
 

  

 

 
 

 

Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript
Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but does not include the final publisher
proof-corrections or journal pagination.

Published in final edited form as:

Title: Effective plots to assess bias and precision in method comparison

studies.

Authors: Taffé P

Journal: Statistical methods in medical research

Year: 2018 Jun

Issue: 27

Volume: 6

Pages: 1650-1660

DOI: 10.1177/0962280216666667

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains
an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

http://dx.doi.org/10.1177/0962280216666667


1 

 

 

 

Effective plots to assess bias and precision in method comparison studies 
 

 

 

 

Patrick Taffé 
 

Institute for Social and Preventive Medicine, University of Lausanne, Switzerland 

Patrick.Taffe@chuv.ch 

 

 

Abstract 
Bland and Altman’s limits of agreement (LoA) have traditionally been used in clinical 

research to assess the agreement between different methods of measurement for quantitative 

variables. However, when the variances of the measurement errors of the two methods are 

different, Bland and Altman’s plot may be misleading; there are settings where the regression 

line shows an upward or a downward trend but there is no bias or a zero slope and there is a 

bias. 

Therefore, the goal of this paper is to clearly illustrate why and when does a bias arise, 

particularly when heteroscedastic measurement errors are expected, and propose two new 

plots, the “bias plot” and the “precision plot”, to help the investigator visually and clinically 

appraise the performance of the new method. These plots do not have the above-mentioned 

defect and still are easy to interpret, in the spirit of Bland and Altman’s LoA. 

To achieve this goal we rely on the modeling framework recently developed by Nawarathna 

and Choudhary, which allows the measurement errors to be heteroscedastic and depend on the 

underlying latent trait. Their estimation procedure, however, is complex and rather daunting 

to implement. We have, therefore, developed a new estimation procedure, which is much 

simpler to implement and, yet, performs very well, as illustrated by our simulations. 

The methodology requires several measurements with the reference standard and possibly 

only one with the new method for each individual. 
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1 Introduction 

Bland and Altman’s limits of agreement (LoA) have traditionally been used in clinical 

research to assess the agreement between different methods of measurement for quantitative 

variables.1 Typically, the investigator wishes to assess a new cheaper or simpler method of 

measurement against the established reference standard. For that purpose he disposes of one 

or several measurements by each method on every subject in the study. Then, Bland and 

Altman’s LoA are computed by ±  1.96 times the estimated standard deviation of the 
differences and a scatter plot of the differences versus the mean of the two variables with the 

LoA superimposed is used to visually appraise the degree of agreement and quantify the 

magnitude. Often, a regression of the differences versus the mean is added to the plot to 

enhance its reading and assess the direction of the bias.2 

When the variances of the measurement errors of each method are different, which is 

probably often the case, Bland and Altman’s plot, however, may be misleading. Indeed, there 

are settings where the regression line shows an upward or a downward trend and there is no 

bias, whereas in others despite a zero slope there is a bias. This problem has been previously 

described in published literature but, to our best knowledge, no other simple to use and 

effective plots to visually appraise bias and precision have been proposed.3-8 

The literature on measurement errors is abundant and our goal is not to survey this literature 

(see Nawarathna and Choudhary9, and references therein for a recent survey). Rather, we will 

reconsider the problem of the estimation of the bivariate mixed effects model recently 

proposed by Nawarathna and Choudhary9, which extends previously published methods to the 

setting of heteroscedastic measurement errors, particularly when heteroscedasticity is a 

function of the latent trait. 

We have developed a new two-step estimation procedure, based on an empirical Bayes 

approach, which is much simpler to implement than the one adopted by Nawarathna and 

Choudhary9, and yet performs very well as illustrated by our simulation results. 

Therefore, the goals of this paper are to thoroughly investigate under what circumstances 

Bland and Altman LoA are reliable, and when this is not the case, present and illustrate a new 

two-step estimation procedure to identify and quantify the amount of differential and 

proportional bias, develop a method of recalibration in order to use the new recalibrated 

measurement method and compare its accuracy with that of the reference standard, and finally 

propose two new plots, the “bias plot” and the “precision plot”, to help the investigator 

visually and clinically appraise the performance of the new method. These plots do not suffer 

the issues related to the Bland and Altman LoA when variances are unequal, and still are easy 

to interpret, in the spirit of Bland and Altman’s LoA. The methodology requires several 

measurements with the reference standard and possibly only one with the new method for 

each individual. Actually, each individual may have a different number of repeated 

measurements by each method. It is applicable in all circumstances with or without 

differential and/or proportional bias and when the measurement errors are either 

homoscedastic or heteroscedastic. 

 

 

2 The measurement error model 

2.1 Formulation of the model 

Consider the measurement error model: 

 

1

2

1 1 1 1 1 1, | ~ (0, ( ; ))ij ij ij ij ij ijy x x N xεα β ε ε σ= + + θ  (1) 

2

2

2 2 2 2 2 2, | ~ (0, ( ; ))ij ij ij ij ij ijy x x N xεα β ε ε σ= + + θ  
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2~ ( , )ij x x xx f µ σ  

 

where 1ijy  be the jth replicate measurement by method 1 on individual i, 1,..., ij n=  and 

1,...,i N= , whereas 2ijy  is obtained by method 2, 
ij
x  is a latent variable with density 

xf  

representing the true unknown trait, and 1ijε  and 2ijε  represent measurement errors by method 

1 and 2. It is assumed that the variances of these errors, i.e. 
1

2

1( ; )ijxεσ θ  and 
2

2

2( ; )ijxεσ θ , are 

heteroscedastic and increase with the level of the true latent trait 
ij
x  in a way to be precisely 

specified later, which depends on the vectors of unknown parameters 
1θ  and 2θ . For the 

reference method, for instance method 2, 
2 0α =  and 

2 1β = , whereas for method 1 the 

differential 
1α  and proportional 

1β  biases have to be estimated from the data. The mean value 

of the latent variable 
ij
x  is 

xµ  and its variance 2

x
σ . It is assumed that the latent variable 

represent the true unknown but constant value of the trait for individual i and, therefore, 

ij i
x x≡  (this assumption may be relaxed, see discussion). 

When method 2 is the reference standard and method 1 the new method to be evaluated, the 

model reduces to: 

 

1

2

1 1 1 1 1 1, | ~ (0, ( ; ))ij i ij ij i iy x x N xεα β ε ε σ= + + θ  (2) 

2

2

2 2 2 2, | ~ (0, ( ; ))ij i ij ij i iy x x N xεε ε σ= + θ  

 2~ ( , )
i x x x
x f µ σ  

 

Nawarathna and Choudhary9 have considered a slightly more general model with method by 

subject interactions. This refinement is not necessary in our setting, as the focus is on 

identifying differential and proportional biases in order to recalibrate the new method, and 
these interactions are absorbed into the measurement error terms. Note that this measurement 

error model is slightly different from the classical measurement error model in that the 

heteroscedasticity depends on the latent trait and not on an observed average.10 

We have considered a simple linear relationship between 
1ij
y  and 

ix  to identify the 

differential and proportional biases. It is possible, however, to consider instead a non-linear 

function of 
ix  but in that case the bias no longer decomposes into two components with nice 

interpretations. 

Nawarathna and Choudhary9 estimate the parameters of this model by bivariate maximum 

likelihood. Their approach is complicated by the evaluation of the integrals in the marginal 

likelihood function and requires special numerical methods such as Laplace approximation or 

Gauss-Hermite quadrature. We have developed another more simple and expeditious way to 

estimate this model by a two-stage procedure, which performs effectively as demonstrated by 

the simulation study (see below). 

 

 

2.2 Estimation of the model 

In the first stage, instead of treating 
ix as a nuisance parameter and integrating it out from 

joint likelihood function we estimate the regression model for 
2ij
y  by marginal maximum 

likelihood accounting non-parametrically for the heteroscedasticity by allowing the variance 

of 
2ij
ε  to be different for each decile of the empirical distribution of 

2iy  (i.e. the mean of the 
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individual repeated measurements 
2iy  is used as a rough approximation to 

ix ). Then, we 

adopt an empirical Bayes approach to predict 
ix  by the mean of its posterior distribution (i.e. 

the mean of the conditional distribution of 
ix  given the vector 2iy  of observations for 

individual i by method 2),11 which is the best linear unbiased prediction (BLUP) for 
ix : 

 

2
ˆ ( | )i i ix E x= y  (3) 

2

2

2

2

( | ) ( )

( | ) ( )

y i i x i

i i

y i i x i i

f x f x
x d x

f x f x dx
= ∫

∫
y

y
 

 

where for the sake of notational convenience we have suppressed the dependence of the 

density functions 
2y
f  and 

xf  from their parameters which have been estimated by maximum 

likelihood. 

When 
xf  is the normal density, then (3) is: 

 
2 -1

2
ˆ ˆ ˆ( )
i x i i x x
x σ µ µ′= − +ι V y ι  (4) 

 

where ι  is a 
in  vector of ones and 2

2 2

2( ( ; ))i x idiag xεσ σ′= +V ιι θ  is the variance covariance 

matrix of 
2iy . 

Our estimate of the heteroscedasticity, however, is rough and it is desirable to get a smooth 

estimate to be able to compare the precision of each method, which does not depend on 
2iy  

but rather on ˆ
ix  the BLUP for ix . Therefore, following a similar approach to that of Bland 

and Altman2 we compute a smooth estimate of the (heterogeneous) variance of the 

measurement errors by regressing the absolute values of the residuals 
*

2
ˆ
ijε , from the linear 

regression model * * *

2 2 2 2
ˆ

ij i ijy xα β ε= + + , on ˆ
ix  by ordinary least squares (OLS): 

 
* (0) (1)

2 2 2
ˆ ˆ| |ij i ijxε θ θ ν= + +  (5) 

 

Under the normality assumption |
*

2ijε | follows a half-normal distribution with mean 

2

*

2 2
ˆ(| |) ( ; ) 2 /ij iE xεε σ θ π= . Therefore, a smooth standard deviation estimate is obtained as: 

 

2

* (0) (1)

2 2 2 2
ˆ ˆ ˆˆ ˆˆ ˆ ˆ( ; ) (| |) / 2 ( ) / 2i ij ix E xεσ θ ε π θ θ π= = +  (6) 

 

The form of the heterogeneity need not be a straight line and a fractional polynomial may be 

used instead if the investigator believes that the straight line model is too restrictive.11 In any 

case, a graphical representation of 
*

2
ˆ| |ijε  versus ˆix  provides a good start to visually check the 

plausibility of the straight line model. Finally, a scatter plot of 2ijy  versus ˆix  with the 

estimated regression line and the 95% prediction limits computed as 
* *

2 2
ˆˆ ˆ

ixα β+ ±
2 2
ˆ ˆ2 ( ; )ixεσ θ  

may also be useful to assess the fit. 

In the second stage, we proceed to the estimation of the regression equation for 1ijy  in (2) and 

of the differential 1α  and proportional 1β  biases simply by OLS after having substituted the 
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BLUP ˆix  for the true unmeasured trait ix . A Wald test as well as 95% confidence intervals 

for 1α  and 1β  may be used to formally assess these biases. Again, we can compute a smooth 
estimate of the (heterogeneous) variance of the measurement errors by proceeding like before 

and estimating by OLS the model 
* (0) (1)

1 1 1
ˆ ˆ| |ij i ijxε θ θ ω= + + , where 

*

1̂| |ijε  is the absolute value 

of the residuals 
*

1̂ijε  from the linear regression model * * *

1 1 1 1
ˆ

ij i ijy xα β ε= + + . 

Based on the estimates *

1α̂  and *

1β̂  of the differential and proportional biases one can compute 

an estimate of the bias of the new method: 

 
* *

1 1
ˆˆ ˆ ( 1)i ibias xα β= + −  (7) 

 

A very useful figure to visualize the bias of the new method (i.e. method 1) is obtained by 

graphing a scatter plot of 1ijy  and 2ijy  versus the BLUP ˆix  along with the two regression lines 

and add a second scale on the right showing the relationship between the estimated amount of 

bias and ˆix , which we call a “bias plot”. 

Simulations show that our methodology performs very well and one may obtain reasonably 

unbiased and consistent estimates of the differential 1α  and proportional 1β  biases, as well as 
of the (heterogeneous) measurement error variances already with sample sizes of 100 persons 

and 10 to 15 repeated measurements per individual from the reference method and only 1 

measurement from the new method. 

 

 

2.3 Recalibration of the new method 

To remove the differential and proportional biases of the new method we proceed to its 

recalibration by computing * * *

1 1 1 1
ˆˆ( ) /ij ijy y α β= − . Now that 2ijy  and 

*

1ijy  are on the same scale 

we can compare the variances of the measurement errors to determine which method is more 

precise. Before proceeding, one can check the quality of the recalibration by checking that the 

estimated intercept and slope of the linear regression model * * * *

1 1 1 1
ˆ

ij i ijy xα β ε= + +  are zero and 

1. As we would like to compare 2ijy  with 
*

1ijy  (and not with 1ijy ) it is advisable to recalculate a 

smooth estimate of the measurement errors variance of 
*

1ijy  by proceeding like before. 

One can then proceed to the comparison of the variances by making a scatter plot of the 

estimated standard deviations 
1 1
ˆ ˆ( ; )ixεσ θ  and 

2 2
ˆ ˆ( ; )ixεσ θ  versus ˆix , which we call “precision 

plot”. It is possible that after recalibration the new method turns out to be more precise 

(locally or globally) than the reference standard. 

 

 

2.4 Why Bland and Altman’s plot may be misleading 

Bland and Altman have suggested to plot the differences 1 2ij ij ijD y y= −  versus the averages 

1 2( ) / 2ij ij ijA y y= + , and add to the plot the regression line of the relationship between ijD  and 

ijA  in addition to the LoA. The problem is that the regression line may show a positive or 

negative slope when there is no bias or have a zero slope in the presence of a bias. To see the 

reason, consider the linear regression of ijD  on ijA , where from (1) we have 
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1 2 1 2 1 2( ) ( )ij i ij ijD xα α β β ε ε= − + − + −  and 1 2 1 2 1 2( ) / 2 ( ) / 2 ( ) / 2ij i ij ijA xα α β β ε ε= + + + + +  

and after substitution of ix : 

 

1 2 1 2 1 2
1 2 1 2 1 2 1 2

1 2 1 2 1 2

( ) ( ) ( )
( ) ( ) 2 ( )

( ) ( ) ( )
ij ij ij ij ij ij

ij

D A

a b

β β β β β β
α α α α ε ε ε ε

β β β β β β

ε

− − −
= − − + + − + + −

+ + +
������������� ����� �������������

 (8) 

 

Estimation of (8) by OLS generally provides biased estimates of a  and b  as: 

 

1 2

2 2

1 2 2 1

1 2

1
cov( , ) ( ; ) ( ; )

( )
ij ij i iA x xε εε σ β σ β

β β
 = − +

θ θ  (9) 

 

which is generally different from 0 and, therefore, 
ij
A  cannot be considered as being 

exogenous it is, rather, endogenous. 

OLS provides unbiased estimates only when: 

 

1

2

2

1 1

2

2 2

( ; )
cov( , ) 0

( ; )

i

ij ij

i

x
A

x

ε

ε

σ β
ε

σ β
= ⇔ =

θ

θ
 (10) 

 

i.e. there is no bias whenever the variances of the measurement errors are strictly proportional 

to the proportional bias, a special condition that has little chance to truly hold in practice. 

One can show that the OLS estimates of a  and b  are given by: 

 

1 2

1 2

2 2 2 2 2

1 2 1 2

2 2 2 2

1 2 1 2

( ) [ ( ; ) ( ; )]
2
( ) [ ( ; ) ( ; )]

x i i

OLS

x i i

x x
b

x x

ε ε

ε ε

β β σ σ σ

β β σ σ σ

− + −
=

+ + +

θ θ

θ θ
 (11) 

1 2 1 2
1 2 1 2

( )
( ) ( )

2 2
OLS x OLS xa b

α α β β
α α β β µ µ

+ + = − + − − + 
 

 

 

Therefore, a zero slope occurs when there is no proportional bias and the measurement errors 

variances are strictly equal. However, whenever the variances are not equal a zero slope is 

possible in presence of a differential bias. Conversely, a non-zero slope is difficult to interpret 

in general and may mislead the investigator into believing that there is a proportional bias 

when actually the measurement error variances are different but there is truly no such bias. 

The same luckless situations may also occur with the differential bias. 

Fortunately, the methodology we have developed does not suffer from these limitations and 

allows us to correctly identify and quantify the bias. We, therefore, suggest the use of a “bias 

plot” (see 2.2) to visualize the performance and the bias of the new method of measurement, 

as well as of a “precision plot” (see 2.3) to assess the precision of the new method relative to 

that of the standard. 

 

 

3 A simulation study 

We will demonstrate in this simulation study that our methodology to assess the biases, 

recalibrate the new method, and compare the precision of the two measurement methods 

performs very well for sample sizes of 100 individuals and between 10 to 15 measurements 
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per individual by the reference standard and only one by the new method. We have 

deliberately decided to focus on the setting where one has only one measurement from the 

new method, which is an unfavorable data setting. However, the conclusions drawn carry over 

naturally to the more favorable case with repeated measurements from the new method to be 

evaluated. 

For our simulations we considered the following data generating process: 

 
2

1 1 14 1.2 , | ~ (0, (1+0.1 ) )i i i i i iy x x N xε ε= − + +  (12) 
2

2 2 2, | ~ (0, (2+0.2 ) )ij i ij ij i iy x x N xε ε= +  

 ~ [10 40]ix Uniform −  

 

where ,1,...,100i =  and the number of repeated measurements of individual i from the 

reference standard was ~ [10 15]in Uniform − . The new method has differential bias of -4 and 

a proportional bias of 1.2 . However, the variance of the measurement errors from method 1 is 

smaller than that of the reference method 2. 

The Bland and Altman’ LoA plot extended to the setting where there is heteroscedasticity of 

the measurement errors does not seem to indicate any bias (Figure 1): 

 

 
Figure 1. Bland and Altman’ LoA plot when there is heteroscedasticity. The regression line does not seem to 

indicate any bias. 

 

On the other hand, the bias plot (Figure 2) illustrates that the new method underestimates the 

trait up to 20 and then overestimate it gradually more and more, thereby clearly illustrating 

the occurrence of differential and proportional biases: 
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Figure 2. The bias plot shows the scatter plot of the two measurement methods 1ijy  and 2ijy  versus the BLUP 

ˆ
ix  with the two regression lines added. The second scale on the right shows the relationship between the 

estimated amount of bias and the predicted value ˆix  (i.e. BLUP of ix , the latent trait). 

 

Estimation of the regression equation for 1ijy  by OLS after having substituted the BLUP ˆix  

for the true unmeasured trait ix  allowed us to identify a differential bias of -3.85 95%CI =  

[-6.81; -0.88] (true value is -4) and a proportional bias of 1.19 95%CI = [1.08; 1.29] (true 

value is 1.2). Based on 1000 simulations we found with our sample size coverage rates very 

close to nominal value for both parameters (97% for the differential bias and 95% for the 

proportional bias). 

The precision plot before (Figure 3a) and after (Figure 3b) recalibration of the new method 

allows the comparison of the standard errors of the measurement errors of the two methods: 

 

 
Figure 3. In these precision plots we have illustrated the true and estimated standard deviation of the 

measurement errors of the two methods before recalibration (left) and after (right). 
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Clearly, the estimation procedure for the variance of the measurement errors performs very 

well and despite the relatively small sample size the estimated standard deviations are very 

close to their true values. As is apparent, the recalibration slightly modifies the standard 

deviation of the new method. Again, based on 1000 simulations we found with our sample 

size coverage rates for the parameters of the heteroscedastic variances very close to nominal 

value. 

We computed Bland and Altman’ LoA plot for the recalibrated method (Figure 4) to illustrate 

that in the absence of bias the figure may mislead the reader into believing that there is a bias: 

 

 
Figure 4. Bland and Altman’ LoA plot after recalibration. The regression line seems to indicate a proportional 

bias when there is none. 
 

Finally, to visualize the performance of our recalibration procedure we have represented the 

reference standard 2y , the new method 1y , and the recalibrated version 1_ corry  in the 

following figure (Figure 5): 
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Figure 5. Comparison of the reference standard 2y  with the new method 1y  and its recalibrated version 

1_ corry . Clearly, after recalibration the bias of method 1 has been eliminated. 

 

 

4 A worked example 

To illustrate our methodology we used the same data set on systolic blood pressure 

measurements as Bland & Altman in their 1999 paper2. Very briefly, three systolic blood 

pressure measurements were simultaneously made on 85 individuals by two observers (J and 

R) and an automatic blood pressure measuring machine (S). The measurements were repeated 

three times to provide three repeated values on each individual by each method. For our 

illustration, we will consider the measurements made by observer J as the reference standard 

and assess the performance of the automatic blood pressure measuring machine S. 

 

Applying the proposed methodology to assess bias and precision of the automatic blood 

pressure measuring machine, with respect to the measurements made by observer J, we found 

a differential bias of 34.0 [mmHG], 95%CI = [23.5, 44.6], and a proportional bias of 0.86, 

95%CI = [0.77, 0.94], whereas as the LoA plot seems to indicate only a differential bias 

(Figure 6): 
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Figure 6. (top left) Bland and Altman’ LoA plot, (top right) bias plot showing the amount of differential and 

proportional bias of the automatic blood pressure measuring machine, (bottom left) precision plot showing that 

the dispersion of the blood pressure measuring machine is much larger than that of observer J, (bottom right) 

scatter plot illustrating that the recalibration of the automatic machine’s measurements (i.e. 1_ corry ) is effective 

in removing bias. 
 

The precision and comparison plots show that despite effective recalibration the blood 

pressure measuring machine still performs poorly in terms of precision (the measurement 

errors from machine S are much larger than those from observer J). 

 

 

5 Discussion 

We have developed a new estimation procedure to compare two quantitative measurement 

methods (one of which is the reference standard), which is widely applicable both when one 

has repeated measurements from the reference standard and possibly only one measurement 

per individual from the new method to be evaluated, and when measurement errors are 

homoscedastic or heteroscedastic. Our methodology circumvents the limitations of Bland and 

Altman’s LoA methodology and allows to consistently quantify the amount of differential and 

proportional biases. We have proposed two new plots, the bias plot and the precision plot, 

which allow for the first to visualize the performance of the two methods as well as the bias of 

the new method on the second scale, and for the second to compare the precision of the two 

methods. 

Our model of measurement is not new and was inspired by Nawarathna and Choudhary9. 

However, our estimation procedure is different from that adopted by these authors. They 

treated the latent variable as a nuisance parameter and integrated it out from the likelihood 

function. As a result their estimation procedure is complex and its implementation daunting. 
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We have, on the other hand, developed an estimation procedure based on an empirical Bayes 

approach, which proceeds in two steps. It has the advantage of being easier to implement, and 

works very well. Another advantage of our approach is that the BLUP of x leads naturally to 

the construction of the bias and precision plots. We have shown by simulations that it 

performs very well already with sample sizes of 100 individuals and 10 to 15 repeated 

measurements from the reference standard and only one measurement from the new method; 

estimated parameters as well as 95% prediction limits for both measurement methods all have 

proper coverage rates. When the sample size is increased to 300 individuals with 30 ~ 40 

repeated measurements the estimated biases and curves are almost indistinguishable from 

their true values. 

Additional simulations have shown that even with only 3 to 5 repeated measurements from 

the reference standard and only one measurement from the new method coverage rates are 

still very close to nominal value for the proportional and differential biases. However, 

estimation of the heteroscedasticity deteriorates. We would recommend having at least 8 to 12 

repeated measurements from the reference standard to reliably assess the precision of the two 

measurement methods. Actually, it is important to have repeated measurements from the 

reference standard as our methodology relies essentially on the BLUP of ix , whereas repeated 

measurements from the new method will increase precision of the estimated heteroscedastic 

relationship. 

It is also interesting to note that using the mean 2iy  of the repeated measurements instead of 

the BLUP ˆix  for predicting ix  the coverage rate of the confidence intervals for both the 

proportional and differential biases deteriorates; with our sample size it was only 80% for the 

differential bias and 75% for the proportional bias. With less than 10 to 15 repeated 

measurements it deteriorates even more dramatically (with 5 to 8 repeated measurements it 

was only 45% for the differential bias and 41% for the proportional bias, whereas it was still 

95% respectively 93% with the BLUP ˆix ). Simulations show that at least 45 to 50 repeated 

measurements per individual are required to have approximatively proper coverage rates 

when using the mean 2iy  for predicting ix . This is not surprising, particularly with 

unbalanced data, given that the BLUP methodology “borrows information” from the whole 

data set and not only from one individual.12 

We have shown that the major drawback of Bland and Altman’s LoA methodology is that the 

regression of D versus A by OLS provides generally biased estimates as the variances of the 

measurement errors usually differ between the two methods and are unlikely to be strictly 

proportional to the proportional bias of the new method; that is A is endogenous and not 

exogenous. Therefore, the LoA plot may mislead the researcher into believing that there is a 

bias whenever there is none and conversely believe that there is no bias when actually there is 

truly a bias. The great advantage of our methodology is that the regression of 1ijy  on the 

BLUP ˆix , as well as that of 2ijy , provide consistent estimates. Also, if the investigator 

believes that the straight line model (i.e. the regression of 1ijy  on the BLUP ˆix ) is not 

appropriate or wants to formally assess this assumption, a fractional polynomial may be used 

instead.13 

Cartensen8 argued that OLS prediction of method 2 from method 1 by the linear regression 

model 2 1ij ij ijy yα β ε= + +  was not appropriate since 1ijy  was endogenous and the regression 

parameters α  and β  are biasedly estimated. For the purpose of identifying the biases we 
perfectly agree with him. However, when the goal is prediction it is not clear if the 

endogeneity of 1ijy  really poses a problem. To investigate this issue we performed the 

following simulation. We generated a sample of 50000 observations according to equations 
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(2) with 1 ~ (0,64)ij Nε , 2 ~ (0,16)ij Nε , 1 0α = , and 1 1β = . We used the first 25000 

observations to estimate by OLS the linear regression model 2 1ij ij ijy yα β ε= + + . Then, we 

computed the predicted values 2
ˆ
ijy  (OLS prediction). Following Cartensen8, we also 

estimated the regression of differences on averages by OLS and used the estimated 

coefficients to predict 2ijy  (LoA prediction) according to equation (3) in his paper. Then, for 

the last 25000 observations, we computed the coverage rates of the two prediction methods 

and found nominal coverage rates of 95% for both methods. However, when restricting the 

prediction to the subsample of values of 1ijy  smaller than 0, the coverage rate of OLS 

prediction was still 95%, whereas that of Cartensen’s method (i.e. LoA prediction) dropped 

down to 82% (Figure 7 left). This result is not entirely surprising as the condition specified by 

equation (10) for the OLS to provide unbiased estimates when regressing the differences on 

averages was violated. Now, by simulating with 1 64 /16β =  condition (10) is verified and 

OLS regression of differences on averages provides unbiased estimates. In that case, the 

coverage rate is approximately 95% for both OLS prediction and LoA prediction even when 

restricting to the subsample of values of 1ijy  smaller than 40 (Figure 7 right): 

 

 
Figure 7. OLS prediction of method 2 from method 1 by simple linear regression (OLS prediction) and by 

Cartensen’s method (LoA prediction). Clearly the two methods differ when condition (10) is not verified (left), 

whereas this is no more the case when it holds (right). 

 

In sum, when condition (10) is verified both methods seem to be equivalent as they provide 

almost undistinguishable predictions, whereas when this is not the case OLS prediction seems 

to perform best, thereby challenging Cartensen’s conclusions. 

We have investigated the sensitivity of the BLUP for ix  to the heteroscedasticity by 

pretending that the variance of 2ijε  was constant. It turned out that not accounting for the 

heteroscedasticity of 2ijε  did not affect the BLUP of ix  as its value was only very slightly 

modified. One possible explanation is that the first term in iV  dominates the second when 

computing the inverse. Also, the empirical Bayes approach seems to be quite robust to 

distributional assumptions regarding the latent trait. Indeed, in our simulations we computed 

the BLUP of ix  under the assumption that xf  was the normal density, whereas ix  was 

actually drawn in a uniform distribution. Nevertheless, a scatter plot of ix  versus ˆix  as well 

as the results of our simulations illustrate that this does not to introduce any important bias. 

Actually, Jiang14 has shown that with sufficient repeated observations per individual and 

sufficient number of individuals the empirical distribution of the BLUP of ix  (computed 
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under the multivariate normal distribution of the random effects and errors) will converge to 

its true distribution. 

We have made the simplifying assumption of a constant latent trait value for each individual, 

i.e. ij ix x≡ . This assumption may easily be relaxed if, for example, one expects a trend in the 

latent trait, as may be the case in a longitudinal design. In that case, one may specify 

( )x t tµ α β= +  and (1) (2)( ) ( )it i ix u u tα β= + + +  with ( ) 2~ (0, )j

i ju N σ . The measurements from 

the new method need not be taken at the same time as for the reference standard as the trend 

depends on the follow-up time t. 

We have implemented in gllamm the approach advocated by Dunn10 when error variances are 

heteroscedastic (chapter 4.8 and appendix 3). Unfortunately, in our setting gllamm was 

extremely slow and failed to converge when heteroscedastic errors where allowed (despite 

allowing up to 60 quadrature points). Also, we were unable to specify a model which allowed 

the heteroscedasticity to depend on the latent trait instead of the average of the repeated 

measurements. Dunn10 assumes the normality of the distribution of the latent trait, whereas 

with our methodology it is not necessary, as discussed above. It is unclear, however, what are 

the consequences on the estimates with gllamm when the normality assumption is not met. 

We have, therefore, proposed a different estimation procedure which seems to be quite robust 

with repeated measurements from the reference standard whatever the distribution of the 

latent trait. 

Finally, extensive simulations show that our methodology still performs very well when the 

amount of differential and proportional biases, as well as the form of the heterogeneity, are 

varied. 

In summary, we have developed a new estimation procedure to assess bias and precision of a 

quantitative measurement method relative to the reference standard, which is simple to 

implement and performs very well even when the measurement errors are heteroscedastic. We 

also have proposed two new plots, the bias and precision plots, to help the investigator 

visually and clinically appraise the performance of the new method. These plots do not have 

the shortcomings of Bland and Altman’s LoA and still are in spirit of the original paper. We 

are currently developing a Stata package (as well as an R package), which will be submitted 

to the Stata Journal (resp. R Journal), that implements this methodology (as well as Bland and 

Altman’s LoA extended to the case of repeated measurements and heteroscedasticity2). 
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