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Abstract
To quantify selection acting on a trait, methods have been developed using either within or between-species variation. However, methods using
within-species variation do not integrate the changes at the macro-evolutionary scale. Conversely, current methods using between-species vari-
ation usually discard within-species variation, thus not accounting for processes at the micro-evolutionary scale. The main goal of this study is to
define a neutrality index for a quantitative trait, by combining within- and between-species variation. This neutrality index integrates nucleotide
polymorphism and divergence for normalizing trait variation. As such, it does not require estimation of population size nor of time of speciation
for normalization. Our index can be used to seek deviation from the null model of neutral evolution, and test for diversifying selection. Applied
to brain mass and body mass at the mammalian scale, we show that brain mass is under diversifying selection. Finally, we show that our test is
not sensitive to the assumption that population sizes, mutation rates and generation time are constant across the phylogeny, and automatically
adjust for it.
Keywords: quantitative genetics; trait evolution; selection; phylogenetics; population genetics

Introduction
Determining whether a trait is under a particular regime of
selection has been a long-standing goal in evolutionary biol-
ogy. Fundamentally, distinguishing neutral evolution from
selection requires determining which selective regime is sup-
ported by the observed variation of traits or sequences. The
variation of phenotypes (traits) and genotypes (sequences)
can be observed at different scales, across different develop-
ment stages at the individual level, across different individ-
uals and populations at the species level, and finally across
different species at the phylogenetic level. All these systems
require different assumptions and methodologies, and the
endeavor to determine the selective regime for a given trait
has thus incorporated theories, methods, and developments
across various fields of evolutionary biology such as quanti-
tative genetics, population genetics, phylogenetics and com-
parative genomics (Lynch & Walsh, 1998; Walsh & Lynch,
2018).

Leveraging individual variations within the same species,
genome-Wide association studies (GWAS) in humans have
shown that traits are mostly polygenic (many loci associated
with a given trait) and under stabilizing selection, while the
loci affecting those traits are mostly pleiotropic (many traits
associated with a given locus) with additive effects (Sella &
Barton, 2019; Simons et al., 2018). Given this genetic archi-
tecture of traits, from two diverging populations, it is possible
to distinguish which traits have evolved under natural selec-
tion in controlled experimental settings, by performing genetic
cross between individuals (Fraser, 2020). Across several pop-
ulations, by contrasting both trait differentiation (QST) and
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genetic differentiation (FST), so-called QST–FST methods have
been used to determine the selective regime and to quan-
tify the strength of selection acting on a trait (Crnokrak &
Merilä, 2001; Leinonen et al., 2008). QST higher than FST
is interpreted as a signature of diversifying selection due to
adaptation to different optimum trait values in the differ-
ent populations. Contrarily, QST lower than FST is inter-
preted as a signature of stabilizing selection (Lamy et al.,
2012). Other frameworks explicitly model genetic drift as a
random process generating both trait and genetic differences
between individuals and populations. This integrated frame-
work can discriminate between selection and genetic drift as
a cause of trait differentiation between populations of the
same species (Ovaskainen et al., 2011). However, regardless
of the strengths andweaknesses of eachmethod (Edelaar et al.,
2011; Ovaskainen et al., 2011; Pujol et al., 2008), tests of
trait differentiation between populations are ultimately lim-
ited to recent local adaptation since they are based on the
variation observed within a single species. To disentangle
selection from neutral evolution, trait variation can also be
observed at a larger time scale. For example, starting from
the same ancestral population, divergent lineages accumulate
phenotypic changes that will reach fixation in the population.
These changes ultimately result in different mean trait val-
ues across lineages. Theoretically, the variance in mean trait
value (between lineages) does increase linearly with time of
divergence, and also proportionally to the trait variance at
the population scale (Felsenstein, 1988; Lande, 1980a; Turelli,
1984). Empirically, this effect can be observed for genes with
larger within-species variation in gene expression level, which
exhibits a faster accumulation of divergence in mean expres-
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sion level (Khaitovich et al., 2004). As an analogy, in the
context of protein-coding DNA sequences, leveraging within
species variation and divergence to a sister species is the crux
of the McDonald and Kreitman (1991) test. In such a test,
inflation of divergence to the sister species is compared to
polymorphism within species, while neutral makers (usually
synonymous sites) are used to determine the neutral expecta-
tion and thus are used for normalization. Altogether, both the
trait variance and the evolution in mean value can be used to
test for trait selection in a pair of species (Walsh & Lynch,
2018).

Alternatively, by accounting for the underlying relation-
ships between several species, the selective regime for a quanti-
tative trait can also be tested at the phylogenetic scale (Felsen-
stein, 1985). Under neutral evolution, the change in mean trait
value along a given branch of the tree is normally distributed,
with a variance proportional to divergence time (Felsen-
stein, 1985, 1988; Hansen & Martins, 1996). As a result,
the mean trait value can be modeled as a Brownian pro-
cess branching at every node of the tree (Harmon, 2018;
Hansen & Martins, 1996). Reconstructing the trait varia-
tion along the whole phylogeny as a Brownian process can
thus constitute a null model of neutral trait evolution. Devia-
tions from the assumptions of the Brownian process are how-
ever well known. When trait variation is constrained because
of optimum mean trait values across or between species,
the pattern of evolution can be modeled by the Ornstein–
Uhlenbeck processes, which is often interpreted as a signa-
ture of stabilizing selection (Catalán et al., 2019; Hansen,
1997). Alternatively, a trend in the Brownian process (the
tendency of a trait to evolve in a certain direction with-
out fixed optimum) is interpreted as a signature of direc-
tional selection at the phylogenetic scale (Silvestro et al.,
2019). However, studies have shown that such comparative
approaches are subject to different biases (Harmon, 2018).
First, a trait under stabilizing selection for which the opti-
mal trait value is also changing as a Brownian process will
not deviate from a Brownian process, and thus be wrongly
classified as neutral (Hansen & Martins, 1996). In other
words, the better fit of a Brownian process does not neces-
sarily constitute proof of the neutral model. Second, a better
fit of a Brownian could be due to a trait evolving with a
rate too low compared to the timespan on which it is mea-
sured (Grabowski et al., 2023), and third, even for a trait
evolving under a neutral regime, the Ornstein–Uhlenbeck pro-
cess might sometimes be statistically preferred over a Brow-
nian process due to sampling artifacts (Cooper et al., 2016;
Price et al., 2022; Silvestro et al., 2015). Those limitations,
altogether with the use of mean trait estimates leaving out
the variance in traits between individuals, easily generate mis-
classification of selection from methods at the phylogenetic
scale.

At the frontier between micro and macro-evolution, com-
parativemethods at the phylogenetic scale have acknowledged
the importance of modeling within-species variation together
with changes in mean trait value to either describe mea-
surement errors (Hansen & Bartoszek, 2012; Lynch, 1991),
incorporate values for individuals (Felsenstein, 2008) or to
scale the rate of change in mean trait value (Gaboriau et al.,
2020, 2023; Kostikova et al., 2016). Across many species,
within-species variation has also been used to infer diversi-
fying selection by estimating the ratio of between to within
species variation of many traits and test for deviation from the

average ratio across traits (Rohlfs & Nielsen, 2015; Rohlfs
et al., 2014). Here, our goal was again to use both vari-
ances between and within species to determine the selective
regime of a quantitative trait. We build a novel framework
that integrates trait variation at the phylogenetic and popu-
lation scales together with estimates of nucleotide sequence
variations at both scales. It allowed us to define an expected
ratio of normalized variance between and within species while
setting the threshold of this ratio for neutral, stabilizing, and
diversifying selection. The ratio that we propose can be con-
sidered as a neutrality index for any quantitative trait (Lynch,
1990), while articulating trait and nucleotide variation within
and between species. Importantly, our neutrality index also
leverages nucleotide divergence and polymorphism to nor-
malize trait variation at both scales, such that it does not
require estimating population size (within-species) or speci-
ation time (between species). From the field of population
genetics, while QST–FST methods and their derivatives ulti-
mately seek trait differentiation among different populations
from the same species (Ovaskainen et al., 2011; Pujol et al.,
2008), our study can be seen as their macro-evolutionary ana-
log to account for phylogenetic relationships between species.
From the field of phylogenetics, our study can be seen as an
alternative to the EVE model (Rohlfs &Nielsen, 2015; Rohlfs
et al., 2014) for a single trait, where we set a threshold for neu-
tral evolution by leveraging species nucleotide polymorphism
and divergence.

Materials and methods
Neutrality index for a quantitative trait
While observing trait variations across individuals of several
species, we ask if the variation within species compared to
variation between species is compatible with neutral evolu-
tion or not. In statistical terms, this can also be framed as: Is
the variance of means equal to the mean of variances? The
difficulty in such a study is that individuals are not indepen-
dent samples, but are from species that diverged at differ-
ent times. By reviewing theoretical expectations and leverag-
ing nucleotide sequence variations, the goal of this section is
thus to obtain normalized trait variation between and within
species that are equal if the trait is neutral. Here we denote
these normalized trait variations as respectively σ2

W for within
species and as σ2

B for between species.

Within-species trait variations
For a given trait, the genetic architecture is mainly defined
by the number of loci encoding the trait (L) and the random
additive effect of a mutation on the trait (a). For a diploid
individual, the mutational variance (VM) is the rate at which
new mutations contribute to the trait variance per generation.
As shown in Lande (1979, 1980b), VM is a function of the
mutation rate per locus per generation (μ) and the genetic
architecture of the trait as

VM = 2μ · L · E
[
a2

]
. (1)

While in an infinitesimal model mutations supply new
genetic variants, random genetic drift depletes standing vari-
ation (Barton et al., 2017; Sella & Barton, 2019; Turelli,
2017). For a neutral trait at equilibrium between mutation
and drift (Lynch et al., 1998), the additive genetic variance in
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a species (VA) is a function of the mutational variance (VM)
and the effective number of individuals in the population (Ne):

VA = 2Ne · VM, (2)

= 4Ne · μ · L · E
[
a2

]
from Equation 1. (3)

For any neutral genomic region of interest, the nucleotide
diversity, π, is the average number of differences between pairs
of sequences drawn at random, which is also equal to the sum
of expected heterozygosities over all nucleotide sites (Tajima,
1989). Any segregating mutations will eventually reach fixa-
tion or extinction due to random genetic drift and π is also at
a balance between mutations and drift. As shown in Tajima
(1989), π is a function of the mutation rate (u, per nucleotide
site per generation) and the effective population size (Ne):

π = 4Ne · u. (4)

To remove the effect of Ne, we define σ2
W as the ratio of

additive genetic variance of the trait (VA) over π of any neu-
tral genomic region of interest. After simplification, σ2

W is then
solely a function of the underlying genetic architecture as

σ2
W

def= VA
π , (5)

=
4Ne · μ · L · E

[
a2

]
4Ne · u from Equations 1 and 4, (6)

=
μ · L · E

[
a2

]
u . (7)

If VA is not empirically accessible, it can be related to the
observed phenotypic variance (VP), multiplied by narrow-
sense heritability of the trait (h2), as (Hill et al., 2008)

VA = h2 · VP. (8)

Which leads to σ2
W being a function of VP and h2 instead of

VA as

σ2
W = h2 · VP

π from definition Equations 5 and 8, (9)

=
μ · L · E

[
a2

]
u from Equation 7 (10)

Between-species trait variations
For a given species i, we denote by P̄i the mean value of the
trait across the individuals. If the trait is neutral and encoded
bymany loci as assumed by the infinitesimal model, P̄i evolves
as a Brownian process (Felsenstein, 1985; Hansen & Mar-
tins, 1996). Given a phylogenetic tree, for a pair of species i
and j from this tree, we denote as ti,j the number of genera-
tions between the root of the tree and the most recent common
ancestor of taxa i and j. Then, the covariance between P̄i and
P̄j depends on ti,j as given by Hansen & Martins (1996)

cov
(
P̄i, P̄j

)
= VA

Ne
· ti,j (11)

= 4ti,j · μ · L · E
[
a2

]
, from Equation 3. (12)

Moreover, for any genomic region under neutral evolution,
some mutations will eventually reach fixation due to random

genetic drift, resulting in a substitution of a nucleotide at the
species level. The probability of fixation (Pfix) of a neutral
mutation is 1/2Ne (Kimura, 1962).We can derive the substitu-
tion rate (q, per nucleotide site per generation) as the number
of newly arisen mutations (2Ne ·u) multiplied by the probabil-
ity of fixation for each newly arisen mutations Pfix (Kimura,
1968), giving:

q = 2Ne · u · Pfix, (13)

= 2Ne · u · 1
2Ne

, (14)

= u. (15)

That is, if mutations are neutral, the rate of substitution per
generation within a genomic region equals the rate at which
new mutations arise per generation for the same genomic
region, reviewed by McCandlish and Stoltzfus (2014).

Next, we denote di,j as the nucleotide divergence between
the root of the tree and the most recent common ancestor of
taxa i and j. In other words, di,j is the expected number of
substitutions per nucleotide site during the ti,j generations.
Assuming that no multiple substitutions occurred at the same
site, di,j is the number of generations (ti,j) multiplied by the
nucleotide substitution rate per generation (q):

di,j = ti,j · q (16)

= ti,j · u from Equation 15. (17)

To remove the effect of the number of generations (ti,j) first,
and to also equate to σ2

W (Equation 7), we define σ2
B as the

covariance in the mean trait value (cov
(
P̄i, P̄j

)
) normalized

by 4 times the nucleotide divergence of any neutral genomic
region (4di,j). After simplification, σ2

B is also solely a function
of the underlying genetic architecture as

σ2
B

def=
cov

(
P̄i, P̄j

)
4di,j

, (18)

=
4ti,j · μ · L · E

[
a2

]
4ti,j · u from Equations 12 and 17, (19)

=
μ · L · E

[
a2

]
u . (20)

In Equation 20, we show that the covariance in mean trait
value between a pair of species (cov

(
P̄i, P̄j

)
) does increase lin-

early with shared nucleotide divergence (di,j), if the trait and
sequences are neutrally evolving and the genetic architecture
of the trait has not changed. Importantly, since the number
of generations is the ratio of time divided by generation time
(average time between two consecutive generations), remov-
ing the effect of the number of generations in Equation 20 also
removes the effect of both time and generation time.

Neutrality index
The variability between either individuals or species can be
obtained for both quantitative traits and genomic sequences.
At the population level, the variability of the trait between
individuals can be combined with the nucleotide diversity
of any neutrally evolving genomic region to obtain σ2

W. At
the phylogenetic level, the variability of the mean trait value
between species can be combined with the nucleotide diver-
gence of any neutrally evolving genomic region to obtain σ2

B.
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If the trait is neutrally evolving and the genetic architecture of
the trait has not changed along the phylogenetic tree, we thus
have

σ2
B

σ2
W

=
cov

(
P̄i, P̄j

)
4di,j

· π
h2 · VP

by definition and

Equations 9 and 18, (21)

=
μ · L · E

[
a2

]
u · u

μ · L · E
[
a2] from Equations 10

and 20, (22)

= 1. (23)

We define a neutrality index ρ as

ρ def=
σ2
B

σ2
W

, (24)

which will equal to 1 for a trait evolving neutrally. Both σ2
B

and σ2
W can be estimated using quantitative trait and genomic

sequences within and between species, while neither the muta-
tion rates (μ and u), nor the effective population size (Ne),
generation time or time of divergence (ti,j) need to be esti-
mated. Moreover, the nucleotide sequence from which π and
di,j are obtained should be neutrally evolving, but they are not
necessarily linked to the quantitative trait under study.

Estimation
We hereby seek to obtain point estimates of σ2

B, σ
2
W and ulti-

mately ρ. For each species with data available, σ2
W as defined

in Equation 9 can be seen as a replicate sample. Thus, σ2
W can

be obtained by averaging out across all the sampled species.
On the other hand, σ2

B such as as defined in Equation 18 only
refers to a pair of species, and thus must be generalized to
account for different species divergence, as is done in the com-
parative framework (Felsenstein, 1985; O’Meara et al., 2006).
Generally, σ2

B can thus be seen as an estimate of the rate of evo-
lution of the quantitative trait along a phylogenetic tree, when
the tree is measured in units of 4d (d being the nucleotide diver-
gence). As such, any phylogenetic comparative methods that
allow the estimation of phenotypic rates of evolution on a tree
scaled by 4d, instead of time as is usually the case, can be used
to estimate σ2

W. We provide a maximum likelihood estimate
for ρ as well as a Bayesian estimate to derive posterior proba-
bilities that the null model of neutrality (i.e. ρ = 1) is rejected.

Maximum likelihood estimate
At the phylogenetic scale, for n taxa in the tree, D (n×n) is the
symmetric distance matrix computed from the branch lengths
and the topology of the phylogenetic tree. The diagonal Di,i
represents the total nucleotide divergence from the root of the
tree to each taxon (i). The off-diagonal elements (Di,j = di,j)
are the distances between the root and the most recent com-
mon ancestor of taxa i and j, as in Equation 17. The mean
trait value at the root of the tree (ϕ) can be estimated from the
n×1 vector of mean trait values P̄ at the tips of the tree using
maximum likelihood (O’Meara et al., 2006):

ϕ =
(

1⊺ × D–1 × 1
)–1

·
(

1⊺ × D–1 × P̄
)

, (25)

where 1 is an n × 1 column vector of ones.

Finally, between-species variation σ2
B is estimated

as (O’Meara et al., 2006):

σ2
B = 1

4

(
P̄ – ϕ · 1

)⊺ × D–1 ×
(
P̄ – ϕ · 1

)
n – 1 . (26)

For a given species i with inter-individual data available,
additive genetic variance of a trait (VA,i) is the product of

heritability (h2
i ) and phenotypic variance (VP,i). The ratio of

VA,i over nucleotide diversity of neutrally evolving sequences

(πi) is a sample estimate of σ2
W. Averaged across all species,

we obtain the estimate σ2
W as

σ2
W = 1

n

n∑
i=1

VA,i
πi

= 1
n

n∑
i=1

VP,i · h2
i

πi
. (27)

As depicted in Figure 1, the neutrality index is estimated as

ρ =
σ2
B

σ2
W

. (28)

Multivariate Brownian process
In the previous section, ρ is estimated independently for each
trait of interest. Here we generalize to K traits co-varying
along the phylogenetic tree, since simultaneously estimating
all σ2

B allows improving their estimation Adams & Collyer
(2018). More specifically, trait variation along the phyloge-
netic tree is modeled as a K-dimensional Brownian process
B (1 × K) starting at the root and branching along the tree
topology (Huelsenbeck & Rannala, 2003; Lartillot & Poujol,
2011; Lartillot & Delsuc, 2012; Latrille et al., 2021). The rate
of change of the Brownian process is determined by the pos-
itive semi-definite and symmetric covariance matrix between
traits Σ (K×K). The branch lengths of the tree used to model
the Brownian process runs is measured in units of 4d (d being
the nucleotide divergence). The off-diagonal elements of Σ are
the covariance between traits, and the diagonal elements are
the variance of each trait when measured in 4d units, and thus
equate to σ2

B (see online supplementary material Section S2.1).
Of note, modeling trait evolution as a multi-dimensional pro-
cess is reliable only if K ≪ n, meaning that the number of
species is largely superior to the number of traits (Adams
& Collyer, 2018). Thus, relying on a K-dimensional process
should be reserved for a handful of allometric traits (e.g., brain
mass and body mass). If K is large, the traits are better tested
independently each with a 1-dimensional Brownian process,
which is a specific case of the multi-dimensional process.

Bayesian estimate
The Bayesian framework allows obtaining the posterior distri-
bution of neutrality index (ρ) for traits of interest. We used the
BayesCode software to model K-dimensional Brownian pro-
cesses along a phylogenetic tree (Latrille et al., 2021). With
an inverse Wishart distribution as the prior on the covari-
ance matrix, the posterior on Σ, conditional on B is also an
invertWishart distribution (see online supplementarymaterial
Section S2.2).We usedMetropolis-Hastings algorithm to sam-
ple B, while the posterior distribution of Σ is sampled using
Gibbs sampling. For each trait and each species, the prior
on heritability (h2) for each species is set as a uniform dis-
tribution with user-defined boundaries. Heritability and phe-
notypic variance for each trait are combined with nucleotide
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Figure 1. Between species, the change along the phylogeny of the mean phenotypic trait allows the estimation of between-species trait variation, σ2B,
which is normalized by nucleotide divergence. Within species, the genetic variance allows the estimation of within-species trait variation, σ2W, which is
normalized by nucleotide diversity. ρ is the ratio of σ2B over σ2W. Under neutral evolution, ρ is expected to be equal to one. Under diversifying selection,
the trait is heterogeneous between species, but homogeneous within species, leading to ρ greater than one. Under stabilizing selection, the trait is
homogeneous between species, leading to ρ smaller than one. Importantly, the sequence from which nucleotide diversity and divergence are estimated
should be neutrally evolving, but they are not necessarily linked to the quantitative trait under study, they allow for discarding the confounding effect on
mutation rate diversity, population size and divergence time.

diversity to compute σ2
W for each species before being aver-

aged across species (as in Equation 27). From σ2
W estimated

independently for each trait and the diagonal elements of Σ
(i.e., the σ2

B for each trait), the posterior distribution of ρ (as
in Equation 28) is obtained for each trait. The posterior dis-
tribution of ρ thus allows testing for deviation from neutrality
(Figure 1), for example, by computing P[ρ > 1] to test for evi-
dence of diversifying selection and P[ρ < 1] to test for evidence
of stabilizing selection.

Applicability to empirical data

Our method assumes that the narrow-sense heritability (h2) of
a trait is known such as to estimate additive genetic variance
(VA) from phenotypic variance (VP) as VA = h2 · VP. For-
tunately, if heritability is not known, the test for diversifying
selection can still be performed, although it is underpowered.
Indeed, if the additive genetic variance is substituted by pheno-
typic variance, it is equivalent to assuming complete heritabil-
ity (h2 = 1). Because h2 ≤ 1 by definition, we overestimate the
within-species variation and thus underestimate ρ. It is, how-
ever, possible to test for diversifying selection because testing
for ρ > 1 while using phenotypic variance instead of addi-
tive genetic variance means that knowing the additive genetic
variance would have only increased the evidence for diver-
sifying selection. Similarly, using the broad-sense heritability
(H2) instead of narrow-sense heritability (h2) results in an
underestimation of ρ since h2 ≤ H2 and thus can be used to
detect diversifying selection if h2 is not available. Additionally,

empirical estimates of h2 are surprisingly stable across species
and fall within the range of 0.2-0.5 in a vast majority of phe-
notypic traits tested (Hansen et al., 2011; Hansen & Pélabon,
2021). Thus, if available, such prior knowledge on h2 can be
leveraged instead of assuming complete heritability to increase
the statistical power to detect diversifying selection.

In contrast to the test of diversifying selection, the test for
stabilizing selection is invalid if ρ is underestimated. Several
assumptions made by our test might not hold on empirical
data and their consequences on the neutrality index and the
test that can be performed are shown in Table 2.

Simulation
We tested the performance of our neutrality index (ρ) to
detect selection on a quantitative trait using simulations. We
performed simulations under different selective regimes (neu-
tral, stabilizing, diversifying), different demographic histories
(constant or fluctuating population size) and different evolu-
tion of themutation rate (constant or fluctuating). Simulations
were individual-based and followed a Wright–Fisher model
with mutation, selection and drift for a diploid population
including speciation along a predefined ultrametric phyloge-
netic tree (Figure 2). Each individual phenotypic value was
the sum of genotypic value and an environmental effect. The
environmental effect was normally distributed with variance
VE. We assumed that the genotypic value was encoded by
L = 5, 000 loci, with each locus contributing an additive effect
that was normally distributed with standard deviation a = 1
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Figure 2.Wright–Fisher simulations with mutation, selection and drift. Left panel: For a given individual, the trait phenotypic value is the sum of genotypic
value and a environmental effect (standard deviation VE). The trait’s genotypic value is encoded by L independent loci (meaning no linkage), with each
locus contributing additively to the genotypic value. Parents are selected for reproduction to the next generation according to their phenotypic value,
with a probability proportional to their fitness. Mutations are drawn from a Poisson distribution, with each locus having a probability μ to mutate. Drift is
modeled by the resampling of parents. Right panel: examples of a trait evolving along a phylogenetic tree, with the mean phenotype (black line) and the
variance of the trait genotypic value (gray area).

(Figure 2 and for the theoretical formulation see online sup-
plementary material Section S1.1 and Figure S1). We assumed
a trait with a narrow-sense heritability of h2 = 0.2 and
computed the theoretical VE accordingly (see online supple-
mentary material Section S1.1). Assuming a diploid panmictic
population of size Ne = 50 at the root of the tree, and with
non-overlapping generations, we simulated explicitly each
generation along an ultrametric phylogenetic tree. For each
offspring, the number of mutations was drawn from a Pois-
son distribution with mean 2 · μ · L, with the mutation rate
per locus per generation μ. From the empirical mammalian
dataset (see next section), we computed an average nucleotide
divergence from the root to leaves of 0.18 and average genetic
diversity of 0.00276. We scaled parameters in our simulations
to fit plausible values for mammals. We thus used a nucleotide
mutation rate of u = 0.00276/4Ne = 1.38 × 10–5 per site
per generation and a total of 0.18/1.38 × 10–5 = 13, 500
generations from root to leaves, and the number of gener-
ations along each branch was proportional to the branch
length. We set μ = u without loss in generality since the
genetic architecture (L and a) is assumed constant in the
simulator.

The changes in μ and Ne along the lineages were both
modeled by a Brownian process on the log scale (log-μ and
log-Ne), leading to geometric Brownian motion on the lin-
ear scale (μ and Ne). These processes are parameterized as
B
(
0, σμ = 0.0086

)
and B

(
0, σNe = 0.0086

)
, which, if counted

across 13, 500 generations, leads to a standard deviation
of 0.0086 ·

√
13, 500 = 1.0. In other words, the devia-

tion in log-Ne and log-μ between the extant species and
the root is 1.0. An Ornstein–Uhlenbeck process was over-
laid to the instant value of log-Ne provided by the geo-
metric Brownian process to account for short-term changes
between generations (OU

(
0, σNe = 0.1, θNe = 0.9

)
). The geo-

metric Brownian motion accounted for long-term fluctu-
ations (low rate of changes σNe but unbounded), while

the Ornstein–Uhlenbeck introduced short-term fluctuations
(high rate of changes σNe but bounded and mean-reverting).
The simulation started from an initial sequence at equi-
librium at the root of the tree and, at each node, the
process was split until it finally reached the leaves of
the tree. From a speciation process perspective, this was
equivalent to an allopatric speciation over one genera-
tion.

At each generation, parents were randomly sampled with a
weight proportional to their fitness (W). Selection was mod-
eled as a one-dimensional Fisher’s geometric landscape, with
the fitness of an individual being a monotonously decreas-
ing function of the distance between the individual and the
optimal phenotype (Blanquart & Bataillon, 2016; Tenaillon,
2014). More specifically, the fitness of an individual was

given by W = e(P–λ)2/α, where P was the trait value of
the individual, λ = 0.0 was the optimal trait value, and
α = 0.02 was the strength of selection. Mutations were con-
sidered as a displacement of the phenotype in the multidi-
mensional space. Beneficial mutations moved the phenotype
closer to the optimum, while deleterious mutations moved it
further away. Stabilizing selection was implemented by fixing
the optimum phenotype to a single value (λ = 0.0). Diver-
sifying selection was implemented by allowing the optimum
phenotype to move along the phylogenetic tree as a geomet-
ric Brownian process (Hansen, 1997) (λ ∼ B

(
0, σλ = 1.0

)
).

Neutral evolution was implemented by flattening the fit-
ness landscape (W = 1), which meant that each individual
had the same probability of being sampled at each genera-
tion.

Nucleotide diversity (π) wasmeasured as the heterozygosity
of neutral markers that were simulated along the phyloge-
netic tree but not linked to the trait simulated. Nucleotide
divergence (d) was measured as the number of substitutions
per site of neutral markers along the branches of the phy-
logenetic tree. The additive genetic variance was measured
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as phenotypic variance multiplied by heritability. Heritabil-
ity was estimated from the slopes of the regression of off-
spring’s phenotypic trait values on parental phenotypic trait
values (Lynch &Walsh, 1998) averaged over the last 10 simu-
lated generations. Heritability was thus not a given parameter
of the simulations, but rather measured as it would be in
empirical data.

Empirical dataset
We analyzed a dataset of body and brain masses from mam-
mals. The log-transformed values of body and brain masses
were taken from Tsuboi et al. (2018). We removed individuals
not marked as adults and split the data into males and females
due to sexual dimorphism in body and brain masses. We dis-
carded species with only one representative since phenotypic
variance cannot be estimated. The mammalian genomic data
are gathered from the Zoonomia project (Genereux et al.,
2020). More specifically, nucleotide divergence is estimated
on a set of neutral markers in Foley et al. (2023), and with
nucleotide diversity measured as heterozygosity in Wilder
et al. (2023).

We also analyzed a dataset of primate species, with the
nucleotide variation obtained from Kuderna et al. (2023) and
the quantitative trait variation also from Tsuboi et al. (2018),
using the same filtering as for the mammalian dataset. How-
ever, the primate nucleotide divergence was not obtained on
a set of neutral markers as for the mammalian dataset, but
across the whole genome. As such, the evidence for ρ > 1
does not necessarily imply that the trait is evolving under
diversifying selection since non-neutral markers included in
the estimate of divergence can lead to a spurious ρ > 1 (see
Table 2).

Results
Neutrality index
For a neutral trait, the genetic architecture, meaning the num-
ber of loci encoding the trait and the average effect of a
mutation on the trait, is formally related to both within and
between-species variation of the trait. We defined the neutral-
ity index as ρ = σ2

B/σ2
W, which equals 1 for a neutral trait

(see Materials and methods), suggesting that traits for which
this relationship was not verified were putatively under selec-
tion. Under stabilizing selection, the variation between species
is depleted because the mean trait is maintained toward simi-
lar values between different species, which leads to ρ < 1. In
contrast, under diversifying selection, the variation between
species is inflated because species will have potentially dif-
ferent trait values (Hansen, 1997), which leads to ρ > 1.
Our neutrality index for a quantitative trait leveraged the
data for any number of species, and took advantage of the
signal over the whole phylogenetic tree, at the same time
taking into account phylogenetic inertia and addressing the
non-independence between species (Figure 1). This statistic
was obtained as a maximum likelihood estimate from Equa-
tions 27 and 26.We also devised a Bayesian estimate to obtain
the posterior distribution of the neutrality index, and test for
diversifying selection as P[ρ > 1], and stabilizing selection as
P[ρ < 1].

Our neutrality index made a series of assumptions that we
described in details inMaterial and methods. Table 2 summa-
rized these assumptions and outlined possible consequences
for the neutrality test that we proposed.

Results against simulations
The inference framework was first tested on independently
simulated datasets matching an empirically relevant mam-
malian empirical regime (see Materials and methods). Under
constant population size (Ne) and constant mutation rates
(μ and u) across the phylogenetic tree (Figure 3, top row),
we found no false negative for simulations of stabilizing
(P[ρ < 1] > 0.975; blue in Figure 3) or diversifying (P[ρ >
1] > 0.975; red in Figure 3) selection. For simulations under
neutral evolution, 77% of those were correctly identified
(0.025 ≤ P[ρ > 1] ≤ 0.975; yellow in Figure 3), while
21% and 2% were wrongly detected as stabilizing or diver-
sifying selection, respectively. Once we introduced fluctuating
Ne, μ and u (Figure 3, bottom row), our ability to identify
simulations under either diversifying or stabilizing selection
remained the same with all cases detected correctly. For simu-
lations under neutral evolution, 51% of the simulations were
correctly detected (0.025 ≤ P[ρ > 1] ≤ 0.975), while 49%
were detected as stabilizing selection (P[ρ < 1] > 0.975) and
none as diversifying selection.

Results on empirical data
For mammalian body and brain mass, we obtained male (|)
and female (~) trait variations. Combined with nucleotide
diversity and divergence, we estimated ρ and posterior proba-
bilities of diversifying selection under different assumptions
for trait heritability as shown in Table 1. For body mass,
assuming complete heritability led to zero posterior probabili-
ties of diversifying selection for both males and females (P[ρ >
1] = 0.0). If we assumed that heritability (h2) of body mass
was uniformly distributed between 20% and 40% (Hu et al.,
2022), posterior probabilities of diversifying selection became
0.635 for males and 0.324 for females. Mammalian brain mass
was found to be under diversifying selection with posterior
probabilities of 0.877 for males and 0.972 for females when
complete heritability was assumed. Assuming a uniform distri-
bution between 20% and 40% for heritability led to posterior
probabilities of diversifying selection of 1.0 for bothmales and
females.

We also analyzed a similar dataset for body mass focusing
this time only at Primates (Table 1). For primates body mass,
assuming complete heritability led to zero posterior proba-
bilities of diversifying selection for both males and females,
exactly as in the mammal dataset. However, we found pos-
terior probabilities of diversifying selection of 1.0 for males
and 0.914 for females when assuming a uniform distribution
for the heritability of body mass between 20% and 40%. For
brain mass, assuming complete heritability or not (between
20% and 40%) did not change the posterior probability of
diversifying selection, which was 1.0. Evidence for diversi-
fying selection on both brain and body mass was therefore
more pronounced in Primates than in mammals. However,
the genetic markers used to normalize trait variance with
nucleotide divergence were not necessarily neutral, which
could create spurious false positives by artificially inflating ρ
(Table 2 and Material and methods).

Discussion
In this study, we proposed a neutrality index for a quantita-
tive trait that can be used within a statistical framework to
test for selection. Our neutrality index for a trait, ρ, is calcu-
lated as the ratio of the normalized within- to between-species
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Figure 3. 10, 000 simulations of trait evolution along a phylogenetic tree under different selection regimes. Traits simulated under stabilizing selection
(blue), under a neutral evolution (yellow), and under a moving optimum (red). Histogram of ratio of between-species trait variation (σ2B) over within-species
trait variation σ2W with ρ = σ2B/σ

2
W estimated from each simulated data (left) and probabilities of ρ being greater than 1 (right). Effective population size (Ne)

and mutation rates (μ and u) were either constant (top row), or fluctuating as a Brownian process along the phylogenetic tree (bottom row).

Table 1. Test of diversifying selection on a mammal and a primate dataset, by splitting males (|) and females (~). Traits considered were body mass or brain
mass (log-transformed). Heritability (h2) was either assumed complete (h2 = 1.0) or uniformly distributed between 20% and 40% (h2 ∼ U(0.2, 0.4)). n
was the number of species in the dataset. ρ was the posterior estimate of our neutrality index, with the 95% credible interval (CI) for ρ also computed.
P[ρ > 1] was the estimated posterior probability of diversifying selection.

Dataset Trait h2 Sex n ρ 95% CI for ρ P[ρ > 1]

Mammals Body mass 1.0 | 36 0.340 0.217-0.523 0.000

Mammals Body mass 1.0 ~ 26 0.277 0.160-0.490 0.000

Mammals Body mass U(0.2, 0.4) | 36 1.124 0.721-1.754 0.635

Mammals Body mass U(0.2, 0.4) ~ 26 0.936 0.523-1.715 0.324

Mammals Brain mass 1.0 | 36 1.351 0.851-2.173 0.877

Mammals Brain mass 1.0 ~ 26 1.727 0.991-2.938 0.972

Mammals Brain mass U(0.2, 0.4) | 36 4.527 2.831-7.091 1.000

Mammals Brain mass U(0.2, 0.4) ~ 26 6.001 3.288-10.941 1.000

Primates Body mass 1.0 | 71 0.558 0.401-0.784 0.000

Primates Body mass 1.0 ~ 65 0.389 0.278-0.547 0.000

Primates Body mass U(0.2, 0.4) | 71 1.875 1.288-2.695 1.000

Primates Body mass U(0.2, 0.4) ~ 65 1.296 0.899-1.821 0.914

Primates Brain mass 1.0 | 71 1.929 1.395-2.616 1.000

Primates Brain mass 1.0 ~ 65 1.950 1.399-2.790 1.000

Primates Brain mass U(0.2, 0.4) | 71 6.479 4.658-8.944 1.000

Primates Brain mass U(0.2, 0.4) ~ 65 6.522 4.664-9.294 1.000

variation and it allowed the identification of the evolutionary
regime of a quantitative trait. At the phylogenetic scale, trait
variation between species was normalized by sequence diver-
gence obtained from a neutral set of markers. Similarly, trait
variation within species was normalized by sequence poly-
morphism obtained also from a neutral set of markers. Our
estimate of ρ could be tested for deviation from the value of 1.0

expected under the null hypothesis of neutrality. Technically,
the neutrality index can be estimated either as a maximum
likelihood point estimate, or as a mean posterior estimate
from a Bayesian implementation (see online supplementary
material Section S3). The latter also enabled the estimation of
the posterior credible interval to test for departure from a neu-
trally evolving trait (e.g., P[ρ > 1]). We tested our statistical
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Table 2. Assumptions breaks and their consequences on the estimation of within-species variation (σ2
W), between-species variation (σ2

B), and on the
neutrality index ρ = σ2

B/σ2
W. The last two columns indicate whether the test for diversifying selection (ρ > 1) and for stabilizing selection ρ < 1 are

conservative or invalid due to violated assumptions.

Broken assumption Consequences σ2
W σ2

B Test ρ > 1 Test ρ < 1
Trait encoded by few
loci

Between-species trait varia-
tion is underestimated

– Underestimated Conservative Invalid

Sexual dimorphism Within-species trait varia-
tion is overestimated

Overestimated – Conservative Invalid

Phenotypic plasticity Trait responding to individ-
ual environments

Overestimated – Conservative Invalid

Inbreeding Nucleotide diversity (π) is
underestimated

Overestimated – Conservative Invalid

Markers for polymor-
phism are negatively
selected

Nucleotide diversity (π) is
underestimated

Overestimated – Conservative Invalid

Markers for polymor-
phism are positively
selected

Nucleotide diversity (π) is
underestimated

Overestimated – Conservative Invalid

Markers for divergence
are positively selected

Nucleotide divergence (d) is
overestimated

– Underestimated Conservative Invalid

Markers for polymor-
phism under balanced
selection

Nucleotide diversity (π) is
overestimated

Underestimated – Invalid Conservative

Markers for divergence
are negatively selected

Nucleotide divergence (d) is
underestimated

– Overestimated Invalid Conservative

Multiple nucleotide
substitutions at the
same locus

Nucleotide divergence (d) is
underestimated

– Overestimated Invalid Conservative

procedure against simulated data and showed that our test
was able to correctly detect simulations under diversifying
selection (test of ρ > 1) or under stabilizing selection (test
of ρ < 1). However, our test detected a spurious signal of
stabilizing selection (ρ < 1) when we simulated the evolu-
tion of a neutral trait. An assumption of our test is that the
neutral phenotypic trait is evolving as a Brownian process
and is, therefore, unbounded. However, the phenotype may
be bounded by what the genetic architecture can produce,
and this could cause a slowdown of phenotypic divergence
over time due to the erosion of possible phenotypic changes
at the underlying loci. Typically, such an effect depends on
the number of alleles per locus, whether new mutations are
generating new alleles or instead reverting to previous alleles.
Altogether, in our simulation setting under a constant genetic
architecture with a fixed number of loci, such a slowdown of
phenotypic divergence can result in a spurious signal of stabi-
lizing selection (ρ < 1), especially for deeper phylogeny (see
online supplementary material Figure S2 and Section S4). We
thus argue that our method should be used to detect diversify-
ing selection, but that it had low accuracy to detect stabilizing
selection due to false positives.

Our results showed that our method significantly improved
over currently available methods to detect selection acting on
a trait at the phylogenetic scale. Current methods relying on
evolution of the mean trait value between species also tend
to statistically prefer a model of stabilizing selection over a
Brownian process when the trait is neutral (Cooper et al.,
2016; Price et al., 2022; Silvestro et al., 2015). Our approach
could in theory be applied to detect stabilizing selection at
the phylogenetic scale, but we showed that it did not have
the statistical power to identify those cases. In contrast, we
showed that our method was able to identify correctly cases

of diversifying selection, which is a clear improvement over
current methods that model only mean trait value. Indeed,
under diversifying selection, mean trait value will not deviate
from a Brownian process, and thus cannot be distinguished
from neutral evolution (Hansen & Martins, 1996; Harmon,
2018). For example, testing the selective regime in the expres-
sion level of the majority of genes led to the selection of a
Brownian process as the prefered model and the interpre-
tation that the expression was evolving neutrally (Catalán
et al., 2019). Instead, our diversity index has the advan-
tage to discriminate the alternative model of diversifying
selection from the neutral case by comparing within- and
between-species variation while correctly normalizing them
using nucleotide markers. Our approach is not the first one
coupling between-species and within-species variations, and
those approaches employ different strategies to detect selec-
tion. First, one empirical strategy is to compare the ratio of
between to within variation across a pool of traits, which
allow to identify outlier traits putatively under diversifying
selection (Rohlfs et al., 2014). However, this method does not
formally allow testing for diversifying selection, and requires
many traits such as expression level data to seek outliers
genes (Gillard et al., 2021; Rohlfs & Nielsen, 2015). Second,
other methods leverage Lande’s generalized genetic distance
(LGGD), which relate the ratio of between to within varia-
tions to population-genetic parameters (Lande, 1979; Lemos
et al., 2001, 2005; Lynch & Crease, 1990; Porto et al., 2015;
Weaver et al., 2007). Specifically, by leveraging estimates
of effective population size (Ne) and number of generations
between species, or alternatively by assuming their constancy,
these methods can test for departures from the null model
of neutral evolution for a single trait. Such methods have
been successful in identifying specific instances of diversifying
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selection (Machado et al., 2022; Schroeder & von Cramon-
Taubadel, 2017) and near-drift (Machado et al., 2023). How-
ever, Ne and the number of generations are complex param-
eters to correctly infer, and is usually done for a pair or
only a few species, and ultimately requires large genomic
datasets and heavy statistical methods (Wilder et al., 2023).
Instead, our diversity index opens new avenues to revisit these
studies testing for the selective regime affecting the quanti-
tative traits, by formally incorporating nucleotide divergence
and polymorphism, bypassing estimation of Ne, generation
time and calibration of ancestral node ages (Machado et al.,
2023).

As such, the main novelty of our study was to use the
nucleotide divergence and polymorphism to normalize trait
variation between and within species. In this context, our test
bears many similarities to QST–FST tests (and their deriva-
tives) that have been developed to test for selection of a
trait across several populations while also leveraging sequence
variation (Leinonen et al., 2013; Martin et al., 2008) or co-
ancestry between individuals (Ovaskainen et al., 2011). Our
method can be seen as an analog at the phylogenetic scale,
where although the sequences used should be neutrally evolv-
ing, they can be obtained from different sampled individuals
than for the trait. Importantly, by normalizing with sequence
variation, we also showed using simulated data that our test
was not sensitive to the assumption that Ne and mutation
rates were constant across the phylogenetic tree, an unmet
assumption empirically (Bergeron et al., 2023; Wilder et al.,
2023). Indeed, under the neutral case of evolution, the nor-
malization by nucleotide divergence and polymorphism auto-
matically absorbed long-term and short-term changes in Ne,
generation time and mutation rates, which canceled out in the
neutrality index ρ.

In the context of phylogenetic comparative methods, mod-
eling mean trait evolution as a function of nucleotide diver-
gence (d) instead of time has more general consequences. As
an example, trait variation is often modeled as a Brownian
process running on a time-calibrated tree, which can pro-
duce biases (Litsios & Salamin, 2012). Indeed, for a neutrally
evolving trait, trait variation depends directly on the num-
ber of generations, which in turn correlates with time. But,
since species generation time might vary along the phyloge-
netic tree, d-scaled trees absorbing changes in generation time
should be used instead of time-scaled trees. Using nucleotide
divergence would also remove the potential effect of model
assumptions required to calibrate ancestral node ages (e.g.,
molecular clocks). We argue, that the soundness of studying
trait evolution on d-scaled trees can be evaluated by the abso-
lute fit of a model to the data (Pennell et al., 2015). More
generally, genomic information could potentially be seen as
a way to disentangle congruence models (Louca & Pennell,
2020), or as prior for methods that detect shifts in adaptive
regimes (Ingram & Mahler, 2013; Khabbazian et al., 2016;
Mitov et al., 2020; Uyeda & Harmon, 2014).

Even though our test was developed for a quantitative trait,
analogies with other tests of selection developed for molecu-
lar sequences also provided insight into its behavior. First, we
acknowledge that our test took inspiration from the McDon-
ald and Kreitman (1991) test devised for protein-coding DNA
sequences in a pair of species, except that the non-synonymous
versus synonymous distinction is replaced by the compari-
son between quantitative trait and neutral genomic sequence.
Second, at the phylogenetic scale, when comparison is done

across several species, our test also bears analogy to codon-
based test of selection, where the ratio of non-synonymous to
synonymous substitutions (ω) is compared to 1 (Goldman &
Yang, 1994; Muse & Gaut, 1994). As ω < 1 is interpreted
as purifying selection acting on the protein, ρ < 1 is inter-
preted as stabilizing selection acting on the trait. Similarly,
the interpretation of adaptation for ω > 1 is analogous to
diversifying selection for ρ > 1. With this analogy in mind,
we could leverage the vast literature discussing and interpret-
ing the results of these tests and their pitfalls (Anisimova &
Kosiol, 2009; Jensen et al., 2019; Nielsen, 2005). First, not
rejecting the neutral null model of ρ = 1 did not necessarily
imply that the trait was effectively neutral, since diversifying
and stabilizing selection could compensate each other result-
ing in ρ = 1, analogously to ω = 1 under a mix of adaptation
and purifying selection (Nielsen, 2005). Second, empirical evi-
dence for ρ < 1 did not rule out diversifying selection, but
rather that this diversifying selection was not strong enough
to overcome the stabilizing selection, similarly to strong puri-
fying selection resulting ω < 1 even though those genes and
sites are under adaptation (Latrille et al., 2023). By explicitly
modeling stabilizing selection as a moving optimum, it would
theoretically be possible to tease apart the effect of diversi-
fying and stabilizing selection in the context of quantitative
traits to obtain a statistically more powerful test.

In the context of detecting diversifying selection on a trait,
we argue that the main drawback of our method is that the
additive genetic variance of the trait is required instead of the
phenotypic variance. If phenotypic variance was used instead
of additive genetic variance to estimate ρ, meaning that we
assumed complete heritability, the neutrality index ρ was ulti-
mately underestimated. Similarly, using broad-sense heritabil-
ity instead of narrow-sense heritability would result in under-
estimated ρ. In such context, the test of stabilizing selection
(ρ < 1]) would be statistically invalid. However, the test of
diversifying selection (ρ > 1) was underpowered although
not invalided, meaning that absence of evidence would not
be evidence of absence. As an example, even though we
assumed complete heritability for brain mass, we uncovered
diversifying selection in mammals since ρ > 1. If available,
any prior knowledge on heritability can be leveraged instead
of assuming complete heritability to increase the statistical
power to detect diversifying selection (Hansen & Pélabon,
2021; Hansen et al., 2011). Additionally, phenotypic plas-
ticity also affects the genotype-phenotype relationship with
intricate consequences for our test of selection. First, at the
level of within species variation, individuals might occupy
different patches with different environments. Responding to
these individual environmental conditions, phenotypic plas-
ticity would then result in increased trait variation within
species. In this scenario, as hypothesized in Rohlfs & Nielsen
(2015), phenotypic plasticity then leads to a reduced ratio
of between to within species variations, thus ultimately lead-
ing to our tests of diversifying selection being underpowered
although not invalid. Alternatively, it is also possible that dif-
ferent species are experiencing different macro-environments,
for example with species spread along a latitudinal or ele-
vation gradient, with different temperatures or precipitation.
These species could thus have different mean phenotypes
solely because of phenotypic plasticity, while such changes are
not encoded in their genome (Schraiber & Edge, 2023; Stamp
& Hadfield, 2020). Such an effect can lead to ρ > 1 erro-
neously interpreting diversifying selection. The test of ρ > 1
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would however be correct that the changes in mean pheno-
types across species is due to change in environment, albeit in
such a case not encoded by the genotype of individuals but
due to phenotypic plasticity.

The development of our neutrality index was also based
on several assumptions that could be relaxed in future stud-
ies. First, we cannot predict the behavior of our test in the
context of population structures, gene flow and introgression.
These factors should be thoroughly investigated using simu-
lations. Second, loci were assumed to contribute additively to
the phenotype. Although the effects of dominance and epista-
sis is typically weak compared to the additive effects on the
quantitative traits, their influence should be assessed (Crow,
2010; Hill et al., 2008). Third, the genetic architecture of
the trait was assumed to be constant across the phylogenetic
tree, whereas it might actually be variable among individuals
and species (Huber et al., 2015; Tung et al., 2015). Such an
assumption can theoretically be relaxed and changes in genetic
architecture along the phylogenetic tree could jointly be esti-
mated (Arnold et al., 2008; Gaboriau et al., 2020; Hohenlohe
& Arnold, 2008; Kostikova et al., 2016). Finally, from a sta-
tistical perspective, our Bayesian estimation could integrate
uncertainty from the estimation of genetic variation, using
sequences as input instead of estimated values of nucleotide
diversity and divergence.

From an empirical point of view, our method required
integrating genomic and trait variation, which could reduce
the possible datasets to be used. However, such datasets will
become more and more accessible and we showed the applica-
bility of our method by applying it to the illustrative example
of mammals’ brain and body mass, both showing signals of
diversifying selection. As such, this result corroborates studies
relying solely on changes in mean trait values across mam-
mals, showing strong statistical support for several distinct
evolutionary regimes for body- and brain mass (Mitov et al.,
2019). Interestingly, our strongest signal is for brain mass,
corroborating studies in hominids where skull size (related to
brain mass) is the only trait that exceeded the expected rate
of phenotypic evolution under a neutral model (Lynch, 1990).
Hence, one first interpretation here is that brain mass might be
an exceptional case among many phenotypic traits (e.g., den-
tal and skeletal measures). Second, from amacro-evolutionary
perspective, the consensus is that empirical rates of evolution
calculated on phylogenetic trees and the fossil record are far
inferior to the expected under drift (Lynch & Crease, 1990;
Uyeda et al., 2011), where such methods assume constancy
of Ne, generation time and mutation rates. Our finding of
diversifying selection on body and brain mass could be seen
as an argument against that interpretation. In fact, rates of
nucleotide evolution also show a tendency for slowing down
on a longer timescale (Rolland et al., 2023). One possible
interpretation is that normalization by nucleotide divergence
could absorb this observed slowing rate of evolution. Alto-
gether, further empirical and theoretical studies are required
to disentangle this discrepancy between these different results
and interpretations Because our test was also based on sev-
eral assumptions that might not hold on empirical data, we
also provided a table containing the main assumptions and
their consequences on the neutrality index and the test that
can be performed (Table 2). For example, at the primate scale,
the evidence for ρ > 1 does not necessarily imply that the
brain mass was evolving under diversifying selection since
the markers used for nucleotide divergences were not neutral,

which can lead to a spurious ρ > 1. In conclusion, our study
provided a statistical framework to test for diversifying selec-
tion acting on a quantitative trait while integrating the trove
of genomic data available both within and between species,
and we believe that our new approach is a promising tool to
investigate the evolution of quantitative traits.
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