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Abstract: Motility and biofilm formation are two crucial traits in the process of rhizosphere col-
onization by pseudomonads. The regulation of both traits requires a complex signaling network
that is coordinated by the AmrZ-FleQ hub. In this review, we describe the role of this hub in the
adaption to the rhizosphere. The study of the direct regulon of AmrZ and the phenotypic analyses of
an amrZ mutant in Pseudomonas ogarae F113 has shown that this protein plays a crucial role in the
regulation of several cellular functions, including motility, biofilm formation, iron homeostasis, and
bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) turnover, controlling the synthesis
of extracellular matrix components. On the other hand, FleQ is the master regulator of flagellar
synthesis in P. ogarae F113 and other pseudomonads, but its implication in the regulation of multi-
ple traits related with environmental adaption has been shown. Genomic scale studies (ChIP-Seq
and RNA-Seq) have shown that in P. ogarae F113, AmrZ and FleQ are general transcription factors
that regulate multiple traits. It has also been shown that there is a common regulon shared by the
two transcription factors. Moreover, these studies have shown that AmrZ and FleQ form a regulatory
hub that inversely regulate traits such as motility, extracellular matrix component production, and
iron homeostasis. The messenger molecule c-di-GMP plays an essential role in this hub since its
production is regulated by AmrZ and it is sensed by FleQ and required for its regulatory role. This
regulatory hub is functional both in culture and in the rhizosphere, indicating that the AmrZ-FleQ
hub is a main player of P. ogarae F113 adaption to the rhizosphere environment.

Keywords: pseudomonads; rhizosphere; environmental adaption; regulation; transcription factors;
c-di-GMP; motility; biofilm; extracellular matrix

1. The Rhizosphere and the Plant Growth Promoting Rhizobacteria (PGPR)

The term rhizosphere was first described by Lorenz Hiltner in 1904, who proposed that
the area surrounding plant roots is a region with a high microbial activity which is shaped
by the chemicals released from the roots [1]. Over the years, this first explanation has been
revised to cover all the complexity of this environment, as the rhizosphere is not a sizeable
entity and consists of biological, chemical, and physical components that can vary between
root systems. Therefore, the rhizosphere is considered the part of the soil influenced by
plant roots where soil, soil biota, and plant roots interact [2]. The rhizosphere biota includes
fungi, bacteria, protists, nematodes, and invertebrates. The biomass and its associated
activity are higher in the rhizosphere than in bulk soils [3]. Indeed, the rhizosphere is
estimated to contain nearly 107 to 108 bacterial colony-forming units (CFUs) per gram of
soil, being two orders of magnitude higher than in the surrounding soil [2,4]. Although the
rhizosphere embraces higher biomass than bulk soil, several ecological and evolutionary
processes result in a reduction of microbial diversity in the soil under the influence of the
root [4,5]. These are the plant geographical distribution, variations in abiotic and biotic
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environmental factors, selection by the plant and environmental factors, and ecological drift
that can both alter the abundance of the existent microorganisms, and also dispersal and
evolutionary change that lead to the arise of new species [5]. The strong selection exerted
by the plant on its root microbiome is mainly due to the secretion of a variety of metabolites
known as exudates. Plant-root exudates are commonly known as rhizodeposition products
and can include organic and inorganic compounds, being the organic component relevant
for the rhizosphere processes as they can be used as energy sources by microorganisms [6].
Rhizodeposition products are of high energy cost for plants, but they can derive great
benefits as they have the property to stimulate or inhibit microbial populations and their
activities [7]. For instance, the function of these compounds can be related to nutrient
acquisition, allelopathy, attraction of symbiotic partners such as rhizobia and legumes, or
promotion of beneficial microorganisms that can, in turn, prevent the presence of pathogens
or directly promote plant health such as Bacillus subtilis or Pseudomonas species [8,9]. In this
sense, soil microorganisms have an important impact on plant health and productivity [10].
For example, it is known that plants can recruit beneficial microorganisms that promote
plant growth when previous pathogens harm them, to increase the chances of survival [11].
The rhizosphere is inhabited by many microorganisms, among which bacteria are known
as rhizobacteria [12]. Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria
that can colonize the endorhizosphere, ectorhizosphere, and the rhizoplane [13,14], being
Bacillus [15] and Pseudomonas [16] the most studied PGPR genera. A PGPR can boost plant
growth in different ways that can be typically classified in biofertilization, phytostimulation,
or biocontrol mechanisms depending on whether the activity has a positive direct impact
on plant growth or indirectly by limiting the presence of potential pathogens [17,18]. The
most common mechanisms are schematized in Figure 1.

PGPRs using direct mechanisms related to the nutrition of the plant are known as
biofertilizers [18]. This process implies the facilitation of nutrient uptake from the environ-
ment. For instance, increasing iron availability for the plant due to siderophore production
by certain bacteria or phosphate solubilization due to the secretion of organic acids or phos-
phatases [19]. Direct mechanisms used by PGPRs can also impact the hormonal balance of
the plant, which can ultimately improve plant fitness. In this case, PGPRs are known as phy-
tostimulants [18]. Phytostimulation is manifested by the synthesis of compounds, mainly
phytohormones (e.g., ethylene, gibberellins, auxins, and cytokinins) [2], exopolysaccharides
(EPSs) [20], or compatible solutes (e.g., glycine, proline, betaine, or trehalose) that can help
the plant cope with abiotic stress and enhance plant growth [21]. A noteworthy example
is the PGPR production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The
enzyme ACC deaminase can regulate plant ethylene levels in the plant in response to stress
as it hydrolyzes the ACC (precursor of the phytohormone ethylene) into ammonia and
α-ketobutyrate [22]. Biocontrol takes place when PGPRs diminish or avoid the deleterious
effects of phytopathogens [17,23]. It involves the synthesis of antagonistic substances such
as antibiotics (e.g., hydrogen cyanide, or 2,4-diacetylphloroglucinol (DAPG)) [16], bacteri-
ocins [24], hydrolytic enzymes that can lyse pathogenic fungal cells [25], siderophores that
can reduce the presence of pathogens by decreasing iron availability [16,26], direct com-
petition for nutrients and niches with pathogens [27], or by triggering the plant-induced
systemic resistance (ISR) to pathogens that make uninfected parts of the plant more resistant
to pathogens as it is primed for accelerated activation of defense [28,29].
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Figure 1. Common mechanisms of plant growth-promotion by rhizobacteria (PGPR). Plants can at-
tract beneficial bacteria able to elicit the ISR or promote its growth via the production of exudates 
that bacteria can use as a carbon and energy source. Plant growth-promoting mechanisms are typi-
cally divided into biofertilization, phytostimulation, or biocontrol whether they directly promote 
plant growth by supporting plant nutrition or modifying the hormonal balance of the plant, or in-
directly prevent plant diseases by avoiding the presence of potential pathogens. Most common 
mechanisms are represented. ACC: 1-aminocyclopropane-1-carboxylate; ISR: induced systemic re-
sistance; KB: ketobutyrate. 

2. Pseudomonas as PGPR  
The genus Pseudomonas comprises Gram-negative, γ-proteobacteria and, as previ-

ously mentioned, it is among the most used PGPR in agriculture. Furthermore, it is one of 
the most diverse bacterial genera, comprising more than 200 recognized species [30–33]. 
Members of this genus are known for having a versatile metabolism [30,34] and produce 
a variety of secondary metabolites [35]. All of the above make Pseudomonas a ubiquitous 
genus found inhabiting extremely different environments, including aquatic environ-
ments, soils, the rhizosphere, and associated with several eukaryotic hosts, including 
plants but also animals [36]. For example, the phytopathogen Pseudomonas syringae has 
been linked with the water cycle as it has been found in clouds, rain, snow, lakes, and 
plants [37]. Pseudomonas species include the known human pathogen P. aeruginosa [38], 
and plant pathogens such as P. syringae [39]. Other species are also relevant as PGPR, in-
cluding P. fluorescens, P. brassicacearum, P. protegens, and P. chlororaphis [40], and certain 
strains also have applications in bioremediation [41] and industry, for the production of 
relevant compounds [42,43]. The Pseudomonas genus has been divided into different 
groups based on multilocus sequence analysis (MLSA), genome-to-genome blast distance 

Figure 1. Common mechanisms of plant growth-promotion by rhizobacteria (PGPR). Plants can
attract beneficial bacteria able to elicit the ISR or promote its growth via the production of exudates
that bacteria can use as a carbon and energy source. Plant growth-promoting mechanisms are
typically divided into biofertilization, phytostimulation, or biocontrol whether they directly promote
plant growth by supporting plant nutrition or modifying the hormonal balance of the plant, or
indirectly prevent plant diseases by avoiding the presence of potential pathogens. Most common
mechanisms are represented. ACC: 1-aminocyclopropane-1-carboxylate; ISR: induced systemic
resistance; KB: ketobutyrate.

2. Pseudomonas as PGPR

The genus Pseudomonas comprises Gram-negative, γ-proteobacteria and, as previously
mentioned, it is among the most used PGPR in agriculture. Furthermore, it is one of
the most diverse bacterial genera, comprising more than 200 recognized species [30–33].
Members of this genus are known for having a versatile metabolism [30,34] and produce
a variety of secondary metabolites [35]. All of the above make Pseudomonas a ubiquitous
genus found inhabiting extremely different environments, including aquatic environments,
soils, the rhizosphere, and associated with several eukaryotic hosts, including plants but
also animals [36]. For example, the phytopathogen Pseudomonas syringae has been linked
with the water cycle as it has been found in clouds, rain, snow, lakes, and plants [37].
Pseudomonas species include the known human pathogen P. aeruginosa [38], and plant
pathogens such as P. syringae [39]. Other species are also relevant as PGPR, including
P. fluorescens, P. brassicacearum, P. protegens, and P. chlororaphis [40], and certain strains
also have applications in bioremediation [41] and industry, for the production of relevant
compounds [42,43]. The Pseudomonas genus has been divided into different groups based
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on multilocus sequence analysis (MLSA), genome-to-genome blast distance phylogeny
(GBDP), and other phylogenomic and comparative genomic approaches [40,44,45]. Figure 2
shows a phylogenetic tree of the genus Pseudomonas, indicating the major groups. In this
genus, there are two major lineages, P. aeruginosa and P. fluorescens. Within the P. fluorescens
lineage, three large groups, also referred to as complex of species, have been identified:
P. fluorescens, P. syringae, and P. putida. In turn, the P. fluorescens complex of species has been
subdivided into several subgroups: P. fluorescens, P. gesardii, P. fragi, P. mandelii, P. jessenii,
P. koreensis, P. chlororaphis, P. protegens, and P. corrugata [40,46]. Within the Pseudomonas
genus, the P. fluorescens complex of species [40] includes species of chemoheterotrophs and
motile bacteria by means of polar flagella. They are aerobes, but some can utilize nitrate as
the final electron acceptor and most of the strains can use it as a nitrogen source [47]. Certain
subgroups in the P. fluorescens complex such as P. fluorescens, P. koreensis, P. brassicacearum,
P. protegens, and P. chlororaphis have been typically related with PGPR traits mainly due
to their ability to suppress plant diseases [16,40,47–51] but also for directly stimulating
plant growth. For instance, they can boost plant nutrition through inorganic phosphate
solubilization [52]; increase iron availability due to siderophore production when this
element is scarce [53], being the pyoverdine the most common, a yellow-green fluorescent
pigment that gave these bacteria the name [54]; enhance root development through the
synthesis of phytohormone-like compounds such as auxins [55]; modification of the plant
hormonal balance by the production of ACC deaminase [56], and production of antibiotics
and antifungals such as DAPG [48,57] or hydrogen cyanide [58].

Pseudomonas ogarae F113 [59] (henceforth F113), was isolated from the sugar beet
(Beta vulgaris) rhizosphere in Ireland [60]. It is able to colonize a wide variety of staple
plants such as tomato (Lycopersicum esculentum), potato (Solanum tuberosum), pea (Pisum
sativum), alfalfa (Medicago sativa), wheat (Triticum aestivum), strawberry (Fragaria vesca),
maize (Zea mays), the model plant Arabidopsis thaliana, and willow trees [57,61–73], and it is
considered a model for rhizosphere colonization [65,70,74]. F113 genome consists of a sin-
gle circular chromosome and expands over 6.8 Mbp, with an average GC content of 60.8%,
and 5862 protein-coding genes, and belongs to the P. corrugata subgroup, together with its
closest relatives P. brassicacearum and P. kilonensis [75]. The genome of F113 encodes several
features related to its PGP ability, including ACC deaminase, the siderophore pyoverdine
that increases iron solubility and limits the proliferation of other microorganisms [16,26],
secondary metabolites such as hydrogen cyanide or DAPG, and a large number of secretory
systems [75,76], important for inter-bacterial competition [77]. Furthermore, the genome
of this bacterium contains the gene gcd encoding a glucose dehydrogenase (Gdc), and the
pqqE and pqqB genes which are part of the cluster encoding the pyrroloquinoline carrier
and biosynthetic proteins, respectively. Gdc and Pqq were shown to be involved in the
solubilization of Ca3(PO4)2 that can increase phosphate bioavailability for the plant [52].
Moreover, the F113 genome encodes around 50 proteins involved in denitrification, being
able to grow anaerobically using nitrate and nitrite as electron acceptors [76,78], a pro-
cess that has been associated with rhizosphere competence in P. fluorescens rhizosphere
isolates [79]. F113 biocontrol properties are mostly facilitated by DAPG production [60]
that have been shown to protect against several phytopathogens, such as Pythium ultimum-
mediated damping-off of sugar beet [80,81], Pectobacterium caratovorum-mediated soft rot of
potato [62], the potato cyst nematode Globodera rostochiensis [62], Fusarium oxysporum, the
cause of Fusarium wilt in sugar beet [80] and tomato [71], and Phytophthora cactorum, the
cause of root rot in strawberry [71].
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of certain metabolic activities [84] and the production of an extracellular matrix [85]. The 
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to subpopulations with different life states [83]. 

In the rhizosphere environment, PGPRs must compete with the rest of the microor-
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Figure 2. Phylogenetic tree of the Pseudomonas genus. Tree inferred by MLSA analysis. The P. flu-
orescens “complex” includes the subgroups P. protegens, P. chlororaphis, P. corrugata, P. koreensis,
P. jessenii, P. mandelii, P. fragi, P. gessardii, and P. fluorescens. From Garrido-Sanz et al., 2016 [40].

3. Bacterial Lifestyles and Rhizosphere Colonization: Traits Involved in
Rhizosphere Colonization

Bacteria can live in a free-swimming state, known as planktonic, or they can be sessile
and adhere to surfaces. Planktonic cells can be found in water films in different envi-
ronments remaining in suspension like colloidal particles. They can also be transported
over considerable distances due to water currents induced by fluid dynamic forces, or
they can actively move using bacterial appendages such as flagella. In response to certain
stimuli, bacteria can switch from a planktonic state to a sessile one. There are different
physicochemical mechanisms known to mediate this lifestyle switch: deposition of bac-
terial cells when they are transported near a solid surface due to lift and frictional forces,
sedimentation of cell–cell or cell–particle aggregates, chemotactic responses towards the
surfaces due to a nutrient gradient, Brownian motion of the bacteria close to a surface,
long-range forces such as attraction or repulsion to the solid–liquid interface or charged
substratum surfaces, short-range forces by the linking of extracellular polymers in the cell
surface to a substratum surface, and thermodynamics processes [82]. As a consequence
of this transition, cells experience physiological and phenotypic changes [83], such as
the slowdown of certain metabolic activities [84] and the production of an extracellular
matrix [85]. The transition is not strictly homogeneous, and there are phenotypic variation
events that lead to subpopulations with different life states [83].

In the rhizosphere environment, PGPRs must compete with the rest of the microor-
ganisms for nutrients, rhizodeposits, and space [86]. Most of the PGPR activities, such as
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antibiosis, ISR, or niche exclusion, depend on the bacterial ability to colonize and persist
in the root system [27,87,88]. Therefore, increasing the knowledge about the mechanisms
underlying a successful colonization, competitiveness with other indigenous populations,
and persistence in the rhizosphere is essential for PGPR application. Likewise, bacterial
competence to colonize and survive in the rhizosphere relies mainly on motility, chemo-
taxis, attachment, growth, and stress resistance [89]. Specifically, in Pseudomonas, there are
multiple factors linked with rhizosphere colonization. Many of them are common to all
pseudomonads, such as motility, secretion systems, metabolic adaption, nutrient uptake,
EPS synthesis, and biofilm formation [50,86]. However, different bacteria can use very
distinct strategies for rhizosphere colonization.

Regarding F113, the fact that non-motile or reduced-motility mutants are impaired in
competitive colonization of the rhizosphere [61,90] and that hypermotile derivatives can
be isolated from the rhizosphere [74], highlights the importance of motility in the process.
This bacterium does not form typical mature biofilms in the rhizoplane but rather micro-
colonies [65,70]. Furthermore, certain mutants impaired in biofilm formation on abiotic
surfaces do not display a deficiency in rhizosphere competitive colonization [70]. Another
essential determinant of rhizosphere colonization in Pseudomonas is the phase variation pro-
cess, which implies a genetic diversification of subpopulations that allows drastic phenotypic
variations via small genetic changes that enhance bacterial adaption [91]. Phase variation has
been shown as an important trait for rhizophere colonization by F113 [92,93].

In the last decade, the use of omics has greatly increased the knowledge about the
important determinants during rhizosphere colonization [94–96]. Attempts to set the gene
map or functional categories associated with root colonization revealed the importance
of motility, defense, fimbrial low-molecular weight protein (Flp) pilus assembly, iron
homeostasis, Type Three Secretion Systems and Type Six Secretion Systems (T6SSs) as
major determinants in addition to the categories mentioned above [97–99]. Additionally,
Arruda et al. (2019) created a synthetic microbial community with the ability to promote
growth in maize plants to elucidate traits associated with successful colonization [100,101].
This work demonstrated that the typical PGPR traits did not appear as determinants of
robust colonization, whereas the ability to acquire and transport nutrients such as sugars,
organic acids, and amino acids, and produce EPSs were shown as essential for the successful
colonization of plants.

4. Motility

Motility provides an advantage to bacteria as they can seek out favorable environments
in terms of nutrients or avoid the presence of toxins [102]. Bacterial motility can occur on
surfaces or in liquids. Swimming motility is the movement of individual bacteria in liquid
or low-viscosity environments (below 0.3% agar concentration, in which movement is ap-
preciated as concentric haloes), powered by flagella rotation. On the other hand, bacterial
surface motility allows colonization of surfaces and can be distinguished into swarming,
twitching, gliding, and sliding [103]. Surface motility is controlled at a physical level via
appendages and motors, but it is also influenced by environmental factors [104]. Swarming
is a rapid multicellular movement that is powered by flagellar rotation, increase in the
number of flagella, cell–cell interactions, and morphological differentiation produced on
liquid layers or semisolid surfaces (between 0.5–2% agar concentration) and generally, the
movement is observed as a dendritic pattern [103,104]. In this type of motility, surfactants
such as rhamnolipids in P. aeruginosa are often produced [105]. Twitching is a type IV
pili-mediated surface motility along solid or semisolid surfaces under humid conditions.
Type IVa, IVb, and IVb tight adherence (Tad) pili are involved in the assembly of the pilus,
extension, attachment to surfaces, and retraction of cells allowing movement [106]. On
the other hand, gliding is mediated by surface proteins on top of semisolid agar [107].
Lastly, sliding requires no appendages or cellular components; instead, it is a translocation
produced by the expansive forces during growth and special properties in the bacterial
surfaces or self-produced substances that reduce the friction with the substrate surface [103];
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for instance, P. syringae pv. tomato can slide by producing syringafactin [108]. All the types
of motility except gliding have been observed in the Pseudomonas genus [104]. Pseudomon-
ads can respond to chemical gradients in the environment either using polar flagella or
type IV pili coupled to a chemosensory system known as chemotaxis [109]. For a suitable
plant–bacteria interaction, the free-living bacteria must actively reach the plant roots in a
movement mediated by the flagellum and chemotaxis, which has been demonstrated both
in vitro and in microcosm experiments in the soil [110,111]. Non-motile mutants or mutants
affected in chemotaxis are amongst the most severely impaired Pseudomonas rhizosphere
competitive colonization mutants [87,89,90,112], and are also affected in the plant growth
promotion and biocontrol abilities [71,87]. Finally, the fact that variants isolated from the
rhizosphere are hypermotile and display an enhanced colonization ability emphasizes the
importance of motility during the F113 rhizosphere colonization process [74].

Flagella are rotating, rigid helical proteinaceous filaments protruding from the cell
surface that drive cells through liquids or surfaces. As previously described, flagellum-
dependent movements allow a single bacterium to swim in liquids or bacterial clusters to
swarm on surfaces [113,114]. When coupled with a chemotaxis system, swimming motility
enables the bacterium to actively evade non-favorable environments and seek out more
advantageous conditions resulting in a survival benefit [115]. Flagella are also required
for other functions such as community aggregation as they are relevant for measuring
environmental conditions (e.g., viscosity, wetness), turning them into a key factor in
propagation [116] and virulence (Feldmann et al., 1998). Bacterial flagella transform the
movement of ions (H+ and Na+) across the cell membrane into a mechanical torque to
move the bacterial cell through its environment [117]. Flagella synthesis is tightly regulated
and entails several regulatory pathways in response to environmental signals, guided
by the master regulator FleQ in pseudomonads [90,118,119]. In addition to FleQ, the
alternative sigma factors FliA (σ28) and RpoN (σ54) are needed for the assembly and
flagellin expression [119].

Pseudomonads can produce single or multiple flagella in one pole of the cells and
sometimes in a subpolar position. In the genome of F113, two regions of 61 kb and 7.7 kb in
length, were identified for their participation in the synthesis of the main flagellar apparatus,
which consists of one or two polar flagella with a length ranging from 2 to 4 µm [92].
Flagellar synthesis was studied by Capdevila et al. (2004) in this bacterium and has shown
that mutants affected in fleQ and other flagellar structural genes render in no flagellin
production giving rise to non-flagellated bacteria. These mutants are non-motile and were
displaced by the wild-type strain in competitive root colonization experiments [90]. In
addition to the polar flagella, a 41 kb cluster, forming a genetic island, was found in the
genome of F113 containing 45 genes encoding proteins involved in the production of a
second flagellar apparatus [76,120]. This second flagellum is highly peculiar as it is only
found in a few other Pseudomonas strains, mostly belonging to the P. fluorescens complex
of species. The genes are homologous and exhibit synteny to the ones encoding flagella
in Azotobacter vinelandii and Enterobacteria. The encoding proteins form a tuft of polar
flagella that are not produced under laboratory conditions but can be observed in bacteria
recovered from the rhizosphere. This second flagellum increases the motility ability and is
important for rhizosphere competitive colonization [120].

In P. ogarae F113, several independent pathways regulate motility and the second mes-
senger bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an important
role in motility repression [121,122]. This messenger was already described as responsible
for the switching between motility and biofilm formation, among other functions [123].
Low levels of this molecule are associated with a motile lifestyle and high levels with
biofilm formation [124]. In F113, the environmental regulation of motility is conducted
at three main levels: the synthesis of the first and second flagellar apparatus and flagella
rotation. The main regulatory pathways for motility in F113 are summarized in Figure 3
and will be further described.
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The synthesis of the primary polar flagellum in F113 is controlled by two membrane
proteins, GacS and AdrA [122]. In response to unidentified signals, GacS phosphorylates
GacA, which is a positive transcriptional regulator of the small RNAs, rsmX, rsmY, and
rsmZ, which in turn can titrate RsmA and RsmE proteins that usually are blocking the
translation of specific messenger RNAs, such as the sigma factor AlgU [125]. When the
GacA/S two-component system is active, the RsmA and RsmE proteins are recruited by
the sRNAs allowing AlgU translation [125,126]. Consequently, when AlgU is translated, it
activates the transcription of amrZ, which in turn, repress fleQ, the gene encoding the master
flagellar regulator FleQ [125,127,128]. AdrA is a membrane-bound diguanylate cyclase
(DGC) that produces the messenger molecule c-di-GMP, which is sensed by the SadB
protein [122]. SadB then activates the transcription of the gene encoding the AlgU sigma
factor [125]. Therefore, the GacS/GacA pathway and the AdrA/SadB pathway converge in
AlgU to regulate the synthesis of flagellar components. As stated before, the expression
of fleQ in F113 is negatively regulated by AmrZ [125], which is a protein identified as a
regulator of c-di-GMP levels by controlling the transcription of genes encoding most of
the DGCs in F113 [128]. In this same work, several AmrZ-regulated c-di-GMP-related
proteins with a putative role in swimming motility were identified, namely, DipA, GcbA,
and the previously mentioned AdrA. The second flagellar apparatus encoded by F113
genome is cryptic under laboratory conditions and is differentially regulated from the
main polar flagellum. The master regulator of this flagellum is FlhDC. The regulatory
cascade displayed by the second flagellar apparatus in this bacterium is very similar to the
one observed in Enterobacteria and A. vinelandii. The kinase KinB, the adenylate cyclase
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CyaA, and the cyclic 3′-5′ adenosine phosphate (c-AMP) binding protein Vfr control the
master regulator flhDC [120], but their mechanisms remain elusive. Although in other
pseudomonads, Vfr was shown to regulate the expression of fleQ [129], in the case of
F113, Vfr is only implicated in the regulation of the second flagellar apparatus [120,125].
In this bacterium, AlgU is a negative regulator for the synthesis of the second flagellar
apparatus acting over KinB [120]. On the other hand, AmrZ downregulates the expression
of flhDC [127]. Interestingly, the production of the primary flagellum is necessary to produce
the second one [120].

In F113, c-di-GMP is not only implicated in flagella filament synthesis, as described
before. This secondary messenger also controls the flagellar function [71,121]. In F113, there
is a PilZ domain-containing protein named FlgZ which is involved in c-di-GMP sensing.
FlgZ subcellular localization depends on the intracellular levels of this second messenger,
which modulates flagellar rotation likely acting as a clutch [130]. Moreover, Wsp is a
chemotaxis-like system whose output protein, WspR, is a DGC involved in the synthesis of
c-di-GMP that negatively regulates motility, and positively regulates biofilm formation on
abiotic surfaces independently of FleQ in this bacterium [70,121]. The pool of c-di-GMP,
produced by the activity of the DGCs, WspR, and SadC, or the phosphodiesterase (PDE)
BifA, is sensed by the PilZ domain of FlgZ.

5. Chemotaxis

Chemotaxis allows bacteria to move towards or avoid different environmental signals
to ensure beneficial growth conditions [131]. It is a behavior present in movements driven
by flagella: swimming and swarming. Chemotaxis is also a highly energetically expen-
sive process due to the requirement of ATP hydrolysis [132] and the flagellar export and
assembly apparatus. Chemotaxis is a crucial mechanism for rhizosphere colonization and
plant–bacteria interactions allowing bacteria to move towards the plant [133]. Furthermore,
chemotaxis pathways are especially abundant in plant-interacting bacteria compared to
bacteria of other niches [131]. It has been demonstrated that the motile but non-chemotactic
P. fluorescens WCS365 is severely impaired in rhizosphere colonization [112]. Similarly,
mutants of P. fluorescens Pf0-1 in genes encoding chemoreceptor proteins involved in
recognizing amino acids or organic acids [134,135] are affected in rhizosphere coloniza-
tion. The chemotaxis cascade resembles a peculiar form of a two-component signaling
process. It starts with the recognition of environmental stimuli in the form of chemical
gradients (chemo effectors) [131] or changes in the internal energetic conditions such as
redox potential [136]. These stimuli are recognized by chemoreceptors, known as methyl-
accepting chemotaxis proteins (MCPs) found in the membrane, and that transduce the
signal [131]. The MCPs form a ternary complex with the histidine kinase CheA and the
adaptor CheW. When the MCP recognizes the external signal, CheA suffers an autophos-
phorylation process and transphosphorylates the response regulator CheY, which controls
flagella rotation [131]. Unlike other pseudomonads, P. ogarae F113 encodes three complete
and functional chemotactic systems that are not interchangeable: Che1, Che2, and Che3.
Che1 is required for chemotactic motility, being necessary for swimming motility in aerobic
and anaerobic conditions. Che3 is required for chemotaxis under anaerobic conditions.
Che2 plays a secondary role in chemotaxis. However, the three systems are required for
competitive rhizosphere motility, being the mutant affecting Che1 the most impaired [78].
Aside from the Che system, F113 presents two additional chemotaxis-related systems: the
Wsp system mentioned earlier [70,121] and the Chp system, located close to the pil genes
and thus, with a putative role in twitching motility [76].

6. Microcolony and Biofilm Formation: The Extracellular Matrix (ECM)

The first formal definition of biofilm was established in the late 1990s as “a structured
community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to
an inert or living surface” [137,138]. Bacteria can adhere to natural or artificial surfaces or
themselves, forming biofilms structured by single- or multi-species [139]. Biofilm formation
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is a protected mode of growth that provides multiple advantages, offering a niche for
individuals to establish social interactions such as competition or act as a group with
cooperative behavior, commonly using water channels present inside the biofilm structure
to exchange nutrients and genetic material. Cells in biofilms also can increase the chances
of survival in hostile environments and colonize new niches by dispersal [139,140].

In plant–bacteria interactions, root exudates act as a chemoattractant for bacteria that
can attach to the root surface and form microcolonies. Microcolonies can, eventually and
in certain strains, grow into larger mature biofilms that contain several layers of cells
encased in an extracellular matrix (ECM) or a polymer layer produced as a defensive
mechanism by the colonized host [140]. Although F113 is able to form biofilms on inorganic
materials, during alfalfa rhizosphere colonization, F113 forms microcolonies encased in
a polymeric sheath likely produced by the plant [70]. Generally, bacteria inhabiting the
rhizoplane are considered to form biofilms [141] regardless if they form microcolonies or
mature biofilms. In the case of F113, it has been shown than the loss of biofilm forming
ability does not impair rhizosphere competitive colonization. Both microcolonies and
biofilms could be embedded in an ECM, composed of a complex mix of extracellular
polymeric substances [142] including: polysaccharides, nucleic acids (extracellular DNA
(eDNA) and extracellular RNA), proteins, lipids, and lipoproteins, although the structure
and composition of the biofilms can strongly differ between species and environmental
conditions [139,142,143]. The ECM composition of model biofilm-forming bacteria is
represented in Figure 4. Over the years, several emerging properties and functions, like its
role in protecting free-living cells, persistence, collective behavior, stimulation or prevention
of biofilm formation, signaling, cell migration, genetic exchange, ion reservoirs, virulence
and microbial tolerance have been attributed to it, and are extensively reviewed in Dragoš
and Kovács (2017) [144].

The ECM promotes bacterial adhesion to surfaces, often through adhesin–receptor
interaction and mechanosensory appendages such as flagella. Once attached, further ECM
production surrounds the cells, keeping them in proximity and allowing intercellular in-
teractions (cell–cell cohesion), and being constantly remodeled with different components
in each stage. A diverse array of biomolecules secreted to the ECM has been identified
and are classified according to their localization (cell surface-associated or extracellularly
secreted) [142,145]. Furthermore, the secreted polymeric substances mostly include EPSs
such as alginate, proteins, nucleic acids, and lipopolysaccharides (LPSs) with a role in
scaffolding and other specialized functions [142,144]. Different species of the genus Pseu-
domonas produce different ECM components. Regarding exopolysaccharides, some like
alginate, are present in almost every species of pseudomonads, while others, such as Psl,
poly-N-acetyl-glucosamine (PNAG) or cellulose are present only in a subset of species [146].
P. ogarae F113 encodes in its genome the genes required to produce alginate, PNAG, the
Pseudomonas acidic polysaccharide (Pap), and levan. Pap is produced by a limited number
of strains, mostly within the Pseudomonas fluorescens complex of species. Many of this
species are plant-associated, suggesting a role for this exopolysaccharide in rhizosphere
adaption [146]. Regarding extracellular proteins, F113 harbor genes to produce the adhesins
LapA and MapA, the large extracellular protein PsmE, the tight adhesion pili Tad, and the
functional amyloid proteins Fap. Interestingly, both Tad and Fap proteins are different from
their P. aeruginosa counterparts, and seem to have co-evolved with the exopolysaccharide
Pap, being therefore also associated with a plant environment [146].
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Biofilm formation, the opposed lifestyle to motility, is also tightly regulated. Indeed,
the mechanisms that regulate both processes are highly interlinked [147]. There are sev-
eral factors that influence biofilm formation and dispersion, and different mechanisms by
which cells respond to environmental signals. Typical biofilm regulation in Pseudomonas
implies quorum sensing, c-di-GMP signaling, and sRNAs through the Gac/Rsm path-
way [148]. However, P. ogarae F113 does not have a known quorum sensing signaling
system. The Gac/Rsm pathway is also relevant for biofilm formation in several pseu-
domonads, including F113 [70,71,74,125,149]. As described for the regulation of motility,
GacA/GacS post-transcriptionally regulate AlgU through small RNAs. AlgU is a positive
regulator of AmrZ that ultimately represses the expression of fleQ. AmrZ is involved in
the transcriptional activation of DGCs and repression of PDEs [128] that could ultimately
influence flagellar synthesis or function and the ECM composition in this bacterium. Al-
though flagellar-driven motility is the opposed lifestyle to biofilm formation, the role of
flagella is indispensable for biofilm formation, especially during the initial step of attach-
ment [150]. When intracellular levels of c-di-GMP are high, FleQ is also involved in the
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expression of biofilm-related genes and attachment [151–153]. The regulation by c-di-GMP
is already present in the first step of biofilm formation, during the initial attachment, due
to its interaction with FleQ and FlgZ. FleQ bound to c-di-GMP changes its conformation
with important consequences in adherence and finally, biofilm formation [151], as it has
been shown to repress or activate biofilm formation from the same promoter regions de-
pending on the levels of this second messenger in P. aeruginosa [151–154]. Likewise, the
FlgZ-c-di-GMP complex, which modulates flagellar function, can alter the initial bacterial
attachment [130]. Moreover, the c-di-GMP produced by AdrA/SadB, SadC, the Wsp sys-
tem, and BifA, also play a key role in the regulation of biofilm formation in this bacterium
and other pseudomonads [70,121,122,130,149]. The role of c-di-GMP in biofilm formation
in pseudomonads has been repeatedly demonstrated. To date, many components of the
ECM in several pseudomonads are known to be transcriptionally or post-transcriptionally
regulated by c-di-GMP. For example, the LapD protein can sense c-di-GMP and mediates
the stability of the important surface adhesin LapA in P. putida and P. fluorescens [155,156].
Similarly, biofilm dispersal is mediated by LapG, also subjected to c-di-GMP control via
the PDEs BifA in P. putida and RapA in P. fluorescens [157,158]. A connection between the
c-di-GMP and Gac/Rsm signaling pathways has been demonstrated to control biofilm
formation through SadC in P. aeruginosa [159] and with quorum sensing via RsmA and
RsmE in P. fluorescens 2P24 [160]. Therefore, the interlink between the different pathways is
also essential for proper biofilm development.

7. Regulation of Rhizosphere Adaption: The AmrZ-FleQ Hub

Efficient rhizosphere colonization depends on bacterial regulation in response to en-
vironmental changes. Aside from the role of the nucleotide messenger c-di-GMP as an
integrator of external and internal signals with drastic consequences in bacterial behavior
and adaption, transcription factors (TFs) also play a major contribution in the regulation
of lifestyle transition in pseudomonads. TFs have been found mainly associated with
repression of genes (29.4%), but a considerable number of them can activate and/or repress
gene expression (23.9%) and are less common than the TFs that only act as activators
(18.1%) [161]. TFs are more abundant in free-living organisms in contrast with pathogenic,
extremophilic, or intracellular organisms. The reason is that more complex environments re-
quire larger genomes and a tight regulation that allow bacteria to rapidly sense and respond
to environmental changes [162,163]. These proteins have been grouped into more than
30 families in prokaryotes, but the majority belong to five major families: LysR, TetR/AcrR,
GntR, OmpR, and AraC/XylS [161]. However, the roles of most TFs in prokaryotic organ-
isms remain largely unknown. Within the Pseudomonas genus, a recent work identifying
DNA-binding motifs for 100 predicted TFs in P. syringae revealed the existence of a group
of master TFs that are involved in multiple important pathways, and a few master TFs
involved in other processes such as c-di-GMP turnover, bacterial motility, biofilm formation,
siderophore production, and reactive oxygen species [164]. Although there are numerous
TFs with key implications in adaption to the rhizosphere environment, research in the last
years outlined the role of the global regulator AmrZ and the flagellar master regulator FleQ
as a central hub for environmental adaption in pseudomonads.

8. AmrZ

AmrZ is a DNA-binding protein from the ribbon–helix–helix (RHH) protein super-
family that belongs to the AraC family of TFs and is conserved across pseudomonads [165].
AmrZ is composed of a flexible N-terminus, a DNA-binding RHH domain, and a C-terminal
tetramerization domain. RHH proteins bind to DNA via recognition of nucleotide sequence
by an antiparallel β-sheet and the insertion of an α-helix into the DNA major groove
that allows β-sheet binding [166]. It has been demonstrated that AmrZ is a global and
bi-functional regulator of gene expression in P. aeruginosa, regulating several important
processes such as virulence, motility, EPS synthesis, and c-di-GMP metabolism [167]. AmrZ
is controlled by the extra-cytoplasmatic function sigma factor AlgU [168] and is known
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for being responsible for alginate biosynthesis led by algD [169–172]. However, a role of
this TF in the regulation of other extracellular matrix components aside from alginate has
also been demonstrated over the years, such as Psl (negative regulation) and Pel (posi-
tive regulation) polysaccharides [167,172–175]. AmrZ is also involved in the repression
of flagellum biosynthesis, swimming, and swarming motilities in P. aeruginosa as AmrZ
is a transcriptional repressor of the master flagellar regulator FleQ [175–177]. Moreover,
AmrZ has been shown to repress the type IV pili-driven twitching motility by inhibiting
the expression of pilin (PilA) in P. aeruginosa mucoid and non-mucoid strains [178], and
influencing its proper surface localization [179]. In addition, AmrZ can be a repressor or
activator of several virulence-related genes in this bacterium [167,180,181]. For instance,
it is a direct transcriptional regulator of T6SSs, positively influencing H1- and H3-T6SSs
and negatively controlling the H2-T6SS [167,182]. Additionally, AmrZ plays a role in the
metabolism of the second messenger c-di-GMP. In P. aeruginosa, mutants in amrZ display
elevated levels of c-di-GMP compared with the wild-type strain [167,175], mainly due to
the DGC GcbA [167,174,175]. Interestingly, AmrZ has opposite effects in P. syringae pv.
tomato DC3000, in which it functions as a positive regulator of flagellar synthesis, algi-
nate [183], swarming motility and virulence in tomato plants [184], whereas it is a negative
regulator of cellulose production [183,184]. It is also a positive regulator of motility in
P. stutzeri [185]. Similarly, in P. putida KT2440, AmrZ is also a negative regulator of the
Pea polysaccharide synthesis [186]. Taken together this information, it has become clear
that AmrZ has different behaviors in different Pseudomonas species. This plasticity was the
object of study by Baltrus et al. (2018) and led to the observation of a functional switch
that took place at least twice independently across the Pseudomonas genus as far as motility
regulation [185].

In P. ogarae F113, the model of regulation for AmrZ is more similar to the one observed
in P. aeruginosa concerning motility, but has differences in other cellular processes. The first
studies described AmrZ as a negative regulator of fleQ and swimming motility [125]. Later,
Martínez-Granero et al. (2014b) carried out a chromatin immunoprecipitation sequencing
(ChIP-Seq) analysis of AmrZ in this bacterium showing that this protein is a global regulator
able to bind to DNA in multiple promoter regions. These regions affect hundreds of genes
related to motility and chemotaxis, regulation, and signal transduction, including a great
amount of c-di-GMP metabolic enzymes and iron homeostasis, among others. Furthermore,
in this study, gene expression analyses showed that AmrZ is mostly a negative regulator
of motility and iron homeostasis. These findings suggest an important role of AmrZ in
rhizosphere environmental sensing and adaption [127]. Another study of the F113 AmrZ
regulon by using RNA-Seq approach and phenotypic analysis of an amrZ mutant [128],
showed that this mutant presents a hypermotile phenotype caused by overproduction
of flagellar components [125,128], reduced production of c-di-GMP, different colony mor-
phology and dye-binding ability, reduced biofilm formation, and a dramatically impaired
rhizosphere competitive colonization ability [128], albeit hypermotility phenotypes were
previously shown as advantageous during rhizosphere colonization [70].

One of the main differences between the amrZ mutants in F113 and P. aeruginosa PAO1
is the c-di-GMP levels. Whereas amrZ mutants in P. aeruginosa PAO1 accumulate high
levels of this molecule, the mutants in F113 have drastically reduced levels of the second
messenger [128,167]. RNA-Seq analysis of the amrZ mutant in F113 also showed that AmrZ
is a transcriptional regulator of most DGCs and PDEs encoded in this bacterium [128].
Many of these genes had been previously identified as direct regulatory targets in the
ChIP-Seq assay [127]. Further analysis of these AmrZ-regulated genes has shown that most
of the phenotypes of the amrZ mutant on motility, ECM components, and biofilm formation,
were due to the low levels of c-di-GMP and could be reverted by ectopic production of
c-di-GMP [187]. Interestingly, c-di-GMP did not complement the phenotype of impaired
rhizosphere colonization, since the amrZ mutant with ectopic production of c-di-GMP was
even more impaired in competitive colonization [187].
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Jones et al. (2014) proposed that the function of AmrZ as an activator or repressor
mostly depends on the location of the DNA-binding site. According to their findings, AmrZ
acts as a repressor when bound near the transcriptional start site of genes [167]. A few years
later, Xu et al. (2016) also found that AmrZ requires multiple binding sites to function mainly
due to the creation of higher-order DNA-AmrZ complexes, as occurs with the algD promoter
in which four binding sites are necessary [172]. More recently, Xu et al. (2020) further found
multiple binding sites in the pilA promoter region. AmrZ also works as a transcriptional
repressor by binding to two sites upstream of its own promoter [171]. This finding is
consistent with the fact that AmrZ binds DNA as a dimer of dimers, suggesting it interacts
with its targets as oligomers and most likely as tetramers [166,172]. A conceivable scenario
is that when AmrZ tetramers are bound to four binding sites, the oligomers can interact
through the bent DNA, resulting in a proximity between two DNA ends [172]. Another
finding in this sense showed that the C-terminal of AmrZ is necessary for tetramerization,
binding, and function [188]. In the last decade, the consensus binding sequence for AmrZ
has been described and appears to be conserved among pseudomonads [127,167,180,181].

9. FleQ

FleQ has long been known as a TF belonging to the NtrC family of σN-dependent
promoter activators, and is the master regulator of flagellar synthesis in pseudomon-
ads [118,119,189] as described earlier. The FleQ protein contains an N-terminal REC do-
main, a central AAA+ domain with ATPase activity, and the ability to bind the RpoN factor
(σ54). Its C-terminal is a helix–turn–helix DNA-binding domain [118,153,190]. The mode of
action for this TF is by activation of the RNA polymerase in concert with the alternate sigma
factor RpoN due to its ATPase activity [118]. Its function also relies on direct interactions
with FleN, another ATPase that acts as an antagonist [191]. FleQ in solution is found as a
dimer, trimer, tetramer, and hexamer [153,190]. As demonstrated in P. aeruginosa, FleQ is
the first TF known for its ability to bind c-di-GMP. FleQ does not possess a PilZ domain,
but c-di-GMP can interact with the central AAA+ ATP-binding site domain, acting as a
competitive inhibitor with much higher affinity compared with ATP, and thus inhibiting
its ATPase activity [151,190,192] and making it a c-di-GMP effector [151,154,190,193]. The
current accepted model of action is that c-di-GMP binding to FleQ results in an obstruction
of its active site, hexameric ring destabilization, quaternary structure reorganization, and
allosteric ATPase inhibition [153].

In the last decades, the known roles of FleQ have expanded. In P. fluorescens Pf0-1,
the fleQ homolog (adnA) encodes a transcriptional factor that controls persistence and
spread in soil, bacterial adhesion, and motility [194–196]. In P. aeruginosa, FleQ also was
identified as a regulator of Pel and Psl polysaccharides, and CdrA adhesin expression and
virulence [151,153,154,197]. Indeed, FleQ can regulate gene expression independently of
RpoN, as occurs with biofilm-related genes, such as pel and cdrA in P. aeruginosa [154,197].
Moreover, FleQ has a double function in the regulation of Pel, as an activator or repressor
independently of its ATPase activity [151,153,154]. These observations were also evident
in P. putida strains KT2440 and KT2442, in which a mutant in fleQ is impaired in flagellar
synthesis and biofilm formation, and FleQ has been associated with regulation of syn-
thesis of ECM components such as LapA and EPSs, T6SS, and some c-di-GMP-related
genes [193,198–201]. The interplay with c-di-GMP has also been observed in P. putida
and P. fluorescens SBW25 in which FleQ is a transcriptional activator under high c-di-GMP
conditions of the bcs and wss operons necessary for the cellulose synthesis [198,199,201–203].
Additionally, in P. syringae pv. tomato DC3000, a fleQ mutant is non-motile, displays altered
surface spreading on semisolid agar, overproduces the biosurfactant syringafactin, has
increased cellulose expression under low c-di-GMP conditions and decreased when the
levels of this molecule are high, and it is also altered in virulence [108,184]. In the case of
P. ogarae F113, ChIP and RNA-Seq assays have demonstrated the role of FleQ as a global
regulator [204,205]. This role is observed both under laboratory cultivation and during
rhizosphere colonization [204]. Many of the genes and traits regulated by FleQ in other
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pseudomonads, such as flagellar synthesis, lapA, alginate production, and the T6SS, are also
regulated by FleQ in F113. In the case of motility, fleQ genes from P. putida and P. ogarae
are functionally equivalent [205]. In F113 and KT2440, FleQ has been shown to regulate
genes implicated in iron homeostasis, ECM component production, biofilm production,
and c-di-GMP turnover, among others.

10. The AmrZ-FleQ Hub

There is an interplay between AmrZ and FleQ. These two TFs share a large part of
their regulons. In F113, at least 45 genes are regulated by both TFs, generally in opposite
ways [205]. This contrasting function is also observed during rhizosphere colonization [204].
Furthermore, AmrZ is a negative regulator of fleQ [127] and FleQ is a negative regulator of
amrZ [205]. Based on these results, a model has been proposed (Figure 5). According to
this model, AmrZ and FleQ form a regulatory hub which controls environmental adaption
genes in opposites ways: AmrZ positively controls iron homeostasis and exopolysaccharide
production genes, and negatively controls motility-related genes. FleQ positively controls
motility genes and negatively controls exopolysaccharide-related genes and iron homeosta-
sis. The messenger molecule c-di-GMP plays a crucial role in this hub since its production
is activated by AmrZ and its sensing by FleQ is necessary for its regulatory activity.
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AmrZ and FleQ regulate traits related to environmental adaption, such as biofilm for-
mation, motility, chemotaxis, denitrification, and c-di-GMP turnover. Many of these genes 
are regulated in an opposite way by both transcriptional regulators. In this sense, AmrZ 

Figure 5. AmrZ and FleQ form a central hub for environmental adaption in Pseudomonas ogarae
F113. Proposed model of the AmrZ and FleQ interplay in the regulation of traits implicated in
environmental adaption. According to this model, AmrZ and FleQ form an oscillator by their
mutual transcriptional repression. AmrZ activates EPSs production genes and represses motility
and iron homeostasis genes. Conversely, FleQ acts as an activator of motility and expression of iron
homeostasis genes and as a repressor of EPSs genes. The second messenger c-di-GMP participates
in this circuit since AmrZ activates the expression of diguanylate cyclases and FleQ transcriptional
regulation is modulated by c-di-GMP binding.

The regulatory role of AmrZ and FleQ in F113 during rhizosphere colonization has
been studied by RNA-Seq [204]. It is interesting to note that rhizosphere colonization is the
main driver of the F113 transcriptome, showing more influence than the effect of the growth
stage (exponential vs. stationary). Under rhizosphere colonization conditions, AmrZ and
FleQ regulate traits related to environmental adaption, such as biofilm formation, motility,
chemotaxis, denitrification, and c-di-GMP turnover. Many of these genes are regulated
in an opposite way by both transcriptional regulators. In this sense, AmrZ appears as an
activator of genes implicated in biofilm formation while FleQ act as a repressor of these
genes. Similar regulation occurs with denitrification genes, c-di-GMP turnover genes, and
chemotaxis genes, which are positively regulated by FleQ and negatively by AmrZ. AmrZ
and FleQ also regulate the T6SS in the rhizosphere. P. ogarae F113 harbors three T6SSs, and
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at least two of them, F1 and F3, are functional for bacterial killing [206]. Transcriptomic data
has shown that in the rhizosphere, AmrZ and FleQ act as negative and positive regulators,
respectively, for F1-T6SS and F3-T6SS. It is interesting to note that a mutant affecting
these two T6SSs is impaired in adaption and persistence in the rhizosphere microbiome,
highlighting its relevance for the adaption to the rhizosphere niche.

11. Concluding Remarks

Rhizosphere colonization is the main lifestyle of Pseudomonas ogarae F113 and other plant-
associated pseudomonads. Research has shown that many traits, such as motility, biofilm
and microcolony formation, iron scavenging and protein secretion systems, among others,
are important for adaption to the rhizosphere environment. It has also been shown that
the messenger molecule c-di-GMP and the transcriptional factors AmrZ and FleQ regulate
many of these traits in a coordinated manner, forming a regulatory hub that works like an
oscillator, which regulates rhizosphere adaption traits in an opposite mode. Future research
in this field will identify novel genes implicated in the environmental regulation of motility.
It will also clarify the role of individual components of extracellular matrix components in
biofilm formation and their role in rhizosphere colonization. The role of specific proteins
and/or polysaccharides in attachment to biotic surfaces for rhizoplane colonization will also
contribute to our knowledge of bacterial adaption to the rhizosphere environment.
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