with both PC1 (body size) and PC2 (adiposity)
were mainly enriched for genes expressed in the cerebellum
(p ≤ 2.2 × 10−5) and the pituitary gland (p ≤ 5.7 × 10−4). Using
data from BrainSpan20, we found PC2 to be further enriched for
genes expressed in the brain specifically during the early to late
mid-prenatal phases of development (p ≤ 6.1 × 10−4).

PC3- (predisposition to abdominal fat deposition) associated
SNPs were harbored by genes most enriched for expression in
SAT (p= 3.0 × 10−14), followed by VAT (p= 4.2 × 10−10),
female reproductive tissues (breast mammary tissue, ecto- and
endocervix, and uterus, all p ≤ 2.4 × 10−10), nerves (tibial,
p= 2 × 10−15), arteries (p ≤ 2.2 × 10−9), and digestive system
(p ≤ 8.8 × 10−5). Note that using sex-specific (e.g., male-specific)

summary statistics and PC loadings with the same gene
expression datasets produced a similar enrichment for female-
specific tissues. Data from BrainSpan showed PC3 to be enriched
for genes expressed in the late prenatal brain (p= 9.3 × 10−8).

PC4 (lean mass) showed similar enrichment to that of PC3,
though stronger for the digestive system (p ≤ 1.6 × 10−10) and
some female reproductive tissues (uterus, ecto- and endocervix,
all p ≤ 1.3 × 10−12), and weaker for adipose tissue and tibial nerve.
PC4 was also enriched for genes expressed in the prostate
(p= 2.9 × 10−4). In BrainSpan, PC4 also showed enrichment for
genes expressed prenatally in the brain.

Loci associated with BMI showed slightly stronger enrichment
than PCs 1 and 2 for genes expressed in the cerebellum, as well as
other areas of the adult brain, including the basal ganglia,
hippocampus, hypothalamus, amygdala, and frontal cortex. They
were also enriched for genes expressed in the mid-prenatal brain,
similar to that found for PC2, if slightly weaker.

The analysis of molecular pathways (Supplementary Data 10)
showed qualitatively similar enrichment for PCs 1 (341 pathways)
and 2 (348), weight (318), and BMI (293). These were mostly
terms related to the brain, synapses, behavior, or learning. PC3
had the most numerous enriched terms (628) and the strongest
enrichment overall. Most of the enriched terms were not related
to brain function, but to embryogenesis and morphology, with
many others specifically concerning adiposity, metabolism, and
glucose homeostasis. Other terms were related to vascular or
heart function, or hormones. PC4 (569) showed some overlap in
terms with PC3, mainly in terms related to embryogenesis and
morphology. Overall, 1067 pathways were found to be enriched
for at least one PC.

Cross-sex MR analysis. We used inverse-variance weighted (IVW)
MR to test for causal effects of the 14 anthropometric traits and PCs
on disease outcomes, continuous measures of health, lifestyle

Fig. 1 Overview of the methods. Summary statistics for anthropometric traits from the UK Biobank were pruned for independence before being subjected
to principal component analysis (PCA). Principal component-associated SNPs were tested for enrichment in genes expressed in certain tissues or in
pathways. The genetic effects on the resulting components were scaled to obtain effect sizes corresponding to a trait with a variance of 1 (standardized).
Mendelian randomization was used to determine the impact of these composite traits on lifestyle and health outcomes. Using these effect estimates, the
individual risk was predicted in the UK Biobank and accuracy compared to BMI and WHR.
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factors, and diet, as well as the reverse. To avoid bias in the MR
estimates due to sample overlap, we used sex-specific effects from
opposite sexes for exposures and outcomes (male exposure–female
outcome and female exposure–male outcome, using the same
combined-sex PC loadings for exposure PCs). This produces
unbiased estimates of the sex-specific causal effects in the sex used
in the outcome, provided the strength of the instruments’ associa-
tion with the exposure was not different between sexes. The two
cross-sex causal effect estimates (female-to-male and male-to-
female) were then meta-analyzed using inverse-variance weighting.
Where the strength of the instruments’ association with the expo-
sure differed between sexes, namely for WHR and PC3 (abdominal
fat distribution), the meta-analyzed causal effect estimates may be
biased (generally towards the null). Although the effect size esti-
mates may be slightly over- or underestimated, this should not
affect the type I error rate (see “Methods”).

Effects on disease risk. PC1 (body size) increased the risk of
many diseases (Fig. 4). An increase of one standard deviation

(SD) increased the absolute risk of diabetes by 1.7% (95% CI:
1.3–2.1), that of hypertension by 2.3% (95% CI: 1.4–3.2), as well
as many other diseases, such as nerve disorders, diseases of the
veins and circulatory system, and prolapsed disc (Supplementary
Data 11). Although it also increased the risk of cardiac arrhyth-
mias by 0.93% (95% CI: 0.71–1.1), it did not significantly affect
the risk of hypercholesterolemia or heart disease.

PC2 (adiposity) had much stronger effects on many obesity-
related diseases (Fig. 4), where a 1 SD increase also increased the
absolute risk of diabetes by 2.1% (95% CI: 1.7–2.5), hypertension
by 6.8% (95% CI: 5.8–7.7), as well as hypercholesterolemia by
3.4% (95% CI: 2.8–4.0) and ischemic heart disease (IHD) by 1.8%
(95% CI: 1.5–2.2). The risk of many other diseases, such as
arthrosis and diseases of the nervous system were also increased
(Supplementary Data 11).

PC3 (predisposition to abdominal fat deposition), despite being
weight- and BMI-neutral, was a risk factor for many of the same
obesity-related diseases as PC2 (Fig. 4, Supplementary Data 11).
A 1 SD increase in PC3 increased the absolute risk of diabetes by

Fig. 2 The contributions of each trait to the first four genetic principal components (PCs). The explained variance of each PC is included in parentheses
along with the descriptive name used in the main text. The loadings presented here are those typically used in the principal component analysis (PCA),
scaled such that the sum of the squared weights is equal to 1 (as opposed to the scaling used to obtain composite traits with a variance of 1). This provides
a consistent scale and makes PCs more easily comparable with each other.
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1.6% (95% CI: 1.2–1.9), hypertension by 4.2% (95% CI: 3.3–5.0),
hypercholesterolemia by 3.0% (95% CI: 2.4–3.6), and IHD by
1.6% (95% CI: 1.2–2.0).

PC4 (lean mass) had few consequences on health, only
significantly increasing the risk of nerve disorders and diseases,

carpal tunnel syndrome, and joint disorders (Fig. 4, Supplemen-
tary Data 11).

For comparison, a 1 SD increase in BMI (5.1 kg/m2 in women,
4.2 kg/m2 in men) increased the risk of diabetes by 3.8% (95% CI:
3.4–4.2), hypertension by 9.9% (95% CI: 8.8–11.0),

Fig. 3 Body size and accumulation of body fat were mainly enriched for genes expressed in the brain, while the others were enriched for a broader
range of tissues. Enrichment of traits and principal components (PCs) for tissue-specific gene expression (negative log 10 p-values). Genome-wide SNP
effect p-values were analyzed using MAGMA on GTEx v8 data (54 tissues). Results not significant after Bonferroni correction are masked in white. Traits
with no significant enrichment results are hidden for clarity (full results are available in Supplementary Data 6).

Fig. 4 Single and composite traits increase the risk of multiple diseases. Mendelian randomization causal effects of traits and principal components
(PCs) on a selection of diseases on a standardized scale. The 95% confidence interval of the effect is indicated in brackets. Effects that were not significant
at the Bonferroni-corrected threshold (p < 4.3 × 10−5) are colored in white. The full list of effects can be found in Supplementary Data 11.
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hypercholesterolemia by 3.0% (95% CI: 2.3–3.7), and IHD by
1.8% (95% CI: 1.4–2.2). Weight and WHR had similar, if
somewhat weaker, effects (see Supplementary Data 11). Although
in many cases these effects exceed those of individual PCs, they
remain less than the cumulative (summed) effects of the four PCs
(Supplementary Figs. 5–25).

Effects on continuous health outcomes. Many continuous health
indicators were affected by both PCs and traits, in a manner
largely consistent with expectations (Supplementary Data 12).

Consistent with the increased risk of diabetes, PCs 1–3 all
increased the levels of glycated hemoglobin in blood, though the
effect was strongest for PC2 (b= 0.13, 95% CI: 0.11–0.15).
Glucose levels were similarly affected, though the effects were
weaker. All three PCs also increased triglyceride levels (b between
0.095 and 0.24) and decreased HDL cholesterol (b between −0.22
and −0.16), but only PC1 decreased LDL cholesterol (b=−0.076,
95% CI: −0.094 to −0.059) and total cholesterol. They all
increased blood pressure (systolic and/or diastolic), with the
strongest effects from PC2 (b > 0.15). Plasma concentrations of
several liver enzymes, such as γ-glutamyltransferase (GGT) and
alanine aminotransferase (ALT), were found to be increased as
well, possibly indicating liver damage.

PCs 1 and 2 also increased levels of cystatin C and decreased
albumin, possibly indicative of impaired kidney function23,
whereas the effects of PC3 were in the opposite direction
(decreasing cystatin C and increasing albumin). C-reactive
protein (CRP) was also increased by PCs 1 and 2 (b1= 0.17,
95% CI 0.15–0.20; b2= 0.25, 95% CI 0.22–0.27) but unaffected by
PC3. PCs 1–3 all strongly decreased levels of sex hormone-
binding globulin (SHBG) with the strongest effects from PC2
(b=−0.19, 95% CI: −0.21 to −0.16), as well as testosterone
where the effects of PCs 1 and 3 were stronger (b1=−0.065, 95%
CI −0.086 to −0.043; b3=−0.058, 95% CI −0.082 to −0.034).

PC4 mainly increased creatinine levels while decreasing CRP
(b=−0.090, 95% CI: −0.11 to −0.067) and the maximum heart
rate during fitness test. The levels of triglycerides and the liver
function markers GGT and ALT were slightly decreased but only
alkaline phosphatase reached Bonferroni-corrected significance
(b=−0.068, 95% CI: −0.09 to −0.046).

The effects of BMI were comparable to a combination of PCs 1
and 2, increasing levels of glycated hemoglobin (b= 0.2, 95% CI
0.17–0.22) and glucose (b= 0.12, 95% CI 0.10–0.15), as well as
increasing the levels of triglycerides while decreasing both HDL
(b=−0.29, 95% CI −0.32 to −0.26) and LDL (b=−0.059, 95%
CI −0.082 to −0.037) cholesterol. Systolic and diastolic blood
pressure was also increased, as were levels of CRP (b= 0.33, 95%
CI 0.3–0.36) and liver function markers such as ALT and GGT.
SHBG (b=−0.24, 95% CI −0.26 to −0.21) and testosterone
(b=−0.11, 95% CI −0.13 to −0.084) were also decreased.

Effects on lifestyle factors. PC1 slightly reduced socio-economic
status (SES), as shown by increased Townsend deprivation index
(b= 0.033, 95% CI: 0.017–0.049). This was accompanied by a
longer working week, as well as an increase in smoking and
alcohol consumption, particularly spirits (Fig. 5, Supplementary
Data 13). The duration and frequency of physical activity, as well
as walking pace, were all decreased in favor of increased time
spent using the computer. PC1 also increased daytime dozing and
napping but decreased snoring.

The effects of PC2 on SES were similar but much more
pronounced (Fig. 5, Supplementary Data 13), not only associated
with increased Townsend deprivation index (b= 0.057, 95% CI:
0.037–0.076) and the likelihood of having a job involving heavy
physical work (b= 0.11, 95% CI: 0.086–0.14), but strongly linked

to decreased income, fluid intelligence score, and education (all
b <−0.14). Accompanying these were lifestyle changes similar to
those of PC1, increasing smoking and the frequency of alcohol
consumption, with a decrease in wine in favor of spirits and
alcohol being taken more often outside of meals. Although PC2
increased the duration of walks (b= 0.05, 95% CI: 0.031–0.069)
and vigorous activity, the duration of walking for pleasure was
decreased (b=−0.044, 95% CI: −0.062 to −0.025), as were
several other measures of physical activity, namely the frequency
of stair climbing and the usual walking pace. Unlike PC1, PC2
decreased the time spent using the computer in favor of time
spent watching TV.

PC3 increased alcohol intake frequency (b= 0.046, 95% CI:
0.028– 0.065) and napping during the day (b= 0.035, 95% CI:
0.018–0.053) (Fig. 5, Supplementary Data 13).

PC4 only associated with an increased length of the working
week (b= 0.043, 95% CI: 0.024–0.062) (Supplementary Data 13).

The effects of BMI on lifestyle were most similar to those of
PC2, linked to decreased SES (Townsend deprivation index
b= 0.078, 95% CI 0.058–0.099) and physical activity while
increasing smoking and alcohol consumption. Additional com-
parisons of overall effects on lifestyle can be seen in Supplemen-
tary Figs. 26–46.

Effects on diet. PC1 was associated with greater reported varia-
tion in diet (b= 0.052, 95% CI: 0.034–0.069) and increased
consumption of healthy foods such as fresh fruit, vegetables, and
water (Supplementary Data 14). Consumption of coffee was also
increased (b= 0.087, 95% CI: 0.068–0.11).

PC2 was similarly associated with reportedly increased
variation in diet (b= 0.084, 95% CI: 0.065–0.10), as well as salt
added to food (b= 0.045, 95% CI: 0.026–0.064). Other changes in
diet reflect increased consumption of cheaper meats, namely pork
and poultry, while decreasing intake of grain products (bread and
cereal), cheese, and dried fruits (Supplementary Data 14).

PC3 was associated with increased bread consumption
(b= 0.035, 95% CI: 0.017–0.053).

PC4 increased fruit intake, both fresh and dried (b > 0.041),
while decreasing processed meat intake (Supplementary Data 14).

Effects of BMI on diet were similar to those of PC2, such as
increased variation in diet (b= 0.12, 95% CI: 0.097–0.14) and
decreased intake of grain products and cheese (Supplementary
Data 14). In addition, some effects were similar to those of PC1,
including increased vegetable and fruit consumption, as well as
coffee intake (b= 0.11, 95% CI: 0.080–0.13).

Sex-specific effects. The genetic effects of the selected IVs on PCs
1, 2, and 4, as well as BMI and weight, were not significantly
different between men and women, which made it possible to
obtain unbiased sex-specific causal effects (see “Methods”).
Briefly, if the IV effects on the exposure do not differ between
sexes, summary statistics for the opposite sex can be used for the
exposure while using those of the sex of interest as outcome.
Those of PC3 (and WHR) were stronger in women (pPC3= 6.9
× 10−46, pWHR= 1.4 × 10−159) and were unsuitable for this
purpose. Full results are available in Supplementary Data 15–22
and shown in Supplementary Note 5.

None of the PCs had significantly different effects on diet and
lifestyle in men and women, though PC2 did have a tendency for
stronger effects on disease risk in men (TLS slope = 1.27), mainly
driven by diabetes (bm= 0.15, 95% CI 0.12–0.17; bf= 0.080, 95%
CI 0.052–0.11; pdiff= 1.8 × 10−3) and heart diseases such as IHD
(bm= 0.11, 95% CI 0.081–0.013; bf= 0.059, 95% CI 0.037–0.08;
pdiff= 4.7 × 10−3). However, many blood molecular traits and
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other continuous health outcomes were differently affected by
PCs in men and women.

Testosterone in particular was differently affected between sexes,
strongly decreased in men by both PC1 (b=−0.15, 95% CI −0.18
to−0.12) and PC2 (b=−0.18, 95% CI−0.21 to−0.14), whereas in
women it was unaffected by PC1 and increased by PC2 (b= 0.082,
95% CI 0.05–0.11). SHBG was similarly affected by PC2 in both
sexes, but the decrease caused by PC1 was twice as strong in women
(bm=−0.084, 95% CI −0.12 to −0.051; bf=−0.17, 95% CI −0.21
to −0.14; pdiff= 1.5 × 10−4).

Other differences include PC1 causing a stronger decrease in
albumin in women (bm=−0.095, 95% CI −0.12 to −0.068;
bf=−0.17, 95% CI −0.20 to −0.15; pdiff= 6.0 × 10−5) and
increasing glycated hemoglobin only in men (b= 0.12, 95% CI
0.089–0.15). The effects of PC2 in men were stronger for ALT,
GGT, and pulse rate, and an increase in total protein was only
seen in men.

The effects of BMI were again similar to those of PCs 1 and 2.
The increase in glycated hemoglobin was also stronger in men
and was accompanied a larger increase in glucose as well
(bm= 0.16, 95% CI 0.13–0.20; bf= 0.083, 95% CI 0.05–0.12;
pdiff= 5.2 ∗ 10−4). LDL was decreased only in men (b=−0.099,
95% CI −0.13 to −0.067). The opposite effects on testosterone
levels were also observed for BMI (bm=−0.24, 95% CI −0.27 to
−0.21; bf= 0.072, 95% CI 0.035–0.11; pdiff= 7.9 × 10−36).

Bi-directional MR. In addition to determining which environ-
mental factors may affect body shape, we were interested in
feedback loops. The stringency of the selection criteria for IVs,
namely that they be GWS for the sex used as exposure, resulted in
few exposures significantly affecting the body traits or PCs. Sev-
eral exposures had unrealistically large estimated effect sizes
(>0.4), likely due to confounding, and are not considered here.
For example, forced vital capacity (FVC), which is dependent on
lung—and therefore body—size, showed strong bi-directional
associations with most body traits. The main results are sum-
marized here, full results are listed in Supplementary Data 23–26.

While PC1 reduced cholesterol, it was in turn reduced by
LDL and total cholesterol (b ≤−0.068), as well as apolipo-
protein A and diagnosis of hypercholesterolemia. PC1 also
showed a positive feedback loop with cystatin C but a negative
one with IGF-1, reducing IGF-1 levels in the blood (b=−0.13,
95% CI: −0.16 to −0.11) but being increased by it (b= 0.042,
95% CI: 0.024–0.061).

PC2 showed a positive feedback loop with CRP and mutual
negative loop with creatinine. PC2 was also reduced by IGF-1
(b=−0.071, 95% CI: −0.089 to −0.052).

PC3 was decreased by hypertension (b=−0.07, 95% CI: −0.11
to −0.035), forming a negative feedback loop. It also formed a
positive feedback loop with diabetes (as did WHR), although this
seems to be due to a negative effect of diabetes on hip
circumference (HC, b=−0.16, 95% CI: −0.26 to −0.067) rather
than an increase in waist circumference (WC). PC3 also had a
positive feedback loop with triglycerides (from decreased HC),
and mutual negative effects on apolipoprotein A and HDL
cholesterol (from decreased WC). We also found the negative
effects of PC3 on testosterone and SHBG to be reciprocal
(b ≤−0.058).

PC4 had a positive feedback loop with creatinine and was also
increased by IGF-1 (b= 0.12, 95% CI: 0.11–0.14). SHBG and
testosterone both decreased PC4, though for testosterone this
appears to have been driven by an effect in women only
(b=−0.09, 95% CI: −0.11 to −0.065).

BMI increased CRP in a positive feedback loop, similar to that
of PC2, and reciprocal negative effects with LDL and total
cholesterol (b ≤−0.035), similar to PC1.

DXA-based measures. DXA and MRI technologies provide
increased accuracy in measurements of body composition and
have been suggested to provide a clearer picture of obesity and its
consequences on health24. We were able to impute many such
traits based on the subset of ~5000 UK Biobank participants with
these phenotypes (Supplementary Data 27). Several of these,
including both trunk and android tissue fat percentages (both

Fig. 5 Single and composite traits affect many aspects of lifestyle.Mendelian randomization causal effects of traits and principal components (PCs) on a
selection of lifestyle factors on a standardized scale. The 95% confidence interval of the effect is indicated in brackets. Effects that were not significant at
the Bonferroni-corrected threshold (p < 7.1 × 10−5) are colored in white. The full list of effects can be found in Supplementary Data 13.
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predicted with r2 above 0.75), had effects on disease comparable
to BMI and PC2 (correlation r ≥ 0.97) but with a tendency for
slightly larger effects (TLS slopes of 1.17 and 1.16, respectively).
However, with fewer GWS SNPs (~28% fewer than BMI), these
phenotypes revealed no additional diseases affected by obesity
(see Supplementary Data 28).

Prediction of disease risk. To further emphasize the biological
relevance of PCs over single traits, we compared the accuracy of
prediction of obesity-related disease, namely diabetes, high cho-
lesterol, and hypertension, in the UK Biobank. Given the inde-
pendence of estimated PC effects, these could be combined in a
weighted linear fashion to obtain the 4-PC prediction and were
compared with the single trait prediction from BMI and WHR
using receiver operating characteristic (ROC) curves, in a sub-
sample of the UK Biobank similar to that used by the Neale lab.

As expected, both BMI and WHR were effective in predicting
these obesity-related diseases, as indicated by areas under the
ROC curve (AUC) ranging from 0.62 to 0.74 “within-sample.”
BMI was more accurate in predicting hypertension (0.66 vs. 0.64,
p= 1.3 × 10−72), while WHR was more accurate for high
cholesterol (0.65 vs. 0.62, p= 4.9 × 10−101) and slightly more
for diabetes (0.74 vs. 0.73, p= 3.0 × 10−5). In all cases, the PC-
based predictors significantly outperformed both BMI and WHR
with AUCs of 0.68 for hypertension, 0.67 for high cholesterol, and
0.78 for diabetes (all p < 2.3 × 10−183, Supplementary Figs. 67–68,
Supplementary Data 29).

To explore the transferability of PCs, we replicated these results
out-of-sample in 76,756 non-”white British” UK Biobank partici-
pants, who had therefore been excluded from the original summary
statistics. Despite the considerable potential for disparities between
these samples, the AUCs for high cholesterol and hypertension were
almost exactly identical to those obtained above (Fig. 6, Supplemen-
tary Fig. 69, Supplementary Data 29), with PC-based predictors
significantly outperforming either trait (p ≤ 2.0 × 10−43). The
accuracy of PCs and BMI in predicting diabetes out-of-sample
decreased to 0.75 and 0.68, respectively, and although WHR was no
less accurate out-of-sample (AUC= 0.74) it remained less accurate
than PCs (p= 5.1 × 10−11).

We also tested whether a weighted linear combination of BMI
and WHR (analogous to that of the 4-PC predictor) would
improve the prediction, and found that in most (5 out of 6) cases
the AUC of the combined predictor performed worse than the
better of the two traits alone. In all cases, this predictor did not
exceed the accuracy of the PCs (p < 3.1 × 10−12). This is likely due
to the fact that these risk factors are not independent and hence
their conferred risk is not simply additive.

Discussion
By combining multiple traits through PCA, we found that more
than 99% of genetically determined variation in body shape and
size (as defined by the 14 selected traits) can be summarized using
four PCs affecting (1) body size, (2) adiposity, (3) predisposition
to abdominal fat deposition, and (4) lean mass. PCs 1–3 showed
some similarity with weight, BMI, and WHR, respectively, and
the latter two especially have been widely studied in the context of
obesity. However, these traits are highly correlated and partially
redundant, making it difficult to understand their individual
contributions to health outcomes, whereas PCs are orthogonal by
design and their effects additive. The PCs obtained here also share
some similarities with the average PCs (avPCs) obtained by Ried
et al.11 by meta-analyzing PCs from individual-level phenotypic
data. Specifically, avPC1 increased all body measures (though the
impact of height was weaker than for PC1); avPC2 showed
opposing directions for height and BMI/WHR (though WHR had
much more importance than BMI); avPC3 was dominated by
WHR (however both height and BMI contributed as well); and
loadings for avPC4 showed an increase in weight and BMI despite
decreased waist and hip circumference, suggesting increased
density of body mass and consistent with decreased body fat
percentage. The robustness of the obtained PCs to changes in the
trait selection or the use of male- or female-specific data supports
the hypothesis that these represent true biological mechanisms
underlying the shared variance across these anthropometric traits.
Furthermore, the molecular basis of PCs 3 and 4 in particular
appear to be more homogenous, as shown by enrichment for
genes expressed in many tissues, such as SAT and VAT but also
in the digestive, reproductive, and vascular systems, which were

Fig. 6 Principal components (PCs) improve prediction of obesity-related diseases out-of-population. Receiver operating characteristic (ROC) curves for
PC-, BMI-, and WHR-based prediction of diabetes, hypercholesterolemia, and hypertension out-of-sample/-population. The indicated p-values for the
difference between the PC- and single trait-based curves were obtained using the DeLong method. AUC area under the curve.
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not picked up by individual traits. This is also reflected in the
much broader spectrum of pathways enriched only for these PCs.

Leveraging the orthogonality of PCs, we can dissect the etiol-
ogy of obesity-related health and lifestyle consequences by com-
paring the effects of different PCs. Both PCs 1 and 2 embody the
excessive accumulation of body mass and their enrichment for
genes expressed in the brain and involved in neuronal signaling is
consistent with findings from BMI25 suggesting that behavioral
changes are likely one of the major factors underpinning heritable
susceptibility to obesity (reviewed in ref. 26). Shared effects
between PC1 and PC2 highlight diseases whose etiology involves
elements common to both, such as metabolic overexertion in the
case of diabetes27 or the physical burden of a larger body in the
case of arthrosis28. Differences between their effects can provide
insight into disease etiology which single traits cannot. For
example, Hyppönen et al.29 performed a phenome-wide MR
analysis to assess the effects of BMI on a number of diseases and
found that BMI increased the risk of IHD, cardiac ar-/dys-
rhythmia, and diseases of the veins (phlebitis and thrombophle-
bitis), among others. However, our results show that these do not
all arise through the same mechanisms, IHD being increased by
PCs 2 and 3 but not PC1, consistent with the predominant role of
adipose tissue-related dyslipidemia in this disease8, whereas car-
diac arrhythmia and diseases of the veins were only increased by
PC1. BMI is also a known risk factor for prolapsed disc30, though
it is unknown whether this occurs due to mechanical over-
straining, dysregulation of the metabolic and immune systems, or
a combination of these31. That PC1 alone increased the risk of
prolapsed disc strongly supports the role of mechanical stress
over any form of lipotoxicity.

The decreased SES associated with PC2 is consistent with what
has been reported for BMI32,33, although recent results suggest
that this is due to residual population stratification and non-
genetic familial effects34,35. Many other differences in lifestyle can
be considered as concurrent with this change in SES (e.g., reduced
education and income) whereas others are likely secondary to
these (e.g., alcohol taken outside of meals36 and increased con-
sumption of cheaper meats). Despite a moderate association with
lower SES, PC1 was not associated with any of these secondary/
concurrent changes, though the increased time spent using a
computer may be indicative of white-collar occupations rather
than the physical jobs associated with PC2. The similarity of the
effects of both PCs on smoking and alcohol consumption suggests
mechanisms independent of SES. For example, increased smoking
may reflect the use of smoking as a strategy for weight loss,
leveraging the appetite suppressant effects of nicotine37, and is
consistent with the observational correlation found between the
number of cigarettes smoked and the risk of obesity38. Although
we cannot exclude residual population stratification, the increased
alcohol consumption found for both PC1 and PC2 suggests a
directionality of causal effects which is rarely considered, as
obesity is typically viewed as a consequence of alcohol con-
sumption rather than the cause39. The lack of robust genetic
instruments to explore the distinct effect of different alcoholic
beverages render MR analysis suboptimal to resolve such reverse
causations. The increased variation in diet and salt added to food
may reflect a greater desire for palatable foods, possibly due to
altered or reduced activation of the reward system which has been
shown to occur in obese individuals (reviewed in ref. 40). The
healthy aspects of the dietary shift from PC1, e.g., greater con-
sumption of fruits and vegetables, could possibly represent
attempts to eat healthier, however, this is likely to be highly
confounded by biased reporting41. The weak to non-existent
effects of cholesterol and other health risks or diseases on these
measures of body size suggests that any lifestyle changes upon

disease diagnosis are generally minimal and likely insufficient to
have a real impact.

PC3, i.e., predisposition to abdominal fat deposition, was of
particular interest as a hypothesis-free emergent component
affecting body shape while remaining independent of its size or
composition. This is in contrast to WHR which is highly corre-
lated with BMI and body fat percentage, particularly in men42.
The increased waist circumference at the expense of that of the
hips suggests a change in body fat distribution, with a shift from
subcutaneous (contributing to both hips and waist) to VAT
(contributing to waist alone). This is supported by the enrichment
for terms related to energy homeostasis and adipose tissue
function, similar to those previously reported for WHR adjusted
for BMI43, and the impacts on health which appear specific to
lipotoxicity and are similar to what has been found for genetic
variants affecting subcutaneous-to-visceral adipose tissue
ratio12,13. The implication of genes expressed in adipose tissues,
particularly subcutaneous, is in line with the hypothesis that
adipose tissue function, in particular its expandability, may be a
critical factor in determining the distribution and impact of
excess adiposity7 and its study may provide pharmaceutical
avenues which may reduce health risks associated with obesity.
The enrichment of both PCs 3 and 4 (as well as WHR) for genes
expressed in several tissues of the digestive tract is not entirely
surprising44, however, their strong enrichment for all female-
specific tissues tested was unexpected. It is possible that these
tissues, and the genes expressed therein or associated sexual
hormones, contribute to this phenotype, which could explain the
increased variance of PC3 (and more generally WHR) observed
in women compared to men. Additional studies will be required
to determine how these genes and tissues are involved in the
regulation of body fat distribution.

The additivity implied by the independence of the PCs’ causal
effects provides a straightforward estimation of disease risk
through linear combination, which proved more accurate than
single trait-based prediction. Although causal effects are not
ideally suited for within-sample outcome prediction, since they
do not take advantage of non-causal correlates, their basis in
causality proved reliable even out-of-population. The reason for
the drop in accuracy seen for out-of-population PC- and BMI-
based prediction of diabetes is unclear, though a number of fac-
tors may contribute, such as ethnicity-dependent differences in
susceptibility, lifestyle, or ascertainment bias45, which exceed the
scope of this study.

The systematic application of MR over a broad range of phe-
notypes carries the risk of violating its assumptions. Despite the
steps taken to avoid any such violations or mitigate their impact,
some sources of bias may remain inherent to the methods
employed. GWAS effect estimates themselves have been shown to
be biased due to population effects, such as parental effects,
population stratification, and assortative mating46. Although such
biases may be present in the exposure, they would only bias MR
estimates if they affect the outcome in a similar fashion34,35,
which is difficult to test in a real setting. This study is also subject
to other limitations of the MR approach, such as the estimated
univariable causal effects summarizing the consequences of a
lifetime exposure of a difference in phenotype at the population
level. For example, the effect of 1 SD difference in weight (~14 kg)
in the population is not equivalent to a sole gain/loss of 14 kg,
since this difference in the population distribution will be
accompanied by a difference in average height as well (as illu-
strated by PC1 loadings). The causal effect being modeled line-
arly, it also averages what may be different effects in different
strata of the population, i.e. if the causal effect is non-linear. For
example, the effects of BMI on all cause mortality have been
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shown to be non-linear47, although the linearity of effects on
specific diseases such as diabetes remains unclear48. In the case of
non-linear effects, the MR causal effect estimates can be inter-
preted as an average effect at the population mean.

In summary, we established a scale-preserving method for the
linear combination of traits at the summary-statistics level,
mimicking a GWAS performed on a standardized composite trait
but circumventing the need for individual-level data. Further-
more, this allows the combination of traits across different
cohorts, since the covariance of effect size estimates between
different traits can be estimated from summary statistics via
cross-trait LD score regression intercept49. We also showed that
cross-sex MR can reduce the bias by avoiding sample overlap,
while preserving much of the statistical power from a potential
one-sample MR using the full sample, still relying only on pub-
licly available summary statistics. Applying these to the PCs of
anthropometric traits, body size, adiposity, abdominal fat dis-
tribution, and lean mass, we showed that their distinct effects on
health- and lifestyle-related outcomes can aid in understanding
the etiology of the consequences of obesity. These components
can be visualized and their effects on hundreds of outcomes
compared through the shiny app which can be downloaded fol-
lowing the instructions at http://wp.unil.ch/sgg/pca-mr/. Finally,
we showed their effectiveness in predicting obesity-related dis-
eases, confirming the additivity of the conferred risks and
emphasizing their relevance to disease etiology. Although we
identified four PCs here, larger sample sizes or more detailed
anthropometric traits may achieve a finer scale identification of
obesity subtypes.

Methods
Data and phenotype selection. We used GWAS summary statistics data derived
from the UK Biobank16, a cohort of ~500,000 participants aged 37–73 (median 58),
recruited between 2006 and 2010. UK Biobank obtained ethics approval from the
North West Multi-centre Research Ethics Committee (MREC) and obtained
informed consent from all participants. Phenome-wide GWAS in UK Biobank data
were performed and the summary statistics made available by the Neale Lab
(http://www.nealelab.is/uk-biobank) for three different sex groups: men, women,
and both sexes combined. This includes effect estimates for 13.7 million SNPs
which were tested for association with 4203 unique phenotypes across 361,194
unrelated, white British individuals (167,020 men, 194,174 women). All were
adjusted for age, age2, sex, age ∗ sex, age2 ∗ sex, and the top 20 genetic PCs to
correct for population stratification. We excluded SNPs from the HLA region
(chr6: 28,477,797–33,448,354, www.ncbi.nlm.nih.gov/grc/human/regions/MHC?
asm=GRCh37). For continuous phenotypes, we used effect estimates for the
inverse rank-normalized trait. Summary statistics for WHR were calculated in the
UK Biobank across a similar sample of 378,139 unrelated, white British individuals
(175,155 men, 202,984 women) and correcting for the same covariates after inverse
rank-normalization. For binary traits, we divided the effect estimates and standard
errors by the square root of the variance of the trait (that of the analyzed sample
where provided, otherwise across a similar subset of the UK Biobank). As such, all
effects are expressed on the SD scale and comparable with continuous traits. The
linear models used to estimate the SNP-binary trait association provide well-
calibrated p-values, as long as rare SNPs (MAF < 0.1%) are not evaluated for a trait
with a highly imbalanced case fraction (<10%) or as long as the product of MAF
and disease prevalence exceeds 0.000150. Since we analyzed diseases only with >1%
prevalence, any SNPs with MAF > 1% are safe to use as instruments. The largest
fraction of low-frequency (MAF < 1%) IVs were observed for height (88/1704
SNPs, i.e., 5.2% vs. max 2.8% for other traits/PCs) and the lowest disease prevalence
were between 1 and 2%. Still the resulting causal effects from MR analysis between
height and these diseases did not change appreciably upon the exclusion of IVs
below 1% MAF (Supplementary Note 7).

In total, 232 phenotypes that had at least one GWS SNP (p < 5 × 10−8) were
divided into five mutually exclusive categories: body measures (14 phenotypes),
continuous measures of health (37 phenotypes), dietary habits (19 phenotypes),
diseases (108 phenotypes), and lifestyle factors (54 phenotypes), which are briefly
described below. The full list of selected phenotypes can be found in
Supplementary Data 1.

Body measures included BMI, height, weight, hip and waist circumference, and
WHR, as well as bioimpedance-derived fat and lean mass estimates in arms, legs,
trunk, and overall body fat percentage. For arms and legs, summary statistics were
available for left and right sides. As these were almost identical, the statistics for the
left side alone were used. Basal metabolic rate was also included in body
measurements as it is derived from bioimpedance measures.

Continuous health outcomes included the biomarker panel of the UK Biobank,
including 34 biomarkers measured in either blood or urine, as well as systolic and
diastolic blood pressure (BP), heart rate at rest and during effort, and FVC.

Dietary habits were obtained from a food frequency questionnaire (FFQ). UK
Biobank also includes more specific questions such as 24-h recall (food consumed
on the last day) which is more reliable but less representative, as well as specific
questions such as the type of bread or milk typically consumed, however, these
were not included in the present analysis.

Disease summary statistics in the UK Biobank were available for self-reported
disease status, ICD-10-classified hospital diagnoses, and diseases curated by the
Neale Lab in collaboration with the FinnGen consortium (www.finngen.fi). We
included data from both self-reported answers and the FinnGen curated diseases,
excluding the raw ICD10 diagnoses which were considered less informative. We
included any diseases which had a prevalence of at least 1% in the analyzed sample.

Lifestyle included both environmental factors and lifestyle choices, mainly
relating to physical activity, alcohol consumption, smoking, sleep, work, and SES.

We restricted SNPs to those in common between the summary statistics from
Neale and the UK10K reference panel used for LD pruning. We also removed SNPs
with a minor allele frequency below 0.001, resulting in 9,675,947 SNPs. For each
trait, SNPs were pruned separately using plink v1.90b6 with the UK10K European
LD panel to obtain independent MR instruments. SNPs were considered
independent if separated by more than 10Mb or the linkage disequilibrium was
r2 < 0.01.

High-accuracy body composition measurements. In addition to bioimpedance
measurements, the UK Biobank provides other body composition phenotypes
derived from more accurate methods, namely DXA and MRI. Unfortunately, the
sample sizes for these phenotypes were too low (~5000 individuals) for their
inclusion as body phenotypes in the PCA. We did, however, investigate whether
approximating these traits through linear combination of other available traits
(with regression weights calculated in the UK Biobank) could provide a hypothesis-
driven alternative to the hypothesis-free PCA approach. We were able to estimate
57 body composition measurements using the same 14 anthropometric and
bioimpedance-based traits with varying accuracy (see Supplementary Data 27). 18
out of 57 had an r2 above 80%, including abdominal SAT, and another 18 had r2

above 70%, including VAT. Others, such as bone mass and liver fat percentage
could not be accurately approximated using the included traits.

Principal component analysis. PCA was performed on a matrix of effect estimates
of independent SNPs on the 14 body traits described above. We selected all SNPs
with a GWS effect (p < 5 × 10−8) on at least one of the body traits and pruned them
using the same procedure as for single traits (distance > 10Mb or r2 < 0.01). SNPs
were prioritized according to the highest rank within any significantly associated
trait, i.e., for each trait, all SNPs significantly associated with it were ranked by p-
value; then each SNP has attributed a priority based on the highest rank obtained
with any significantly associated trait. This was done to avoid the well-powered
traits (e.g., height) overshadowing other traits and driving the SNP selection. Any
missing effect estimates in the resulting matrix were set to 0. Data were neither
centered nor scaled prior to the PCA, as the effect estimates were standardized and
should therefore have zero mean and their variance for a given trait is informative
(distantly related to trait heritability).

PCA was then performed on the resulting matrix of genetic effects to obtain the
PC loadings, which were then used to calculate SNP-PC associations across the
entire genome. These were then individually pruned to obtain the final set of SNPs
for each PC.

Although the SNP-phenotype associations are standardized (effects are on an
SD/SD scale), a linear combination of effects would yield non-standard effects since
the resulting traits do not have a variance of 1. To maintain comparable effects
between PCs and traits, the PC loadings should be scaled such that the resulting βs
would represent SNP effects on composite traits with unit variance, which would
typically involve performing the rotation on the phenotypes, standardizing, and
rerunning a GWAS on the resulting composite trait with variance 1. Instead, we
can consider the linear regression coefficients for trait j calculated as:

β̂j ¼ ðGTGÞ�1
GTyj; ð1Þ

where yj is the vector of values for trait j and G is the genotype matrix, and a
weighted sum of n variables:

yC ¼ w1y1 þ :::þ wnyn; ð2Þ
where wj is the weight for trait j. The effect size for the composite trait can then be
calculated as:

β̂C ¼ ðGTGÞ�1GTyC ¼ ðGTGÞ�1GT ðw1y1 þ :::þ wnynÞ ¼ w1β̂1 þ :::þ wnβ̂n;

ð3Þ
The expected variance of variable yC can be written as51

VarðyCÞ ¼ wTKw; ð4Þ
where K is the covariance matrix of the n traits composing yC, which in the case of
standardized trait variables, is the correlation matrix. Knowing the variance of the
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composite trait, we can simply rescale the vector of weights such that the expected
variance in the composite output variable yC is equal to one, resulting in
standardized effect sizes. Applying this to the PC loadings, we rescaled the weights
as follows:

vi ¼
wi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
i Kwi

p ; ð5Þ

where wi and vi are the unadjusted and adjusted (trait) loading vectors for PC i,
respectively, and K is the pairwise phenotypic correlation matrix of body trait
phenotypes, which was calculated on a subset of the UK Biobank similar to that
used for the summary statistics (i.e. unrelated white British individuals) and the
phenotypes were corrected for the same covariates as used by the Neale lab prior to
calculating the correlation. The effect estimates were then calculated using these
adjusted loadings, i.e.

β̂i ¼ B̂ � vi; ð6Þ

where B̂ is the matrix of genetic effects on the 14 anthropometric traits. The
corresponding standard errors were calculated following the formula for a weighted
sum of random variables51:

σ̂2i;j ¼ wT
i � Σj � K � Σj � wi; ð7Þ

where σ̂ i;j is the standard error for the association of SNP j with PC i and Σj is a
diagonal matrix with the standard error of the association of SNP j with each trait.
Since we use only UK Biobank summary statistics, the correlation between effect
estimates simplifies to the phenotypic correlation between the traits. The advantage
of this approach is that we do not need to calculate the composite trait and run a
GWAS but can directly compute the association summary statistics.

Tissue specificity and pathway enrichment. We tested PC- and trait-associated
SNPs for the enrichment of tissue-specific genes using the MAGMA tool for gene
set analysis17 through the FUMA v 1.3.5e interface18 using the default parameters,
with a Bonferroni-adjusted p-value threshold. We used gene expression data in 54
tissues from GTEx v819 as well as brain development and age data from
BrainSpan20.

We used the molecular pathway gene sets defined by DEPICT21 and tested for
enrichment using PASCAL22. As with most gene-based pathway enrichment
methods, we assume that most regulatory variants for a given gene are in close
(50 kb) physical proximity to the gene body52, hence we may ignore more distant
regulatory variants.

Mendelian randomization. We used IVW MR to estimate causal effects of body
traits and PCs on all non-body traits, as well as the reverse. MR mimics a ran-
domized controlled trial (RCT) where the treatment corresponds to the random
allocation of an exposure-associated allele, called an instrumental variable (IV)53.
MR relies on three key assumptions to infer causality: (1) the IV is associated with a
change in the exposure; (2) the IV is independent of the outcome, except through
its association with the exposure; (3) the IV is independent of any confounders of
the exposure-outcome association. If these assumptions are verified, MR provides
an unbiased estimate of the causal effect of the exposure on the outcome and can be
done using summary statistics data alone. We used IVW MR as the default method
for all our analyses, but we compared IVW causal effect estimates to those obtained
from weighted median-based MR to ensure robustness.

Cross-sex MR. In our case, the use of summary data from the UK Biobank for
both the exposure and outcome effect sizes (i.e., full sample overlap) would lead to
a bias in MR causal effect estimate in the direction of the observed correlation of
the phenotypes54. To circumvent this, we used the existing summary statistics for
two non-overlapping samples from the Neale Lab, those for men and women
separately. Each sex was used as exposure on the other as outcome and then both
causal effect estimates were meta-analyzed (using inverse variance weighting). This
removed the correlation between the error terms of the effect estimates of IVs on
exposure and outcome, considerably reducing the bias from sample overlap, while
minimizing loss of power. This would lead to a slight bias away from zero even
when there is no true difference in the genetic effects on the exposure in men and
women, given that:

α �
βm=βf þ βf =βm

2

�

�

�

�

�

�

�

�

≥ αj j; ð8Þ

where α is the common causal effect (for men and women), βm and βf are the
coefficients of association for a given IV with the exposure for men and women,
respectively. This bias increases if there is a difference between sexes in the strength
of association with the exposure, but its magnitude remains small. For example, if
the SNP effects on the exposure were consistently 1.37 times stronger in one sex,
the relative theoretical bias would only be 5%. In practice, however, the IVs were
filtered for genome-wide significance in each sex prior to being used as exposure,
resulting in fewer IVs being selected in the sex with weaker effects (on the expo-
sure). This reduced the power and increased the variance in the overestimated
causal effect, which was correspondingly down-weighted by the IVW meta-

analysis. For example, we found PC3 to have a strong sex-specificity, with effects on
exposure tending to be ~2.2 times stronger in women, which would theoretically
lead to a 34% bias away from the null. However, this yielded 242 GWS IVs in
women but only 33 in men. This increased the variance in the male
exposure–female outcome causal effect estimate by a median of 6.8-fold, resulting
in a corresponding down-weighting of the overestimated causal effect. In this
example, we expect a meta-analyzed estimate which is biased towards the null by
~32% (since the IVW causal effect estimate is expected to be (((6.1/7.1) ∗ (1/1.7) +
(1/7.1) ∗ 1.7) ∗ α= 0.68 ∗ α). Importantly, since the bias is multiplicative, this
introduces no bias in the absence of causal effect, indicating it will not affect the
type I error rate. In practice, the causal effect estimates from cross-sex MR were
closer to those obtained from a two-sample setting, whereas the standard IVW MR
effect estimates were generally overestimated (see Supplementary Notes 8–9).

Although the PCs were constructed using combined-sex summary statistics, the
selected IVs were filtered for genome-wide significance in the sex-specific summary
statistics prior to MR analysis to avoid weak instrument bias inflating causal effect
estimates. This may slightly exacerbate Winner’s curse, inflating the SNP-exposure
association, which would result in a small bias towards the null. In the presence of a
true causal effect, however, the SNP-outcome association (being assessed in the
same sample) may be proportionally increased, which would mitigate this bias.
Such biases are difficult to correct for without using three independent samples.

For each sex, the GWS IVs associated with the exposure formed the initial set of
IVs. Those with significantly larger effects on the outcome than on the exposure
were removed, as these would indicate a violation of MR assumptions (likely
reverse causality and/or confounding). The effect sizes being on a standardized
scale, they were compared directly using a one-sided t-test and removed if the
magnitude of the effects in the outcome were significantly greater (p < 0.05). To
avoid unreliable causal effect estimates, MR was only performed if at least 10 IVs
remained. This was done using the TwoSampleMR R package v0.5.455.

The MR causal effect estimates from individual IVs were tested for
heterogeneity using Cochran’s Q test:

Qi ¼
ðβiout � βMR � βiexp Þ

2

σ2iout þ β2iexp � σ2MR þ β2MR � σ2iexp þ σ2MR � σ2iexp
; ð9Þ

where βiexp and βiout are the coefficients of association of SNP i with the exposure
and outcome, respectively, with σiexp and σiout the corresponding standard errors,
and βMR and σMR are the MR estimate and standard error of the causal effect of the
exposure on the outcome. The test statistic Qi follows a χ2 distribution with 1
degree of freedom. If any of the IVs used had an associated p < 10−3, the most
heterogeneous one (with the lowest p-value) was removed. If at least 5 IVs
remained, the MR was then repeated with the remaining IVs. In practice, few SNPs
were filtered as outliers (on average <1%), though we also explored alternative
methods for dealing with heterogeneity, namely performing no filtering, using
weighted median MR with or without filtering, or using exact Q statistics56 instead
of Cochran’s Q (see Supplementary Note 10). All of these produced similar effect
estimates, though those from weighted median MR tended to be ~6% lower and
lacked the statistical power to find many effects.

Due to the standardized scales of IV effect estimates, the resulting causal effects
are on a scale representing the SD change in the outcome for a change of 1 SD in
the exposure.

To account for multiple testing, we adjusted the p-value threshold with
Bonferroni correction for the number of tests within the exposure-outcome
category pair. For example, the p-value threshold for the effect of BMI (body
phenotype) on type 2 diabetes (disease) is 0.05/(number of body phenotypes ∗
number of diseases).

Although the forward MR analyses using anthropometric traits (whether
individual or composite) as exposures were well-powered to find many
associations, the reverse/bi-directional MR analyses often lacked sufficient GWS
IVs. This can be seen in Supplementary Data 30, showing the total explained
variance by all GWS SNPs for each phenotype in each sex group. Only continuous
health outcomes had IVs with a reasonably large (combined) contribution to the
phenotypic variance. Those of phenotypes from other categories explained at most
3.5% in the combined-sex group (hypertension), though frequently much less,
which was further reduced by the restriction for genome-wide significance within
the sex used as exposure (to a maximum explained variance of 2.4% for
hypothyroidism in women).

Sex-specific MR. The simplest method to test for sex-specific effects would be to
use sex-specific summary statistics for the sex of interest for both exposure and
outcome, however, this would bias results away from the null due to correlated
errors in the exposure and outcome. In most cases, we were instead able to obtain
unbiased causal effect estimates using the exposure summary statistics from the
opposite sex on those of the sex of interest in the outcome. This relies on the
strength of the association between the IVs and the exposure to be identical (or at
least not systematically different) between sexes. We tested this using both paired
Wilcoxon signed-rank test on the absolute genetic effects of the IVs and total least
squares (TLS) regression. Exposures with non-significant results for both tests were
considered identical in both sexes for this purpose and the summary statistics for
the opposite sex were used for the exposure.
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Using the GIANT consortium as a separate sample25, we were able to confirm
that the use of opposite-sex summary statistics for the exposure produced effect
estimates which were highly consistent with those using two-sample same-sex MR
(see Supplementary Note 11).

Comparison of causal effects. To test the significance of a difference in the effects
of two exposures on a given outcome, we used a two-sided Z-test57. We accounted
for multiple testing using Bonferroni correction, adjusting for the total number of
tests, i.e. the number of significant effects of either exposure on the category
outcomes. For example, to test whether the effects of BMI on type 2 diabetes were
different from those of WHR, the significance threshold would be 0.05/total
number of diseases significantly affected by either BMI or WHR.

In some cases, it was useful to compare the causal effects of two exposures on all
outcomes of a category (e.g., the effects of weight on disease risk compared to those
of PC1) or the same exposure in different experimental settings (comparison of
methods or sex-stratified analyses). In these cases, we obtained the slope estimate
using TLS regression with no intercept, which considers error in both axes rather
than ordinary least squares (OLS) which minimizes only the vertical offset. The
standard error on the angle of the regression line (rather than the slope, which is
not symmetrical and dependent on the phenotype placed on the y-axis) was
computed using a jackknife procedure, which was then used to compare the
obtained estimate with the null hypothesis that the true causal effects were identical
(i.e., an angle of 45° or a slope of 1). The TLS procedure was performed using the
deming R package v1.458.

Prediction of disease risk. The accuracy of disease prediction was assessed in-
sample in the UK Biobank across 371,523 unrelated, white British individuals
(199,699 women, 171,824 men) for diabetes, high cholesterol, and hypertension.
PCs were calculated based on the 14 scaled and centered anthropometric traits for
each individual. These were then combined in a disease-specific linear combination
based on the estimated causal effect on the disease. Rather than ignoring PCs with
non-significant effects, the effect estimates were IVW to account for the uncer-
tainty of the effect:

d ¼ ∑
4

i¼ 1

γipi
σ2i

; ð10Þ

where γi and σi are the estimated causal effect of PC i on the disease of interest and
its standard error, respectively, and pi is the individual’s phenotypic realization of
that PC. The combined predictor for BMI+WHR was obtained in an analogous
manner using the estimated effects of the respective traits on the outcome of
interest.

The accuracy of this predictor was assessed using ROC curves by comparing the
AUC with those of BMI and WHR. The significance of the difference between the
AUCs for each predictor was determined using DeLong’s test in the pROC R
package (version 1.16.2)59.

Out-of-sample prediction accuracy was assessed in a sample of 76,756 UK
Biobank participants (42,407 women, 34,349 men) who were not flagged as
“in.white.British.ancestry.subset” in the sample QC file. This includes individuals
who either did not self-report ‘white British’ or whose genetic ancestry (as
determined by the genomic PCs) was dissimilar from other white British
individuals. This sample thereby excluded all the individuals included in the
original analysis and any relatives in the UK Biobank. The phenotypes were scaled
according to the original distribution, i.e. the mean and SD of the original sample
were used to scale individuals without relying on the distribution in the second
sample. Using the values of the second distribution for scaling changed little (the
AUC increased by at most 4.4 × 10−4).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
UK Biobank summary statistics for WHR can be obtained at wp.unil.ch/sgg/pca-mr/, the
others were downloaded from www.nealelab.is/uk-biobank. The external validation
summary statistics were downloaded from https://portals.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files25. Cross-trait phenotypic
correlation and disease risk prediction were performed using data from the UK Biobank
(application #16389). L.D. was calculated based on the UK10K data resource
(EGAD00001000740, EGAD00001000741).

Code availability
The code for the shiny app and an example pipeline using this method (along with
required data files) can be obtained from wp.unil.ch/sgg/pca-mr/.
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2 Obesity subtypes were intended to
circumscribe groups of individuals who
would possess (or be predisposed to)
certain body shapes associated with
specific health risks or benefits.

3 Neural networks are notoriously
effective in classification or prediction,
but understanding what determines a
result is far from trivial.

2.2.1 Choice of methods

In addition to PCA, we tested several methods to
define meaningful composite phenotypes or, alter-
nately, obesity subtypes2.

NEURAL NETWORKS were investigated for their
demonstrated power to produce meaningful classi-
fication and draw reliable conclusions from numer-
ous variables with (individually) low information
content, as has been shown in particular for image
processing. Their performance in our initial at-
tempts was less than stellar and did not exceed that
of, e.g., random forests.

I suspect that the lack of effectiveness in our ap-
plication was due to two specific reasons, the lin-
earity of genetic effects and the low level of inter-
actions across variants. Note that I do not imply
that these limitations are intrinsic to genetic vari-
ants and their effects on biological systems, rather
that they stem from the standard approach we ap-
plied to overcome the overwhelming nature of ge-
netic data: the preliminary selection of independent
and significantly associated variants as a first step.
Indeed, using the entire genome without filter-
ing would have been excessively costly in terms
of computational resources and posed the risk of
over-fitting. Restrictions can be imposed through
adapted architecture (e.g. imposing a bottleneck
layer would reduce over-fitting) however the com-
putational intensity of full data usage neverthe-
less rendered this impractical. Inclusion of non-
independent neighboring variants could have con-
ceivably improved prediction/classification accu-
racy, however preliminary tests showed little gain.

The minimal advantages, combined with the
drawbacks of the ‘black box’ nature3 of neural net-
works, led us to drop them after these initial at-
tempts.

THE ITERATIVE SIGNATURE ALGORITHM (ISA)
[64] was considered as an alternative to PCA. This
method has the advantage of bi-clustering on both
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dimensions of an input data matrix, i.e. it would
provide a combination of traits which meaningfully
distinguished a subset of individuals or variants,
which could have led to the informed creation of
obesity subtypes. In the end, ISA did not provide
substantial improvements over alternative meth-
ods (within the context of body shape and obesity),
whereas its stochastic nature requiring the pool-
ing/averaging of similar bi-clusters and the semi-
arbitrary threshold proved impractical.

FACTOR ANALYSIS (FA) was considered as a viable
alternative to PCA. Once we had found that four
components would likely suffice to describe most of
the variance, FA could be used to create indepen-
dent components in the same way as PCA. The ex-
plicit assumption of latent variables in FA was con-
sistent with our interpretation of PCs. The main
difference between FA and PCA, that individual
variance which is not dependent on the shared
factors is ignored by FA, ultimately made it un-
desirable for our application since a component of
interest to us (PC3, predisposition to abdominal fat
distribution) was discarded by FA. Although this
might make sense in other applications where FA
is more typically used and individual elements are
of no particular interest on their own (e.g. mak-
ing sense of the main drivers underlying patterns of
answers in large questionnaires), we aimed to un-
derstand the driving factors defining the covariance
structure underlying body morphology, regard-
less of whether we included redundant metrics for
certain aspects.

CANONICAL CORRELATION ANALYSIS (CCA) AND
THE PING-PONG ALGORITHM (PPA) were both
tested as well. These methods are similar in that
they are extensions of PCA and ISA, respectively,
but make use of a secondary dataset in the con-
struction of the composite traits or bi-clusters. For
example, CCA finds linear combinations within
one dataset which are maximally correlated with
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4 For example, the genetic effects for
‘diseases of the respiratory system’ and
‘chronic obstructive pulmonary disorder’
had a correlation of r = 0.97 genome-
wide.

5 In our hypothesis-free, data-driven
approach, we simply included all diseases
with a prevalence above 1%.

corresponding linear combinations in the second
dataset. Although these are powerful approaches,
we encountered two issues.

The first derives from the hypothesis-driven
nature of these approaches: the inclusion of out-
come data in the creation of the composite traits
would complicate any reliable conclusion as to the
causality of a discovered association. Indeed, these
methods would favor the selection of any pairs of
correlated composite traits, including those whose
correlation is due to pleiotropy, confounding, or
reverse causation. This would increase the likeli-
hood of violating MR assumptions and inflate the
type I error rate (false positives).

The second problem came from our trait selec-
tion which aimed to include as many health- and
lifestyle-related outcomes as possible. The inclusion
of phenotypes with overlapping definitions led to
very high correlation of their genetic effect esti-
mates4 which in turn led to the methods attributing
opposing weights to these traits to drive diminutive
gains in a process similar to overfitting. This could
have been overcome by the intentional selection
of meaningfully distinct and (mostly) uncorrelated
traits5.

THE SELECTION OF PCA as our method of choice
was due to the above-mentioned drawbacks of the
alternatives, as well as other advantages. The inde-
pendence of PCs enabled simple and meaningful
comparisons between their effects, allowing us to
disentangle the etiology of obesity-associated dis-
eases and identify specific aspects of body shape
which were driving the causal relationship. This
also ensured that their effects were additive and
could easily be combined to predict the risk of dis-
ease.

PCA is also widely used, making the results more
easily interpretable and understandable by others.
The non-stochastic nature of PCA and the absence
of (potentially arbitrary) parameters both ensured
the replicability of our results.
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2.2.2 Choice of variance-covariance matrix

In addition to the choice of method, we considered
alternatives for the variance-covariance matrix to
analyze. The main concern was whether to use
phenotypic or genetic information.

PHENOTYPIC DATA would provide several advan-
tages, the main one being that it would ensure the
independence of the composite traits at the pheno-
typic level, i.e. upon calculating the resulting values
in the individuals. This approach would also pro-
vide insight into all the shared mechanisms leading
to correlation in anthropometric traits, rather than
simply genetic ones.

THE CHOICE TO USE GENETIC DATA was driven by
its focus on the shared biological mechanisms un-
derlying the correlation in these traits, rather than
what was, from our point of view, environmental
confounding. The non-independence of the result-
ing phenotypic PCs was less problematic because
of the genetic basis of MR, ensuring that the esti-
mated effects we obtained were independent even
if the phenotypic values in the individuals were
not.

We calculated the variance-covariance matrix
based on the independent, GWS SNPs associated
with the traits, which focused on the correlation
of effects of genomic loci which were detectable in
the sample we had. We could have instead used the
genetic correlation between traits, which might
have reduced the influence of statistical power
within each trait (based on its heritability and ge-
netic architecture, affecting the number of SNPs
detected), although we would expect these two al-
ternatives to converge with larger samples sizes.
Given the hundreds of SNPs associated with each
trait, the results would likely have been quite simi-
lar.
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6 Imaging-derived phenotypes refer to the
processed phenotypes, e.g. total gray
matter volume, which were derived from
the raw scans.

7 For context, most brain imaging studies
are comparatively small and the SIENAX
method was described based on a dataset
of 16 healthy individuals, resulting in
scaling factors ranging from 1.05 to 1.50.
The UK Biobank contains thousands of
individuals, inevitably leading to scaling
factors considerably beyond this range
(0.80–1.94), for which the accuracy of
the method has, perhaps, not been fully
investigated. I suspect that the association
between skull size and brain volume is
stronger at the lower end of the range,
i.e. the brain occupies closer to maximum
capacity if the total available space is
more limiting, though interrogating
this hypothesis would require a healthy
cohort of younger individuals (to reduce
the impact of age-related atrophy).
8 The original GWAS was based on
brain imaging from the 4’574 unrelated
white European individuals which were
available then. At the time of this writing
42’945 individuals have been scanned
(some of which have already been subject
to a follow-up scan), though it is unclear
when the scans and the corresponding
IDPs will be made available.

2.2.3 Obesity and the brain

My PhD originally aimed to assess and investi-
gate the possible link between obesity and the
brain which has been hinted at through various
results, most prominent of which is the enrich-
ment of BMI-associated SNPs for genes expressed
in brain tissues [59, 60]. Unfortunately, the sum-
mary statistics we were relying on [88] for our
approach proved unsatisfactory. Indeed, all brain
imaging-derived phenotypes (IDPs)6 of the brain were
adjusted for using the head scaling factor, a standard
procedure to reduce head size-related variability
between individuals which enables the estimation
of, e.g., atrophy from cross-sectional data [89]. We
found that the inclusion of this head scaling fac-
tor as a covariate led to overcorrection, inducing
spurious associations with other anthropometric
traits. For example, ‘uncorrected’ brain volume is
expected to increase with greater standing height
(linear regression: slope = 0.55, p < 10−300),
however they become negatively associated after
‘correction’ (slope = −0.14, p = 10−51). It is cur-
rently unclear whether this is due to the assumed
relationship between skull size and brain volume
[90], or whether the SIENAX method for head
scaling [89] will require refining for application to
large datasets where small biases become relevant.7
Rather than risk an unknown amount of bias being
introduced into our downstream analyses, we chose
to drop the brain-related aspect of the project.

This decision was due to the time we estimated
might be necessary to overcome these issues, the
low statistical power from the small sample size
available8, and the phenotypic proximity of brain
morphometry and anthropometric traits which
greatly increased the likelihood of violating MR as-
sumptions. Had we chosen to pursue this aspect of
the project, I might have attempted to model brain
volume as a function of, e.g., height (and other
covariates) to obtain a scaling factor which could
provide a normalized brain volume which would be
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height-/body size-neutral for use as a covariate in
the GWAS. This would of course pose additional
challenges, especially for any use of these sum-
mary statistics in downstream MR analyses with
respect to anthropometric traits. Once more indi-
viduals have received a follow-up scan, the (rela-
tive) change in brain morphometry may provide an
interesting alternative avenue of investigation.

The mention of the partial results from brain
IDPs was eventually removed from the manuscript
[87] as their inclusion brought mostly confusion
and lengthened the already sizable paper.

2.2.4 Contributions

Although I performed the majority of the work
on this project, Anthony Sonrel made significant
contributions to the early stages (much of the data
preprocessing and early implementation and test-
ing).





1 We define the causal function as the
relationship which determines the part
of the outcome which is (causally)
dependent on the exposure, i.e. y =
f (x) + ϵ, where y is the outcome, x the
exposure, and f (·) is the causal function.

2 The other alternative is another control
function-based approach termed SpotIV
[84] which detects non-linearity based
on differences of effects at different
exposure levels rather than the inference
of a causal function. This difference
would have made comparisons difficult
at best, but the implementation available
at the time was also computationally
demanding, slow, and not robust to
changes in the settings. After initial
testing, we decided against systematic
comparison with it.

3 I deliberately use the term ‘dependence’
rather than ‘correlation’ here, as many
trait pairs may be clearly dependent
with very low correlation. For example,
cholesterol levels show a pronounced
inverted U-shaped association with BMI,
which leads to close to zero correlation

3
Non-linear causal inference

3.1 Polynomial MR, simulations and application

This project aims to extend MR to allow non-linear
causal inference with a fully parametric approach
to increase the statistical power over alternative
methods, namely LACE [83]. The manuscript is
still in preparation but is included below in its cur-
rent form.

We developed PolyMR, a method which allows
for the polynomial approximation of an arbitrary
causal function1 of the effect of an exposure on an
outcome. We performed extensive simulations to
test the validity of the inferred functions and com-
pare its performance with that of one of the only
currently available alternatives2, LACE [83]. The
results showed very good agreement between the
inferred and true causal functions for both meth-
ods, however PolyMR provided greater power and
accuracy in all tested situations.

We also tested an alternative method to the two
OLS regressions using maximum likelihood estima-
tion, however we did not observe any reduction in
bias or error in the simulations and runtime was
considerably increased. This alternative was there-
fore not pursued further (nor is it described in the
paper).

Applying this method to data from the UK Biobank,
we showed that non-linear causal effects underlie
the dependence3 between anthropometric and con-
tinuous health traits.

The original method was developed by Zoltán
and implemented in Matlab. I translated the orig-
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inal code to R before investigating the limits, test-
ing alternative approaches, refining the method,
and eventually applying it to data from the UK
Biobank. I have also written drafts of the Meth-
ods (based on Zoltán’s original draft), Results, and
Discussion sections for the manuscript. Finally,
I compiled the method and code into a prelim-
inary R package currently on GitHub: https:
//github.com/JonSulc/PolyMR.

3.1.1 Methods

Let X and Y denote two random variables repre-
senting complex traits. We intend to use Mendelian
Randomization (MR) to estimate a non-linear causal
effect of X on Y . The genotype data of the SNPs
to be used as instrumental variables (IVs) is de-
noted by G . To simplify notation we assume that
E(X ) = E(Y ) = E(G ) = 0 and Var(X ) =
Var(Y ) = Var(G ) = 1. The effect sizes of the
instruments on X are denoted by β. Let us assume
the following models

X = G · β + ϵx (3.1)
Y = fα(X ) + ϵy (3.2)

where the parametric function fα(·) denotes the
shape of the causal relationship between X and Y
and ϵx and ϵy are zero-mean errors. For simplic-
ity, we assume that fα(·) is a polynomial—even
if it is not it can be approximated by one with ar-
bitrary precision over the range of the majority
of values X can take. For example, if we intend
to test a quadratic causal relationship, fα(x) =
α0 + α1 · x+ α2 · x2. Thus, the model can be rewrit-
ten as

Y =
k

∑
i=0

αi · X i + ϵy (3.3)

The above equation can be expanded to

Y =
k

∑
i=0

αi

(
i

∑
j=0

(
i
j

)
(Gβ)i · ϵ

i−j
x

)
+ ϵy (3.4)

https://github.com/JonSulc/PolyMR
https://github.com/JonSulc/PolyMR
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The X − Gβ term used here is the
previously discussed control function
[85], see Section 1.4.

We rely on the INSIDE assumption [71], which
ensures that Gβ ⊥ ϵy. The error terms ϵx and
ϵy can nevertheless be correlated because of a po-
tential causal effect of Y on X (reverse causation)
and/or due to confounders. Let us split ϵy into ϵx-
dependent and ϵx-independent parts.

ϵy = (ϵy|ϵx, ϵ2
x, . . . , ϵl

x) + τy =
l

∑
i=0

ri · ϵi
x + τy

(3.5)

Since cov(Gβ, ϵx) = cov(Gβ, ϵy) = 0, the residual
noise τy is independent of both Gβ and ϵx. As a
consequence cov(X , τy) = cov(X − Gβ, τy) = 0.
This allows us to rewrite the main model equations
as

X = G · β + ϵx

Y =
k

∑
i=1

αiX
i +

l

∑
i=0

riϵ
i
x + τy =

k

∑
i=1

αiX
i +

l

∑
i=0

ri(X − Gβ)i + τy

(3.6)

The advantage of this equation system is that the
error terms (ϵx and τy) are uncorrelated and inde-
pendent of the respective explanatory variables.

Let the realizations of the random variables X ,Y ,G
be denoted by x, y, G, observed in a sample of size
n. The parameters {β, α, r} can be estimated by
computing two ordinary least squares estimates,
first estimating β using the first equation and sub-
stituting this into the second equation:

β̂ = (G′G)−1 · G′x (3.7)(
α̂
r̂

)
= (M′M)−1 · M′y , (3.8)

where

M := [x, . . . , xk, 1, (x − Gβ̂), . . . , (x − Gβ̂)l]

The special case of this approach when k = l = 1
is equivalent to the standard control function ap-
proach. For higher orders, the terms k and l are not
required to be equal, as k represents the powers of
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the fα(·) function describing the causal relationship
between X and Y , whereas l concerns the order of
the confounding/reverse causation.

Implementation

We implemented this method in R [91]. For the
polynomial approximation of fα(·) function of the
causal relationship, we used k = 10, iteratively
eliminating coefficients which are not significant
at a Bonferroni-corrected level (i.e. 0.05/a, where
a is the number of coefficients remaining), setting
them to zero. We set l to be equal to the polyno-
mial order of the function, retaining all terms up
to l such that any association with higher orders
of the exposure driven by confounding are prop-
erly accounted for. Once all remaining coefficients
were significant, the non-linearity p-value is ob-
tained with a likelihood ratio test (LRT), compar-
ing the full model with that including only the lin-
ear effect but retaining all residual correction terms
(rj). The causally explained variance was deter-
mined as the difference in explained variance (r2)
between the full model and that excluding all αj · xj
terms (i.e. accounting only for potential confound-
ing).

The polynomial approximation is the result of
a multivariable regression, which also provides us
with the variance-covariance matrix of the poly-
nomial coefficients. From these, we can generate
functions drawn from the same multivariable dis-
tribution to obtain the 95% confidence hull.

For comparison, LACE [83] was also imple-
mented and polynomial approximation was ob-
tained in an analogous fashion. The piecewise lin-
ear LACE approach was not tested here. We ex-
amined the limitations of the standard (1st order)
control function approach by running PolyMR
with l := 1, hereafter referred to as PolyMR-L1, in
specific settings.
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Simulations
We simulated data according to the following model

X = G · β + qx · U + ϵx (3.9)
Y = fα(X ) + qy · U + ϵy (3.10)

where U is a confounder drawn from a standard
normal distribution. Columns of G were drawn
from a binomial distribution with minor allele fre-
quencies following a beta distribution with shape
parameters equal to 1 and 3, and then normalized
each column to have zero mean and unit variance.
The genetic effects βi were drawn from normal
distributions based on the minor allele frequencies,
specifically βi ∼ N (0, (pi ∗ (1 − pi))

−0.25), where
pi is the minor allele frequency of SNP i, and scaled
such that the total explained variance matches the
predefined heritability, i.e. ∑ β2

i = h2. These effect
sizes are realistic and are according to the base-
line LDAK heritability model (without functional
categories) with a selection strength of −0.25 [92,
93]. For the basic settings, we included moder-
ate confounding (qx = 0.2 and qy = 0.5) and a
quadratic causal function ( fα(X ) = 0.1X + 0.05X 2).
The heritability h2 was set to 0.5, explained by
m = 100 causal SNPs, and sample size was set to
100,000 individuals. Causal SNPs were filtered for
genome-wide significance of their univariate ef-
fects in the simulated data prior to their use as IVs.
Variations on these settings were tested, as shown
in Table 3.1. Each combination of parameters was
used to generate 1000 sets of data, to which we
applied both PolyMR and LACE. We also tested
PolyMR-L1 in the base settings, in the presence of
weak quadratic confounding (qx × qy2 = 0.04), as
well as in the absence of quadratic causal effect but
with quadratic confounding (qx × qy2 = 0.1) creat-
ing a similar observed association between traits as
in the base settings.

The theoretical 95% confidence hulls were com-
pared to the empirical distribution of estimated
models across simulations. At each percentile of
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Causal functions fα(X )

*Base settings 0.1 · X + 0.05 · X 2

Null 0
Linear effect 0.1 · X + 0 · X 2

Stronger effect 0.3 · X + 0.1 · X 2

Weak quadratic effect 0.1 · X + 0.01 · X 2

Cubic effect 0.1 · X + 0.05 · X 2 + 0.05 · X 3

Fourth order effect 0.1 · X + 0.05 · X 2 + 0.05 · X 4

3rd & 4th order effects 0.1 ·X + 0.05 ·X 2 + 0.03 ·X 3 + 0.01 ·X 4

Exponential effect 0.1 · eX

Square root effect 0.1 · sgn(X ) ·
√
|X |

Sigmoid effect (1) 0.1 · 1
1+e−X

Sigmoid effect (2) 0.1 · 1
1+e−2·X

Sigmoid effect (3) 0.1 · 1
1+e−3·X

Other settings

Strong confounding qx = 0.5, qy = 0.8
Negative confounding qy = −0.5
*Quadratic confounding qy2 · U2 term added to Y ,

where qy2 ∈ {0.1, 0.2}
*Quadratic confounding, 0.2 · U2 term added to Y ,

linear effect fα(X ) = 0.1 · X
Heritability & h2 ∈ {0.2, 0.3, 0.5, 0.8},

polygenicity m ∈ {20, 100, 1K, 5K, 10K}

Table 3.1: Causal functions and
setting parameter combinations
simulated for PolyMR. Modifications
to the base setting’s causal function
are indicated in bold. Asterisks (*)
denote settings where PolyMR-L1
was also applied for comparison.

the exposure distribution, the size of the predicted
95% confidence intervals (CIs) was compared to
the empirical one.

Application to UK Biobank data

The UK Biobank is a prospective cohort of over
500’000 participants recruited in 2006–2010 and
aged 40–69 [54]. We tested for non-linear causal
effects of anthropometric traits (body mass index
[BMI], weight, body fat percentage [BFP], and
waist-to-hip ratio [WHR]) on continuous health
outcomes (pulse rate [PR], systolic blood pressure
[SBP], diastolic blood pressure [DBP], and glucose,
and LDL, HDL, and total cholesterol [TC] levels
in blood), as well as the reverse. We also tested for
effects of both BMI and age completed full time
education on life expectancy. Since most partici-
pants in the UK Biobank are still alive, we scaled
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the mother’s and father’s age of death (separately)
and used the mean of these standardized pheno-
types as a proxy for the individual’s life expectancy.

We selected 377’607 unrelated white British par-
ticipants and all phenotypes were corrected for age,
age2, sex, age × sex, age2 × sex, as well as the top
10 genetic principal components. With the excep-
tion of WHR, IVs were selected using the TwoSampleMR

R package [version 0.5.5, 94] with default settings
(p < 5 ∗ 10−8 and r2 < 10−3 or d > 104 kb)
from the GWAS in the ieugwasr R package [version
0.1.5, 95] with the largest number of instruments
overlapping our dataset. For WHR, we used a
previously-performed GWAS on the aforemen-
tioned sample from the UK Biobank, adjusting for
covariates as above [96].

For the purpose of comparison, we also used
inverse-variance weighted MR and MR Egger on
each of these exposure-outcome pairs. These were
performed with the same IVs and (in-sample) as-
sociation statistics using the TwoSampleMR R package
[version 0.5.5, 94]. We also compared the results
of standard PolyMR with those PolyMR-L1 to de-
termine whether accounting for higher order con-
founding is necessary in real data applications.

3.1.2 Results

Simulations
We simulated a variety of settings, including many
combinations of heritability and polygenicity in
the exposure, sample size, and shape of the causal
function fα(·) and confounding. Where the true
underlying function was polynomial, our approach
correctly captured its shape (Fig. 3.1) although a
slight bias from confounding was introduced in
certain settings with high polygenicity (> 1000
causal SNPs), high heritability (h2 = 0.8), or strong
confounding (where linear confounding explained
~40% of the exposure-outcome association) (Fig. 3.2).
The distribution of this bias was affected by the
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Figure 3.1: PolyMR is able to
recover the shape of the causal
function. The true causal func-
tion is shown in green (solid line).
The observed association model is
shown in orange (short-dashed)
while that obtained using PolyMR
is shown in purple (long-dashed).
The hulls around the model curves
show the 95% coverage hull across
1000 simulations. Shown here are
(a) high polygenicity (10’000 causal
SNPs accounting for the heritability
of 0.3); and (b) a sigmoid causal
effect ( fα(X ) = 0.1 · 1

1+e−2·X ). The
Y-axis shows the expected associa-
tion with/effect of the exposure on
the outcome, relative to the out-
come level at the mean population
exposure.
Figure 3.2: Bias as a function
of exposure across settings. In
settings with a polynomial causal
function fα(·), slight bias from non-
genetic confounding was induced
under certain combinations of high
polygenicity, high heritability,
or strong confounding. The bias
found in non-polynomial settings
was expected due to the polynomial
approximation approach.

shape of the confounding, i.e. in situations with
quadratic confounding, the bias was quadratic
with respect to exposure. In all simulation settings,
this bias was nevertheless orders of magnitude
smaller than both the causal effect and the con-
founding (e.g. Fig. 3.1 A). Although this bias was
minimal with the standard PolyMR settings (l = k),
quadratic confounding produced significant bias
when higher orders of the control function term
(x − Gβ̂) were ignored (i.e. l = 1), which is the
standard approach for control function use.

In the case of non-polynomial functions, PolyMR
nevertheless provided reasonable estimates of the
true shape of the causal function (Fig. 3.1 B). The
bias introduced in these cases (Fig. 3.1 B, 3.2 B) is
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Figure 3.3: PolyMR provided
greater accuracy in the estimation
of causal functions. The root mean
square errors (RMSEs) are shown
for both PolyMR and LACE. Each
point is the mean RMSE for a given
setting with the error bars showing
the 95% confidence interval (CI) of
the true mean across simulations.
Settings were split into polynomial
and non-polynomial causal func-
tions. Arrows in the polynomial plot
indicate RMSEs which exceed the
bounds of the plot.

consistent with expectations of polynomial approx-
imation with limited power and dependent on the
shape of the non-polynomial function.

LACE also produced some bias in estimating the
causal function. The magnitude of the bias intro-
duced by either method was dependent on the set-
tings used. PolyMR yielded less biased estimates
in the cases of high order causal functions whereas
LACE was overall slightly less biased by high lev-
els of confounding. However, in all settings tested,
PolyMR provided lower root mean square errors
(RMSEs) than LACE on average (Fig. 3.3), partly
driven by smaller SEs.

To ensure that the variance estimated from the
variance-covariance matrix of the model was cor-
rectly calibrated, we assessed the coverage of the
95% confidence interval. We did so by compar-
ing the predicted 95% confidence intervals (CIs)
of the curves with those derived empirically from
repeated simulations. We found that in the case
of most polynomial functions, the CIs were prop-
erly calibrated with the theoretical and empirical
CIs being almost equal across most of the expo-
sure distribution. Note that under some simula-
tion settings (e.g. weak quadratic effects, where
α2 = 0.01) allowing the polynomial degree to vary
led to underestimation of the variance of the model
due to post-selection inference (see Supplementary
Fig. 3.6 A). If we consider only those simulations
with the same polynomial order selected, the em-
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pirical CIs were properly calibrated and very close
to those predicted by the method (Supplementary
Fig. 3.6 B).

UK Biobank

Given its favorable performance throughout all
simulation settings, we applied the PolyMR method
to data from the UK Biobank. We set out to es-
timate the causal effects of four anthropometric
traits (BMI, weight, BFP, and WHR) on each of
seven continuous traits commonly used as health
biomarkers (PR, SBP, DBP, and the levels of glu-
cose, LDL, HDL, and TC in blood). We also tested
for reverse causal effects for these trait pairs, as
well as any effects of BMI or education on life ex-
pectancy.

The effects of the anthropometric traits were
qualitatively similar to one another and significant
against all tested outcomes with significant non-
linearity in most cases (~86%). Those of WHR
and BFP tended to be more similar to one an-
other, monotonically increasing DBP, SBP, and
PR with linear to slightly non-linear effects. BMI
also increased these traits overall, though the ef-
fects of BMI on DBP and SBP plateaued at around
2 SD above the population mean (~36.9 kg/m2)
and the causal function for BMI on PR showed a
positive slope for values between approximately
1 SD below to 2 SDs above the population mean
(~22.7–36.9 kg/m2) with negative slopes beyond
these. The effects of weight were weaker, but qual-
itatively similar to those of BMI. Glucose was in-
creased by all of these, though the effects of a change
in exposure were negligible below ~-1 SD for all
traits and intensified at higher values. For exam-
ple, the estimated slope of the standardized effect of
BMI was 0.17 at the population mean but increased
to 0.31 at +2 SD. The strongest non-linearity in
the effects of anthropometric traits was found for
total cholesterol, mainly driven by the LDL frac-
tion (Fig. 3.4 A), where the causal function took a
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Figure 3.4: Most tested causal
effects have strong non-linear
components in the UK Biobank.
The red points show the mean out-
come plotted against the median
exposure for each of 100 bins, split
by covariate-adjusted exposure level.
The red curve (solid) is the multi-
variable regression model whereas
the teal one (dashed) corresponds
to the estimated causal function
obtained using PolyMR. The hulls
around both curves correspond to
the 95% confidence interval.

strong inverted U-shape. In contrast to this, their
effects on HDL were all monotonic decreasing.

The impact of PR was limited to weak linear ef-
fects on BFP and WHR. TC linearly decreased
BMI, weight, and BFP, with no detectable effect
on WHR. SBP and DBP both had inverted U-
shaped causal functions for their effects on all an-
thropometric traits (p < 1.6 ∗ 10−47), with the ef-
fects on WHR being slightly weaker. Glucose lev-
els had nearly no effect on most traits across most
of the distribution, but drove strong reductions at
higher values, with the exception of WHR, which
was in fact slightly increased by glucose levels up
to ~3 SD before being decreased at higher levels.
HDL had a slight U-shaped effect on these traits,
with a stronger increase for high values of the ex-
posure on BFP and no increase in WHR.

Although the observational association of SBP/DBP
and the anthropometric traits was mostly mono-
tonic increasing, the estimated causal function on
these had an inverted U-shape (Fig. 3.4 B), with
slightly weaker effects on WHR. The causal effects
of PR on anthropometric traits show a slight pos-
itive slope close to the population median, but the
directionality switches at either extreme of the dis-
tribution. LDL cholesterol decreased the outcomes
near monotonically, though the effect close to the
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population median was weak to null (Fig. 3.4 C).
The impact of glucose was slightly different across
the anthropometric traits. Both BMI and weight
were overall negatively affected by glucose levels
(with weaker effects around zero). BFP was also
decreased, although the effect was much weaker.
WHR, however, was slightly increased by glucose
levels up to ~3 SD before being decreased at higher
levels. Note that the effect close to the population
mean is likely driven by a decrease in hip circum-
ference rather than an increase in the waist’s, sim-
ilar to what we’ve shown previously for the effects
of diabetes risk and triglyceride levels on WHR-
related metrics [87].

The effects of BMI and education on life ex-
pectancy are directionally as expected but we found
no evidence of non-linearity. The BMI-life ex-
pectancy (causal) relationship was decreasing, though
the intensity of the effect was greater than the ob-
served association (Fig. 3.4 D), whereas higher ed-
ucation increased life expectancy.

The exclusion of higher order control function
terms in PolyMR-L1 produced somewhat different
inferred causal functions, with generally stronger
non-linear components, resulting in inferred causal
functions which were closer to the observed associ-
ations.

3.1.3 Discussion

We’ve developed a Mendelian randomization (MR)-
based method, PolyMR, for the inference of (po-
tentially) non-linear causal effect of an exposure
on an outcome. This method accurately recov-
ers the parameters where the causal function is
polynomial in nature, otherwise providing a suit-
able polynomial approximation of the function
shape. Although a very slight bias (~2%) was in-
troduced in the most extreme cases of confounding
(accounting for ~40% of the variance in the out-
come), PolyMR significantly improve the power
and accuracy of non-linear causal inference over
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the semi-parametric approach employed by LACE
[83]. Applying PolyMR to a selection of anthropo-
metric and health-related traits in the UK Biobank
[54], we found most of these to be significantly
non-linear.

Assuming linearity in the presence of non-linear
causal effects may have different consequences de-
pending on the context, as well as the method used.
Standard IVW MR [70] will provide an estimate
of the slope at the population mean, while the in-
clusion of an intercept in MR-Egger [71] yields an
effect closer to the average slope over the distribu-
tion, i.e. the non-linearity is treated as directional
pleiotropy. Other methods designed to be robust
to outliers or pleiotropy are liable to attribute some
of the non-linearity (particularly of strong IVs) to
these effects and “account” for this by excluding
or down-weighting them in their respective ways.
Even the “best” linear approximation will introduce
bias in the presence of underlying non-linearity,
the extent of which will depend on many factors
such as the exposure distribution and the amplitude
of the deviation from linearity. There is one factor
worth discussing in this respect: the monotonicity of
the causal function.

In the case of a monotonic causal function, the
linear effect estimate can be considered an aver-
age causal effect over the range of the exposure
and could be used as an adequate approximation
in some cases. This would not affect the qualitative
conclusion of the analysis, i.e. exposure X increases
outcome Y, however the bias introduced may im-
pact downstream analyses (e.g. mediation analysis)
and affect predictions made for certain strata of the
population. For example, BMI monotonically in-
creased glucose levels in blood and linear effect es-
timates from IVW and MR-Egger (~0.16–0.17)
are consistent with the slope of the effect at the
population mean. However, the effect was nearly
twice as large for individuals with severe obesity
(>35 kg/m2) and close to zero for normal weight
individuals, which is in line with what we would
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expect biologically: individuals who are not over-
weight are able to maintain normoglycemia. A bi-
ologist (or a medical professional) might know not
to apply the linear effect estimate to normal-weight
individuals in this specific example, however this is
not reflected in the statistical estimate and might
result in poor public health guidelines. Just as im-
portantly, the effect in people with extreme obesity
may be dangerously underestimated. Conversely,
the increasing monotonic function for the effects
of BMI on SBP shows that weight loss (or gain) in
extremely obese individuals will not have much of
an effect on their blood pressure.

The case of non-monotonic causal functions is,
predictably, worse. For example, the effect of BMI
on LDL cholesterol has previously been estimated
to be either null [97, 98] or weakly negative [87,
99], however PolyMR revealed a strong non-linear
effect with an inverted U-shape. The close-to-
null effect size estimated by linear MR methods
likely occurs due to the proximity of the popula-
tion mean to the maximum of the causal function,
where the slope (i.e. linear effect point estimate)
is close to zero. Although the conclusions of these
studies are not contradictory (the absence of evi-
dence is not evidence of absence), none of them ac-
curately portray the effect BMI has on LDL choles-
terol. In other instances, such non-linearity could
lead to contradictory results if the mean exposure
level differs between studies, even in the absence
of any meaningful biological or methodological
differences.

NON-LINEARITY MAY ARISE FOR A NUMBER OF
REASONS (Fig. 3.5), the foremost of which is the
one generally assumed in this type of modeling;
that the biological mechanism through which
the exposure affects the outcome has additional
downstream constraints which modulate the effect
(Fig. 3.5 A). This could be considered a true non-
linear effect and often occurs in biological systems
through the presence of feedback loops or other
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Figure 3.5: Non-linear causal
effects may be observed in sev-
eral situations. (A) It may occur
biologically in what could be con-
sidered true non-linearity, (B) as an
interaction between the exposure
and a correlated variable, or (C) due
to the scale on which the exposure
is measured. The asterisks (*) and/or
wavy arrows mark the source of
non-linearity in each case.

controls which modulate the effect of the exposure
on the outcome (e.g. limiting the bio-availability
of other required components). This is most the
case in the effects of BMI on glucose homeosta-
sis: normal weight individuals are able to maintain
normoglycemia, and the effect of BMI increases
as their capacity to do so breaks down. Similarly,
the plateauing of BP for high BMI could represent
a homeostatic feedback loop or it may simply in-
dicate the physiological bounds of BP. This could
conceivably represent a behavioral feedback loop
as well, such as the use of BP-reducing medication,
however Staley and Burgess [83] found a similar
plateauing even after adjusting for the use of med-
ication. A similar effect might be observed in the
case of selection bias [100], whereby individuals
with more extreme outcome values may have been
selected out of the observed sample.

Traits interacting to affect an outcome may like-
wise yield non-linear effects in certain conditions,
particularly if they are not independent (Fig. 3.5 B).
For example, if two traits are positively correlated
and the effect on the outcome scales with their
product, then the magnitude of the effect will scale
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quadratically with either trait used as exposure.
The simplest (and possibly least interesting) cause

for non-linearity we will consider here is that of
the scale of observation (Fig. 3.5 C). Even in the
presence of a purely linear effect, it may appear
non-linear if either the exposure or outcome is
observed on a scale which is non-linear with re-
spect to the true causal trait. For example, adiposity
can be studied using any of a number of differ-
ent metrics, such as body fat percentage or body
fat mass. However, if the effects of adiposity on a
particular outcome are proportional to, e.g., the
surface area of the adipose tissue, then we can ex-
pect any of the usual metrics of adiposity to show
non-linear effects on this outcome simply due to
the non-linearity of their association with the true
proximal cause involved in the etiology of the effect
on the outcome. This is conceptually related to the
misidentification problem which can never be fully
excluded in observational studies. In some cases, the
true cause can be considered a confounder of the
(tested) exposure-outcome association and violate
MR assumptions. This may introduce bias which
will increase the more dissimilar the true cause and
observed exposure are.

POLYMR HAS BEEN DESIGNED USING POLYNO-
MIAL REGRESSION but could easily be extended to
include other terms such as logarithmic or sigmoid.
Coefficients for these terms could be estimated in
addition to or instead of the proposed polynomial
coefficients. The inclusion of more complex flexi-
bility including, e.g., parameters to be fitted within
a term (e.g. finding αe in fα(x) = c · eαex) might be
possible with a maximum likelihood approach.

PolyMR can be applied as is with binary out-
comes such as diseases, though an approach based
on logistic regression, which already includes non-
linearity in the link function, might prove more
advantageous.

THE LIMITATIONS OF POLYMR are partly depen-
dent on the statistical power available. In an infinite
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sample size any function could be modeled flaw-
lessly, however in finite sample sizes the approxi-
mation of the causal function in the central portion
of the exposure distribution affects its behavior at
the tails. In our simulations, this is accounted for by
the considerably wider confidence interval in these
areas. It is nevertheless possible that a curve whose
shape deviates strongly from polynomial near the
extremes will be poorly represented by PolyMR.

In cases where the modeling assumptions are vi-
olated, the inferred causal function may be biased.
In particular, the possible influence of covariates on
the approximation of causal functions has not been
fully investigated.

The post-selection inference in PolyMR (i.e. the
selection and elimination of coefficients) can lead
to a slight under-coverage of the confidence inter-
vals in certain situations. This can be avoided if a
model is postulated beforehand, such as by selecting
coefficients in a separate training sample, and kept
throughout the PolyMR modeling.

IN SUMMARY, we have developed a method for
the polynomial approximation of non-linear causal
functions. Applying it to data from the UK Biobank,
we have shown that non-linearity is pervasive in
the effects between anthropometric and metabolic
or other continuous health traits.
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3.1.4 Supplementary Figures

A B

Supplementary Figure 3.6: The confidence intervals (CIs) of PolyMR are correctly calibrated for the returned function order.
The size of the theoretical 95% CI was calculated for each simulation at each percentile of the exposure, yielding a distribution of CI sizes.
The empirical CIs come from the distribution of the estimated causal function. Both panels show the CIs for the weak quadratic effect
setting, with either (A) all results or (B) only those results where the correct order of the causal function was determined (920 out of 1000
simulations).

3.2 Further applications and extensions

In addition to the basic use of PolyMR method de-
scribed in the section above, there are other pos-
sible applications which exceeded the scope of the
manuscript in preparation. Here I describe two
of these, namely the use of composite traits as ex-
posures and that of binary traits (e.g. diseases) as
outcomes. In addition, I describe an additional ex-
tension to PolyMR which enables the modeling of
interactions within the context of non-linear ef-
fects.

3.2.1 Non-linear effects of composite traits

I applied the same method as described in Sec. 3.1
to the phenotypic values of the four body PCs pre-
viously described [87], testing for non-linear effects
on the same continuous health traits (pulse rate
[PR], systolic blood pressure [SBP], diastolic blood
pressure [DBP], and glucose, and LDL, HDL, and
total cholesterol [TC] levels in blood). Most (19/28)
were significantly non-linear (with an additional
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Figure 3.7: PCs 1–3 mostly in-
creased SBP, though with qualita-
tively different effects (teal, dashed).
The values on the y-axis are given
relative to the expected outcome for
an exposure level equal to that of the
population mean. The points repre-
sent the mean difference in observed
outcome for each centile of the
population ranked by exposure level,
with the red line (solid) showing the
observed association. The values in
parentheses indicate the variance (in
body shape) explained by each PC.

Figure 3.8: PCs 1–3 had distinct
effects on total cholesterol levels
in blood (blue, dashed), despite
showing similar inverted-U shaped
observational associations (red,
solid). The values on the y-axis are
given relative to the expected out-
come for an exposure level equal to
that of the population mean. The
points represent the mean difference
in observed outcome for each centile
of the population ranked by expo-
sure level. The values in parentheses
indicate the variance (in body shape)
explained by each PC.
4 All five null effects (and two of the
linear ones) were predicted for PC4 (lean
mass), which is likely due, in part, to low
statistical power.

four linear effects).4 The effects of PCs 1–3 on glu-
cose were similar to those of other obesity traits,
i.e. no effect in normal-weight individuals but in-
creasingly strong ones for higher values. This is
consistent with the somewhat similar (linear) effect
sizes we found for these PCs on glucose, glycated
hemoglobin, and diabetes in the original paper
[87]. Their effects on the other traits were not so
similar.

PCs 1–3 all broadly increased SBP, but the shape
of the inferred causal function and the intensity of
the effect differed considerably (Fig. 3.7). PCs 1–2
were similarly associated with SBP observationally,
however the effects of PC1 were much weaker and
rapidly plateau, while those of PC2 explain the ob-
served association nearly entirely. Interestingly,
although the observed PC3-SBP association was
much weaker, the amplitude of effects shown by
PC3 exceeds that of PC1.
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These 3 PCs had qualitatively similar, inverted
U-shaped observed associations with total choles-
terol levels in blood, but different effects (Fig. 3.8):
PC1 decreased it, PC2 had a strong inverted-U
shape, and PC3 increased it. This is driven in large
part by their effects on LDL-c which is expected
to contribute a larger fraction of the total [113],
which is dominated by stronger negative effects for
higher values of PC1, balanced for PC2, but lin-
early increasing for PC3. All three PCs decreased
HDL-c, though the effects were weaker for PC2.

Even across such a small subset of continuous
health outcomes, the shapes of the inferred causal
functions of PCs 1–3 provided interesting com-
parisons. The similarity and monotonicity of their
effects on glucose are consistent with those (linearly
estimated) we reported originally [87], not only on
glucose but glycated hemoglobin and diabetes as
well. On the other hand, the shapes of the causal
functions estimated for total and LDL cholesterol
provide insight as to why PCs 2 and 3 produced
non-significant linear effect estimates; not because
they have no effect but because the slope of the
causal function at the mean population exposure
value is close to zero.

3.2.2 Non-linear increase in disease risk

As mentioned in the PolyMR manuscript (Sec. 3.1),
the method itself does not preclude the use of bi-
nary variables as outcomes. As a proof of concept, I
examined the shape of the effects of anthropomet-
ric traits (namely BMI and BFP) on self-reported
diseases in the UK Biobank, selected for their rele-
vance to obesity (diabetes, heart attack, osteoarthri-
tis) or arbitrary curiosity (depression).

Both BMI and BFP increased the risk of all in-
vestigated diseases. Their effects on the risk of dia-
betes were (unsurprisingly) non-linear and compa-
rable to those we previously found on glucose: no
effect in normal-weight individuals with increas-
ing effects for higher values. Their effects on other
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5 Although I will discuss this mainly
concerning PolyMR, this applies to other
methods as well.

diseases were closer to linear, likely due in part to
weaker causality which reduced statistical power.
The effects of BFP on the risk of osteoarthritis
were similar in shape to those on diabetes, with lit-
tle to no effect at low values but increasingly raised
the risk of disease at higher values.

BMI showed a J-shaped association with depres-
sion but linearly increased risk, while BFP showed
an exponential-shaped association but a J-shaped
effect on the risk.

3.2.3 Extending PolyMR to model interactions

The inclusion of non-linear terms in the causal
function adds further complexity, beyond the sim-
ple shape of the causal effect, in particular in the
form of interactions.

In traditional (linear) MR, confounders of the
exposure-outcome relationship can safely be ig-
nored, provided they don’t violate MR assumptions
through association with an IV. We adjust for ge-
netic PCs in many analyses precisely because pop-
ulation stratification would violate MR assumptions
(and GWAS requirements for that matter). Other
potential confounders are typically also regressed
out of both traits to reduce noise in the IV-trait
association (e.g. sex and age). In reality, these co-
variates may alter the effect of the exposure, i.e. the
covariate may interact with the exposure to pro-
duce a certain effect on the outcome (Fig. 3.9). For
example, the exposure might have a greater effect
in men than in women, in which case the expo-
sure interacts with sex to produce an effect on the
outcome. Adjusting for this covariate in traditional
MR will produce the expected (and arguably desir-
able) result of providing the causal effect estimated
for an average exposure level (or the weighted av-
erage effect). With non-linear causality, it’s a bit
more complicated.

IN THE INFERENCE OF NON-LINEAR CAUSAL EF-
FECTS,5 adjusting for covariates has a similar effect
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Instrumental
variable

Exposure X Outcome Y
α + αC ∗ Cβx

βy = βx ∗ (α + αC ∗ C)

Interacting
covariate C

Figure 3.9: Example interac-
tion scenario in (linear) summary
statistics-Mendelian randomization,
where the effect of exposure X is
altered by the presence of covariate
C. This covariate could also be a
confounder, i.e. affecting both ex-
posure and outcome, in addition to
interacting with the exposure. Solid
lines represent causal effects, dashes
show associations.

but different interpretation: the non-linear causal
effects are expressed as function of the covariate-
corrected variables. In other words, the causal func-
tion predicts the magnitude of the effect based on
the difference between the actual exposure value com-
pared to what we would expect based on the covariates.
Conversely, choosing not to adjust for a given co-
variate implies that the effect depends on the ex-
posure level, independent of that specific covariate.
Biologically, it might seem to make sense that it is
the absolute level of the exposure that matters, re-
gardless of what covariates caused it to take on that
value, and in this case we might favor unadjusted
variables. But this isn’t necessarily the case, for ex-
ample, women tend to have proportionally more
body fat than men but are not necessarily more at
risk of obesity-related diseases [104].

In the case of sex, a straightforward solution is
stratification: the non-linear causal function can be
inferred in men and women separately, avoiding
the issue entirely and providing unbiased estimates
(with respect to the interaction effect of sex). The
resulting curves can be compared to see whether
adjusting for sex is advisable (thereby enabling
the use of the full dataset), although the individ-
ual causal functions can be used as well. Applying
PolyMR to stratified data from the UK Biobank,
we can observe the two scenarios in the effects of
BFP and WHR on LDL cholesterol (Fig. 3.10).
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Figure 3.10: Adjusting for sex
can have different consequences
based on the exposure-outcome
relationship. The sex-specific and
-combined effects of body fat per-
centage (BFP, left) and waist-to-hip
ratio (WHR, right) on LDL choles-
terol illustrate the two extremes.
The horizontal shift between the
sex-specific curves (green and blue)
for BFP indicates an interaction
with sex, and, in this case, adjust-
ing produces a relatively similar
sex-combined curve (red). The
absence of such a horizontal shift
for WHR suggests no interaction
with sex, in which case adjusting
for sex produces a biased (flattened)
sex-combined causal function. Note
that the vertical (mis)alignment is
simply due to the y-axis being de-
fined relative to the expected effect
at the (respective) population mean
exposure values.

6 Note that the vertical displacement in
the case of WHR is not relevant here, as
the y-axis is defined as the expected effect
relative to the sex-specific sample mean
rather than any absolute value.

In all cases, the inferred causal function had an
inverse-U shape with roughly corresponding in-
tensities between sexes, however it is the relative
positions of these curves that is interesting: they
are horizontally shifted for BFP but not WHR.6
From this, we can expect that adjusting for sex will
produce better results for BFP but worse for WHR
and indeed, we can see that the sex-combined causal
function for BFP is similar to the sex-specific ones,
whereas that of WHR is much more flattened.

This much we can evaluate from a quick visual
inspection of the sex-stratified causal functions, but
this is hardly ideal. It’s simple enough to stratify by
sex, but this is less trivial for continuous variables
such as age. Furthermore, a closer inspection re-
veals that the sex-specific curves of BFP are not, in
fact, identical, nor can we reasonably expect ad-
justing for sex to necessarily align the exposures
exactly, such that their effects on a specific out-
come are equivalent. For example, adjusting BFP
for sex is likely to improve the inferred causal func-
tion to some extent (i.e. the sex-adjusted curves
will be similar to the sex-specific ones), however
we can see that the population means do not sit
in the same portion of their respective curves: the
slope at the (sex-specific) mean exposure level is
positive in females but negative in males. We can
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therefore expect adjusting for sex to dilute the sig-
nal somewhat, which is what we observe in the
sex-combined PolyMR, where the variables were
adjusted for sex and the causal function (red) is
slightly flattened. A more accurate approach would
require modeling the interaction effect simultane-
ously, for which I propose a method below.

Methods
Including sex as a possibly interacting covariate can
be achieved with minimal changes to the PolyMR
equations:

X = G · β + ϵx (3.11)

Y =
k

∑
i=1

αi · X i + S ⊙
l

∑
i=1

αsi · X i + ϵy , (3.12)

where X and Y are the covariate-adjusted expo-
sure and outcome, respectively, S is the sex (with
E(S) = 0 and Var(S) = 1), and ϵx and ϵy are
the error terms as described in Section 3.1. Sim-
ilar to the original procedure, ϵy can be split into
ϵx-dependent and -independent terms:

ϵy = (ϵy|ϵx, . . . , ϵm
x ,S ⊙ ϵx, . . . ,S ⊙ ϵn

x) + τy

=
m

∑
i=0

ri · ϵi
x + S ⊙

n

∑
i=0

rsi · ϵi
x + τy

(3.13)
The exclusion-restriction assumption requires that

IVs be independent of any confounders of the exposure-
outcome relationship, ensuring that cov(G , S) =
cov(Gβ, S) = 0, which we would anyway ex-
pect to be the case for autosomal IVs. The expo-
sure and outcome are adjusted for sex, ensuring
that cov(X , S) = 0. We further require that
cov(S ⊙ Gβ, ϵy) = 0, which is no more con-
straining than that the InSIDE assumption [71] be
verified for the full dataset, as well as within each
stratum (here sex), which is the same as would be
required to use MR in each of these settings sep-
arately. Substituting Equation 3.13 into 3.12, we
obtain
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Y =
k

∑
i=1

αi · X i + S ⊙
l

∑
i=1

αsi · X i

+
m

∑
i=0

ri · (X − Gβ)i + S ⊙
n

∑
i=0

rsi · (X − Gβ)i + τy

(3.14)

Here, the error terms (ϵx and τy) are uncorrelated
and independent of the respective explanatory vari-
ables.

Let the realizations of the random variables X ,Y ,G ,S
be denoted by x, y, G, s, observed in a sample of
size n. The parameters {β, α, r} can be estimated
by computing two ordinary least squares estimates,
first estimating β using the first equation and sub-
stituting this into the second equation:

β̂ = (G′G)−1 · G′x (3.15)(
α̂
r̂

)
= (M′M)−1 · M′y , (3.16)

where

M := [x, . . . , xk, s ⊙ x, . . . , s ⊙ xm,

1, (x − Gβ̂), . . . , (x − Gβ̂)l,

s, s ⊙ (x − Gβ̂), . . . , s ⊙ (x − Gβ̂)n]

I used a similar approach to that described in
Section 3.1 to implement this proposed extension.
The exposure and outcome variables are adjusted
for covariates as normal, independent IVs are se-
lected using the ieugwasr R package [version 0.1.5,
95], and the initial regression (Eq. 3.15) is per-
formed as previously described. For the second
regression (Eq. 3.16), all polynomial exponents up
to 10 are included, i.e. k = m = 10, and then
the least significant coefficient (αi or αsi) is itera-
tively removed until all remaining ones are signif-
icant (at a Bonferroni-corrected threshold). The
ϵx-dependent coefficients (ri and rsi) were kept up
to the highest included corresponding x-dependent
term, i.e. l := k and n := m.
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Figure 3.11: Modeling the in-
teraction directly recovers the
respective sex-specific curves (solid
lines), which are highly similar to
those obtained from stratification
(dashed). The hulls shown are those
of the interaction modeling.

I applied this method to data from the UK Biobank
using the same anthropometric traits as previ-
ously (BMI, BFP, WHR, and weight) as expo-
sures on both the continuous (Sec. 3.1) and binary
(Sec. 3.2.2) outcomes, in addition to which I added
hypothyroidism as we had previously noted sex-
specificity in the effects of obesity on it [87].

Results

The curves from this extended method closely
match those from the sex-stratified analysis (Fig. 3.11).
Where a distinction is required, I will generally re-
fer to the unadjusted exposure level as the absolute
value and the covariate-corrected value (which is
used in the modeling) as the relative value, which
is expressed relative to the sample distribution for a
given sex. Unless otherwise noted, the shape of the
sex-specific causal functions were comparable to
those of the sex-combined PolyMR (Sec. 3.1).

In most cases, the effects were altered by sex,
often resulting in a change of intensity and/or
a shift in the range of exposure values (absolute
and/or relative) over which it occurred, but usu-
ally without much alteration in the overall shape.
The differences can nevertheless be considerable.
For example, an increase in absolute BFP from
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Figure 3.12: The effects of body
fat percentage (BFP) on (A) glu-
cose levels in blood and (B) risk
of depression show very different
sex-specificity. The increase in
blood glucose from higher BFP in
men (teal, dashed) is much greater
than that inferred in women (red,
solid), whereas the effects on de-
pression were identical across the
respective sex-specific exposure
distributions (i.e. no significant
sex-interaction coefficient). The
estimated effect (y-axis) is here
shown relative to that estimated for
the sex-specific population mean
exposure.

Figure 3.13: Some inferred causal
functions showed considerable
irregularity, with many inflection
points, as shown here for the effects
of (A) BMI on the risk of depression
and (B) weight on glucose. The
inferred (sex-interacting) effect is
plotted (y-axis) as a function of the
absolute exposure value for each sex,
compared to the expected effect at
the sex-specific population mean
exposure.

7 In terms of relative exposure, this
corresponds to a shift from the 1st
percentile to the 97th percentile. For
comparison, the increase from 20% to
30% in men corresponds to a shift from
17th to 78th percentile.

20% to 30% in men increased blood glucose levels
by 0.48 mmol/L but only 0.01 mmol/L in women.
Even increasing BFP from 20% to 50% in women7

is only estimated to increase blood glucose by
0.37 mmol/L (Fig. 3.12 A).

Overall, the effects of BMI changed mostly in
intensity, where it affected PR, glucose, and risk
of diabetes and heart attack more strongly in men
but hypothyroidism more in women. Its effects
on LDL-c were shifted (in both relative and abso-
lute terms), where the effect in women occurred at
slightly higher BMI than would be expected from
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the effect in men. BMI tended to increase the risk
of depression, especially in women, though the in-
ferred model was irregular (Fig. 3.13 A).

The effects of BFP were comparable between
men and women, though usually on the relative
exposure scale. The sex-specific intensity of the ef-
fects varied with the same phenotypes as for BMI,
i.e. stronger in men for PR, glucose, diabetes, and
heart attack, weaker for hypothyroidism. Inter-
estingly, the modeling revealed no sex-specific
coefficients for the effects of BFP on depression,
with the same J-shaped association as previously
noted (Sec. 3.2.2) aligned to the relative exposure
(Fig. 3.12 B).

Modeling the effects of WHR revealed many
sex-specific coefficients, with more of a tendency
to align with the absolute exposure level, as previ-
ously shown through stratification. The effects in
women were still slightly attenuated for PR, glu-
cose, and total cholesterol, while slightly stronger
for SBP. They were shifted in DBP, lining up
more closely with the relative than absolute ex-
posures.

The effects of weight were generally compara-
ble on the relative exposure scale. The intensity
was stronger in men for the risk of heart attack
and glucose (though the model was slightly irregu-
lar, Fig. 3.13 B), but weaker for HDL-c, hypothy-
roidism, and osteoarthritis. The effects of weight
on LDL-c were close to identical on the absolute
scale. Interestingly, the effects of weight on the
risk of depression were ~zero close to the (relative)
population mean, but affected both in opposite di-
rections for higher values, increasing the risk in
women but decreasing it in men.

Discussion

Overall, the results are as expected, with the in-
teraction terms allowing sex-specific effects to be
modeled. The shape of most effects were compara-
ble between sexes but often different in magnitude
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and/or the exposure range where it occurred. In-
terestingly, sometimes the effects were similar on
an absolute exposure level (i.e. would be comparable
on untransformed, unadjusted values), while oth-
ers were more similar on the relative scale (i.e. de-
pendent on where the values lie in the sex-specific
exposure distribution).

The sex-specificity generally manifested as a dif-
ference in intensity (particularly for BMI) or rele-
vant exposure range.

In the absence of any sex-specificity of the causal
function, the method provides the exact same model
as would PolyMR on the full dataset. In the ab-
sence of any joint effect, i.e.

∀i, αi ̸= 0 =⇒ αsi ̸= 0 ,

then the result will be similar to the sex-stratified
approach. In the other cases, the shared variance
will improve the statistical power while avoiding
the misalignment that may occur when naively
adjusting for sex and allowing some sex-specific
variation in causal function shape. The ‘additional’
assumptions clarified here would be required for
any MR analysis involving possibly sex-specific
effects.
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Supplementary figures

Supplementary Figure 3.14: PCs 1–3 show similar effects on glucose levels in blood, with no effect in normal-weight individuals but
monotonic increasing effects for larger values.



4
Minor contributions

4.1 Quantifying gene by environment interactions

This manuscript [101] describes a method to quan-
tify the gene by environment interaction, largely
developed and written by Zoltán. My contribu-
tions to this are mainly the creation of a stream-
lined R package based on Zoltán’s Matlab imple-
mentation, as well as a few minor corrections and
suggestions.





5
Discussion

The aim of this thesis was to improve the charac-
terization of obesity, identify its different com-
ponents, and disentangle their specific contribu-
tions to the consequences typically attributed to
“obesity.” In the review [1], we described the cur-
rent understanding of body fat distribution, its ge-
netic basis, sexual dimorphism, and its metabolic
consequences. In the first project [87], we decom-
posed body shape into four genetically independent
components and showed that these differ in both
their genetic basis and consequences, the compar-
ison of which provided insight into the etiology
of obesity-related diseases. In the second project
(Sec. 3.1), we developed a method to approximate
non-linear causal effects and used it to show that
most anthropometric traits affect and are affected
by metabolic traits in a non-linear fashion.

In this final chapter, I provide a broader context
for the non-linearity of obesity-related effects and
considerations for the wider application of PolyMR
and similar methods to composite or binary traits.
I also discuss the impact of interactions on non-
linearity and its modeling. I conclude with some
remarks on the study of obesity from the perspec-
tive of public health.

5.0.1 Non-linear effects of composite traits

The four body PCs being constructed from the lin-
ear combination of phenotypes with non-linear
effects, it is unsurprising that most of the inferred
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causal functions were significantly non-linear. The
linear independence of these PCs with each other,
which enables the dissection of obesity-related
consequences, ensures sufficient dissimilarity be-
tween them to provide causal functions which were
often both quantitatively and qualitatively dissim-
ilar. The comparison of these differences in shape,
as well as the directionality and intensity described
in the original paper [87], can here as well provide
further insight into the specific biological mecha-
nisms underlying obesity-related consequences.

However there is one caveat in this application:
while the body PCs are (genetically) uncorrelated,
they are not statistically independent. PCA ensures
that the eigenvectors are orthogonal and the PCs
uncorrelated, but this does not imply that higher
orders of these PCs are also uncorrelated (as would
be the case if they were statistically independent).
This implies that, unlike with linear MR methods,
the effects inferred by PolyMR for each PC are not
fully independent and therefore not additive. The
orthogonality of PCs nevertheless results in causal
functions which were more dissimilar than those of
individuals obesity-related traits.

5.0.2 Obesity and disease risk

Although application of PolyMR for the infer-
ence of disease risk has not been extensively val-
idated through simulations, the causal functions
are largely as expected. In particular, the effects of
obesity-related exposures on diabetes were nearly
identical to those on glucose levels in blood, as is
expected for one of the primary biomarkers for
the disease. The near-linear effects of BMI were
somewhat unexpected, though this may be due to
covariate-dependent interactions, leading to the
flattening of the effect (see Sec. 5.1). The non-
linear effects of BFP may nevertheless contribute
to the non-linearity of the observed association be-
tween obesity and depression [102, 103].

Given that most obesity-related increases in dis-
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ease risk (tested here) were monotonic (with the
exception of BFP on depression), we can neverthe-
less expect linear causal effect estimates to correctly
assess the directionality of the effect, however its
magnitude will be misestimated for individuals
away from the population mean.

In addition to the use of binary traits as out-
comes, it would be possible to include them as ex-
posures as well. Although modeling higher order
functions of a binary trait seems pointless at first
glance, the covariate-adjusted variable included in
the model would not, in fact, be binary. This ad-
justed binary variable is essentially a measure of
the difference between the predicted disease state
and the diagnosis, which can be likened to a disease
intensity after adjusting for risk factors. For exam-
ple, early onset Alzheimer’s disease might receive
a higher covariate-adjusted value than late-onset.
The usefulness of such an approach would require
additional investigation.

5.1 Non-linear effects and interactions

The differences in sex-specificity between BMI,
WHR, and BFP illustrate the importance of more
advanced methods for causal inference and the
careful consideration of the assumptions underly-
ing not just the method but the preprocessing of
data as well. BMI is perhaps the least sex-specific in
its distribution and only the magnitude of the effect
tended to be different between sexes. Both BFP
and WHR show much greater differences in range
between men and women, but it is interesting to
note the difference in interpretation with respect to
health risks: women tend to have higher BFP with-
out this affecting their overall risk of disease (at the
population level), whereas the tendency for men to
have higher WHR leads to greater risk of adverse
health conditions.

Given the similarity between the sex-stratified
curves and those from including sex as an interact-
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1 In particular, I investigated the possible
necessity for sex-specific scaling rather
than simply adjusting. This eliminates
the statistical dependency between S and
ϵ and ensures that ∀i, cov(S , ϵi) = 0.
The relevance of this approach, the
bias it may avoid versus that which it
could introduce may require further
investigation.

2 Although sex is technically a genetic
factor, it’s definition purely based on the
sexual chromosomes makes it mathe-
matically independent of autosomal IVs,
which is equivalent for the purposes of
this extension.

ing factor, it is worth considering why we might
want to model interactions rather than simply
stratifying. There are two main advantages to the
joint modeling.

First, the use of sex as an interactor is more of a
proof of concept, where the stratification is simple
and provides us with a reference for easy compar-
ison, however this method could be extended to
continuous covariates, such as age, where strati-
fication is likely to introduce bias from arbitrary
thresholding and simply not an ideal option. In-
cluding such factors may require considering the
inclusion of higher order terms for the interactors
as well, something which was not necessary in the
case of sex.

Second, the joint modeling of the interaction
effect can provide a considerable boost in statisti-
cal power over not only the sex-stratified analysis,
but also the sex-combined one due to the issue of
mis-alignment of relative exposures with respect to
their effects on the outcome.

Although the variables were adjusted and con-
trolled where possible and steps were taken to avoid
violating MR assumptions, it is possible that some
bias from these remains. I have investigated some
more stringent variations of the method as well,1
and results suggest that even if the exact magnitude
and range of the effects are biased, the conclusion
concerning the shape and magnitude of the effect
remains relevant.

THIS EXTENSION IS IN A PRELIMINARY FORM
and may require additional investigation to en-
sure the validity of the inferences made, although
the generally-good agreement between the sex-
stratified results and the interaction modeling sug-
gests that the risk of significant bias introduced by
these modifications is minimal. The main advan-
tage of this method is that it would lend itself to the
modeling of other non-genetic2 interactors such as
age with minimal adjustments. Future extensions
could provide opportunities to model many other
complex relationships.
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3 Note that this may be a valid null
hypothesis for the societal impact of
obesity (e.g. depression), where its
perception may rely on the comparison
with others.

I described a minimal extension for the modeling
of interactions with the covariate-adjusted variables,
but a more interesting question (biologically) is
whether the absolute exposure interacts with sex
(or another interactor). This would provide two
main advantages for the PolyMR method. Firstly,
the selection/elimination of sex-specific coefficients
would use the null hypothesis equivalent to “the
absolute exposure has the same effect in both sexes”
rather than, essentially, testing whether the sex-
specificity is exactly equal to the sex-adjustment
performed based on the sample distributions.3 Sec-
ondly, we could use a likelihood ratio test to com-
pare the sex-interacting model is better than the
combined model, effectively testing the signifi-
cance of the biological interaction overall.

Another possible avenue of research would be
the inclusion of sex-specificity in the genetic ef-
fects. For example, we know that many SNPs have
a stronger effect on WHR in women [52], how-
ever in PolyMR we disregard any such specificity.
The inclusion of gene-sex interactions in the first
equation (Sec. 3.2.3, Eq. 3.11) could provide more
accurate estimation of sex-specific causal effects (or
even possibly overall effects) by reducing the bias in
the IV-exposure association (which could result in
bias in the control function term).

Many other factors are also known to affect both
obesity and its impact on health, though modeling
their interactions is not always so straightforward,
especially if they are not independent of genetics.
For example, ethnicity is well-known to be rele-
vant to obesity and its consequences [13], but pop-
ulation stratification is something we usually avoid
(with good reason) by restricting our samples to a
homogeneous population (e.g. here white British)
and adjusting for genetic PCs. Unfortunately, this
approach limits how generalizable our conclu-
sions may be (and reduces statistical power). Recent
methodological developments using generalized
mixed models have overcome this hurdle in GWAS
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4 I.e. There are comparatively many
inflection points, resulting in a less
smooth function.

[105], although it is unclear whether/how any such
information could be incorporated in PolyMR.

The inclusion of additional exposures (similar to
what is modeled in Factorial MR [76]), possibly
interacting with one another, could also prove an
interesting extension to PolyMR. In the context
of obesity, we would naturally expect many such
interactions, e.g. between BFP and body fat distri-
bution: the latter is only expected to become dele-
terious upon reaching certain levels of the former,
and investigating such interactions may provide
further insight into the etiology of obesity-related
diseases and aid in their management.

THE VIOLATION OF ASSUMPTIONS in PolyMR (or
indeed any MR-based method) can never be ex-
cluded and the risk of this increases considerably
with certain exposures/outcomes. This does not
preclude its use and the results may still be inter-
esting and informative, but their interpretation
warrants some caution. I will mainly consider two
examples to illustrate this, both of which produced
fairly irregular causal functions: the sex-interacting
effects of BMI on the risk of depression and those
of weight on glucose levels in blood (Fig. 3.13).
While the apparent irregularity4 may be exacer-
bated by the polynomial approximation of an ar-
bitrary function, there are reasons to consider the
possible violation of assumptions.

As described in the introduction (Sec. 1.1), BMI
itself is already less than ideal as an exposure. It ap-
proximates excess body mass (poorly) and depends
on total mass (lean and fat) and height. Strictly
speaking, each of these constituents acts as a con-
founder in the MR graph (Sec. 1.4, Fig. 1.3). Nev-
ertheless, if they exert concerted effects (relative to
the scale of BMI), then the interpretation remains
valid. If, however, these constituents act differently
on the outcome, as has been shown to be the case
for depression [106] (illustrated in Fig. 5.1), then
the modeled causal function will be an amalgama-
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BMI
Fat mass

Lean mass

Height

IV Depression

A. Intended model

IV BMI DepressionLean mass

Fat mass

Height

B. Underlying model

Figure 5.1: Graph of the con-
stituents of BMI and their effects
on depression (A) as intended when
using BMI as exposure for MR
and (B) the more likely underlying
model of causality. Solid arrows
represent causal effects, while dashed
lines illustrate associations.

tion of the disparate effects and is likely to result in
a multi-modal shape. This heterogeneity of effects
is reflected in the large confidence hulls shown in
Fig. 3.13. Bearing these limitations in mind, the
resulting model can nevertheless be useful and in-
terpreted qualitatively. Acknowledging that these
effects are likely affected by a combination of fat
mass and height [106], we can see that the impact is
close to monotonic increasing in women and much
weaker in men.

The “irregularity” in the weight-glucose causal
function is less severe. Excluding the behavior
of the curve at the extremes of the distribution
(where polynomial approximation may be less re-
liable), we can consider glucose to increase (near-
)monotonically with weight, which is in line with
expectations. It is worth noting that the effects in-
ferred here correspond to the lifelong impact of
genetically-predicted weight. Genetic weight is not
necessarily predictive of obesity per se (although it
is associated) and we have found it to be closer to
an overall body size, correlated with height and
all types of body mass [87]. This may reduce the
specificity of the effects detected and, even assum-
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ing they don’t directly violate MR assumptions,
would likely introduce heterogeneity in the form
of a sum of multiple, possibly non-linear and inter-
acting, effects.

This type of heterogeneity is likely due to mech-
anisms similar to what is modeled in MR-Clust
[75], where IVs are grouped according to their
MR effect estimates, under the assumption that
these represent either (1) different components of
a risk factor (e.g. lean mass, fat mass, and height
for BMI), (2) different pathways through which
the exposure affects the outcome, or (3) pleiotropic
pathways. Although all three of these scenarios vio-
late MR assumptions, the information provided by
the analysis is not useless requires care in its inter-
pretation.

“All models are wrong but some are useful.” —GEORGE BOX

5.2 Limitations of polynomial regression

We developed PolyMR as a general method for the
inference of non-linear effects through polyno-
mial regression, justifying the use of a polynomial
function by the arbitrary precision with which a
non-polynomial function could be modeled. In
real-world applications with finite data, however,
there are limitations to the precision which can be
attained with this approach. The two main limi-
tations I will consider here are the post-selection in-
ference bias mentioned in the discussion (Sec. 3.1.3)
and the global nature of the polynomial approxima-
tion.

POST-SELECTION INFERENCE BIAS is quite simple
to avoid: the model simply need be fixed before-
hand, such that only the coefficients are estimated.
This seems simple enough, however the selection
of terms to include is not trivial without observing
the data (which, again, would lead to post-selection
inference bias). A straightforward solution would
be to use a separate dataset to select the model,
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5 I use the terms exposure and outcome
in relation to its potential application for
causal inference.

however this requires more data (or equivalently
reduces statistical power by not allowing the full
dataset to be used in coefficient estimation). Model
misspecification may drastically reduce power if too
many terms are left in or introduce bias if too few
are included. The inclusion of multiple high order
terms is required to provide polynomial regres-
sion with the appropriate flexibility, particularly to
model the extremes of the exposure distribution.
This brings us to the second limitation: the model-
ing of the effect as a global function.

GLOBAL APPROXIMATION of the causal function is a
defining characteristic of polynomial regression. In
the case of PolyMR, this implies that the effect of
the exposure is expected to follow a single function
across the entire distribution. The biological valid-
ity of this is debatable in some cases (e.g. the effect
of body fat on glucose is likely different in nor-
mal weight or obese individuals) but more impor-
tantly this has consequences for the inferred model.
Specifically, the inclusion of higher order terms to
allow the model to conform to the “true” function
at one extremity of the distribution inevitably af-
fects the other end as well (and to some extent the
entire range). Although this can be corrected to an
arbitrary precision in theory, in practice this is de-
pendent on the amount of data (and the strength
of the effect) and inevitably leads to bias in the in-
ferred model.

Both of these limitations are (to some extent)
caused by the requirements and specificities of
polynomial regression as a means to approximate
the true function. There are, however, alternatives
such as spline regression which can reduce or elimi-
nate these limitations.

SPLINE REGRESSION is a well-established method,
often used for interpolation as well as approxima-
tion. In essence, it is a piecewise polynomial ap-
proach with some added constraints. The exposure5

range is subdivided into intervals by knots, essen-
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tially inflection points at which the function can
change shape The causal relationship is then ap-
proximated by a separate polynomial (usually cu-
bic) function for each interval. The value of both
functions around a knot are constrained to be equal
at that point, as are the first and second derivatives,
ensuring a continuous and smooth function. Addi-
tional constraints are often added at the extremities
of the distribution, forcing the second and third
derivatives to be zero beyond the endpoints, re-
sulting in so-called natural splines. This additional
constraint avoids unnatural sharp turns at the ends
of the distribution to fit outliers.

The use of spline instead of polynomial regres-
sion would enable the local adjustment of the func-
tion without unduly affecting the rest of the model.
Although spline regression might seem to include
more coefficients (by modeling multiple polyno-
mial functions), the added constraints reduce the
number of degrees of freedom such that complex
functions can be modeled using only 4–5 coeffi-
cients (a natural spline with k knots only has k de-
grees of freedom). This also implies that we can
avoid selecting the terms when modeling and avoid
post-selection inference bias. Preliminary tests do
indeed show differences in the extremities of the
causal function, suggesting bias introduced by the
polynomial model. Furthermore, I expect that this
approach could improve the accuracy of the in-
ferred models. For these preliminary results, I im-
plemented this method in R and included it in a sep-
arate branch of the PolyMR package on github [91].
Not requiring iterative coefficient selection, this
alternative method was also considerably faster.

5.3 Towards a more comprehensive view of obesity

The complexities of obesity are now well-recognized
and many of its aspects have been described, and
their causes and consequences continue to be in-
vestigated. The traditional scientific method of iso-
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lating individual components of the system (here
obesity) to understand its role is gradually reaching
the limits of the information it can provide. Luck-
ily, the combination of methodological advances
and the ever-increasing size of datasets now enables
the interrogation of more intricate hypotheses than
ever before.

Here I presented two such investigations: the first
employing an integrative approach which com-
bines multiple related traits to uncover the basis of
their interdependency and disentangle their specific
consequences; the second extending Mendelian
randomization to infer the non-linearity which
characterizes many consequences of obesity. I fur-
ther discussed other possible sources of complexity
in the underlying causality and supplied a proof-
of-concept approach whereby an extension to the
PolyMR method could be employed to test such
hypotheses. To conclude, I would like discuss two
topics which are central to the global obesity cri-
sis: the impact of environment on obesity and the
practical implications of scientific findings.

THE IMPACT OF THE ENVIRONMENT on the body
is undeniable and well established: obesity, or the
accumulation of excess fat mass, occurs when ex-
cessive eating and/or insufficient energy expendi-
ture result in a positive caloric balance, which is
then stored in the form of adipose tissue. While the
genetics which have occupied much of this thesis
are by no means inconsequential, it is the environ-
ment which has the dominant role in the emergence
of obesity. This is, of course, one of the reasons
obesity has become a problem worldwide, not be-
cause of a genetic change in the human population
but because our environment has changed in a way
that the human body is ill-suited to handle.

Although we have a clear idea of the basics of
how the environment can give rise to obesity, very
little is known about the specific effects of individ-
ual dietary and lifestyle choices, how they interact
with genetics to shape the body and maintain a
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healthy metabolism or, failing to do so, lead to dis-
ease. Our limited understanding of these specifics
is largely due to the challenges related to its study.
Observational analyses on the topic suffer from the
usual problems of causal inference from correlation,
compounded by strong population stratification
and weak genetic associations. Added to this, the
data that we do have available is generally from
questionnaires, which can suffer considerable bias
[107]. Experimental studies could provide more re-
liable causal inferences, however these are challeng-
ing to put in practice in humans. The required di-
et/lifestyle interventions for even short-term effects
is likely to result in low compliance of test subjects.
For example, several studies comparing the effec-
tiveness of various diets on short-term weight loss
have found that adherence to the diet was the most
important factor in determining weight loss [108].
The interventions and sample sizes which might be
required to investigate the specific effects of indi-
vidual elements would likely be unrealistic.

Solutions to some of these problems already exist
or have been proposed. Accelerometry data from
wearable devices can accurately relay a person’s
physical activity throughout the day, though the
analysis of this data remains challenging and it is
unknown whether the knowledge of the device
biases the individual’s short-term behavior (i.e.
a placebo-like effect). The use of food preference
rather than food frequency questionnaires has the
potential for greater reliability, since a person is
more likely to accurately recall their preferences
rather than their estimated consumption, and this
relates to their overall diet [107]. A possible strat-
egy for experimental approaches is to adopt var-
ious strategies which increase the probability of
compliance in interventional studies [108]. The
implementation of such approaches integrating en-
vironmental factors will be key to improving our
understanding of obesity as a whole and develop-
ing effective interventions to improve public health.
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After all, genetics may provide insight into the spe-
cific mechanisms underlying body shape and the
etiology of diseases, but it is through the environ-
ment that obesity must be addressed at the popula-
tion level.

PREVENTING OBESITY AND ITS DELETERIOUS
CONSEQUENCES is the overarching aim of the in-
tensive research on the topic and our ability to af-
fect undesirable outcomes improves with our un-
derstanding of the intricacies underlying their eti-
ology enabling a more personalized approach to
health. Or does it?

Despite the popularity of the term personalized
medicine, the adoption of meaningful changes in
clinical practice to reflect this have, so far, been
less than stellar. For example, abdominal obesity,
measured by simple waist circumference, has been
known to provide valuable information about a
person’s health risks since the 1980s [109], yet its
assessment in clinical practice is still far from stan-
dard procedure [110]. The delay between a scien-
tific finding and its application in the field is well
known [111] and efforts have been/are being made
to bridge this gap [112]. With the ever-increasing
prevalence of obesity in the population, it is criti-
cal that we not only deepen our understanding of
the complexities of obesity but expedite their trans-
lation into meaningful changes to improve public
health and healthcare.
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