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ABSTRACT  32	

Purpose: The goal of this study was to explore the effect of lifelong aerobic exercise (i.e. 33	

chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] 34	

and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-35	

trained master athletes (OA) compared to non-competitive recreational younger (YA) athletes 36	

matched by frequency and mode of training.  37	

Methods: Thirteen OA (64.8±4.9 yo) exercising ≥ 5 times/week were compared to 14 YA 38	

(27.8±4.9 yo) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase 39	

(SDH) and capillarization were measured by immunohistochemistry in vastus lateralis 40	

biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before 41	

and after an insulin clamp and during a cycle ergometer graded maximal test.   42	

Results: V̇O2peak was lower in OA than YA. OA had greater IMTG in all fiber types and 43	

lower glycogen stores than YA. This was reflected in greater proportion of type I and less 44	

type II fibers in OA. Type I fibers were similar in size, while type II fibers were smaller in 45	

OA compared to YA. Both groups had similar SDH content. Numbers of capillaries per fiber 46	

were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and 47	

insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in 48	

OA, but no differences in substrate use were observed during submaximal exercise. At peak 49	

exercise, CHO-ox was lower in OA but with similar Fat-ox.  50	

Conclusion: Lifelong exercise is associated with higher IMTG content in all muscle fibers and 51	

higher metabolic efficiency during exercise that are not explained by differences in muscle 52	

fibers types and other muscle characteristics when comparing older to younger athletes 53	

matched by exercise mode and frequency.   54	
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INTRODUCTION  58	

Aging is associated with a decline in physical capacity and modifications of muscle 59	

phenotype (34) leading to increased overall morbidity and risk for development of 60	

cardiometabolic diseases. Aerobic training interventions suggest that aged skeletal muscle 61	

remains malleable to sustain the functional and metabolic demands of exercise (6) 62	

demonstrated by a shift towards higher content of type I fibers and relative decrease in type 63	

IIx fibers (29), increased fiber cross sectional area (22), enhanced oxidative capacity (39), 64	

capillary angiogenesis (35) and elevated glycogen stores (33). Further, we have previously 65	

demonstrated that chronic aerobic training in older adults increases intramyocellular 66	

triglyceride (IMTG) stores (9) and reliance on fat metabolism (2) during exercise. 67	

Despite the growing body of literature demonstrating alterations in skeletal muscle 68	

substrate content and capacity for oxidation in previously sedentary subjects, few studies have 69	

compared chronic aerobic training adaptations in young and old athletes. Current evidence 70	

supports the notion that being physically active throughout a person’s life (lifelong) protects 71	

oxidative fiber number and size, as well as mitochondrial function when compared to younger 72	

trained (39) and older sedentary (1, 45) subjects. These retained muscle adaptations to 73	

exercise seem to provide functional benefits such as improved balance, gait speed and ability 74	

to get up from a chair (45), which in turn are likely to improve quality of life and reduce risk 75	

of falling. Yet, the impact of lifelong aerobic training on skeletal muscle metabolism within 76	

the context of whole-body substrate oxidation and insulin sensitivity is still largely unknown.  77	

The primary goal of this study was to determine skeletal muscle substrate storage and 78	

capacity for oxidation, as well as exercise metabolic efficiency in older masters athletes and 79	

younger subjects matched by frequency and mode of training. A secondary goal was to 80	

determine if differences in skeletal muscle substrate storage was associated with differences 81	

in substrate oxidation under different physiological conditions. We hypothesized that despite 82	
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lower peak aerobic capacity in older master athletes, lifelong aerobic training in this group 83	

would result in similar skeletal muscle substrate storage compared to the younger athletes 84	

matched by exercise mode and frequency, as well as similar oxidative capacity, metabolic 85	

efficiency and substrate oxidation under same physiological conditions. 86	

 87	

METHODS 88	

Subjects 89	

Fourteen younger (age 18-39) and 13 older (age 60-75) endurance-trained athletes were 90	

recruited for this cross-sectional comparison. To be included, older women and men were 91	

training 5 or more structured aerobic exercise sessions per week either in running, cycling, 92	

swimming, or aerobic dancing (fitness classes). Younger athletes were non-competitive 93	

recreational athletes matched by frequency and mode of training with at least 3 years of 94	

uninterrupted (>3 months) training. Habitual physical activity was self-reported and discussed 95	

during the screening visit medical interview, including exercise mode, frequency and training 96	

years. All subjects were in general good health, non-smokers, weight stable and training 97	

stable for the last 6 months. The University of Pittsburgh Institutional review board approved 98	

the protocol and all volunteers gave written consent.   99	

Body composition 100	

Total body fat-free (FFM), fat mass (FM) and percent body fat were measured by dual-101	

emission X-ray absorptiometry (Lunar Prodigy; GE Healthcare, Milwaukee, MI).  102	

Physical fitness 103	

V̇O2peak was assessed by a graded exercise test on an electronically braked cycle ergometer 104	

(Excalibur, Lode B.V., Groningen, The Netherlands) in conjunction with indirect calorimetry 105	

(Moxus, AEI Technologies, Pittsburgh, PA). The initial workload was set depending on the 106	

sex and age of the individual (50 W for younger and older women, 75 W for older men, 100 107	
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W for younger men) for the first 2 minutes and then increased by 50 W (men) or 25 W 108	

(women) every 2 minutes thereafter until volitional exhaustion or one of the established 109	

criteria for V̇O2peak had been reached (38). Heart rate, blood pressure, and ECG were 110	

recorded before, during and immediately after this test.  111	

Skeletal muscle biopsies 112	

Percutaneous muscle biopsies were obtained from the vastus lateralis as described previously 113	

(1). Subjects were asked to refrain from exercise in the last 48 hours before the biopsy. 114	

Subjects were admitted to the Clinical and Translational Research Center (CTRC) in the 115	

evening and received a standard dinner (7.5 kcal·kg-1 of body weight, 50% carbohydrate, 30% 116	

fat and 20% protein). The biopsy was performed the following morning at 7 AM after an 117	

overnight fast. Samples were trimmed of all visible adipose tissue with a dissecting 118	

microscope (Leica EZ4, Leica Microsystems, Wetzlar, Germany) and blotted dry. The muscle 119	

specimen was mounted on a small piece of cork with mounting medium, placed in liquid 120	

nitrogen cooled isopentane and then placed into liquid nitrogen. All samples were stored at -121	

80 degrees Celsius until analysis.  122	

Immunohistochemistry  123	

Histochemichal analyses were performed on 10 µm serial sections using methods previously 124	

described (9). IMTG content was determined by Oil Red O (ORO) and fiber type costain (1) 125	

allowing fiber specific IMTG measurements and cross sectional area. Succinate 126	

dehydrogenase (SDH, complex II of the electron transport chain) staining was used as a 127	

marker of oxidative capacity (40). Glycogen content was measured using a standard Shiffs 128	

reagent protocol (23). Capillary density was determined as previously described (9). Capillary 129	

density was computed as total number of capillaries per cross sectional area of tissue 130	

(capillaries/area). The number of fibers in the cross sectional area of tissue is reported as the 131	

ratio fiber/area and the number of capillaries per fiber as the ratio capillaries/fiber.  132	
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Whole body substrate oxidation and exercise efficiency 133	

Indirect calorimetry was used to measure V̇O2 and V̇CO2 under three physiological 134	

conditions: 1) in the fasted state between 6 and 7 AM (prior to the biopsy described above), 2) 135	

in the post-prandial state at the end of an hyperinsulinemic euglycemic clamp, and 3) during 136	

the graded exercise test described above. Systemic rates of fat oxidation (Fat-ox) and 137	

carbohydrate (CHO-ox) were calculated using the adapted stoichiometric equations of Frayn 138	

(13): 139	

  Fat-ox (mg/min) = 1.67 V̇O2(ml/min) – 1.67 V̇CO2(ml/min)  140	

  CHO-ox (mg/min) = 4.55 V̇CO2(ml/min) – 3.21 V̇O2(ml/min)  141	

To compute the proportion of energy expended from carbohydrates or fat, Fat-ox and 142	

CHO-ox were transformed in kilocalories per minute and expressed as a proportion of resting 143	

energy derived from fat or carbohydrates as used previously (2). Protein oxidation rates were 144	

not included based on our laboratory’s prior work demonstrating that rates of urinary nitrogen 145	

excretion were similar in different body phenotypes during resting conditions (19) and on the 146	

assumption that the amount of protein oxidized, as well as other metabolic processes, such as 147	

gluconeogenesis from protein, ketone body formation, and lipogenesis during exercise, are 148	

quantitatively negligible compared with glucose and fatty acid oxidation (37). 149	

To account for possible aging and sex biases, all physiological data were normalized 150	

to FFM. Glucose uptake (glucose oxidase, [YSI, Yellow Springs, Colorado]) and plasma 151	

insulin (ELIZA, [Millipore, Billerica, MA]) were used to calculate insulin sensitivity 152	

(mg·kgFFM-1·min-1·unit insulin-1) during the steady state of the clamp.  153	

During the graded exercise test, metabolic efficiency was measured as delta efficiency 154	

in percent for each consecutive stages as the difference in watts divided by the difference in 155	

V̇O2 (14). This was performed for each submaximal stage using the average V̇O2 for the last 156	

30 seconds of each stage. Further, to obtain overall delta efficiency (Δη), linear regressions 157	
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were drawn for each subject using all the submaximal stages. The average slopes and 158	

intercepts for each group were used to define the relationship V̇O2= b Ẇ+ a, where b is the 159	

slope and a the intercept. The inverse of the slope 1/ b =ΔẆ/ΔV̇O2 is Δη (12). 160	

Statistical Procedures  161	

 Subject characteristics are presented as means ± SD, all other data are presented as 162	

means ± SEM. After checking normality and equality of variance, two tailed independent t-163	

tests were performed to examine group differences. If the equality of variance assumption was 164	

not met, comparisons between groups were performed with the Welch corrected t-test. If the 165	

normality assumption was not met, comparisons between groups were performed with the 166	

non-parametric Median test. For substrate oxidation comparisons in fasted and fed conditions, 167	

2x2 mixed MANOVA were performed. For substrate use during the graded exercise test, 168	

repeated mixed MANOVA were used with group X time. When needed pair-wise post hoc 169	

analyses were used to identify the significant difference. 170	

 171	

RESULTS 172	

Subject characteristics 173	

Subject characteristics are presented in Table 1. Training years were between ~ 35-40 years 174	

for the older masters athletes and 5-13 years for younger subjects. FFM, FM and percent body 175	

fat were not different between age groups. Younger athletes had a higher V̇O2peak than older 176	

athletes with a magnitude of ~25% when expressed relative to FFM. Self reported activities 177	

were on average 6 sessions/week with running as the most common physical activity (62%), 178	

followed by biking (23%), brisk walking and aerobic fitness classes (both 8%). In addition of 179	

their main exercise mode, cross-training and seasonal activities included skiing, golfing and 180	

swimming.  181	

 182	
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Skeletal muscle lipid storage is greater in older compared to younger endurance-trained 183	

athletes 184	

Chronic aerobic training increases skeletal muscle substrate storage in young and old 185	

previously sedentary subjects. Yet the effects of lifelong aerobic training on skeletal muscle 186	

adaptations are largely unknown. Older athletes had higher content of IMTG in each fiber 187	

type measured (Figure 1, Panel A), as well as overall greater content of IMTG. Glycogen 188	

content (Figure 1, Panel B) was higher in young athletes compared to old, while no 189	

differences in SDH (Figure 1, Panel C) were noted.  190	

 191	

Oxidative fibers are higher in older compared to younger endurance-trained athletes 192	

Older athletes had higher proportion of type I fibers and lower type IIa fibers than younger 193	

athletes (Figure 2, Panel A). The proportion of type IIx fibers was not different between 194	

groups. Mean area of type I fibers was similar in both groups, while younger athletes had 195	

larger IIa and IIx fiber area (Figure 2, Panel B). These data suggest that lifelong physical 196	

activity may not prevent the proposed age related decline in type II fiber area (31). 197	

 198	

Capillary density is lower in older compared to younger endurance-trained athletes 199	

As skeletal muscle capillary density is affected by aging and type 2 diabetes (21) and is 200	

associated with oxidative capacity (9), we next determined if capillary density was associated 201	

with the observed differences in oxidative fibers. While the number of capillaries per fiber 202	

was higher in the younger (Figure 3, Panel A) athletes, capillary density relative to muscle 203	

area was higher in the older athletes (Figure 3, Panel B). These data suggest that the decline in 204	

capillary density associated with sedentary aging (21) is attenuated with lifelong aerobic 205	

exercise. 206	

 207	
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Metabolic flexibility and insulin sensitivity are similar in older compared to younger 208	

endurance-trained athletes 209	

Given the observed differences in skeletal muscle substrate composition and capacity for 210	

oxidation, we next examined whether or not these differences translated into changes in 211	

whole-body substrate oxidation and insulin sensitivity. Older athletes had higher resting 212	

energy expenditure in fasting condition, while younger athletes had higher energy expenditure 213	

in postprandial condition (Figure 4, Panel A, significant interaction P=0.01). The proportion 214	

of substrate use during both states was comparable in both groups (Figure 4, panel B). 215	

Metabolic flexibility, originally defined by the overall change in RQ from fasting to 216	

postprandial (28) was similar in both groups (Figure 4, Panel C, insulin effect P<0.0001). 217	

Insulin stimulated glucose uptake was similar in younger and older athletes (Figure 4, Panel 218	

D), with no differences in non-oxidative and oxidative disposal. Together these data suggest 219	

that lifelong endurance training protects older adults from declines in metabolic flexibility 220	

and insulin sensitivity. Moreover, relative fat- and carbohydrate-oxidation rates for basal and 221	

insulin-stimulated substrate use under non-exercising conditions are maintained throughout 222	

the lifespan with aerobic exercise.  223	

 224	

Exercise metabolic efficiency is enhanced in older compared to younger endurance-trained 225	

athletes  226	

We previously demonstrated that exercise training resulted in improved skeletal muscle 227	

oxidative capacity (9) and exercise efficiency (2) in previously sedentary older adults. Based 228	

on the differences in peak aerobic capacity and substrate storage in older athletes, we next 229	

calculated exercise metabolic efficiency during a graded exercise test. Older athletes had 230	

higher exercise metabolic efficiency compared to younger athletes (Δη of 9.03±0.32 and 231	

8.03±0.26%, P=0.02). Regression curves for each group, including slope and intercept are 232	
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presented in Figure 5, Panel A (P=0.02 [older] and P=0.13 [younger]). Stage by stage delta 233	

efficiency is presented in Figure 5, Panel B (2x5 MANOVA not significant, point by point 234	

independent T tests are presented in the figure).  235	

 236	

Peak exercise carbohydrate oxidation rates are lower in older compared to younger 237	

endurance-trained athletes  238	

 At higher relative intensities, younger athletes had greater rates of carbohydrate 239	

oxidation compared to older (Figure 6 Panel A). No differences in fat oxidation where 240	

observed (Figure 6 Panel B). To account for the possible changes in the size of the 241	

bicarbonate pool during maximal exercise, CHO and fat oxidation rates were also computed 242	

with the modified equations proposed by Jeukendrup et al. (26) adapted for intensity of the 243	

exercise (different equations for RER < or > 1). These confirmed exact same significant 244	

differences between Y and O at peak exercise and during the stage by stage analyses  (data 245	

not shown). Together these data suggest that the observed increase in IMTG and oxidative 246	

fibers may contribute to the enhanced exercise metabolic efficiency. Further, these data 247	

support the notion that younger endurance trained athletes are better suited for higher 248	

intensity exercise as evidenced by the higher rates of peak carbohydrate oxidation. 249	

 250	

DISCUSSION 251	

 The overall goal of this study was to investigate chronic aerobic exercise training on 252	

skeletal muscle substrate adaptations, as well as systemic oxidation in young and older 253	

endurance trained subjects. To achieve this goal we examined skeletal muscle phenotypes, as 254	

well as whole-body substrate utilization using indirect calorimetry in two cohorts of subjects 255	

with similar endurance training regimens. We found that, despite lower peak aerobic capacity, 256	

lifelong master athletes have higher intramyocellular triglyceride (IMTG) and proportion of 257	
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oxidative fibers compared to younger athletes. These differences were reflected in enhanced 258	

exercise metabolic efficiency with lower reliance on carbohydrate oxidation during exercise 259	

in the older subjects (at higher intensities). Together the data suggest that lifelong aerobic 260	

exercise, not only attenuates the age associated decreases in muscle oxidative potential, but 261	

also provides older endurance-trained subjects with an enhanced capacity for fatty acid 262	

oxidation.  263	

Age-induced increases in intramyocellular lipids have been observed in previous 264	

human studies. Under sedentary conditions, this phenomenon is associated with a decline in 265	

muscle mass and strength (8, 16), as well as decreased insulin action (36). While decreases in 266	

muscle mass, fiber cross sectional area, and shifts in fiber type composition may explain, in 267	

part, intramyocellular lipid deposition in sedentary conditions (8, 18), this is not the case for 268	

the chronically trained older individuals in the current study. We have previously exposed that 269	

the “athlete’s paradox” observed in younger endurance trained athletes (17) was also present 270	

in older endurance trained athletes compared to sedentary controls (1). A key novel finding in 271	

the present study is that older endurance trained athletes have greater lipid, yet lower 272	

carbohydrate stores, compared to younger athletes with similar training regimens. While 273	

aging per se has been associated with increased lipid uptake (44), chronic exercise training 274	

increases factors associated with IMTG turnover (i.e. storage and lipolysis) (1). We 275	

hypothesize that the combination of these age- and exercise-related alterations in IMTG 276	

turnover likely mediates, in part, the increased IMTG in this cohort. Proteins involved in 277	

IMTG storage are elevated in exercise-trained muscle (1, 4, 10) (amati, diabetes, 2011; dube, 278	

diabetologia 2011, Bergman, JAP, 2010). Additional studies are needed to investigate 279	

whether these, or other mechanisms for the increased IMTG storage, are altered in older 280	

endurance athletes. 281	
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In contrast to higher IMTG levels, older subjects demonstrated lower muscle glycogen 282	

stores compared to younger subjects. Although controversial, there is a suggestion that 283	

glycolytic activity (5), as well as type II fiber proportion and size(discussed below) may be 284	

reduced with aging. However, aerobic exercise training in previously sedentary older adults 285	

has been demonstrated to increase muscle glycogen content (9). Possible explanations to the 286	

lower glycogen content in older trained subjects is that younger endurance athletes may 287	

engage in relatively more frequent high-intensities and/or that younger athletes may have 288	

altered post-exercise carbohydrate consumption relative to older athletes, thus providing the 289	

necessary stimulus for enhanced glycogen storage (25). Nevertheless, lower glycogen content 290	

in our older athletes did not contribute to alterations in basal or insulin-stimulated rates of 291	

substrate oxidation. Rather, the functional relevance was only observed at maximal intensity 292	

exercise. These data support the notion that lifelong endurance training may better position 293	

older athletes for moderate intensity activities with relative higher fat oxidation, while young 294	

athletes may be positioned for high intensity exercise (i.e. higher glycogen). Thus the capacity 295	

for moderate high fat oxidation activity may be enhanced with lifelong endurance training. 296	

Based on our novel demonstration of increased lipid stores with lifelong exercise 297	

training, we next examined the potential mechanisms associated with this phenomenon. While 298	

several studies have suggested that aging results in the atrophy of type II fibers (20, 39), with 299	

a relative increase of the area occupied by type I fibers (30), this is not without controversy. 300	

Our data suggest that lifelong exercise training is accompanied by a shift toward greater slow 301	

oxidative fibers with no change in the overall size of these fibers (45). Interestingly, not only 302	

was the relative percentage of glycolytic fibers decreased in older trained subjects, the mean 303	

area was also decreased. These data suggest that if an aging decrease in glycolytic fibers 304	

occurs, perhaps exercise training promotes a compensatory increase in oxidative fibers. This 305	

new harmony between type I and type II fibers observed in the aging and trained muscle may 306	
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explain, at least in part, the distinction in substrate stores between older and younger muscle 307	

of endurance trained athletes witnessed in this study.  308	

 Previous studies have demonstrated that, while master athletes have significantly 309	

higher peak fitness levels compared to sedentary age-matched controls (41), the age-related 310	

decline in fitness persists despite continuous training. Thus, as expected, V̇O2peak, both 311	

absolute and adjusted to fat free mass, was higher in younger than older athletes. Peak fitness 312	

may be limited by two key peripheral factors, capillarization (3, 24) and mitochondrial 313	

capacity (3). While capillary density, relative to the number of fibers, was lower in older 314	

trained subjects, adjusting the data to the lower number and cross sectional area of glycolytic 315	

fibers suggests that capillary density is not different between the cohorts (7). This 316	

interpretation is in accord with previous studies that found similar adaptations in 317	

capillarization between older and younger adults undergoing an exercise intervention (15, 35). 318	

With respect to mitochondria, it has been reported that mitochondrial respiration (21), 319	

mitochondrial biogenesis (32), and perhaps oxidative capacity and energy production decline 320	

with aging. However, it’s generally accepted that aerobic exercise training, in both older (9) 321	

and younger (11) previously sedentary subjects, results in enhanced mitochondrial  oxidative 322	

capacity. In agreement with data from Proctor et al. (39), we did not observe any differences 323	

in mitochondrial capacity between the cohorts in this study. Thus, the difference in V̇O2peak 324	

observed in our younger and older athletes seems to be explained mostly by the central 325	

component. This is in agreement with previous studies suggesting that peripheral factors play 326	

an important role in the elderly in the response to endurance exercise training (33). Together 327	

our data suggest that while lifelong exercise training may not prevent the age-associated loss 328	

of skeletal muscle capillarization, the overall capacity for substrate oxidation, as well as 329	

overall fitness is enhanced relative to sedentary subjects regardless of age (1). 330	
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 Based on our demonstration of enhanced lipid stores and similar capacity for 331	

oxidation, we next examined whole-body substrate utilization under different physiological 332	

conditions. Previous studies have reported age-related declines in the capacity of skeletal 333	

muscle to oxidize fat in the fasting state and during exercise (42, 44). In this study, higher 334	

energy expenditure at rest was not associated with differences in substrate selection in the 335	

older athletes. These data are in stark contrast to previous reports from sedentary subjects (27) 336	

demonstrating a significant reduction in resting energy expenditure in older subjects adjusted 337	

for fat free mass. We speculate that the increased basal energy expenditure may be due to the 338	

modest but not significant BMI and gender difference between the groups (see bellow). 339	

Nevertheless, our data clearly indicate the lifelong training preserves basal energy expenditure, 340	

as well as rates of both fat and carbohydrate oxidation in the basal and insulin-stimulated 341	

conditions. Thus, lifelong exercise training preserves metabolic flexibility and substrate 342	

selection with aging.  343	

During exercise, both groups used similar sources of nutrients for energy for 344	

submaximal stages, but not for maximal intensity where the younger burned significantly 345	

more carbohydrates. These data are in agreement with our demonstration of greater muscle 346	

glycogen content in younger subjects. Intervention studies have concluded that previously 347	

sedentary older subjects undergoing endurance exercise interventions of 16 weeks were able 348	

to improve their reliance of fat during a one hour submaximal exercise (2, 43), thus our data 349	

may be explained by the maintenance of substrate oxidation in older athletes as well as by the 350	

shift towards type I fibers.  Interestingly in our cohort, the higher muscle efficiency observed 351	

in the older athletes during the graded exercise test cannot be explained by different substrate 352	

use during exercise, but may be influenced by the greater number of capillaries per fibers and 353	

the higher proportion of type I fibers (2). Together these data suggest that lifelong aerobic 354	
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exercise preserves, or perhaps enhances, resting exercise expenditure, as well as metabolic 355	

flexibility and substrate oxidation under physiological conditions. 356	

 This study is not without limitations. First, training regimens (frequency, mode) were 357	

self-reported. However, our data are in accord with previous reports of overall fitness and 358	

body composition in older and younger athletes (7, 39). Although we attempted to include 359	

equal numbers of males and females, males represent 50% in the younger group and 69% in 360	

the older group. While the chi-square test for sampling distribution was not significant, this 361	

discrepancy may influence some of the results. We believe that if so, this would have been in 362	

disfavor of the older group as women have relative lower exercise capacity and higher insulin 363	

sensitivity than men and thus, if the gender balance was important, we would have probably 364	

seen unequal insulin sensitivity and markers of oxidative capacity between our two groups.  365	

 In summary, the results of the present study demonstrate that lifelong endurance 366	

training results in increased skeletal muscle lipid stores and shift toward greater numbers of 367	

oxidative fibers. Despite lower glycogen and glycolytic fiber content in older endurance 368	

trained subjects, exercise metabolic efficiency was enhanced and substrate selection was 369	

comparable to younger trained subjects. We conclude that these physiological adaptations to 370	

chronic aerobic training in older subjects may place them in an optimal position for moderate 371	

high-fat oxidation activity. Moreover, these data provide further evidence against triglyceride-372	

mediated impairments in metabolic function. Conversely, the demonstration of higher muscle 373	

glycogen content in younger subjects supports the notion of a higher capacity for high-374	

intensity training, supported by enhanced carbohydrate oxidation observed in this study. Our 375	

studies raise further questions on lifelong adaptations to exercise in terms of increased 376	

efficiency without modifying the balance between sources of substrate oxidation. 377	

Additionally, these data further emphasize the importance of chronic exercise throughout life 378	

to attenuate the deleterious effects of aging and sedentary lifestyle. 379	
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FIGURE LEGENDS 528	

Figure 1: Skeletal muscle fiber type proportion (panel A) and cross sectional area (panel 529	

B) in younger and older athletes. MHC= myosin heavy chain. *P<0.05 **P<0.001 two 530	

tailed independent t-test.  531	

 532	

Figure 2: Intramyocellular triglycerides (panel A), glycogen (panel B) and SDH content 533	

(panel C) in younger and older athletes.  MHC= myosin heavy chain, A.U.= arbitrary units. 534	

*P<0.05 **P<0.001  two tailed independent t-test.  535	

 536	

Figure 3: Skeletal muscle capillary density: Number of capillaries per fiber (panel A), 537	

number of fibers per area and capillaries per area (panel B). **P<0.001 two tailed 538	

independent t-test, §<0.05 non parametric Median test. 539	

 540	

Figure 4: Energy expenditure (panel A) and substrate use at rest in the fasted and post-541	

prandial phase (panel B), metabolic flexibility (panel C) and insulin-stimulated glucose 542	

uptake (panel D). FFM=fat free mass, RQ=respiratory quotient, CHO=carbohydrate. 543	

*Significant interaction effect,  **Significant effect of time in 2x2 mixed MANOVA.  544	

 545	

Figure 5: Delta efficiency during graded exercise test in older and younger endurance 546	

trained athletes. Panel A represents the regression lines defining oxygen uptake as a function 547	

of power output. The insert is the magnification of the origin of the axis (box). *Significant 548	

difference on the slope but not on the intercept. Panel B is delta efficiency between 549	

consecutive stages. Panel C represents substrate use at peak. Panel D is substrate use stage by 550	

stage. CHO=carbohydrate. *P<0.05, #=0.09 two tailed independent t-test. 551	

 552	
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Figure 5:  Substrate use during graded exercise test in older and younger endurance 553	

trained athletes. Panel A represents carbohydrate and fat oxidation as a function of relative 554	

intensity of peak oxygen consumption. Panel B is the magnification of the fat oxidation data. 555	

*P<0.05 two tailed independent t-test, #=0.08 in Panel A and 0.06 in Panel B. 556	

 557	
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